Revised and Updated for Java SE 6

Core Java

Volume | - Fundamentals
EIGHTH EDITION

@Sun

Cay S. Horstmann * Gary Cornell

core]A\/A“

VOLUME I-FUNDAMENTALS

EIGHTH EDITION

: '
l "

CAY S. HORSTMANN
GARY CORNELL

PRIALLCE Sun Microsystems Press

Upper Saddle River, NJ « Boston ¢ Indianapolis « San Francisco

New York e Toronto ¢ Montreal « London ¢« Munich ¢ Paris « Madrid
Capetown « Sydney * Tokyo * Singapore « Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designationsappear in this book, and the publisher was aware of atrademark claim, the designations have been printed with initial
capital lettersorin al capitals.

Sun Microsystems, Inc., hasintellectual property rights relating to implementations of the technology described in this publication.
In particular, and without limitation, these intellectual property rights may include one or more VS patents, foreign patents, or
pending applications. Sun, Sun Microsystems, the Sum logo, 2ME. Solaris, Java, Javadoc. Net Beans, and al Sun and Java based
trademarksand logosare trademarks or registered trademarks of Sun Microsystems, Inc., in the United Statesand other countries.
UNIX isaregistered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind
and assume no responsibility for errorsor omissions. No liability isassumed lor incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO. THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE. OR NON-INFRINGEMENT. THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPO-
GRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL
BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC., MAY MAKE IMPROVE-
MENTS AND/OR CHANGES IN THE PRODUCTS) AND/OR THE PROCRAM(S) DESCRIBED IN THIS PUBLICATION AT
ANYTIME

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may
include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and
branding interests. For more information, please contact U5. Corporate and Government Sales, (800) 382-3419, corpsal es@pear-
sontechgroup.com. For sales outside the United States please contact: International Sales, tatemational @pearsoned.com.

Visit usonthe Web: www.prenhal | professional.com
Library of Congress Catal oging-in-Publication Data

Horstmann. CayS.,1959-

CoreJava. Volume I, Fundamentals/ Cay S. Horstmann, Gary Cornell. —
8th ed.

p.cm.

Includesindex.

ISBN 978-0-13-235476-9 (pbk.: ak. paper) 1. lava (Computer program
language) |. Cornell, Gary. Il. Title. I11. Title: Fundamentals. V.
Title: Core-Java fundamentals.

QA76.73.1I3SH6753 2008
005.133-dc22

2007028843

Copyright© 2008 Sun Microsystems, Inc.
4150 Network Circle, Santa Clara, California95054 U.S.A.

All rightsreserved.. Printed in the United States of America. This publication isprotected by copyright, and permission must he
obtai ned from the publisher prior to any prohibited reproduction, storage in aretrieval system, or transmission inany form or by any
means, el ectronic, mechanical, photocopying, recording, or likeivi.se. For information regardling permissions, writeto: Pearson
Education, Inc.. Rightsand Contracts Department. One Like Street, Upper Saddle River, NJ07458.

ISBN-13: 978-0-13-235476-9

ISBN-10: 0-13-235476-4

Text printed in the United Stateson recycled paper at Courier in Stoughton, Massachusetts.
First printing, September 2007

Table of Contents

Preface xix
Acknowledgments xXxv

Chapter 1. An Introduction to Java 1
Java As a Programming Platform 2

The Java “White Paper” Buzzwords 2
Java Applets and the Internet 7

A Short History of Java 9

Common Misconceptions about Java 11

Chapter 2: The Java Programming Environment 15
Installing the Java Development Kit 16

Choosing a Development Environment 21

Using the Command-Line Tools 22

Using an Integrated Development Environment 25
Running a Graphical Application 28

Building and Running Applets 31

Chapter 3: Fundamental Programming Structures in Java 35
A Simple Java Program 36
Comments 39

Data Types 40

Variables 44

Operators 46

Strings 53

Input and Output 63
Control Flow 71

Big Numbers 88

Arrays 90

Chapter 4: Objects and Classes 105
Introduction to Object-Oriented Programming 106
Using Predefined Classes 111

Defining Your Own Classes 122

Static Fields and Methods 132

Method Parameters 138

Object Construction 144

Packages 15

The Class Path 160

Documentation Comments 162

Class Design Hints 167

Chapter 5: Inheritance 171

Classes, Superclasses, and Subclasses 172
Object: The Cosmic Superclass 192
Generic Array Lists 204

Object Wrappers and Autoboxing 211

Methods with a Variable Number of Parameters 214
Enumeration Classes 215

Reflection 217

Design Hints for Inheritance 238

Chapter 6: Interfaces and Inner Classes 241
Interfaces 242

Object Cloning 249

Interfaces and Callbacks 255

Inner Classes 258

Proxies 275

Chapter 7: Graphics Programming 281
Introducing Swing 282

Creating a Frame 285

Positioning a Frame 288

Displaying Information in a Component 294
Working with 2D Shapes 299

Using Color 307

Using Special Fonts for Text 310

Displaying Images 318

Chapter 8: Event Handling 323
Basics of Event Handling 324
Actions 342

Mouse Events 349

The AWT Event Hierarchy 357

Chapter 9: User Interface Components with Swing 361
Swing and the Model-View-Controller Design Pattern 362
Introduction to Layout Management 368

Text Input 377

Choice Components 385

Menus 406

Sophisticated Layout Management 424

Dialog Boxes 452

Chapter 10: Deploying Applications and Applets 493
JAR Files 494

Java Web Start 501

Applets 516

Storage of Application Preferences 539

Chapter 11: Exceptions, Logging, Assertions, and Debugging 551
Dealing with Errors 552

Catching Exceptions 559

Tips for Using Exceptions 568

Using Assertions 571

Logging 575

Debugging Tips 591

Using a Debugger 607

Chapter 12: Generic Programming 613
Why Generic Programming? 614

Definition of a Simple Generic Class 616
Generic Methods 618

Bounds for Type Variables 619

Generic Code and the Virtual Machine 621
Restrictions and Limitations 626
Inheritance Rules for Generic Types 630
Wildcard Types 632

Reflection and Generics 640

Chapter 13: Collections 649
Collection Interfaces 650
Concrete Collections 658

The Collections Framework 689
Algorithms 700

Legacy Collections 707

Chapter 14: Multithreading 715
What Are Threads? 716
Interrupting Threads 728
Thread States 730

Thread Properties 733
Synchronization 736
Blocking Queues 764
Thread-Safe Collections 771
Callables and Futures 774
Executors 778
Synchronizers 785

Threads and Swing 794

Appendix 809

To the Reader

In late 1995, the Java programming language buret onto the Internet scene and gained
instant celebrity status. The promise of Java technology was that it would become the
universal glue that connects users with information, whether that information comes
from web servers, databases, information providers, or any other imaginable source.
Indeed, Java isin a unique position to fulfill this promise. It isan extremely solidly engi-
neered language that has gained acceptance by al maor vendors, except for Microsoft.
Its built-in security and safety features are reassuring both to programmers and to the
users of Java programs. Java even has built-in support that makes advanced program-
ming tasks, such as network programming, database connectivity, and multithreading,
straightforward.

Since 1995, Sun Microsystems has released seven major revisions of the Java Develop-
ment Kit. Over the course of the last eleven years, the Application Programming Inter-
face (API) has grown from about 200 to over 3,000 classes. The APl now spans such
diverse areas as user interface constaiction, database management, internationaliza-
tion, security, and XML processing.

The book you have in your handsisthe firs volume of the eighth edition of Core Java™.
With the publishing of each edition, the book followed the release of the Java Development
Kit asquickly as possible, and each time, we rewrote the book to take advantage of the
newest Java features. Thisedition hasbeen updated to reflect the features of Java Standard
Edition (SE) 6.

Aswiththe previouseditionsof thisbook, westill target serious programmerswho want to put
jamto work on real projects. Wethink of you, our reader, as a programmer with asolid back-
ground in a programming language other than Java, and we assume that you don't like books
filled with toy examples (such as toasters, zoo animals, or "nervous text"). You won't find any

XiX

Preface

of these in this book. Our goal isto enable you to fully understand the Javalanguage and
library, not to giveyou an illusion of understanding.

In this book you will find lots of sample code that demonstrates almost every' language
and library feature that we discuss. We keep the sample programs purposefully simple
to focus on the major points, but, for the most part, they aren't fake and they don't cut
corners. They should make good starting points for your own code.

We assume you are willing, even eager, to learn about al the advanced features that
Java puts at your disposal. For example, we give you a detailed treatment of:
* Object-oriented programming

* Reflection and proxies

* Interfacesand inner classes

* Theevent listener model

» Graphical user interface design with the Swing Ul toolkit

» Exception handling

* Generic programming

* The collections framework

» Concurrency

With the explosive growth of the Java class library, a one-volume treatment of all the
features of Java that serious programmers need to know is no longer possible. Hence,

we decided to break up the book into two volumes. The first volume, which you hold in
your hands, concentrates on the fundamental concepts of the Java language, along with
the basics of user-interface programming. The second volume, CoreJava, Volume I1—
Advanced Features (forthcoming, ISBN: 978-0-13-235479-0), goes further into the enterprise
features and advanced user-interface programming. It includesdetailed discussions of:

* Filesand streams

» Distributed objects

» Databases

¢ Advanced GUI components
* Native methods

* XML processing

* Network programming
* Advanced graphics

* Internationalization

* lavaBeans

* Annotations

In thisedition, we reshuffled the contents of the two volumes. In particular, multi-
threading is now covered in Volume | because it has become so important, with Moore's
law coming to an end.

When writing a book, errors and inaccuracies are inevitable. We'd very much like to
know about them. But, of course, we'd prefer to learn about each of them only once.
We have put up a list of frequently asked questions, bugs fixes, and workaroundsin a
web page at http://horgmann.coni/corgava. Strategically placed at the end of the errata page

http://horstmann.coni/corejava

Preface

(to encourage you to read through it first) isa form you can use to report bugs and sug-
gest improvements. Please don't be disappointed if we don't answer every query or if
we don't got back to you immediately. We do read all e-mail and appreciate your input
to make future editions of this book clearer and more informative.

A Tour of This Book

Chapter 1 gives an overview of the capabilities of Java that set it apart from other
programming languages. We explain what the designers of the language set out to
do and to what extent they succeeded. Then, we give a short history of how Java
came into being and how it hasevolved.

In Chapter 2, we tell you how to download and install theJDK and the program exam-
ples for thisbook. Then we guide you through compiling and running three typical Java
programs, a console application, a graphical application, and an applet, using the plain
JDK, a Java-enabled text editor, and a Java IDE.

Chapter 3 starts the discussion of the Java language. In this chapter, we cover the basics:
variables, loops, and simple functions. If you are a C or C++ programmer, thisis smooth
sailing because the syntax for these language features is essentially the same as in C. If
you come from a non-C background such as Visual Basic, you will want to read this
chapter carefully.

Object-oriented programming (OOP) is now in the mainstream of programming prac-
tice, and Java is completely object oriented. Chapter 4 introduces encapsulation, the first
of two fundamental building blocks of object orientation, and the Java language mecha-
nism to implement it, that is, classes and methods. In addition to the rules of the Java
language, we also give advice on sound OOP design. Finally, we cover the marvelous
javadoc tool that formats your code comments as a set of hyperlinked web pages. If you
are familiar with C++, then you can browse through this chapter quickly. Programmers
coming from a non-object-oriented background should expect to spend some time mas-
tering OOP concepts before going further with Java.

Classes and encapsulation are only one part of the OOP story, and Chapter 5 introduces
the other, namely, inheritance. Inheritance lets you take an existing class and modify it
according to your needs. Thisis a fundamental technique for programming in Java. The
inheritance mechanism in Java is quite similar to that in C++. Once again, C++ pro-
grammers can focus on the differences between the languages.

Chapter 6 showsyou how to use Java's notion of an interface. Interfaces let you go
beyond the simple inheritance model of Chapter 5. Mastering interfaces allows you to
have full access to the power of Java's completely object-oriented approach to program-
ming. We also cover a useful technical feature of Java called inner classes. Inner classes
help make your code cleaner and more concise.

In Chapter 7, we begin application programming in earnest. Every Java programmer
should know a bit about GUI programming, and this volume contains the basics. We
show how you can make windows, how to paint on them, how to draw with geometric
shapes, how to format text in multiple fonts, and how to display images.

Chapter 8 is a detailed discussion of the event model of the AWT, the abstract window
toolkit You'll see how to write the code that responds to events like mouse clicks or key
presses. Along the way you'll see how to handle basic GUI elements like buttons and
panels.

Preface

Chapter 9 discusses the Swing GUI toolkit in great detail. The Swing toolkit allows you
to build a cross-platform graphical user interface. You'll learn all about the various
kinds of buttons, text components, borders, sliders, list boxes, menus, and dialog boxes.
However, some of the more advanced components are discussed in Volume II.

Chapter 10 shows you how to deploy your programs, either as applications or applets.
We describe how to package programs in JAR files, and how to deliver applications
over the Internet with the Java Web Start and applet mechanisms. Finally, we explain
how Java programs can store and retrieve configuration information once they have
been deployed.

Chapter 11 discusses exception handling, Java's robust mechanism to deal with the fact
that bad things can happen to good programs. Exceptions give you an efficient way of
separating the normal processing code from the error handling. Of course, even after
hardening your program by handling all exceptional conditions, it still might fail to
work as expected. In the second half of this chapter, we give you a large number of use-
ful debugging tips. Finally, we guide you through a sample debugging session.

Chapter 12 gives an overview of generic programming, a major advance of Java SE 5.0.
Generic programming makes your programs easier to read and safer. We show you how
you can use strong typing and remove unsightly and unsafe casts, and how you can
deal with the complexities that arise from the need to stav compatible with older ver-
sions of Java.

The topic of Chapter 13 is the collections framework of the Java platform. Whenever you
want to collect multiple objects and retrieve them later, you will want to use a collection
that is best suited for your circumstances, instead of just tossing the elements into an
array. This chapter shows you how to take advantage of the standard collections that are
prebuilt for your use.

Chapter 14 finishes the book, with a discussion on multithreading, which enables you to
program tasks to be done in parallel. (A thread is a flow of control within a program.)
We show you how to set up threads and how to deal with thread synchronization. Mul-
tithreading has changed a great deal in Java SE 5.0, and we tell you all about the new
mechanisms.

The Appendix lists the reserved words of the Java language.

Conventions
As iscommon in many computer books, we use monogpace type to represent computer code.

] NOTE: Notes are tagged with "note" icons that look like this.

v

I TIP: Tips are tagged with the 'lip"” icon that look like this.

I CAUTION: When there is danger ahead, we warn you with a "caution™ icon.

Preface ﬂ

| C++ NOTE: There are many C++ notes that explain the difference between Java and C++.
ﬂi You can skip over them if you don't have a background in C++ or if you consider your experi-
ence with that language a bad dream of which you'd rather not be reminded.

ml Application Programing Interface

Java comes with a large programming library or Application Programming Interface
(API). When using an API call for the first time, we add a short summary description
tagged with an API icon at the end of the section. These descriptions are a bit more
inform.il but, we hope, also a little more informative than those in the officia on-line
APl documentation. We now tag each API note with the version number in which the
feature was introduced, to help the readers who don't use the "bleeding edge" version
of Java.

Programs whose source code is on the Web are listed as examples, for instance

Listing 1-1 RSt ge e

Sample Code

Theweb sitefor thisbook at http://horstmann.conl/core3avacontai nsall samplecodefrom
the book, in compressed form. You can expand the file either with one of the familiar
unzipping programs or simply with the jar utility that is part of the Java Development
Kit. See Chapter 2 for more information about installing the Java Development Kit
and the sample code.

Writing a book is always a monumental effort, and rewriting doesn't seem to be much
easier, especially with continuous change in Java technology. Making a book a reality
takes many dedicated people, and it is my great pleasure to acknowledge the contri-
butions of the entire Core Java team.

A large number of individuals at Prentice Hall and Sun Microsystems Press provided valu-
able assistance, but they managed to stay behind the scenes. I'd like them all to know how
much | appreciate their efforts. Asalways, my warm thanksgo to my editor, Greg Doench
of Prentice Hall, for steering the book through the writing and production process, and for
allowing me to be blissfully unaware of the existenceof al those folks behind the scenes. |
am grateful to Vanessa Moore for the excellent production support. My thanks also to my
coauthor of earlier editions, Gary Cornell, who has since moved on to other ventures.

Thanks to the many readers of earlier editions who reported embarrassing errors and
made lots of thoughtful suggestions for improvement. | am particularly grateful to the
excellent reviewing team that went over the manuscript with an amazing eye for detail
and saved me from many more embarrassing errors.

Reviewers of thisand earlier editions include Chuck Allison (Contributing Editor, C/C++
Usersjournal), Alec Beaton (PointBase, Inc.), Cliff Berg (iSavvix Corporation), Joshua Bloch
(Sun Microsystems), David Brown, Corky Cartwright, Frank Cohen (PushToTest), Chris
Crane (devXsolution), Dr. NicholasJ. De Lillo (Manhattan College), Rakesh Dhoopar (Ora-
cle), David Geary (Sabrewaro), Brian Goetz (Principal Consultant, Quiotix Corp.), Angela
Gordon (Sun Microsystems), Dan Gordon (Sun Microsystems), Rob Gordon, John Gray
(University of Hartford), Cameron Gregory (olabs.com), Marty Hall (The Johns Hopkins
University Applied Physics Lab), Vincent Hardy (Sun Microsystems), Dan Harkey (San Jose
State University), William Higgins(IBM), Vladimir Ivanovic (PointBase),Jerry Jackson
(ChannelPoint Software), Tim Kimmet (Preview Systems), Chris Laffra, Charlie La (Sun

XXV

Acknowledgments

Microsystems), Angelika Langer, Doug Langston, Hang Liu (McGill University), Mark
Lawrence, Doug Lea (SUNY Oswego), Gregory Longshore, Bob Lynch (Lynch Associates),
Philip Milne (consultant), Mark Morrissoy (The Oregon Graduate Institute), Mahesh
Neelakanta (Florida Atlantic University), Hao Pham, Paul Philion, Blake Ragsdell, Stuart
Reges (University of Arizona), Rich Rosen (Interactive Data Corporation), Peter Sanders
(ESS University, Nice, France), Dr. Paul Sanghera (San Jose State University and Brooks
College), Paul Sevinc (Teamup AG), Devang Shah (Sun Microsystems), Bradley A. Smith,
Steven Stelting (Sun Microsystems), Christopher Taylor, Luke Taylor (Vatech), George
Thiruvathukal, Kim Topley (author of Core JFC), Janet Traub, Paul Tyma (consultant), Peter
van der Linden (Sun Microsystems), and Burt Walsh.

Cay Horsttnann
San Francisco, 2007

Chapter 1. An Introduction to Java

AN INTRODUCTION
TO JAVA

JAVA AS A PROGRAMMING PLATFORM
THE JAVA “WHITE PAPER” BUZZWORDS
JAVA APPLETS AND THE INTERNET

A SHORT HISTORY OF JAVA

COMMON MISCONCEPTIONS ABOUT JAVA

4 4 444«

Chapter 1. An Introduction to Java

Chapter 1 H An Introduction to Java

The first release of Java in 1996 generated an incredible amount of excitement, not
just in the computer press, but in mainstream media such as The New York Times, The
Washington Post, and Business Week. Java has the distinction of being the first and only
programming language that had a ten-minute story on National Public Radio. A
$100,000,000 venture capital fund was set up solely for products produced by use of a
specific computer language. It is rather amusing to revisit those heady times, and we
give you a brief history of Java in this chapter.

Java As a Programming Platform
In the first edition of this book, we had this to write about Java:

“As a computer language, Java’s hype is overdone: Java is certainly a good program-
ming language. There is no doubt that it is one of the better languages available to
serious programmers. We think it could potentially have been a great programming
language, but it is probably too late for that. Once a language is out in the field, the ugly
reality of compatibility with existing code sets in.”

Our editor got a lot of flack for this paragraph from someone very high up at Sun Micro-
systems who shall remain unnamed. But, in hindsight, our prognosis seems accurate.
Java has a lot of nice language features—we examine them in detail later in this chapter.
It has its share of warts, and newer additions to the language are not as elegant as the
original ones because of the ugly reality of compatibility.

But, as we already said in the first edition, Java was never just a language. There are lots
of programming languages out there, and few of them make much of a splash. Java is a
whole platform, with a huge library, containing lots of reusable code, and an execution
environment that provides services such as security, portability across operating sys-
tems, and automatic garbage collection.

As a programmer, you will want a language with a pleasant syntax and comprehensible
semantics (i.e., not C++). Java fits the bill, as do dozens of other fine languages. Some
languages give you portability, garbage collection, and the like, but they don’t have
much of a library, forcing you to roll your own if you want fancy graphics or network-
ing or database access. Well, Java has everything—a good language, a high-quality exe-
cution environment, and a vast library. That combination is what makes Java an
irresistible proposition to so many programmers.

The Java “White Paper” Buzzwords

The authors of Java have written an influential White Paper that explains their design
goals and accomplishments. They also published a shorter summary that is organized
along the following 11 buzzwords:

Simple Portable

Object Oriented Interpreted
Network-Savvy High Performance
Robust Multithreaded
Secure Dynamic

Architecture Neutral

Chapter 1. An Introduction to Java

The Java “White Paper” Buzzwords

In this section, we will

e Summarize, with excerpts from the White Paper, what the Java designers say about
each buzzword; and

¢ Tell you what we think of each buzzword, based on our experiences with the cur-
rent version of Java.

NOTE: As we write this, the White Paper can be found at http://java.sun.com/docs/white/
V Tangenv/. The summary with the 11 buzzwords is at http://java.sun.com/docs/overviews/java/
java-overview-1.html.

Simple
We wanted to build a system that could be programmed easily without a lot of eso-
teric training and which leveraged today’s standard practice. So even though we
found that C++ was unsuitable, we designed Java as closely to C++ as possible in
order to make the system more comprehensible. Java omits many rarely used, poorly
understood, confusing features of C++ that, in our experience, bring more grief
than benefit.

The syntax for Java is, indeed, a cleaned-up version of the syntax for C++. There is no
need for header files, pointer arithmetic (or even a pointer syntax), structures, unions,
operator overloading, virtual base classes, and so on. (See the C++ notes interspersed
throughout the text for more on the differences between Java and C++.) The designers
did not, however, attempt to fix all of the clumsy features of C++. For example, the syn-
tax of the switch statement is unchanged in Java. If you know C++, you will find the tran-
sition to the Java syntax easy.

If you are used to a visual programming environment (such as Visual Basic), you will
not find Java simple. There is much strange syntax (though it does not take long to get
the hang of it). More important, you must do a lot more programming in Java. The
beauty of Visual Basic is that its visual design environment almost automatically pro-
vides a lot of the infrastructure for an application. The equivalent functionality must be
programmed manually, usually with a fair bit of code, in Java. There are, however,
third-party development environments that provide “drag-and-drop”-style program
development.

Another aspect of being simple is being small. One of the goals of Java is to enable
the construction of software that can run stand-alone in small machines. The size of
the basic interpreter and class support is about 40K bytes; adding the basic stan-
dard libraries and thread support (essentially a self-contained microkernel) adds an
additional 175K.

This was a great achievement at the time. Of course, the library has since grown to huge
proportions. There is now a separate Java Micro Edition with a smaller library, suitable
for embedded devices.
Object Oriented
Simply stated, object-oriented design is a technique for programming that focuses
on the data (= objects) and on the interfaces to that object. To make an analogy with
carpentry, an “object-oriented” carpenter would be mostly concerned with the chair

Chapter 1. An Introduction to Java

Chapter 1 H An Introduction to Java

he was building, and secondarily with the tools used to make it; a “non-object-
oriented” carpenter would think primarily of his tools. The object-oriented facilities
of Java are essentially those of C++.

Object orientation has proven its worth in the last 30 years, and it is inconceivable that a
modern programming language would not use it. Indeed, the object-oriented features of
Java are comparable to those of C++. The major difference between Java and C++ lies in
multiple inheritance, which Java has replaced with the simpler concept of interfaces,
and in the Java metaclass model (which we discuss in Chapter 5).

NOTE: If you have no experience with object-oriented programming languages, you will

want to carefully read Chapters 4 through 6. These chapters explain what object-oriented
programming is and why it is more useful for programming sophisticated projects than are
traditional, procedure-oriented languages like C or Basic.

Network-Savvy
Java has an extensive library of routines for coping with TCP/IP protocols like
HTTP and FTP. Java applications can open and access objects across the Net via
URLs with the same ease as when accessing a local file system.

We have found the networking capabilities of Java to be both strong and easy to use.
Anyone who has tried to do Internet programming using another language will revel in
how simple Java makes onerous tasks like opening a socket connection. (We cover net-
working in Volume II of this book.) The remote method invocation mechanism enables
communication between distributed objects (also covered in Volume II).

Robust
Java is intended for writing programs that must be reliable in a variety of ways.
Java puts a lot of emphasis on early checking for possible problems, later dynamic
(runtime) checking, and eliminating situations that are error-prone. . . . The single
biggest difference between Java and C/C++ is that Java has a pointer model that elim-
inates the possibility of overwriting memory and corrupting data.

This feature is also very useful. The Java compiler detects many problems that, in other
languages, would show up only at runtime. As for the second point, anyone who has
spent hours chasing memory corruption caused by a pointer bug will be very happy
with this feature of Java.

If you are coming from a language like Visual Basic that doesn’t explicitly use pointers,
you are probably wondering why this is so important. C programmers are not so lucky.
They need pointers to access strings, arrays, objects, and even files. In Visual Basic, you
do not use pointers for any of these entities, nor do you need to worry about memory
allocation for them. On the other hand, many data structures are difficult to implement
in a pointerless language. Java gives you the best of both worlds. You do not need point-
ers for everyday constructs like strings and arrays. You have the power of pointers if
you need it, for example, for linked lists. And you always have complete safety, because
you can never access a bad pointer, make memory allocation errors, or have to protect
against memory leaking away.

Chapter 1. An Introduction to Java

The Java “White Paper” Buzzwords

Secure
Java is intended to be used in networked/distributed environments. Toward that
end, a lot of emphasis has been placed on security. Java enables the construction of
virus-free, tamper-free systems.

In the first edition of Core Java we said: “Well, one should ‘never say never again,” and
we turned out to be right. Not long after the first version of the Java Development Kit
was shipped, a group of security experts at Princeton University found subtle bugs in
the security features of Java 1.0. Sun Microsystems has encouraged research into Java
security, making publicly available the specification and implementation of the virtual
machine and the security libraries. They have fixed all known security bugs quickly. In
any case, Java makes it extremely difficult to outwit its security mechanisms. The bugs
found so far have been very technical and few in number.

From the beginning, Java was designed to make certain kinds of attacks impossible,
among them:

¢ Overrunning the runtime stack—a common attack of worms and viruses

¢ Corrupting memory outside its own process space

® Reading or writing files without permission

A number of security features have been added to Java over time. Since version 1.1, Java
has the notion of digitally signed classes (see Volume II). With a signed class, you can be
sure who wrote it. Any time you trust the author of the class, the class can be allowed
more privileges on your machine.

ogy relies on digital signatures alone for security. Clearly this is not sufficient—as any user
of Microsoft's own products can confirm, programs from well-known vendors do crash and

create damage. Java has a far stronger security model than that of ActiveX because it con-
trols the application as it runs and stops it from wreaking havoc.

NOTE: A competing code delivery mechanism from Microsoft based on its ActiveX technol-

Architecture Neutral
The compiler generates an architecture-neutral object file format—the compiled
code is executable on many processors, given the presence of the Java runtime sys-
tem. The Java compiler does this by generating bytecode instructions which have
nothing to do with a particular computer architecture. Rather, they are designed to
be both easy to interpret on any machine and easily translated into native machine
code on the fly.

This is not a new idea. More than 30 years ago, both Niklaus Wirth’s original implemen-
tation of Pascal and the UCSD Pascal system used the same technique.

Of course, interpreting bytecodes is necessarily slower than running machine instruc-
tions at full speed, so it isn’t clear that this is even a good idea. However, virtual
machines have the option of translating the most frequently executed bytecode
sequences into machine code, a process called just-in-time compilation. This strategy
has proven so effective that even Microsoft’s .NET platform relies on a virtual machine.

Chapter 1. An Introduction to Java

Chapter 1 H An Introduction to Java

The virtual machine has other advantages. It increases security because the virtual
machine can check the behavior of instruction sequences. Some programs even produce
bytecodes on the fly, dynamically enhancing the capabilities of a running program.

Portable
Unlike C and C++, there are no “implementation-dependent” aspects of the specifi-
cation. The sizes of the primitive data types are specified, as is the behavior of arith-
metic on them.

For example, an int in Java is always a 32-bit integer. In C/C++, int can mean a 16-bit
integer, a 32-bit integer, or any other size that the compiler vendor likes. The only
restriction is that the int type must have at least as many bytes as ashort int and cannot
have more bytes than a Tong int. Having a fixed size for number types eliminates a major
porting headache. Binary data is stored and transmitted in a fixed format, eliminating
confusion about byte ordering. Strings are saved in a standard Unicode format.

The libraries that are a part of the system define portable interfaces. For example,
there is an abstract Window class and implementations of it for UNIX, Windows,
and the Macintosh.

As anyone who has ever tried knows, it is an effort of heroic proportions to write a pro-
gram that looks good on Windows, the Macintosh, and ten flavors of UNIX. Java 1.0
made the heroic effort, delivering a simple toolkit that mapped common user interface
elements to a number of platforms. Unfortunately, the result was a library that, with a
lot of work, could give barely acceptable results on different systems. (And there were
often different bugs on the different platform graphics implementations.) But it was a
start. There are many applications in which portability is more important than user
interface slickness, and these applications did benefit from early versions of Java. By
now, the user interface toolkit has been completely rewritten so that it no longer relies
on the host user interface. The result is far more consistent and, we think, more attrac-
tive than in earlier versions of Java.

Interpreted
The Java interpreter can execute Java bytecodes directly on any machine to which
the interpreter has been ported. Since linking is a more incremental and lightweight
process, the development process can be much more rapid and exploratory.

Incremental linking has advantages, but its benefit for the development process is
clearly overstated. Early Java development tools were, in fact, quite slow. Today, the
bytecodes are translated into machine code by the just-in-time compiler.

High Performance
While the performance of interpreted bytecodes is usually more than adequate,
there are situations where higher performance is required. The bytecodes can be
translated on the fly (at runtime) into machine code for the particular CPU the
application is running on.

In the early years of Java, many users disagreed with the statement that the perfor-
mance was “more than adequate.” Today, however, the just-in-time compilers have
become so good that they are competitive with traditional compilers and, in some cases,
even outperform them because they have more information available. For example, a
just-in-time compiler can monitor which code is executed frequently and optimize just

Chapter 1. An Introduction to Java

Java Applets and the Internet

that code for speed. A more sophisticated optimization is the elimination (or “inlining”)
of function calls. The just-in-time compiler knows which classes have been loaded. It
can use inlining when, based upon the currently loaded collection of classes, a particu-
lar function is never overridden, and it can undo that optimization later if necessary.

Multithreaded

[The] benefits of multithreading are better interactive responsiveness and real-time
behavior.

If you have ever tried to do multithreading in another language, you will be pleasantly
surprised at how easy it is in Java. Threads in Java also can take advantage of multi-
processor systems if the base operating system does so. On the downside, thread imple-
mentations on the major platforms differ widely, and Java makes no effort to be
platform independent in this regard. Only the code for calling multithreading remains
the same across machines; Java offloads the implementation of multithreading to the
underlying operating system or a thread library. Nonetheless, the ease of multithread-
ing is one of the main reasons why Java is such an appealing language for server-side
development.

Dynamic
In a number of ways, Java is a more dynamic language than C or C++. It was
designed to adapt to an evolving environment. Libraries can freely add new meth-
ods and instance variables without any effect on their clients. In Java, finding out
runtime type information is straightforward.

This is an important feature in those situations in which code needs to be added to a
running program. A prime example is code that is downloaded from the Internet to
run in a browser. In Java 1.0, finding out runtime type information was anything but
straightforward, but current versions of Java give the programmer full insight into both
the structure and behavior of its objects. This is extremely useful for systems that need
to analyze objects at runtime, such as Java GUI builders, smart debuggers, pluggable
components, and object databases.

NOTE: Shortly after the initial success of Java, Microsoft released a product called J++ with

a programming language and virtual machine that was almost identical to Java. At this point,
Microsoft is no longer supporting J++ and has instead introduced another language called
C# that also has many similarities with Java but runs on a different virtual machine. There is
even a J# for migrating J++ applications to the virtual machine used by C#. We do not cover
J++, C#, or J# in this book.

Java Applets and the Internet

The idea here is simple: Users will download Java bytecodes from the Internet and run
them on their own machines. Java programs that work on web pages are called applets.
To use an applet, you only need a Java-enabled web browser, which will execute the
bytecodes for you. You need not install any software. Because Sun licenses the Java
source code and insists that there be no changes in the language and standard library, a
Java applet should run on any browser that is advertised as Java-enabled. You get the
latest version of the program whenever you visit the web page containing the applet.

Chapter 1. An Introduction to Java

Chapter 1 H An Introduction to Java

Most important, thanks to the security of the virtual machine, you need never worry
about attacks from hostile code.

When the user downloads an applet, it works much like embedding an image in a web
page. The applet becomes a part of the page, and the text flows around the space used
for the applet. The point is, the image is alive. It reacts to user commands, changes its
appearance, and sends data between the computer presenting the applet and the com-
puter serving it.

Figure 1-1 shows a good example of a dynamic web page that carries out sophisticated
calculations. The Jmol applet displays molecular structures. By using the mouse, you
can rotate and zoom each molecule to better understand its structure. This kind of direct
manipulation is not achievable with static web pages, but applets make it possible. (You
can find this applet at http://jmol .sourceforge. net.)

When applets first appeared, they created a huge amount of excitement. Many people
believe that the lure of applets was responsible for the astonishing popularity of Java.
However, the initial excitement soon turned into frustration. Various versions of
Netscape and Internet Explorer ran different versions of Java, some of which were seri-
ously outdated. This sorry situation made it increasingly difficult to develop applets
that took advantage of the most current Java version. Today, most web pages simply use
JavaScript or Flash when dynamic effects are desired in the browser. Java, on the other
hand, has become the most popular language for developing the server-side applica-
tions that produce web pages and carry out the backend logic.

& - - \éJ L1 http:yjjmol.sourceforge net/demofaminoacids/ | B
x |ala- x |arg - x |asn- x|asp- |||
alanine arginine asparagine aspartate

amino acids xeys- xfgn- o x|gu- kg
cystine glutamine glutamate glycine

x|nis- x|ie- _x|leu- x|lys-

histidine isoleucine leucine Iysine
x |met - 3| phe - X |pro- x|ser-
methionine phenylalanine proline serine

o thr- x Jtrp - xtyr- x|val-

threonine tryptophan tyrosine valine

select * | select mainchain | select sidechain |

wireframe on | wireframe 0.1 | wireframe 0.2 |

cpk off cpk 20% cpk on

label %a | label%n | label off |

color label white | _color label none |

color atoms cpk | color atoms amina |]

Figure 1-1 The Jmol applet

Chapter 1. An Introduction to Java

A Short History of Java “

A Short History of Java

This section gives a short history of Java’s evolution. It is based on various published
sources (most important, on an interview with Java’s creators in the July 1995 issue of
SunWorld’s on-line magazine).

Java goes back to 1991, when a group of Sun engineers, led by Patrick Naughton and
Sun Fellow (and all-around computer wizard) James Gosling, wanted to design a small
computer language that could be used for consumer devices like cable TV switchboxes.
Because these devices do not have a lot of power or memory, the language had to be
small and generate very tight code. Also, because different manufacturers may choose
different central processing units (CPUs), it was important that the language not be tied
to any single architecture. The project was code-named “Green.”

The requirements for small, tight, and platform-neutral code led the team to resurrect
the model that some Pascal implementations tried in the early days of PCs. Niklaus
Wirth, the inventor of Pascal, had pioneered the design of a portable language that gen-
erated intermediate code for a hypothetical machine. (These are often called virtual
machines—hence, the Java virtual machine or JVM.) This intermediate code could then
be used on any machine that had the correct interpreter. The Green project engineers
used a virtual machine as well, so this solved their main problem.

The Sun people, however, come from a UNIX background, so they based their language
on C++ rather than Pascal. In particular, they made the language object oriented rather
than procedure oriented. But, as Gosling says in the interview, “All along, the language
was a tool, not the end.” Gosling decided to call his language “Oak” (presumably
because he liked the look of an oak tree that was right outside his window at Sun). The
people at Sun later realized that Oak was the name of an existing computer language, so
they changed the name to Java. This turned out to be an inspired choice.

In 1992, the Green project delivered its first product, called “*7.” It was an extremely
intelligent remote control. (It had the power of a SPARCstation in a box that was 6
inches by 4 inches by 4 inches.) Unfortunately, no one was interested in producing this
at Sun, and the Green people had to find other ways to market their technology. How-
ever, none of the standard consumer electronics companies were interested. The group
then bid on a project to design a cable TV box that could deal with new cable services
such as video on demand. They did not get the contract. (Amusingly, the company that
did was led by the same Jim Clark who started Netscape—a company that did much to
make Java successful.)

The Green project (with a new name of “First Person, Inc.”) spent all of 1993 and half of
1994 looking for people to buy its technology—no one was found. (Patrick Naughton,
one of the founders of the group and the person who ended up doing most of the mar-
keting, claims to have accumulated 300,000 air miles in trying to sell the technology.)
First Person was dissolved in 1994.

While all of this was going on at Sun, the World Wide Web part of the Internet was
growing bigger and bigger. The key to the Web is the browser that translates the
hypertext page to the screen. In 1994, most people were using Mosaic, a noncommer-
cial web browser that came out of the supercomputing center at the University of Illi-
nois in 1993. (Mosaic was partially written by Marc Andreessen for $6.85 an hour as

Chapter 1. An Introduction to Java

Chapter 1 H An Introduction to Java

an undergraduate student on a work-study project. He moved on to fame and fortune
as one of the cofounders and the chief of technology at Netscape.)

In the SunWorld interview, Gosling says that in mid-1994, the language developers real-
ized that “We could build a real cool browser. It was one of the few things in the client/
server mainstream that needed some of the weird things we’d done: architecture neu-
tral, real-time, reliable, secure—issues that weren’t terribly important in the workstation
world. So we built a browser.”

The actual browser was built by Patrick Naughton and Jonathan Payne and evolved
into the HotJava browser. The HotJava browser was written in Java to show off the
power of Java. But the builders also had in mind the power of what are now called
applets, so they made the browser capable of executing code inside web pages. This
“proof of technology” was shown at SunWorld 95 on May 23, 1995, and inspired the
Java craze that continues today.

Sun released the first version of Java in early 1996. People quickly realized that Java 1.0
was not going to cut it for serious application development. Sure, you could use Java 1.0
to make a nervous text applet that moved text randomly around in a canvas. But you
couldn’t even print in Java 1.0. To be blunt, Java 1.0 was not ready for prime time. Its
successor, version 1.1, filled in the most obvious gaps, greatly improved the reflection
capability, and added a new event model for GUI programming. It was still rather
limited, though.

The big news of the 1998 JavaOne conference was the upcoming release of Java 1.2,
which replaced the early toylike GUI and graphics toolkits with sophisticated and scal-
able versions that come a lot closer to the promise of “Write Once, Run Anywhere”™
than its predecessors. Three days after (!) its release in December 1998, Sun’s marketing
department changed the name to the catchy Java 2 Standard Edition Software Development
Kit Version 1.2.

Besides the Standard Edition, two other editions were introduced: the Micro Edition for
embedded devices such as cell phones, and the Enterprise Edition for server-side pro-
cessing. This book focuses on the Standard Edition.

Versions 1.3 and 1.4 of the Standard Edition are incremental improvements over the ini-
tial Java 2 release, with an ever-growing standard library, increased performance, and,
of course, quite a few bug fixes. During this time, much of the initial hype about Java
applets and client-side applications abated, but Java became the platform of choice for
server-side applications.

Version 5.0 is the first release since version 1.1 that updates the Java language in signifi-
cant ways. (This version was originally numbered 1.5, but the version number jumped
to 5.0 at the 2004 JavaOne conference.) After many years of research, generic types
(which are roughly comparable to C++ templates) have been added—the challenge was
to add this feature without requiring changes in the virtual machine. Several other use-
ful language features were inspired by C#: a “for each” loop, autoboxing, and metadata.
Language changes are always a source of compatibility pain, but several of these new lan-
guage features are so seductive that we think that programmers will embrace them
eagerly.

Chapter 1. An Introduction to Java

Common Misconceptions about Java

Version 6 (without the .0 suffix) was released at the end of 2006. Again, there are no lan-
guage changes but additional performance improvements and library enhancements.

Table 1-1 shows the evolution of the Java language and library. As you can see, the size
of the application programming interface (API) has grown tremendously.

Table 1-1 Evolution of the Java Language

Number of Classes

Version Year New Language Features and Interfaces
1.0 1996 The language itself 211

1.1 1997 Inner classes 477

1.2 1998 None 1,524

1.3 2000 None 1,840

1.4 2004 Assertions 2,723

5.0 2004 Generic classes, “for each” loop, 3,279

varargs, autoboxing, metadata,
enumerations, static import

6 2006 None 3,777

Common Misconceptions about Java

We close this chapter with a list of some common misconceptions about Java, along with
commentary.

Java is an extension of HTML.

Java is a programming language; HTML is a way to describe the structure of a web
page. They have nothing in common except that there are HTML extensions for placing
Java applets on a web page.

I use XML, so I don’t need Java.

Java is a programming language; XML is a way to describe data. You can process XML
data with any programming language, but the Java API contains excellent support for
XML processing. In addition, many important third-party XML tools are implemented
in Java. See Volume II for more information.

Java is an easy programming language to learn.

No programming language as powerful as Java is easy. You always have to distinguish
between how easy it is to write toy programs and how hard it is to do serious work.
Also, consider that only four chapters in this book discuss the Java language. The
remaining chapters of both volumes show how to put the language to work, using the
Java libraries. The Java libraries contain thousands of classes and interfaces, and tens of
thousands of functions. Luckily, you do not need to know every one of them, but you do
need to know surprisingly many to use Java for anything realistic.

Chapter 1. An Introduction to Java

Chapter 1 H An Introduction to Java

Java will become a universal programming language for all platforms.

This is possible, in theory, and it is certainly the case that every vendor but Microsoft
seems to want this to happen. However, many applications, already working perfectly
well on desktops, would not work well on other devices or inside a browser. Also, these
applications have been written to take advantage of the speed of the processor and the
native user interface library and have been ported to all the important platforms any-
way. Among these kinds of applications are word processors, photo editors, and web
browsers. They are typically written in C or C++, and we see no benefit to the end user
in rewriting them in Java.

Java is just another programming language.

Java is a nice programming language; most programmers prefer it over C, C++, or C#.
But there have been hundreds of nice programming languages that never gained wide-
spread popularity, whereas languages with obvious flaws, such as C++ and Visual
Basic, have been wildly successful.

Why? The success of a programming language is determined far more by the utility of
the support system surrounding it than by the elegance of its syntax. Are there useful,
convenient, and standard libraries for the features that you need to implement? Are
there tool vendors that build great programming and debugging environments? Does
the language and the toolset integrate with the rest of the computing infrastructure?
Java is successful because its class libraries let you easily do things that were hard
before, such as networking and multithreading. The fact that Java reduces pointer errors
is a bonus and so programmers seem to be more productive with Java, but these factors
are not the source of its success.

Now that C# is available, Java is obsolete.

C# took many good ideas from Java, such as a clean programming language, a virtual
machine, and garbage collection. But for whatever reasons, C# also left some good stuff
behind, in particular security and platform independence. If you are tied to Windows,
C# makes a lot of sense. But judging by the job ads, Java is still the language of choice
for a majority of developers.

Java is proprietary, and it should therefore be avoided.

Sun Microsystems licenses Java to distributors and end users. Although Sun has ulti-
mate control over Java through the “Java Community Process,” they have involved
many other companies in the development of language revisions and the design of new
libraries. Source code for the virtual machine and the libraries has always been freely
available, but only for inspection, not for modification and redistribution. Up to this
point, Java has been “closed source, but playing nice.”

This situation changed dramatically in 2007, when Sun announced that future versions

of Java will be available under the General Public License, the same open source license
that is used by Linux. It remains to be seen how Sun will manage the governance of Java
in the future, but there is no question that the open sourcing of Java has been a very cou-
rageous move that will extend the life of Java by many years.

Java is interpreted, so it is too slow for serious applications.

In the early days of Java, the language was interpreted. Nowadays, except on “micro”
platforms such as cell phones, the Java virtual machine uses a just-in-time compiler. The

Chapter 1. An Introduction to Java

Common Misconceptions about Java n

“hot spots” of your code will run just as fast in Java as they would in C++, and in some
cases, they will run faster.

Java does have some additional overhead over C++. Virtual machine startup time is
slow, and Java GUIs are slower than their native counterparts because they are painted
in a platform-independent manner.

People have complained for years that Java applications are too slow. However, today’s
computers are much faster than they were when these complaints started. A slow Java
program will still run quite a bit better than those blazingly fast C++ programs did a
few years ago. At this point, these complaints sound like sour grapes, and some detrac-
tors have instead started to complain that Java user interfaces are ugly rather than slow.

All Java programs run inside a web page.

All Java applets run inside a web browser. That is the definition of an applet—a Java pro-
gram running inside a browser. But most Java programs are stand-alone applications
that run outside of a web browser. In fact, many Java programs run on web servers and
produce the code for web pages.

Most of the programs in this book are stand-alone programs. Sure, applets can be fun.
But stand-alone Java programs are more important and more useful in practice.

Java programs are a major security risk.

In the early days of Java, there were some well-publicized reports of failures in the Java
security system. Most failures were in the implementation of Java in a specific browser.
Researchers viewed it as a challenge to try to find chinks in the Java armor and to defy
the strength and sophistication of the applet security model. The technical failures that
they found have all been quickly corrected, and to our knowledge, no actual systems
were ever compromised. To keep this in perspective, consider the literally millions of
virus attacks in Windows executable files and Word macros that cause real grief but sur-
prisingly little criticism of the weaknesses of the attacked platform. Also, the ActiveX
mechanism in Internet Explorer would be a fertile ground for abuse, but it is so boringly
obvious how to circumvent it that few researchers have bothered to publicize their
findings.

Some system administrators have even deactivated Java in company browsers, while
continuing to permit their users to download executable files, ActiveX controls, and
Word documents. That is pretty ridiculous—currently, the risk of being attacked by hos-
tile Java applets is perhaps comparable to the risk of dying from a plane crash; the risk
of being infected by opening Word documents is comparable to the risk of dying while
crossing a busy freeway on foot.

JavaScript is a simpler version of Java.

JavaScript, a scripting language that can be used inside web pages, was invented by
Netscape and originally called LiveScript. JavaScript has a syntax that is reminiscent of
Java, but otherwise there are no relationships (except for the name, of course). A subset
of JavaScript is standardized as ECMA-262. JavaScript is more tightly integrated with
browsers than Java applets are. In particular, a JavaScript program can modify the docu-
ment that is being displayed, whereas an applet can only control the appearance of a
limited area.

Chapter 1. An Introduction to Java

Chapter 1 B An Introduction to Java

With Java, I can replace my computer with a $500 “Internet appliance.”

When Java was first released, some people bet big that this was going to happen. Ever
since the first edition of this book, we have believed it is absurd to think that home users
are going to give up a powerful and convenient desktop for a limited machine with no
local storage. We found the Java-powered network computer a plausible option for a
“zero administration initiative” to cut the costs of computer ownership in a business,
but even that has not happened in a big way.

On the other hand, Java has become widely distributed on cell phones. We must confess

that we haven’t yet seen a must-have Java application running on cell phones, but the
usual fare of games and screen savers seems to be selling well in many markets.

m TIP: For answers to common Java questions, turn to one of the Java FAQ (frequently asked
question) lists on the Web—see http://www.ap1.jhu.edu/~hal1/java/FAQs-and-Tutorials.html.

Chapter 2. The Java Programming Environment

THE JAVA
PROGRAMMING
ENVIRONMENT

4 4 4 444«

INSTALLING THE JAVA DEVELOPMENT KIT

CHOOSING A DEVELOPMENT ENVIRONMENT

USING THE COMMAND-LINE TOOLS

USING AN INTEGRATED DEVELOPMENT ENVIRONMENT
RUNNING A GRAPHICAL APPLICATION

BUILDING AND RUNNING APPLETS

15

Chapter 2. The Java Programming Environment

Chapter 2 ® The Java Programming Environment

In this chapter, you will learn how to install the Java Development Kit (JDK) and
how to compile and run various types of programs: console programs, graphical appli-
cations, and applets. You run the JDK tools by typing commands in a shell window.
However, many programmers prefer the comfort of an integrated development envi-
ronment. We show you how to use a freely available development environment to
compile and run Java programs. Although easier to learn, integrated development envi-
ronments can be resource-hungry and tedious to use for small programs. As a middle
ground, we show you how to use a text editor that can call the Java compiler and run
Java programs. Once you have mastered the techniques in this chapter and picked your
development tools, you are ready to move on to Chapter 3, where you will begin explor-
ing the Java programming language.

Installing the Java Development Kit

The most complete and up-to-date versions of the Java Development Kit (JDK) are
available from Sun Microsystems for Solaris, Linux, and Windows. Versions in various
states of development exist for the Macintosh and many other platforms, but those ver-
sions are licensed and distributed by the vendors of those platforms.

NOTE: Some Linux distributions have prepackaged versions of the JDK. For example, on
m Ubuntu, you can install the JDK by simply installing the sun-java6-jdk package with apt-get or
the Synaptic GUI.

Downloading the JDK

To download the Java Development Kit, you will need to navigate the Sun web site and
decipher an amazing amount of jargon before you can get the software that you need.
See Table 2-1 for a summary.

You already saw the abbreviation JDK for Java Development Kit. Somewhat confus-
ingly, versions 1.2 through 1.4 of the kit were known as the Java SDK (Software Devel-
opment Kit). You will still find occasional references to the old term. There is also a Java
Runtime Environment (JRE) that contains the virtual machine but not the compiler. That
is not what you want as a developer. It is intended for end users who have no need for
the compiler.

Next, you'll see the term Java SE everywhere. That is the Java Standard Edition, in con-
trast to Java EE (Enterprise Edition) and Java ME (Micro Edition).

You will occasionally run into the term Java 2 that was coined in 1998 when the market-
ing folks at Sun felt that a fractional version number increment did not properly com-
municate the momentous advances of JDK 1.2. However, because they had that insight
only after the release, they decided to keep the version number 1.2 for the development
kit. Subsequent releases were numbered 1.3, 1.4, and 5.0. The platform, however, was
renamed from Java to Java 2. Thus, we had Java 2 Standard Edition Software Develop-
ment Kit Version 5.0, or J2SE SDK 5.0.

For engineers, all of this was a bit confusing, but that’s why we never made it into mar-
keting. Mercifully, in 2006, sanity prevailed. The useless Java 2 moniker was dropped
and the current version of the Java Standard Edition was called Java SE 6. You will still
see occasional references to versions 1.5 and 1.6—these are just synonyms for versions
5.0 and 6.

Chapter 2. The Java Programming Environment

Installing the Java Development Kit

Finally, when Sun makes a minor version change to fix urgent issues, it refers to the
change as an update. For example, the first update of the development kit for Java SE 6
is officially called JDK 6ul and has the internal version number 1.6.0_01.

If you use Solaris, Linux, or Windows, point your browser to http://java.sun.com/javase to
download the JDK. Look for version 6 or later and pick your platform. Don’t worry if the
software is called an “update.” The update bundles contain the most current version of
the whole JDK.

Sometimes, Sun makes available bundles that contain both the Java Development Kit
and an integrated development environment. That integrated environment has, at dif-
ferent times of its life, been named Forte, Sun ONE Studio, Sun Java Studio, and Net-
beans. We do not know what the eager beavers in marketing will call it when you
approach the Sun web site. We suggest that you install only the Java Development Kit at
this time. If you later decide to use Sun’s integrated development environment, simply
download it from http://netbeans.org.

Table 2-1 Java Jargon

Name Acronym Explanation

Java Development Kit JDK The software for programmers who want
to write Java programs

Java Runtime Environment JRE The software for consumers who want to
run Java programs

Standard Edition SE The Java platform for use on desktops and
simple server applications

Enterprise Edition EE The Java platform for complex server
applications

Micro Edition ME The Java platform for use on cell phones

and other small devices

Java 2 J2 An outdated term that described Java
versions from 1998 until 2006

Software Development Kit SDK An outdated term that described the JDK
from 1998 until 2006

Update u Sun’s term for a bug fix release

NetBeans — Sun’s integrated development environment

After downloading the JDK, follow the platform-dependent installation directions. At
the time of this writing, they are available at http://java.sun.con/javase/6/webnotes/install/
index.html.

Only the installation and compilation instructions for Java are system dependent. Once
you get Java up and running, everything else in this book should apply to you. System
independence is a major benefit of Java.

Chapter 2. The Java Programming Environment

Chapter 2 ® The Java Programming Environment

NOTE: The setup procedure offers a default for the installation directory that contains the
JDK version number, such as jdk1.6.0. This sounds like a bother, but we have come to
appreciate the version number—it makes it easier to install a new JDK release for testing.

Under Windows, we strongly recommend that you do not accept a default location with
spaces in the path name, such as c:\Program Files\jdk1.6.0. Just take out the Program Files
part of the path name.

In this book, we refer to the installation directory as jdk. For example, when we refer to the

jdk/bin directory, we mean the directory with a name such as /usr/local/jdk1.6.0/bin or
c:\jdk1.6.0\bin.

Setting the Execution Path
After you are done installing the JDK, you need to carry out one additional step: Add
the jdk/bin directory to the execution path, the list of directories that the operating sys-
tem traverses to locate executable files. Directions for this step also vary among operat-
ing systems.
¢ In UNIX (including Solaris and Linux), the procedure for editing the execution path
depends on the shell that you are using. If you use the C shell (which is the Solaris
default), then add a line such as the following to the end of your~/.cshrc file:
set path=(/usr/local/jdk/bin $path)
If you use the Bourne Again shell (which is the Linux default), then add a line such
as the following to the end of your ~/.bashrc or ~/.bash_profile file:
export PATH=/usr/local/jdk/bin:$PATH
¢ Under Windows, log in as administrator. Start the Control Panel, switch to Classic
View, and select the System icon. In Windows NT/2000/XP, you immediately get the
system properties dialog. In Vista, you need to select Advanced System Settings (see
Figure 2-1). In the system properties dialog, click the Advanced tab, then click on the
Environment button. Scroll through the System Variables window until you find a
variable named Path. Click the Edit button (see Figure 2-2). Add thejdk\bin directory
to the beginning of the path, using a semicolon to separate the new entry, like this:
c:\jdk\bin;other stuff
Save your settings. Any new console windows that you start have the correct path.
Here is how you test whether you did it right: Start a shell window. Type the line
java -version
and press the ENTER key. You should get a display such as this one:

java version "1.6.0_01"

Java(TM) SE Runtime Environment (build 1.6.0_01-b06)

Java HotSpot(TM) Client WM (build 1.6.0_01-b06, mixed mode, sharing)
If instead you get a message such as “java: command not found” or “The name specified
is not recognized as an internal or external command, operable program or batch file”,
then you need to go back and double-check your installation.

Chapter 2. The Java Programming Environment

Installing the Java Development Kit

» Control Panel »

-1

= Control Panel Home
Sustemn and

ic View

llcer Acrnunts

» Control Panel »

'anel Home

ew

Recent Tasks
Uninstall§ program

Use 160ks to improve
performance

Vigw amount of RAM and
processor spes:

Mame

Category

- [42| search

View basic information about your computer

Windows edition

- Windows Vista™ Business
System protection
Copyright € 2006 Microsoft Corporation. All rights reserved.

G Adv em settings
B Advanc MRS Upgrade Windows Vists
System
Rating: ;
g medowsBcpenancelndex

Processon: Intel(R) Core(TM) Duc CPU 12400 @ 166GHz 167 GH

Memory (RAM): 1004 MB

System type: 32-bit Operating System

Tablet PC functionslity: Available

Computer name, domain, and workgroup settings

Computer name: ThinkPad-%60
Full computer name: ThinkPad-%60
See also Computer description:
Windows Update Workgroup: 'WORKGROUP

A Windows activation

Performance Wined nune ic artieated

Figure 2-1 Launching the system properties dialog in Windows Vista

Jystern Properties

Computer Name | Hardware | Advanced | System Protection | Remte|

!nwrunmentganag s E

“You must be logged on as an Administrator to make most of these changes,

Performance

Visual effects, processor scheduling, memory usage, and vitual merary

User Profiles

Desktop seftings related to your logon

Startup and Flecavery

System startup, system Faiure, and debugging information

Environment ¥ ariables.

User variables for admin

Variable Valug
TEMP ShLISERPROFILE S\ AppDatalLocahTemp
THP SLISERPROFILE %\ AppDatal LocahTemp

new.. | [Ede.. | [pelete
System variables N
Variable Value i
0s windows_HT @

it System Varial

PATHEXT (COM; EXE}. BAT; CMD;. VES;. VEE . J5;
PROCESSOR_f.. 86 -
Variablename: Path
Mew.. | [Edb.. | [pelete |

Variable value: ikl 6,0_01bin; %SystemRook % syster

[o][cameel || semy

Figure 2-2 Setting the Path environment variable in Windows Vista

Chapter 2. The Java Programming Environment

Chapter 2 ® The Java Programming Environment

NOTE: In Windows, follow these instructions to open a shell window. If you use Windows NT/
2000/XP, select the “Run” option from the Start menu and type cnd. In Vista, simply type cnd

into the “Start Search” field in the Start menu. Press ENTER, and a shell window appears.

If you've never seen one of these, we suggest that you work through a tutorial that teaches

the basics about the command line. Many computer science departments have tutorials on

the Web, such as http://www.cs.sjsu.edu/faculty/horstman/CS46A/windows/tutorial.html.

Installing the Library Source and Documentation

The library source files are delivered in the JDK as a compressed filesrc.zip, and you
must unpack that file to get access to the source code. We highly recommend that you
do that. Simply do the following:

1. Make sure the JDK is installed and that the jdk/bin directory is on the execution path.
2. Open a shell window.

3. Change to the jdk directory (e.g., cd /usr/Tocal/jdk1.6.0 or cd c:\jdk1.6.0).

4. Make a subdirectory src

mkdir src
cd src

5. Execute the command
jar xvf ../src.zip
(or jar xvf ..\src.zip on Windows)

TIP: The src.zip file contains the source code for all public libraries. To obtain even more
source (for the compiler, the virtual machine, the native methods, and the private helper
classes), go to http://downToad. java.net/jdkeé.

The documentation is contained in a compressed file that is separate from the JDK.
You can download the documentation fromhttp://java.sun.com/javase/downloads. Simply
follow these steps:

1. Make sure the JDK is installed and that the jdk/bin directory is on the execution path.

2. Download the documentation zip file and move it into the jdk directory. The file is
called jdk-version-doc.zip, where version is something like 6.

3. Open a shell window.
4. Change to the jdk directory.
5. Execute the command
jar xvf jdk-version-doc.zip

where version is the appropriate version number.
Installing the Core Java Program Examples
You should also install the Core Java program examples. You can download them from
http://horstmann. con/corejava. The programs are packaged into a zip file corejava.zip. You
should unzip them into a separate directory—we recommend you call it CoreJavaBook.
Here are the steps:

Chapter 2. The Java Programming Environment

Choosing a Development Environment

Make sure the JDK is installed and the jdk/bin directory is on the execution path.
Make a directory CoreJavaBook.

Download the corejava.zip file to that directory.

Open a shell window.

Change to the CoreJavaBook directory.

oG e N

Execute the command
jar xvf corejava.zip
Navigating the Java Directories

In your explorations of Java, you will occasionally want to peek inside the Java source
files. And, of course, you will need to work extensively with the library documentation.
Table 2-2 shows the JDK directory tree.

Table 2-2 Java Directory Tree

Directory
Structure Description
jdk (The name may be different, for example, jdk5.0)
— bin The compiler and tools
— demo Look here for demos
— docs Library documentation in HTML format (after expansion of j2sdkversion-doc.zip)

— include Files for compiling native methods (see Volume II)

— jre Java runtime environment files
— Tib Library files
— src The library source (after expanding src.zip)

The two most useful subdirectories for learning Java aredocs and src. The docs directory
contains the Java library documentation in HTML format. You can view it with any web
browser, such as Netscape.

TIP: Set a bookmark in your browser to the file docs/api/index.html. You will be referring to
this page a lot as you explore the Java platform.

The src directory contains the source code for the public part of the Java libraries. As you
become more comfortable with Java, you may find yourself in situations for which this
book and the on-line information do not provide what you need to know. At this point,
the source code for Java is a good place to begin digging. It is reassuring to know that
you can always dig into the source to find out what a library function really does. For
example, if you are curious about the inner workings of the System class, you can look
inside src/java/lang/System.java.

Choosing a Development Environment

If your programming experience comes from using Microsoft Visual Studio, you are
accustomed to a development environment with a built-in text editor and menus to

Chapter 2. The Java Programming Environment

Chapter 2 ® The Java Programming Environment

compile and launch a program along with an integrated debugger. The basic JDK con-
tains nothing even remotely similar. You do everything by typing in commands in a shell
window. This sounds cumbersome, but it is nevertheless an essential skill. When you
first install Java, you will want to troubleshoot your installation before you install a
development environment. Moreover, by executing the basic steps yourself, you gain a
better understanding of what the development environment does behind your back.

However, after you have mastered the basic steps of compiling and running Java pro-
grams, you will want to use a professional development environment. In the last
decade, these environments have become so powerful and convenient that it simply
doesn’t make much sense to labor on without them. Two excellent choices are the freely
available Eclipse and NetBeans programs. In this chapter, we show you how to get
started with Eclipse since it is still a bit slicker than NetBeans, although NetBeans is
catching up fast. Of course, if you prefer a different development environment, you can
certainly use it with this book.

In the past, we recommended the use of a text editor such as Emacs, JEdit, or TextPad
for simple programs. We no longer make this recommendation because the integrated
devlopment environments are now so fast and convenient.

In sum, we think that you should know how to use the basic JDK tools, and then you
should become comfortable with an integrated development environment.

Using the Command-Line Tools

Let us get started the hard way: compiling and launching a Java program from the
command line.

1. Open a shell window.

2. Go to the CoreJavaBook/v1ch02/Welcome directory. (The CoreJavaBook directory is the direc-

tory into which you installed the source code for the book examples, as explained in
the section “Installing the Core Java Program Examples” on page 20.)

3. Enter the following commands:

javac Welcome.java
java Welcome

You should see the output shown in Figure 2-3 in the shell window.
Congratulations! You have just compiled and run your first Java program.

What happened? The javac program is the Java compiler. It compiles the fileWelcome. java
into the file Welcome.class. The java program launches the Java virtual machine. It executes
the bytecodes that the compiler placed in the class file.

m NOTE: If you got an error message complaining about the line
. for (String g : greeting)

then you probably use an older version of the Java compiler. Java SE 5.0 introduced a num-
ber of very desirable features to the Java programming language, and we take advantage of
them in this book.

If you are using an older version of Java, you need to rewrite the loop as follows:

for (int i = 0; i < greeting.length; i++)
System.out.printIn(greeting[i]);

Chapter 2. The Java Programming Environment

Using the Command-Line Tools “

T P =1
Eile Edit View Terminal Tabs Help

~$ c¢d CorelavaBook/v1ch02/Welcome
~/CorelavaBook/v1lch02/Welcome$ javac Welcome.java
~/CoreJlavaBook/v1ch02/Welcome$ java Welcome
Welcome to Core Java

by Cay Horstmann

and Gary Cornell

~/CoreJavaBook/v1lch02/Welcome$ I

Figure 2-3 Compiling and running Welcome. java

The Welcome program is extremely simple. It merely prints a message to the console. You
may enjoy looking inside the program shown in Listing 2-1 (we explain how it works in
the next chapter).

Listing 2-1 JEICINEVE

+ This program displays a greeting from the authors.
@version 1.20 2004-02-28
@author Cay Horstmann

%*

1
2
3.
4.
5. %/
6. pubTic class Welcome
7.
8,
9,

A
public static void main(String[] args)
{
10. String[] greeting = new String[3];
1. greeting[0] = "Welcome to Core Java";
12. greeting[1] = "by Cay Horstmann";
13. greeting[2] = "and Cary Cornell";
14.
15. for (String g : greeting)
16. System.out.printin(g);
17 }

Chapter 2. The Java Programming Environment

Chapter 2 ® The Java Programming Environment

Troubleshooting Hints

In the age of visual development environments, many programmers are unfamiliar with
running programs in a shell window. Any number of things can go wrong, leading to
frustrating results.

Pay attention to the following points:

If you type in the program by hand, make sure you pay attention to uppercase and
lowercase letters. In particular, the class name isWelcome and not welcome or WELCOME.
The compiler requires a file name (Welcome.java). When you run the program, you
specify a class name (Welcome) without a .java or .class extension.
If you get a message such as “Bad command or file name” or “javac: command not
found”, then go back and double-check your installation, in particular the execution
path setting.
If javac reports an error “cannot read: Welcome java”, then you should check
whether that file is present in the directory.
Under UNIX, check that you used the correct capitalization forWelcome.java. Under
Windows, use the dir shell command, not the graphical Explorer tool. Some text
editors (in particular Notepad) insist on adding an extension .txt after every file. If
you use Notepad to edit Welcome. java, then it actually saves it asWelcome. java.txt. Under
the default Windows settings, Explorer conspires with Notepad and hides the .txt
extension because it belongs to a “known file type.” In that case, you need to
rename the file, using the ren shell command, or save it again, placing quotes around
the file name: "Welcome.java".
If you launch your program and get an error message complaining about a
java.lang.NoClassDefFoundError, then carefully check the name of the offending class.
If you get a complaint about welcome (with a lowercase w), then you should reissue
the java Welcome command with an uppercasell. As always, case matters in Java.
If you get a complaint about Welcome/java, then you accidentally typed java Welcome. java.
Reissue the command as java Welcome.
If you typed java Welcome and the virtual machine can’t find the Welcome class, then
check if someone has set the CLASSPATH environment variable on your system. (It is
usually not a good idea to set this variable globally, but some poorly written soft-
ware installers in Windows do just that.) You can temporarily unset the CLASSPATH
environment variable in the current shell window by typing

set CLASSPATH=

This command works on Windows and UNIX/Linux with the C shell. On UNIX/
Linux with the Bourne/bash shell, use

export CLASSPATH=
If you get an error message about a new language construct, make sure that your
compiler supports Java SE 5.0.
If you have too many errors in your program, then all the error messages fly by very
quickly. The compiler sends the error messages to the standard error stream, so it’s a
bit tricky to capture them if they fill more than the window can display.
Use the 2> shell operator to redirect the errors to a file:

javac MyProg.java 2> errors.txt

Chapter 2. The Java Programming Environment

Using an Integrated Development Environment E

TIP: The excellent tutorial at http://java.sun.com/docs/books/tutorial/getStarted/cupojava/
goes into much greater detail about the “gotchas” that beginners can run into.

Using an Integrated Development Environment

In this section, we show you how to compile a program with Eclipse, an integrated
development environment that is freely available fromhttp://eclipse.org. Eclipse is
written in Java, but because it uses a nonstandard windowing library, it is not quite

as portable as Java itself. Nevertheless, versions exist for Linux, Mac OS X, Solaris,
and Windows.

There are other popular IDEs, but currently, Eclipse is the most commonly used. Here
are the steps to get started:

1. After starting Eclipse, select File -> New Project from the menu.

2. Select “Java Project” from the wizard dialog (see Figure 2—4). These screen shots

were taken with Eclipse 3.2. Don’t worry if your version of Eclipse looks slightly
different.

= [New Project [x]
select a wizard

Create a Java project

Wizards

[type filter text]

£ Java Project

4 Java Project from Existing Ant Buildfile

1 Plug-in Project

b = General

b E&cvs

b = Eclipse Modeling Framework
b = FR

Figure 2-4 New Project dialog in Eclipse

3. Click the “Next” button. Supply the project name “Welcome” and type in the full
path name of the directory that containsWelcome.java (see Figure 2-5).

4. Be sure to uncheck the option labeled “Create project in workspace”.
5. Click the “Finish” button. The project is now created.

Chapter 2. The Java Programming Environment

Chapter 2 ® The Java Programming Environment

Create a Java project

Create a Java project in the workspace or in an external location.

Project name: lwe\come\]

Contents

() Create new project in workspace

(@) Create project from existing source

Directory: |fhomejcay/CorelavaBookiv1lcho2/welcome H Browse...

The specified external location already exists. If a project is created in this
location, the wizard will autornatically try to detect existing sources and
class files and configure the classpath appropriately.

@ l < Back " Next > H Finish

=N

Figure 2-5 Configuring an Eclipse project

6. Click on the triangle in the left pane next to the project window to open it, and then
click on the triangle next to “Default package”. Double-click onWelcome.java. You
should now see a window with the program code (see Figure 2-6).

[€ =va - Welcome javaEcipsesoe_______________________________________[0
File Edit Source Refactor Navigate Search Project Run Window Help
i -0~ Q|8 e |8 |e |G & [@ev
[% package ... 82 . Hierarchy = 8|1 b = 8 |5z outline 12 =8
g & v |E SV

HoBR e W Y

< O, weleome

* This program displa
* 1.20 2004-02-28
* Cay Horstmann

greeting from the authors.
= 1= Welcome

< B (default package)
3 welcome.java

b = JRE System Library [jdk1.6.0_t

© % main(String[])

*/

public class welcome
public static veid main(Stringll args)
{

stringl] greeting = new string[3];

greeting[0]
greeting[1]
greeting[2]

for (String

g:
System.out

"welcome to Core Java';
"by Cay Horstmann";
vand Gary Cornellr;

greeting)
.println(g);

Figure 2-6 Editing a source file with Eclipse

Chapter 2. The Java Programming Environment

Using an Integrated Development Environment

7. With the right mouse button, click on the project name (Welcome) in the leftmost
pane. Select Run -> Run As -> Java Application. An output window appears at the
bottom of the window. The program output is displayed in the output window (see
Figure 2-7).

File Edit Source Refactor MNavigate Search Project Run Window Help

ci~ B0~ | we B | e e @ = [@aval

B 20 Hierarchy = B || [1] Welcome java 8 = 8| 5= outline 82 =8
| N L mww e w7

* This program displays a greeting from the authars.
* 1.20 2004-02-28 - O, welcome
v Cay Hors

. Cay Horstmann ® ¥ main(String[])

~ = Welcome

< @ (default package)

» O welcome java

P = JRE System Library [jdk1.6.0_t

public class welcome
{
public static void main(stringl] args)

string[] greeting = new String[3];
greeting[0] = "Welcome to Core Java';
greeting[1] = "by Cay Horstmann®;
greeting[2] = "and Gary Cornell";

for (String g : greeting)
System.out.println(g);

Problemns Javadoc Declaration | El Console 82 ® % G BE o

<terminated> Welcome [Java Application] /homefapps/idk1.6.0_01/binfjava (Apr 8, 2007 8:16:53 AM)
welcome to Core Java

by Cay Horstmann

and Gary Cornell

0 R

Figure 2-7 Running a program in Eclipse

Locating Compilation Errors
Presumably, this program did not have typos or bugs. (It was only a few lines of code,
after all.) Let us suppose, for the sake of argument, that your code occasionally contains
a typo (perhaps even a syntax error). Try it out—ruin our file, for example, by changing
the capitalization of String as follows:

public static void main(string[] args)

Now, run the compiler again. You will get an error message that complains about an
unknown string type (see Figure 2-8). Simply click on the error message. The cursor
moves to the matching line in the edit window, where you can correct your error. This
behavior allows you to fix your errors quickly.

TIP: Often, an Eclipse error report is accompanied by a lightbulb icon. Click on the lightbulb
m to get a list of suggested fixes.

Chapter 2. The Java Programming Environment

n Chapter 2 ® The Java Programming Environment

(& Java - welcome java - Eclipse SDK [_[aOfx
File Edit Source Refactor Navigate Search Project Run Window Help
i -0~ & @6 |B|e e |[He]e |- i w e & [)eva]
[# package .. £ . Hierarchy| = O 3] &3 = 0| I outline 8 =8
3 s v Ui L] a S e u %
s + This program displays a gresting from the authors. % RO e
< i welcone * 1.20 2004-02-28 < @, welcome
< @ (default package) . Cay Herstmann 5 ° main(String[1)
b &) Welcome.java public class welcome

B VR ey L AA0(g public static void main(Stringl] args)

Stringl] greeting = new EEELLI31;

greeting[0] = "Welcome to Core Java";
greeting[1] = "by Cay Horstmann";
greeting[2] = "and Gary Cornell";

for (String g : greeting)
System.out.println(g);

[E! Problems 38 . Javadoc Declaration Console

t
q

0
o

1 error, 0 warnings, 0 infos
Description Resource | Path Location
~ 1 Errors (1 item)

@ string cannot be resolved to atype Welcome jz Welecome line 10

| —E—] D)

0% fd string cannot be resolved to a type Writable Smart Insert | 10 : 37

Figure 2-8 Error messages in Eclipse

These instructions should give you a taste of working in an integrated environment. We
discuss the Eclipse debugger in Chapter 11.

Running a Graphical Application
The Welcome program was not terribly exciting. Next, we will demonstrate a graphical
application. This program is a simple image file viewer that just loads and displays an
image. Again, let us first compile and run it from the command line.
1. Open a shell window.
2. Change to the directory CoreJavaBook/v1ch2/ImageViewer.
3. Enter the following:

javac ImageViewer.java

java ImageViewer
A new program window pops up with our ImageViewer application (see Figure 2-9).
Now, select File -> Open and look for an image file to open. (We supplied a couple of
sample files in the same directory.)
To close the program, click on the Close box in the title bar or pull down the system
menu and close the program. (To compile and run this program inside a text editor or an
integrated development environment, do the same as before. For example, for Emacs,
choose JDE -> Compile, then choose JDE -> Run App.)

Chapter 2. The Java Programming Environment

Running a Graphical Application n

B imageViewer ’:’Em

File

Figure 2-9 Running the ImageViewer application

We hope that you find this program interesting and useful. Have a quick look at the
source code. The program is substantially longer than the first program, but it is not ter-
ribly complex if you consider how much code it would take in C or C++ to write a simi-
lar application. In Visual Basic, of course, it is easy to write or, rather, drag and drop,
such a program. The JDK does not have a visual interface builder, so you need to write
code for everything, as shown in Listing 2-2. You learn how to write graphical pro-
grams like this in Chapters 7 through 9.

IBET LT 20 B TmageViewer. java

. import java.awt.EventQueue;
. import java.awt.event.s;

. import java.io.s;

_import javax.swing.s;

~

+ A program for viewing images.
+ @version 1.22 2007-05-21

+ @author Cay Horstmann

10. %/

1. pubTic class ImageViewer

12. {

13 public static void main(String[] args)

. {

15. EventQueue.invokelLater(new Runnable()

16. {

17. public void run()

18. {

Chapter 2. The Java Programming Environment

n Chapter 2 ® The Java Programming Environment

BT 1T 3020 B TmageViewer.java (continued)

19, JFrame frame = new ImageViewerFrame();

20. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
21. frame.setVisible(true);

22. }

23, b;
24. }
25 }

27. [k

28. + A frame with a label to show an image.

0. class ImageViewerFrame extends JFrame

31, {

32. public ImageViewerFrame()

33. {

34. setTitle("ImageViewer");

35. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

36.

a7, // use a label to display the images

38. Tabel = new JLabel();

39. add(Tabel);

40.

41. // set up the file chooser

4. chooser = new JFileChooser();

43. chooser.setCurrentDirectory(new File("."));

44.

45. // set up the menu bar

46. IMenuBar menuBar = new JMenuBar();

47. setIMenuBar(menuBar);

48.

49. IMenu menu = new JMenu("File");

50. menuBar.add(menu);

51.

52. IMenuItem openItem = new JMenuItem("Open");

53. menu.add(openItem);

54. openItem.addActionListener(new ActionListener()

55. {

56. public void actionPerformed(ActionEvent event)
57. {

58. // show file chooser dialog

59. int result = chooser.showOpenDialog(null);
60.

61. // if file selected, set it as icon of the Tlabel
62. if (result == JFileChooser.APPROVE_OPTION)
63. {

64. String name = chooser.getSelectedFile().getPath();
65. Tabel.setIcon(new ImageIcon(name));

66. }

67. }

68. b;

Chapter 2. The Java Programming Environment

Building and Running Applets

5181 T30 20 B TrageViewer. java (continued)

69. IMenuItem exitItem = new JMenuItem("Exit");

70. menu.add(exitItem);

7. exitItem.addActionListener(new ActionListener()

72. {

73. public void actionPerformed(ActionEvent event)
74. {

75. System.exit(0);

76. }

7. B

78. }

80. private JLabel label;

s1. private JFileChooser chooser;

s2. private static final int DEFAULT_WIDTH = 300;
83. private static final int DEFAULT_HEIGHT = 400;

Building and Running Applets

The first two programs presented in this book are Java applications, stand-alone pro-
grams like any native programs. On the other hand, as we mentioned in the last chapter,
most of the hype about Java comes from its ability to run applets inside a web browser.
We want to show you how to build and run an applet from the command line. Then we
will load the applet into the applet viewer that comes with the JDK. Finally, we will dis-
play it in a web browser.

First, open a shell window and go to the directory CoreJavaBook/v1ch02/WelcomeApplet, then
enter the following commands:

javac WelcomeApplet.java
appletviewer WelcomeApplet.html

Figure 2-10 shows what you see in the applet viewer window.

Welcome to Core Java!

| Cay Horstmann || Gary Cornell

Applet started
il

Figure 2-10 WelcomeApplet applet as viewed by the applet viewer

The first command is the now-familiar command to invoke the Java compiler. This com-
piles the WelcomeApplet. java source into the bytecode file WelcomeApplet.class.

Chapter 2. The Java Programming Environment

Chapter 2 ® The Java Programming Environment

This time, however, you do not run the java program. You invoke the appletviewer program
instead. This program is a special tool included with the JDK that lets you quickly test an
applet. You need to give this program an HTML file name, rather than the name of a Java
class file. The contents of the WelcomeApplet.html file are shown below in Listing 2-3.

WelcomeApplet.htm]

<html>

1.

2 <head>

3 <titTe>WelcomeApplet</title>

4 </head>

5. <body>

6 <hr/>

7 <p>

8 This applet is from the book

9 Core Java
10. by Cay Horstmann and Gary Cornell,

1. pubTished by Sun Microsystems Press.

12. </p>

13. <applet code="WelcomeApplet.class" width="400" height="200">
14. <param name="greeting" value ="Welcome to Core Java!"/>
15. </applet>

16. <hr/>

17. <p>The source.</p>

18. </b0dy>

19. </html>

If you are familiar with HTML, you will notice some standard HTML instructions
and the applet tag, telling the applet viewer to load the applet whose code is stored in
WelcomeApplet.class. The applet viewer ignores all HTML tags except for theapplet tag.

Unfortunately, the browser situation is a bit messy.
¢ Firefox supports Java on Windows, Linux, and Mac OS X. To experiment with

applets, just download the latest version, visit http://java.com, and use the version
checker to see whether you need to install the Java Plug-in.

* Some versions of Internet Explorer have no support for Java at all. Others only sup-
port the very outdated Microsoft Java Virtual Machine. If you run Internet Explorer,
go to http://java.com and install the Java Plug-in.

e If you have a Macintosh running OS X, then Safari is integrated with the Macintosh
Java implementation, which supports Java SE 5.0 at the time of this writing.

Provided you have a browser that supports a modern version of Java, you can try load-

ing the applet inside the browser.

1. Start your browser.

2. Select File -> Open File (or the equivalent).

3. Go to the CoreJavaBook/v1ch02/WelcomeApplet directory. You should see the Welcome-
Applet.htm] file in the file dialog. Load the file.

4. Your browser now loads the applet, including the surrounding text. It will look
something like Figure 2-11.

Chapter 2. The Java Programming Environment

Building and Running Applets

You can see that this application is actually alive and willing to interact with the Inter-
net. Click on the Cay Horstmann button. The applet directs the browser to display Cay’s
web page. Click on the Gary Cornell button. The applet directs the browser to pop up a
mail window, with Gary’s e-mail address already filled in.

®|WelcomeApplet - Firefox |—[a]x]

File Edit View History Boockmarks Tools Help

- - @ (] fle:fihomejcay/CorejavaBookivlchozwWelcomeappletivelcomeApplet.html [=] b

This applet is from the boal Core |ava by Cay Horstmann and Gary Corneli, published by
Sun Microsystems Press.

Welcome to Core Java!

Cay Horstmann H Gary Cornell

The source,

Figure 2-11 Running the WelcomeApplet applet in a browser

Notice that neither of these two buttons works in the applet viewer. The applet viewer
has no capabilities to send mail or display a web page, so it ignores your requests. The
applet viewer is good for testing applets in isolation, but you need to put applets inside
a browser to see how they interact with the browser and the Internet.

TIP: You can also run applets from inside your editor or integrated development environ-
ment. In Emacs, select JDE -> Run Applet from the menu. In Eclipse, use the Run -> Run as
-> Java Applet menu option.

Finally, the code for the applet is shown in Listing 2—4. At this point, do not give it more
than a glance. We come back to writing applets in Chapter 10.

Listing 2-4 SIS MEZ!

. import java.awt.;
. import java.awt.event.s;
. import java.net.;
_import javax.swing.:;
i)
« This applet displays a greeting from the authors.
« @version 1.22 2007-04-08
+ @author Cay Horstmann

/

4
2
3.
4
5
6
7.
8
9

10.

Chapter 2. The Java Programming Environment

n Chapter 2 ® The Java Programming Environment

WelcomeApplet.java (continued)

11. pubTic class WelcomeApplet extends JApplet

12, {

13, pubTic void init()

14. {

15. EventQueue.invokelater(new Runnable()

16.

17. public void run()

18. {

19. setLayout(new BorderLayout());

20.

21. JLabel Tabel = new JLabel(getParameter("greeting"), SwingConstants.CENTER);
22. Tabel.setFont(new Font("Serif", Font.BOLD, 18));
23. add(Tabel, BorderLayout.CENTER);

24.

25. JPanel panel = new JPanel();

26.

27. JButton cayButton = new JButton("Cay Horstmann");
28. cayButton.addActionListener(makeAction("http://www.horstmann.com"));
29. panel.add(cayButton);

30.

31 JButton garyButton = new JButton("Gary Cornell");
32. garyButton.addActionListener(makeAction("mailto:gary_cornell@apress.com"));
33. panel.add(garyButton);

34.

35. add(panel, BorderLayout.SOUTH);

36. }

a7. b;

38. 1

39.

4. private ActionListener makeAction(final String urlString)

41. {

42. return new ActionlListener()

43.

44. public void actionPerformed(ActionEvent event)

45. {

46. try

47. {

48. getAppletContext().showDocument(new URL(url1String));
49.

50. catch (MalformedURLException e)

51. {

52. e.printStackTrace();

53. }

54. }

55. b

56. 1

57. }

In this chapter, you learned about the mechanics of compiling and running Java pro-
grams. You are now ready to move on to Chapter 3, where you will start learning the
Java language.

Chapter 3. Fundamental Programming Structures in Java

FUNDAMENTAL
PROGRAMMING
STRUCTURES IN JAVA

d 4444 dada9qaadga

A SIMPLE JAVA PROGRAM
COMMENTS

DATA TYPES

VARIABLES

OPERATORS

STRINGS

INPUT AND OUTPUT
CONTROL FLOW

Bic NUMBERS

ARRAYS

35

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 B Fundamental Programming Structures in Java

At this point, we are assuming that you successfully installed the JDK and were
able to run the sample programs that we showed you in Chapter 2. It’s time to start pro-
gramming. This chapter shows you how the basic programming concepts such as data
types, branches, and loops are implemented in Java.

Unfortunately, in Java you can’t easily write a program that uses a GUI—you need to
learn a fair amount of machinery to put up windows, add text boxes and buttons that
respond to them, and so on. Because introducing the techniques needed to write GUI-
based Java programs would take us too far away from our goal of introducing the basic
programming concepts, the sample programs in this chapter are “toy” programs,
designed to illustrate a concept. All these examples simply use a shell window for input
and output.

Finally, if you are an experienced C++ programmer, you can get away with just skim-
ming this chapter: Concentrate on the C/C++ notes that are interspersed throughout the
text. Programmers coming from another background, such as Visual Basic, will find
most of the concepts familiar, but all of the syntax very different—you should read this
chapter very carefully.

A Simple Java Program
Let’s look more closely at about the simplest Java program you can have—one that sim-
ply prints a message to the console window:

public class FirstSample

{

public static void main(String[] args)

{
System.out.printIn("We will not use 'Hello, World!'");

}
}

It is worth spending all the time that you need to become comfortable with the frame-
work of this sample; the pieces will recur in all applications. First and foremost, Java is
case sensitive. If you made any mistakes in capitalization (such as typingMain instead of
main), the program will not run.

Now let’s look at this source code line by line. The keywordpublic is called an access
modifier; these modifiers control the level of access other parts of a program have to this
code. We have more to say about access modifiers in Chapter 5. The keyword class
reminds you that everything in a Java program lives inside a class. Although we spend
a lot more time on classes in the next chapter, for now think of a class as a container for
the program logic that defines the behavior of an application. As mentioned in Chapter
1, classes are the building blocks with which all Java applications and applets are built.
Everything in a Java program must be inside a class.

Following the keyword class is the name of the class. The rules for class names in Java
are quite generous. Names must begin with a letter, and after that, they can have any
combination of letters and digits. The length is essentially unlimited. You cannot use a
Java reserved word (such as public or class) for a class name. (See the Appendix for a list
of reserved words.)

Chapter 3. Fundamental Programming Structures in Java

A Simple Java Program

The standard naming convention (which we follow in the name FirstSample) is that
class names are nouns that start with an uppercase letter. If a name consists of multi-
ple words, use an initial uppercase letter in each of the words. (This use of uppercase
letters in the middle of a word is sometimes called “camel case” or, self-referentially,
“CamelCase.”)

You need to make the file name for the source code the same as the name of the public
class, with the extension .java appended. Thus, you must store this code in a file called
FirstSample.java. (Again, case is important—don’t use firstsample.java.)

If you have named the file correctly and not made any typos in the source code, then
when you compile this source code, you end up with a file containing the bytecodes for
this class. The Java compiler automatically names the bytecode file FirstSample.class and
stores it in the same directory as the source file. Finally, launch the program by issuing
the following command:

java FirstSample

(Remember to leave off the .class extension.) When the program executes, it simply dis-
plays the string We will not use 'Hello, World!' on the console.

When you use

java ClassName
to run a compiled program, the Java virtual machine always starts execution with the
code in the main method in the class you indicate. (The term “method” is Java-speak for a
function.) Thus, you must have amain method in the source file for your class for your

code to execute. You can, of course, add your own methods to a class and call them from
the main method. (We cover writing your own methods in the next chapter.)

NOTE: According to the Java Language Specification, the main method must be declared pubTic.
(The Java Language Specification is the official document that describes the Java language. You
can view or download it from http://java.sun.com/docs/books/j1s.)

However, several versions of the Java launcher were willing to execute Java programs even
when the main method was not pubTlic. A programmer filed a bug report. To see it, visit the
site http://bugs.sun.com/bugdatabase/index.jsp and enter the bug identification number
4252539. That bug was marked as “closed, will not be fixed.” A Sun engineer added an
explanation that the Java Virtual Machine Specification (at http://java.sun.com/docs/books/
vispec) does not mandate that main is public and that “fixing it will cause potential troubles.”
Fortunately, sanity finally prevailed. The Java launcher in Java SE 1.4 and beyond enforces
that the main method is public.

There are a couple of interesting aspects about this story. On the one hand, it is frustrating
to have quality assurance engineers, who are often overworked and not always experts in
the fine points of Java, make questionable decisions about bug reports. On the other hand,
it is remarkable that Sun puts the bug reports and their resolutions onto the Web, for anyone
to scrutinize. The “bug parade” is a very useful resource for programmers. You can even
vote for your favorite bug. Bugs with lots of votes have a high chance of being fixed in the
next JDK release.

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 B Fundamental Programming Structures in Java

Notice the braces { } in the source code. In Java, as in C/C++, braces delineate the parts
(usually called blocks) in your program. In Java, the code for any method must be started
by an opening brace { and ended by a closing brace }.

Brace styles have inspired an inordinate amount of useless controversy. We use a style
that lines up matching braces. Because whitespace is irrelevant to the Java compiler, you
can use whatever brace style you like. We will have more to say about the use of braces
when we talk about the various kinds of loops.

For now, don’t worry about the keywords static void—just think of them as part of what
you need to get a Java program to compile. By the end of Chapter 4, you will under-
stand this incantation completely. The point to remember for now is that every Java
application must have a main method that is declared in the following way:

public class ClassName

{

public static void main(String[] args)

{

program statements

C++ NOTE: As a C++ programmer, you know what a class is. Java classes are similar to

C++ classes, but there are a few differences that can trap you. For example, in Java all func-
tions are methods of some class. (The standard terminology refers to them as methods, not
member functions.) Thus, in Java you must have a shell class for the main method. You may
also be familiar with the idea of static member functions in C++. These are member func-
tions defined inside a class that do not operate on objects. The main method in Java is
always static. Finally, as in C/C++, the void keyword indicates that this method does not
return a value. Unlike C/C++, the main method does not return an “exit code” to the operating
system. If the main method exits normally, the Java program has the exit code 0, indicating
successful completion. To terminate the program with a different exit code, use the
Systenm.exit method.

Next, turn your attention to this fragment:

{
System.out.printIn("We will not use 'Hello, World!'");

}
Braces mark the beginning and end of the body of the method. This method has only one
statement in it. As with most programming languages, you can think of Java statements
as being the sentences of the language. In Java, every statement must end with a semico-
lon. In particular, carriage returns do not mark the end of a statement, so statements can
span multiple lines if need be.
The body of the main method contains a statement that outputs a single line of text to
the console.
Here, we are using the System.out object and calling its println method. Notice the peri-
ods used to invoke a method. Java uses the general syntax

object.method(parameters)

for its equivalent of function calls.

Chapter 3. Fundamental Programming Structures in Java

In this case, we are calling the println method and passing it a string parameter. The
method displays the string parameter on the console. It then terminates the output line
so that each call to printin displays its output on a new line. Notice that Java, like C/C++,
uses double quotes to delimit strings. (You can find more information about strings later
in this chapter.)

Methods in Java, like functions in any programming language, can use zero, one, or
more parameters (some programmers call them arguments). Even if a method takes no
parameters, you must still use empty parentheses. For example, a variant of theprintin
method with no parameters just prints a blank line. You invoke it with the call

System.out.printin();

NOTE: System.out also has a print method that doesn’t add a new line character to the
v output. For example, System.out.print("Hello") prints Hello without a new line. The next
output appears immediately after the letter o.

Comments

Comments in Java, like comments in most programming languages, do not show up in
the executable program. Thus, you can add as many comments as needed without fear
of bloating the code. Java has three ways of marking comments. The most common
method is a //. You use this for a comment that will run from the// to the end of the line.

System.out.printIn("We will not use 'Hello, World!'"); // is this too cute?

When longer comments are needed, you can mark each line with a//. Or you can use
the /+and #/ comment delimiters that let you block off a longer comment. This is shown
in Listing 3-1.

ISETH L TR S B FirstSample. java

1. [wn
2.« This is the first sample program in Core Java Chapter 3
3.+ @version 1.01 1997-03-22

4.« @author Gary Cornell

5. %/

6. public class FirstSample

7. {

8 public static void main(String[] args)

9. {

10. System.out.printin("We will not use 'Hello, World!'");
11. }

12. }

Finally, a third kind of comment can be used to generate documentation automati-
cally. This comment uses a /++ to start and a «/ to end. For more on this type of com-
ment and on automatic documentation generation, see Chapter 4.

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 B Fundamental Programming Structures in Java

CAUTION: /* x/ comments do not nest in Java. That is, you cannot deactivate code simply by
surrounding it with /+ and */ because the code that you want to deactivate might itself contain
a «/ delimiter.

Data Types

Java is a strongly typed language. This means that every variable must have a declared
type. There are eight primitive types in Java. Four of them are integer types; two are
floating-point number types; one is the character typechar, used for code units in the
Unicode encoding scheme (see the section “The char Type” on page 42); and one is a
boolean type for truth values.

NOTE: Java has an arbitrary precision arithmetic package. However, “big numbers,” as they
‘/ are called, are Java objects and not a new Java type. You see how to use them later in this
chapter.

Integer Types
The integer types are for numbers without fractional parts. Negative values are allowed.
Java provides the four integer types shown in Table 3-1.

Table 3-1 Java Integer Types

Type Storage Requirement Range (Inclusive)

int 4 bytes -2,147,483,648 to 2,147,483, 647 (just over 2 billion)

short 2 bytes —32,768 to 32,767

Tong 8 bytes -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

byte 1 byte —-128 to 127

In most situations, the int type is the most practical. If you want to represent the
number of inhabitants of our planet, you’ll need to resort to a long. The byte and short
types are mainly intended for specialized applications, such as low-level file han-
dling, or for large arrays when storage space is at a premium.

Under Java, the ranges of the integer types do not depend on the machine on which you
will be running the Java code. This alleviates a major pain for the programmer who
wants to move software from one platform to another, or even between operating sys-
tems on the same platform. In contrast, C and C++ programs use the most efficient inte-
ger type for each processor. As a result, a C program that runs well on a 32-bit processor
may exhibit integer overflow on a 16-bit system. Because Java programs must run with
the same results on all machines, the ranges for the various types are fixed.

Long integer numbers have a suffix L (for example, 4000000000L). Hexadecimal numbers
have a prefix 0x (for example, 0xCAFE). Octal numbers have a prefix 0. For example, 010 is 8.
Naturally, this can be confusing, and we recommend against the use of octal constants.

Chapter 3. Fundamental Programming Structures in Java

Data Types

C++ NOTE: In C and C++, int denotes the integer type that depends on the target machine.
On a 16-bit processor, like the 8086, integers are 2 bytes. On a 32-bit processor like the Sun
SPARC, they are 4-byte quantities. On an Intel Pentium, the integer type of C and C++
depends on the operating system: For DOS and Windows 3.1, integers are 2 bytes. When
32-bit mode is used for Windows programs, integers are 4 bytes. In Java, the sizes of all
numeric types are platform independent.

Note that Java does not have any unsigned types.

Floating-Point Types

The floating-point types denote numbers with fractional parts. The two floating-point
types are shown in Table 3-2.

Table 3-2 Floating-Point Types

Type Storage Requirement Range

float 4 bytes approximately +3.40282347E+38F
(6-7 significant decimal digits)

doubTe 8 bytes approximately +1.79769313486231570E+308
(15 significant decimal digits)

The name double refers to the fact that these numbers have twice the precision of the
float type. (Some people call these double-precision numbers.) Here, the type to
choose in most applications is double. The limited precision of float is simply not
sufficient for many situations. Seven significant (decimal) digits may be enough to
precisely express your annual salary in dollars and cents, but it won’t be enough for
your company president’s salary. The only reasons to use float are in the rare situa-
tions in which the slightly faster processing of single-precision numbers is impor-
tant or when you need to store a large number of them.

Numbers of type float have a suffix F (for example, 3.402F). Floating-point numbers

without an F suffix (such as 3.402) are always considered to be of type double. You can
optionally supply the D suffix (for example, 3.402D).

NOTE: As of Java SE 5.0, you can specify floating-point numbers in hexadecimal! For exam-
ple, 0.125 = 23 can be written as 0x1.0p-3. In hexadecimal notation, you use a p, not an e, to
denote the exponent. Note that the mantissa is written in hexadecimal and the exponent in
decimal. The base of the exponent is 2, not 10.

All floating-point computations follow the IEEE 754 specification. In particular, there
are three special floating-point values to denote overflows and errors:

e Positive infinity
¢ Negative infinity
e NaN (not a number)

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 B Fundamental Programming Structures in Java

For example, the result of dividing a positive number by 0 is positive infinity. Comput-
ing 0/0 or the square root of a negative number yields NaN.

NOTE: The constants DoubTe.POSITIVE_INFINITY, DoubTe .NEGATIVE_INFINITY, and DoubTe.NaN (as
u well as corresponding Float constants) represent these special values, but they are rarely
used in practice. In particular, you cannot test

if (x == Double.NaN) // is never true

to check whether a particular result equals DoubTe.NaN. All “not a number” values are consid-
ered distinct. However, you can use the DoubTe.isNaN method:

if (Double.isNaN(x)) // check whether x is "not a number"

CAUTION: Floating-point numbers are not suitable for financial calculation in which

roundoff errors cannot be tolerated. For example, the command System.out.printin(2.0 -
1.1) prints 0.8999999999999999, not 0.9 as you would expect. Such roundoff errors are
caused by the fact that floating-point numbers are represented in the binary number
system. There is no precise binary representation of the fraction 1/10, just as there is no
accurate representation of the fraction 1/3 in the decimal system. If you need precise
numerical computations without roundoff errors, use the BigDecimal class, which is intro-
duced later in this chapter.

The char Type

The char type is used to describe individual characters. Most commonly, these will be
character constants. For example, 'A" is a character constant with value 65. It is different
from "A", a string containing a single character. Unicode code units can be expressed as
hexadecimal values that run from \u@00@ to \uFFFF. For example, \u2122 is the trademark
symbol (™) and \u@3C0 is the Greek letter pi (TT).

Besides the \u escape sequences that indicate the encoding of Unicode code units, there
are several escape sequences for special characters, as shown in Table 3-3. You can use
these escape sequences inside quoted character constants and strings, such as '\u2122" or
"Hello\n". The \u escape sequence (but none of the other escape sequences) can even be
used outside quoted character constants and strings. For example,

public static void main(String\u0@5B\ud05D args)

is perfectly legal—\u0058 and \u@@sD are the encodings for [and].

Table 3-3 Escape Sequences for Special Characters

Escape Sequence Name Unicode Value
\b Backspace \u00o0s
\t Tab \u00e9
\n Linefeed \u0o0a

\r Carriage return \u0ood

Chapter 3. Fundamental Programming Structures in Java

Data Types

Table 3-3 Escape Sequences for Special Characters (continued)

Escape Sequence Name Unicode Value
\" Double quote \u0022
\' Single quote \u0027
A\ Backslash \u005c

To fully understand the char type, you have to know about the Unicode encoding
scheme. Unicode was invented to overcome the limitations of traditional character
encoding schemes. Before Unicode, there were many different standards: ASCII in the
United States, ISO 8859-1 for Western European languages, KOI-8 for Russian, GB18030
and BIG-5 for Chinese, and so on. This causes two problems. A particular code value
corresponds to different letters in the various encoding schemes. Moreover, the encod-
ings for languages with large character sets have variable length: Some common charac-
ters are encoded as single bytes, others require two or more bytes.

Unicode was designed to solve these problems. When the unification effort started in
the 1980s, a fixed 2-byte width code was more than sufficient to encode all characters
used in all languages in the world, with room to spare for future expansion—or so
everyone thought at the time. In 1991, Unicode 1.0 was released, using slightly less than
half of the available 65,536 code values. Java was designed from the ground up to use
16-bit Unicode characters, which was a major advance over other programming lan-
guages that used 8-bit characters.

Unfortunately, over time, the inevitable happened. Unicode grew beyond 65,536 charac-
ters, primarily due to the addition of a very large set of ideographs used for Chinese,
]apanese, and Korean. Now, the 16-bit char type is insufficient to describe all Unicode
characters.

We need a bit of terminology to explain how this problem is resolved in Java, begin-
ning with Java SE 5.0. A code point is a code value that is associated with a character in
an encoding scheme. In the Unicode standard, code points are written in hexadecimal
and prefixed with U+, such as U+0041 for the code point of the letter A. Unicode has
code points that are grouped into 17 code planes. The first code plane, called the basic
multilingual plane, consists of the “classic” Unicode characters with code points U+0000
to U+FFFF. Sixteen additional planes, with code points U+10000 to U+10FFFF, hold the
supplementary characters.

The UTF-16 encoding is a method of representing all Unicode code points in a variable-
length code. The characters in the basic multilingual plane are represented as 16-bit
values, called code units. The supplementary characters are encoded as consecutive
pairs of code units. Each of the values in such an encoding pair falls into a range of
2048 unused values of the basic multilingual plane, called the surrogates area (U+D800
to U+DBFF for the first code unit, U+DCO00 to U+DFFF for the second code unit). This
is rather clever, because you can immediately tell whether a code unit encodes a single
character or whether it is the first or second part of a supplementary character. For
example, the mathematical symbol for the set of integers Z has code point U+1D56B

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 B Fundamental Programming Structures in Java

and is encoded by the two code units U+D835 and U+DD6B. (Seehttp://en.wikipedia.org/
wiki/UTF-16 for a description of the encoding algorithm.)

In Java, the char type describes a code unit in the UTF-16 encoding.

Our strong recommendation is not to use the char type in your programs unless you are
actually manipulating UTF-16 code units. You are almost always better off treating
strings (which we will discuss in the section “Strings” on page 53) as abstract data types.

The boolean Type
The hoolean type has two values, false and true. It is used for evaluating logical condi-
tions. You cannot convert between integers and boolean values.

E C++ NOTE: In C++, numbers and even pointers can be used in place of boolean values. The
value 0 is equivalent to the bool value false, and a non-zero value is equivalent to true. This
is not the case in Java. Thus, Java programmers are shielded from accidents such as
if (x = 0) // oops...meant x ==

In C++, this test compiles and runs, always evaluating to false. In Java, the test does not
compile because the integer expression x = 0 cannot be converted to a hoolean value.

Variables
In Java, every variable has a type. You declare a variable by placing the type first, fol-
lowed by the name of the variable. Here are some examples:

doubTe salary;

int vacationDays;

Tong earthPopulation;

booTean done;
Notice the semicolon at the end of each declaration. The semicolon is necessary because
a declaration is a complete Java statement.

A variable name must begin with a letter and must be a sequence of letters or digits. Note
that the terms “letter” and “digit” are much broader in Java than in most languages. A letter
is defined as 'A'-'Z', 'a'-'z", '_', or any Unicode character that denotes a letter in a language.
For example, German users can use umlauts such as 'a' in variable names; Greek speakers
could use a T Similarly, digits are '0'-'9" and any Unicode characters that denote a digit in
alanguage. Symbols like '+' or '0' cannot be used inside variable names, nor can spaces.
All characters in the name of a variable are significant and case is also significant. The length of
a variable name is essentially unlimited.

TIP: If you are really curious as to what Unicode characters are “letters” as far as Java is
concerned, you can use the isJavaldentifierStart and isJavaldentifierPart methods in the
Character class to check.

You also cannot use a Java reserved word for a variable name. (See the Appendix for a
list of reserved words.)

Chapter 3. Fundamental Programming Structures in Java

Variables

You can have multiple declarations on a single line:
int i, j; // both are integers

However, we don’t recommend this style. If you declare each variable separately, your
programs are easier to read.

NOTE: As you saw, names are case sensitive, for example, hireday and hireDay are two sep-

arate names. In general, you should not have two names that only differ in their letter case.
However, sometimes it is difficult to come up with a good name for a variable. Many pro-
grammers then give the variable the same name of the type, such as

Box box; // ok--Box is the type and box is the variable name
Other programmers prefer to use an “a” prefix for the variable:
Box aBox;

Initializing Variables
After you declare a variable, you must explicitly initialize it by means of an assignment
statement—you can never use the values of uninitialized variables. For example, the
Java compiler flags the following sequence of statements as an error:

int vacationDays;

System.out.printIn(vacationDays); // ERROR--variable not initialized
You assign to a previously declared variable by using the variable name on the left, an
equal sign (=), and then some Java expression that has an appropriate value on the right.

int vacationDays;

vacationDays = 12;
You can both declare and initialize a variable on the same line. For example:

int vacationDays = 12;
Finally, in Java you can put declarations anywhere in your code. For example, the fol-
lowing is valid code in Java:

double salary = 65000.0;

System.out.printin(salary);

int vacationDays = 12; // ok to declare a variable here
In Java, it is considered good style to declare variables as closely as possible to the point
where they are first used.

C++ NOTE: C and C++ distinguish between the declaration and definition of variables. For
example,

int i = 10;
is a definition, whereas
extern int i;
is a declaration. In Java, no declarations are separate from definitions.

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 B Fundamental Programming Structures in Java

Constants
In Java, you use the keyword final to denote a constant. For example:

pubTic class Constants

{
public static void main(String[] args)
{
final double CM_PER_INCH = 2.54;
doubTe paperWidth = 8.5;
doubTe paperHeight = 11;
System.out.printIn("Paper size in centimeters: "
+ paperWidth « CM_PER_INCH + " by " + paperHeight « CM_PER_INCH);
}
}

The keyword final indicates that you can assign to the variable once, and then its value
is set once and for all. It is customary to name constants in all uppercase.
It is probably more common in Java to want a constant that is available to multiple

methods inside a single class. These are usually called class constants. You set up a class
constant with the keywords static final. Here is an example of using a class constant:

public class Constants2

{
public static void main(String[] args)
{
doubTe paperWidth = 8.5;
double paperHeight = 11;
System.out.printIn("Paper size in centimeters: "
+ paperWidth « CM_PER_INCH + " by " + paperHeight « CM_PER_INCH);
}
public static final double CM_PER_INCH = 2.54;
}

Note that the definition of the class constant appears outside themain method. Thus, the
constant can also be used in other methods of the same class. Furthermore, if (as in our
example) the constant is declared public, methods of other classes can also use the con-
stant—in our example, as Constants2.CM_PER_INCH.

C++ NOTE: const is a reserved Java keyword, but it is not currently used for anything. You
must use final for a constant.

Operators

The usual arithmetic operators + — » / are used in Java for addition, subtraction, multi-
plication, and division. The / operator denotes integer division if both arguments are
integers, and floating-point division otherwise. Integer remainder (sometimes called
modulus) is denoted by %. For example, 15 / 2is 7,15 % 2is 1,and 15.0 / 2is 7.5.

Note that integer division by 0 raises an exception, whereas floating-point division
by 0 yields an infinite or NaN result.

Chapter 3. Fundamental Programming Structures in Java

Operators

There is a convenient shortcut for using binary arithmetic operators in an assignment.
For example,
X += 4;
is equivalent to
X=X+ 4
(In general, place the operator to the left of the= sign, such as += or %=.)

NOTE: One of the stated goals of the Java programming language is portability. A computa-
tion should yield the same results no matter which virtual machine executes it. For arith-
metic computations with floating-point numbers, it is surprisingly difficult to achieve this
portability. The double type uses 64 bits to store a numeric value, but some processors use
80-bit floating-point registers. These registers yield added precision in intermediate steps of
a computation. For example, consider the following computation:
double w =x xy / z;
Many Intel processors compute x * y and leave the result in an 80-bit register, then divide by
z, and finally truncate the result back to 64 bits. That can yield a more accurate result, and it
can avoid exponent overflow. But the result may be different than a computation that uses
64 bits throughout. For that reason, the initial specification of the Java virtual machine man-
dated that all intermediate computations must be truncated. The numeric community hated
it. Not only can the truncated computations cause overflow, they are actually slower than the
more precise computations because the truncation operations take time. For that reason,
the Java programming language was updated to recognize the conflicting demands for opti-
mum performance and perfect reproducibility. By default, virtual machine designers are now
permitted to use extended precision for intermediate computations. However, methods
tagged with the strictfp keyword must use strict floating-point operations that yield repro-
ducible results. For example, you can tag main as

public static strictfp void main(String[] args)

Then all instructions inside the main method use strict floating-point computations. If you tag
a class as strictfp, then all of its methods use strict floating-point computations.

The gory details are very much tied to the behavior of the Intel processors. In default mode,
intermediate results are allowed to use an extended exponent, but not an extended mantissa.
(The Intel chips support truncation of the mantissa without loss of performance.) Therefore,
the only difference between default and strict mode is that strict computations may overflow
when default computations don’t.

If your eyes glazed over when reading this note, don’t worry. Floating-point overflow isn’t a

problem that one encounters for most common programs. We don’t use the strictfp key-
word in this book.

Increment and Decrement Operators
Programmers, of course, know that one of the most common operations with a numeric
variable is to add or subtract 1. Java, following in the footsteps of C and C++, has both
increment and decrement operators: n++ adds 1 to the current value of the variablen, and
n-- subtracts 1 from it. For example, the code

int n = 12;

n++;

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 B Fundamental Programming Structures in Java

changes n to 13. Because these operators change the value of a variable, they cannot be
applied to numbers themselves. For example, 4++ is not a legal statement.
There are actually two forms of these operators; you have seen the “postfix” form of the
operator that is placed after the operand. There is also a prefix form, ++n. Both change the
value of the variable by 1. The difference between the two only appears when they are
used inside expressions. The prefix form does the addition first; the postfix form evalu-
ates to the old value of the variable.

intm=7;

intn=7;

int a =2« +m; // now a is 16, m is 8

int b =2 « n++; // now b is 14, n is 8
We recommend against using ++ inside other expressions because this often leads to con-
fusing code and annoying bugs.
(Of course, while it is true that the ++ operator gives the C++ language its name, it also
led to the first joke about the language. C++ haters point out that even the name of the
language contains a bug: “After all, it should really be called ++C, because we only
want to use a language after it has been improved.”)

Relational and boolean Operators
Java has the full complement of relational operators. To test for equality you use a dou-
ble equal sign, ==. For example, the value of

3=7
is false.
Use a != for inequality. For example, the value of

31=7
is true.
Finally, you have the usual < (less than), > (greater than), <= (less than or equal), and >=
(greater than or equal) operators.
Java, following C++, uses & for the logical “and” operator and || for the logical “or”
operator. As you can easily remember from the != operator, the exclamation point ! is the
logical negation operator. The & and || operators are evaluated in “short circuit” fash-
ion. The second argument is not evaluated if the first argument already determines the
value. If you combine two expressions with the & operator,

expressiony && expression,
and the truth value of the first expression has been determined to befalse, then it is
impossible for the result to be true. Thus, the value for the second expression is not
calculated. This behavior can be exploited to avoid errors. For example, in the
expression

x1=08 1/ x>x+y// nodivision by 0
the second part is never evaluated if x equals zero. Thus, 1 / x is not computed if x is
zero, and no divide-by-zero error can occur.
Similarly, the value of expression; || expression; is automatically true if the first expres-
sion is true, without evaluation of the second expression.

Chapter 3. Fundamental Programming Structures in Java

Operators

Finally, Java supports the ternary ?: operator that is occasionally useful. The expression
condition ? expressiony : expression,

evaluates to the first expression if the condition is true, to the second expression other-

wise. For example,
X<y?x:y

gives the smaller of x and y.

Bitwise Operators

When working with any of the integer types, you have operators that can work

directly with the bits that make up the integers. This means that you can use mask-
ing techniques to get at individual bits in a number. The bitwise operators are

&(“and”) | (“or” A (“xor” ~ (“not”)
These operators work on bit patterns. For example, ifn is an integer variable, then
int fourthBitFromRight = (n & 8) / 8;

gives you a 1 if the fourth bit from the right in the binary representation ofn is 1, and 0 if
not. Using & with the appropriate power of 2 lets you mask out all but a single bit.

operators are similar to the & and || operators, except that the & and | operators are not
evaluated in “short circuit” fashion. That is, both arguments are first evaluated before the
result is computed.

NOTE: When applied to boolean values, the & and | operators yield a boolean value. These

There are also >> and << operators, which shift a bit pattern to the right or left. These
operators are often convenient when you need to build up bit patterns to do bit
masking:

int fourthBitFromRight = (n & (1 << 3)) > 3;
Finally, a >>> operator fills the top bits with zero, whereas>> extends the sign bit into the
top bits. There is no << operator.

CAUTION: The right-hand side argument of the shift operators is reduced modulo 32
(unless the left-hand side is a Tong, in which case the right-hand side is reduced modulo 64).
For example, the value of 1 << 35 is the same as 1 << 3 or 8.

C++ NOTE: In C/C++, there is no guarantee as to whether >> performs an arithmetic shift

(extending the sign bit) or a logical shift (filling in with zeroes). Implementors are free to
choose whatever is more efficient. That means the C/C++ >> operator is really only defined
for non-negative numbers. Java removes that ambiguity.

Mathematical Functions and Constants
The Math class contains an assortment of mathematical functions that you may occasion-
ally need, depending on the kind of programming that you do.

To take the square root of a number, you use the sqrt method:

Chapter 3. Fundamental Programming Structures in Java

u Chapter 3 B Fundamental Programming Structures in Java

double x = 4;
doubTe y = Math.sqrt(x);
System.out.printin(y); // prints 2.0

NOTE: There is a subtle difference between the println method and the sqrt method. The

printTn method operates on an object, System.out, defined in the System class. But the sqrt
method in the Math class does not operate on any object. Such a method is called a static
method. You can learn more about static methods in Chapter 4.

The Java programming language has no operator for raising a quantity to a power: You
must use the pow method in the Math class. The statement

doubTe y = Math.pow(x, a);
sets y to be x raised to the power a (x%). The pow method has parameters that are both of
type double, and it returns a double as well.
The Math class supplies the usual trigonometric functions

Math.sin

Math.cos

Math.tan

Math.atan

Math.atan2
and the exponential function and its inverse, the natural log:

Math.exp

Math.Tog

Finally, two constants denote the closest possible approximations to the mathematical
constants 7 and e:

Math.PI
Math.E

TIP: Starting with Java SE 5.0, you can avoid the Math prefix for the mathematical methods
and constants by adding the following line to the top of your source file:

import static java.lang.Math.«;
For example:

System.out.printIn("The square root of \u@3C@ is " + sqrt(PI));
We discuss static imports in Chapter 4.

NOTE: The functions in the Math class use the routines in the computer’s floating-point

unit for fastest performance. If completely predictable results are more important than
fast performance, use the StrictMath class instead. It implements the algorithms from the
“Freely Distributable Math Library” fd1ibm, guaranteeing identical results on all platforms.
See http://www.netlib.org/fd1ibm/index.html for the source of these algorithms. (Whenever
fdlibm provides more than one definition for a function, the StrictMath class follows the
IEEE 754 version whose name starts with an “e”.)

Chapter 3. Fundamental Programming Structures in Java

Operators n

Conversions between Numeric Types
It is often necessary to convert from one numeric type to another. Figure 3-1 shows the
legal conversions.

byte _’l short [~ int _>i Tong

\i
I float : double

Figure 3-1 Legal conversions between numeric types

The six solid arrows in Figure 3-1 denote conversions without information loss. The
three dotted arrows denote conversions that may lose precision. For example, a large
integer such as 123456789 has more digits than the float type can represent. When the
integer is converted to a float, the resulting value has the correct magnitude but it loses
some precision.

int n = 123456789;

float f = n; // f is 1.23456792E8
When two values with a binary operator (such asn + f where nis an integer and f is a
floating-point value) are combined, both operands are converted to a common type
before the operation is carried out.

e If either of the operands is of type double, the other one will be converted to a double.

e Otherwise, if either of the operands is of type float, the other one will be converted
to a float.

e Otherwise, if either of the operands is of type Tong, the other one will be converted
to a Tong.

* Otherwise, both operands will be converted to anint.

Casts

In the preceding section, you saw that int values are automatically converted to double
values when necessary. On the other hand, there are obviously times when you want to
consider a double as an integer. Numeric conversions are possible in Java, but of course
information may be lost. Conversions in which loss of information is possible are done
by means of casts. The syntax for casting is to give the target type in parentheses, fol-
lowed by the variable name. For example:

Chapter 3. Fundamental Programming Structures in Java

ﬂ Chapter 3 B Fundamental Programming Structures in Java

doubTe x = 9.997;

int nx = (int) x;
Then, the variable nx has the value 9 because casting a floating-point value to an integer
discards the fractional part.

If you want to round a floating-point number to the nearest integer (which is the more use-
ful operation in most cases), use the Math.round method:

doubTe x = 9.997;

int nx = (int) Math.round(x);
Now the variable nx has the value 10. You still need to use the cast (int) when you
call round. The reason is that the return value of the round method is a Tong, and a Tong
can only be assigned to an int with an explicit cast because there is the possibility
of information loss.

CAUTION: If you try to cast a number of one type to another that is out of the range for the
n target type, the result will be a truncated number that has a different value. For example,
(byte) 300 is actually 44.

C++ NOTE: You cannot cast between bhoolean values and any numeric type. This convention
prevents common errors. In the rare case that you want to convert a hoolean value to a num-
ber, you can use a conditional expression suchasb ? 1 : 0.

Parentheses and Operator Hierarchy

Table 3—4 on the following page shows the precedence of operators. If no parentheses
are used, operations are performed in the hierarchical order indicated. Operators on the
same level are processed from left to right, except for those that are right associative, as
indicated in the table. For example, because & has a higher precedence than ||, the
expression

adhb || c
means
(ad&b) |l c
Because += associates right to left, the expression
at+=b+=c
means
a+=(b+=10)
That is, the value of b += ¢ (which is the value of b after the addition) is added toa.

C++ NOTE: Unlike C or C++, Java does not have a comma operator. However, you can use
E a comma-separated list of expressions in the first and third slot of a for statement.

Chapter 3. Fundamental Programming Structures in Java

Strings

Table 3-4 Operator Precedence

Operators Associativity
[1. () (method call) Left to right
! ~ ++ -- + (unary) - (unary) () (cast) new Right to left
x /% Left to right
+ - Left to right
<> 3> Left to right
< <= > >= instanceof Left to right
= l= Left to right
& Left to right
A Left to right
\ Left to right
&& Left to right
I Left to right
?: Right to left
= += -= 4= [= = &= |= A= <<= >>= >>>= Right to left

Enumerated Types
Sometimes, a variable should only hold a restricted set of values. For example, you may
sell clothes or pizza in four sizes: small, medium, large, and extra large. Of course, you
could encode these sizes as integers 1, 2, 3, 4, or charactersS, M, L, and X. But that is an
error-prone setup. It is too easy for a variable to hold a wrong value (such as 0 or m).
Starting with Java SE 5.0, you can define your own enumerated type whenever such a sit-
uation arises. An enumerated type has a finite number of named values. For example:
enum Size { SMALL, MEDIUM, LARGE, EXTRA_LARGE };
Now you can declare variables of this type:
Size s = Size.MEDIUM;
A variable of type Size can hold only one of the values listed in the type declaration or
the special value nu11 that indicates that the variable is not set to any value at all.

We discuss enumerated types in greater detail in Chapter 5.

Strings

Conceptually, Java strings are sequences of Unicode characters. For example, the string
"Java\u2122" consists of the five Unicode characters], a, v, a, and ™. Java does not have a
built-in string type. Instead, the standard Java library contains a predefined class called,
naturally enough, String. Each quoted string is an instance of the String class:

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 B Fundamental Programming Structures in Java

String e = ""; // an empty string
String greeting = "Hello";
Substrings
You extract a substring from a larger string with the substring method of the String class.
For example,
String greeting = "Hello";
String s = greeting.substring(0, 3);
creates a string consisting of the characters "Hel".

The second parameter of substring is the first position that you do not want to copy.
In our case, we want to copy positions 0, 1, and 2 (from position 0 to position 2
inclusive). As substring counts it, this means from position 0 inclusive to position 3
exclusive.

There is one advantage to the way substring works: Computing the length of the sub-
string is easy. The string s.substring(a, b) always has lengthb - a. For example, the
substring "Hel" has length 3 -0 = 3.

Concatenation
Java, like most programming languages, allows you to use the+ sign to join (concate-
nate) two strings.

String expletive = "Expletive";

String PC13 = "deleted";

String message = expletive + PG13;
The preceding code sets the variablemessage to the string "Expletivedeleted”. (Note the lack
of a space between the words: The + sign joins two strings in the order received, exactly
as they are given.)

When you concatenate a string with a value that is not a string, the latter is converted
to a string. (As you will see in Chapter 5, every Java object can be converted to a string.)
For example,

int age = 13;

String rating = "PG" + age;
sets rating to the string "PG13".
This feature is commonly used in output statements. For example,

System.out.printIn("The answer is " + answer);

is perfectly acceptable and will print what one would want (and with the correct spac-
ing because of the space after the word is).
Strings Are Immutable
The String class gives no methods that let you change a character in an existing string. If
you want to turn greeting into "Help!", you cannot directly change the last positions ofgreet-
ing into 'p' and '!". If you are a C programmer, this will make you feel pretty helpless.
How are you going to modify the string? In Java, it is quite easy: Concatenate the sub-
string that you want to keep with the characters that you want to replace.

greeting = greeting.substring(0, 3) + "p!";
This declaration changes the current value of thegreeting variable to "Help!".

Chapter 3. Fundamental Programming Structures in Java

Strings

Because you cannot change the individual characters in a Java string, the documenta-
tion refers to the objects of the String class as being immutable. Just as the number 3 is
always 3, the string "Hell0" will always contain the code unit sequence describing the
characters H, e, 1, 1, 0. You cannot change these values. You can, as you just saw how-
ever, change the contents of the string variable greeting and make it refer to a different
string, just as you can make a numeric variable currently holding the value 3 hold the
value 4.

Isn’t that a lot less efficient? It would seem simpler to change the code units than to
build up a whole new string from scratch. Well, yes and no. Indeed, it isn’t efficient to
generate a new string that holds the concatenation of "Hel" and "p!". But immutable
strings have one great advantage: the compiler can arrange that strings are shared.

To understand how this works, think of the various strings as sitting in a common pool.
String variables then point to locations in the pool. If you copy a string variable, both the
original and the copy share the same characters.

Overall, the designers of Java decided that the efficiency of sharing outweighs the ineffi-
ciency of string editing by extracting substrings and concatenating. Look at your own
programs; we suspect that most of the time, you don’t change strings—you just com-
pare them. (There is one common exception—assembling strings from individual char-
acters or shorter strings that come from the keyboard or a file. For these situations, Java
provides a separate class that we describe in the section “Building Strings” on page 62.)

C++ NOTE: C programmers generally are bewildered when they see Java strings for the first
time because they think of strings as arrays of characters:

char greeting[] = "Hello";
That is the wrong analogy: A Java string is roughly analogous to a char+ pointer,
charx greeting = "Hello";
When you replace greeting with another string, the Java code does roughly the following:
chars temp = malloc(6);
strncpy(temp, greeting, 3);

strncpy(temp + 3, "p!", 3);
greeting = temp;

Sure, now greeting points to the string "Help!". And even the most hardened C programmer
must admit that the Java syntax is more pleasant than a sequence of strncpy calls. But what
if we make another assignment to greeting?

greeting = "Howdy";

Don’t we have a memory leak? After all, the original string was allocated on the heap. For-
tunately, Java does automatic garbage collection. If a block of memory is no longer
needed, it will eventually be recycled.

If you are a C++ programmer and use the string class defined by ANSI C++, you will be much
more comfortable with the Java String type. C++ string objects also perform automatic alloca-
tion and deallocation of memory. The memory management is performed explicitly by construc-
tors, assignment operators, and destructors. However, C++ strings are mutable—you can
modify individual characters in a string.

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 B Fundamental Programming Structures in Java

Testing Strings for Equality
To test whether two strings are equal, use theequals method. The expression
s.equals(t)
returns true if the strings s and t are equal, false otherwise. Note thats and t can be string
variables or string constants. For example, the expression
"Hell0".equals(greeting)
is perfectly legal. To test whether two strings are identical except for the upper/lower-
case letter distinction, use the equalsIgnoreCase method.
"HeT10".equalsIgnoreCase("hello")
Do not use the == operator to test whether two strings are equal! It only determines
whether or not the strings are stored in the same location. Sure, if strings are in the same
location, they must be equal. But it is entirely possible to store multiple copies of identi-
cal strings in different places.
String greeting = "Hello"; //initialize greeting to a string
if (greeting == "Hello") . . .
// probably true
if (greeting.substring(@, 3) == "Hel") . . .
// probably false
If the virtual machine would always arrange for equal strings to be shared, then you could
use the == operator for testing equality. But only string constants are shared, not strings that
are the result of operations like + or substring. Therefore, never use = to compare strings lest
you end up with a program with the worst kind of bug—an intermittent one that seems to
occur randomly.

about equality testing. The C++ string class does overload the == operator to test for
equality of the string contents. It is perhaps unfortunate that Java goes out of its way to
give strings the same “look and feel” as numeric values but then makes strings behave like
pointers for equality testing. The language designers could have redefined == for strings,
just as they made a special arrangement for +. Oh well, every language has its share of
inconsistencies.

C programmers never use == to compare strings but use strcmp instead. The Java method
compareTo is the exact analog to strcmp. You can use

C++ NOTE: If you are used to the C++ string class, you have to be particularly careful

if (greeting.compareTo("Hello") ==0) . . .
but it seems clearer to use equals instead.

Code Points and Code Units

Java strings are implemented as sequences of char values. As we discussed in the section
“The char Type” on page 42, the char data type is a code unit for representing Unicode
code points in the UTF-16 encoding. The most commonly used Unicode characters can
be represented with a single code unit. The supplementary characters require a pair of
code units.

Chapter 3. Fundamental Programming Structures in Java

Strings

The Tlength method yields the number of code units required for a given string in the
UTEF-16 encoding. For example:

String greeting = "Hello";
int n = greeting.length(); // is 5.

To get the true length, that is, the number of code points, call
int cpCount = greeting.codePointCount(0, greeting.length());

The call s.charAt(n) returns the code unit at positionn, where n is between 0 and s.Tength() - 1.
For example:

char first = greeting.charAt(0); // first is 'H'
char Tast = greeting.charAt(4); // last is 'o'

To get at the ith code point, use the statements

int index = greeting.offsetByCodePoints(0, i);
int cp = greeting.codePointAt(index);

NOTE: Java counts the code units in strings in a peculiar fashion: the first code unit in a string

has position 0. This convention originated in C, where there was a technical reason for count-
ing positions starting at 0. That reason has long gone away and only the nuisance remains.
However, so many programmers are used to this convention that the Java designers decided
to keep it.

Why are we making a fuss about code units? Consider the sentence

Z is the set of integers
The Z character requires two code units in the UTF-16 encoding. Calling

char ch = sentence.charAt(1)
doesn’t return a space but the second code unit of Z. To avoid this problem, you should
not use the char type. It is too low-level.
If your code traverses a string, and you want to look at each code point in turn, use
these statements:

int cp = sentence.codePointAt(i);

if (Character.isSupplementaryCodePoint(cp)) i += 2;

else i++;
Fortunately, the codePointAt method can tell whether a code unit is the first or second half
of a supplementary character, and it returns the right result either way. That is, you can
move backwards with the following statements:

i

int cp = sentence.codePointAt(i);

if (Character.isSupplementaryCodePoint(cp)) i--;

The String API

The String class in Java contains more than 50 methods. A surprisingly large number of
them are sufficiently useful so that we can imagine using them frequently. The follow-
ing API note summarizes the ones we found most useful.

Chapter 3. Fundamental Programming Structures in Java

u Chapter 3 B Fundamental Programming Structures in Java

NOTE: You will find these API notes throughout the book to help you understand the Java
Application Programming Interface (API). Each API note starts with the name of a class
such as java.lang.String—the significance of the so-called package name java.lang is
explained in Chapter 4. The class name is followed by the names, explanations, and param-
eter descriptions of one or more methods.

We typically do not list all methods of a particular class but instead select those that are

most commonly used, and describe them in a concise form. For a full listing, consult the on-
line documentation (see “Reading the On-Line APl Documentation” on page 59).

We also list the version number in which a particular class was introduced. If a method has
been added later, it has a separate version number.

java.lang.String 1.0

char charAt(int index)
returns the code unit at the specified location. You probably don’t want to call this
method unless you are interested in low-level code units.

int codePointAt(int index) 5.0

returns the code point that starts or ends at the specified location.

int offsetByCodePoints(int startIndex, int cpCount) 5.0

returns the index of the code point that is cpCount code points away from the code
point at startIndex.

int compareTo(String other)

returns a negative value if the string comes beforeother in dictionary order, a
positive value if the string comes after other in dictionary order, or 0 if the strings
are equal.

boolean endsWith(String suffix)

returns true if the string ends with suffix.

boolean equals(Object other)

returns true if the string equals other.

boolean equalsIgnoreCase(String other)
returns true if the string equals other, except for upper/lowercase distinction.

int index0f(String str)

int index0f(String str, int fromIndex)

int indexOf(int cp)

int indexOf(int cp, int fromIndex)

returns the start of the first substring equal to the stringstr or the code point cp,
starting at index 0 or at fromIndex, or —1 if str does not occur in this string.

int TastIndexOf(String str)

int TastIndexOf(String str, int fromIndex)

int TastindexOf(int cp)

int lastindexOf(int cp, int fromIndex)

returns the start of the last substring equal to the stringstr or the code point cp,
starting at the end of the string or at fromIndex.

Chapter 3. Fundamental Programming Structures in Java

Strings n

e int Tength()
returns the length of the string.
e int codePointCount(int startIndex, int endIndex) 5.0
returns the number of code points between startIndex and endIndex - 1. Unpaired
surrogates are counted as code points.
e String replace(CharSequence o1dString, CharSequence newString)
returns a new string that is obtained by replacing all substrings matchingoldString
in the string with the string newString. You can supply String or StringBuilder objects
for the CharSequence parameters.
e hoolean startsWith(String prefix)
returns true if the string begins with prefix.
e String substring(int beginIndex)
e String substring(int beginIndex, int endIndex)
returns a new string consisting of all code units frombeginIndex until the end of the
string or until endIndex - 1.
e String toLowerCase()
returns a new string containing all characters in the original string, with
uppercase characters converted to lowercase.
e String toUpperCase()
returns a new string containing all characters in the original string, with
lowercase characters converted to uppercase.
e String trim()
returns a new string by eliminating all leading and trailing spaces in the original
string.
Reading the On-Line API Documentation
As you just saw, the String class has lots of methods. Furthermore, there are thousands of
classes in the standard libraries, with many more methods. It is plainly impossible to
remember all useful classes and methods. Therefore, it is essential that you become
familiar with the on-line API documentation that lets you look up all classes and meth-
ods in the standard library. The API documentation is part of the JDK. It is in HTML for-
mat. Point your web browser to the docs/api/index.html subdirectory of your JDK
installation. You will see a screen like that in Figure 3-2.

The screen is organized into three frames. A small frame on the top left shows all avail-
able packages. Below it, a larger frame lists all classes. Click on any class name, and the
API documentation for the class is displayed in the large frame to the right (see Figure
3-3). For example, to get more information on the methods of the String class, scroll the
second frame until you see the String link, then click on it.

Then scroll the frame on the right until you reach a summary of all methods, sorted in
alphabetical order (see Figure 3—4). Click on any method name for a detailed description
of that method (see Figure 3-5). For example, if you click on the compareToIgnoreCase link,
you get the description of the compareToIgnoreCase method.

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 B Fundamental Programming Structures in Java

ﬁ Overview {Java Platform SE 6) 0x _ E’?
Eile Edit Wiew History Bookmarks Tools Help
<‘: - - @ [file:fifhome/appsfidk1.6.0/docs/apijindex.html h
Java™ Platform = ™ =
Standard Ed. 6 IEITIE Package Class Use Tree Deprecated Index Help Java™ Platform
: | PreV nEXT ERAMES NO FRAMES Standard Ed. 6|
All Classes
Packages Java™ Platform, Standard Edition 6
ava.applet g A
ia e & API Specification
4
This document is the API specification for version & of the Java™ Platform,
All Classes

Standard Edition.
AbstractAction

See:
Description

Packages

ApstractDocument Provides the classes nece
AbstractDocument. Afir, java.applet applet and the classes an

AbsiraciDocument. Cor| communicate with its appl
AbstractDacument Elel

AbstractElementvisitort Contains all of the classes
AbstractExecutarServic java.awt interfaces and for painting
AbstractinterruptibleCl images‘

AbstractlayoutCache = -

AbstractayoutCache ava.awt.color Provides classes for color

Abstractlist .
AbstractListModel | |java.awt.datatransfer

iz I Kl

Provides interfaces and cl
data between and within a
I D

[4]

Figure 3-2 The three panes of the API documentation

[@|string (java Platform SE 6) - Firefox O]
File Edit Wiew History Bookmarks Tools Help
<‘: - - @ [filej//horme/appsfidkl.6.0/docs/api/index.html ML
Java™ Platform 0
Standard Ed. 6 Overview Package Use Tree Deprecated Index Help Java™ Piatform
N) PREWCLASS NEXT CLASS ERAMES MO FRAMES Standard Ed' 67
il lasses SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD
Packages
lava.applet ~|| java.lang
T | Class String
Streamable -

StreamabieValue

java.lang.Object
StreamCarruptedExcey

L java.lang.String

StreamFitter

m All Implemented Interfaces:

StreamPrintServicoFac Serlalizable, CharSeqguence, Comparable<String >
StreamReaderDeleqats

StreamResult e .

StreamSource public final class String

extends Object

StreamTokenizer : i1 .
Strictidath implements Serializable, Comparable<String>, CharSequence

StrinaBuffer The string class represents character strings. All string literals in Java programs,
StringBufferinputStrean || SUCh as "abc”, are implemented as instances of this class.

StringBuilder . . .
StringCharacteriteratar—|| Strings are constant; their values cannot be changed after they are created. String

StringContent buffers support mutable strings. Because String objects are immutable they can be
StringHalder shared. For example:
StringlndexOutOfBound «| =]

I DI I+ |

Figure 3-3 Class description for the String class

Chapter 3. Fundamental Programming Structures in Java

Strings

e Edit View History Bookmarks TIools Help

<,: @ © @ L fileyfhomefapps/jdkl 6.0/docs/apifindex.html | B
Java™ Platform | | =
Standard Ed. 6 Method Summary | |
All Classes || char| charat(int index)

Returns the char value at the specified index. =

Packagelst int|codePointAt(int index)
lava.applel = Returns the character (Unicode code point) at the specified
< v index.
Streamable = int|codePointBefore(int index)
75?’53”7'60/6"3{“& Returns the character (Unicode code point) before the
reamCorruptedexce i i
specified index
StreamFitter P
StreamHandler int|codePointCount(int beginIndex, int endIndex)
StreamPrintService Returns the number of Unicode code points in the specified
StreamPrintServiceFag text range of this String.
StreamReaderDelegaty -
StreamResult int|compareTo(String anotherstring)
StreamSaurce Compares two strings lexicographically.
W int|compareToIgnoreCase(String str)
ot Compares two strings lexicographically, ignoring case
StringButter differences.
Str!ngBuﬁerlnguIStreauf String|concat(String str)
StringBuilder Concatenates the specified string tao the end of this string.
StringCharacteriteratar, |
StringCantent boolean| contains (CharSequence s)
StringHolder Returns true if and only If this string contains the specified
StringindexQutOfBouni+| eauence of char value [
<] [T IT+]

Figure 3-4 Method summary of the String class

oX

[®]5tring (Java Platform SE 6

File Edit Wiew History Bockmarks Tools Help
<'_‘ - - @ [file:ithomefappsfjdkl.6.0/docsfapifindex.html | B
Java™ Platform [
Standard Ed. 6 charAt

All Classes public char charAt(int index)

Packages Returns the char value at the specified index. An index ranges from o to

lava applet = length() - 1. The first char value of the sequence is at index o, the next at

jﬁ‘i‘ﬁ:m_ index 1, and so on, as for array indexing

Streamable =]) ;
StreamableVaiue If the char walue specified by the index is a surrogate, the surrogate value is
StreamCorruptedExce returned.

StreamFilter .

StreamHandler Specified by:

StreamPrintServi charat in interface charSequence

StreamPrintServiceFag Parameters:

StreamReaderDelegat index - the index of the char value.

StreamResult Returns:

StreamSource the char value at the specified index of this string. The first char value is
StreamTokenizer at index o

;‘"am Throws:

StringBufter IndexOutOfBoundsException - if the index argument is negative or not less
StringBurterinputstrear than the length of this string.

StringBuilder

StringCharacteriterator—

StringContent codePointAt

StringHalder

‘Strmq\nd‘exourorﬂm‘m‘? n‘uhﬂr int codePointAt{int index) I ‘7
4 » 4 »
" :

Figure 3-5 Detailed description of a String method

Chapter 3. Fundamental Programming Structures in Java

ﬂ Chapter 3 B Fundamental Programming Structures in Java

m TIP: Bookmark the docs/api/index.html page in your browser right now.

Building Strings

Occasionally, you need to build up strings from shorter strings, such as keystrokes or
words from a file. It would be inefficient to use string concatenation for this purpose.
Every time you concatenate strings, a new String object is constructed. This is time con-
suming and it wastes memory. Using the StringBuilder class avoids this problem.

Follow these steps if you need to build a string from many small pieces. First, construct
an empty string builder:

StringBuilder builder = new StringBuilder();
(We discuss constructors and the new operator in detail in Chapter 4.)
Each time you need to add another part, call the append method.

builder.append(ch); // appends a single character
builder.append(str); // appends a string

When you are done building the string, call the toString method. You will get a String
object with the character sequence contained in the builder.

String completedString = builder.toString();

NOTE: The StringBuilder class was introduced in JDK 5.0. Its predecessor, StringBuffer, is

slightly less efficient, but it allows multiple threads to add or remove characters. If all string
editing happens in a single thread (which is usually the case), you should use StringBuilder
instead. The APlIs of both classes are identical.

The following API notes contain the most important methods for theStringBuilder class.

m java.lang.StringBuilder 5.0

e StringBuilder()
constructs an empty string builder.
e int Tength()
returns the number of code units of the builder or buffer.
e StringBuilder append(String str)
appends a string and returns this.
e StringBuilder append(char c)
appends a code unit and returns this.
e StringBuilder appendCodePoint(int cp)
appends a code point, converting it into one or two code units, and returnsthis.
e void setCharAt(int i, char c)
sets the ith code unit to c.
e StringBuilder insert(int offset, String str)
inserts a string at position offset and returns this.

Chapter 3. Fundamental Programming Structures in Java

Input and Output u

e StringBuilder insert(int offset, char c)
inserts a code unit at position offset and returns this.

e StringBuilder delete(int startIndex, int endIndex)
deletes the code units with offsets startIndex to endIndex - 1and returns this.

e String toString()
returns a string with the same data as the builder or buffer contents.

Input and Output
To make our example programs more interesting, we want to accept input and properly
format the program output. Of course, modern programs use a GUI for collecting user
input. However, programming such an interface requires more tools and techniques
than we have at our disposal at this time. Because the first order of business is to
become more familiar with the Java programming language, we make do with the hum-
ble console for input and output for now. GUI programming is covered in Chapters 7
through 9.
Reading Input
You saw that it is easy to print output to the “standard output stream” (that is, the con-
sole window) just by calling System.out.printIn. Reading from the “standard input stream”
System.in isn’t quite as simple. To read console input, you first construct aScanner that is
attached to System.in:

Scanner in = new Scanner(System.in);
(We discuss constructors and the new operator in detail in Chapter 4.)
Now you use the various methods of the Scanner class to read input. For example, the
nextLine method reads a line of input.

System.out.print("What is your name? ");

String name = in.nextLine();
Here, we use the nextLine method because the input might contain spaces. To read a sin-
gle word (delimited by whitespace), call

String firstName = in.next();
To read an integer, use the nextInt method.

System.out.print("How old are you? ");

int age = in.nextInt();
Similarly, the nextDouble method reads the next floating-point number.
The program in Listing 3-2 asks for the user’s name and age and then prints a message like

Hello, Cay. Next year, you'll be 46
Finally, note the line

import java.util.s;
at the beginning of the program. The Scanner class is defined in the java.uti1 package.
Whenever you use a class that is not defined in the basic java.lang package, you need
to use an import directive. We look at packages and import directives in more detail in
Chapter 4.

Chapter 3. Fundamental Programming Structures in Java

n Chapter 3 B Fundamental Programming Structures in Java

)R ET50 TR 2V InputTest. java

. import java.util.s;

1

2.

3. [wx

4. % This program demonstrates console input.
5.« @version 1.10 2004-02-10

6. + @author Cay Horstmann

7.

8.

9.

. public class InputTest
A
10. public static void main(String[] args)
11. {
12, Scanner in = new Scanner(System.in);
13.
14. // get first input
15. System.out.print("What is your name? ");
16. String name = in.nextLine();
17.
18. // get second input
19. System.out.print("How old are you? ");
20. int age = in.nextInt();
21.
22, // display output on console
23. System.out.printIn("Hello, " + name + ". Next year, you'll be " + (age + 1));
24. }
25. }

NOTE: The Scanner class is not suitable for reading a password from a console since the
input is plainly visible to anyone. Java SE 6 introduces a Console class specifically for this
purpose. To read a password, use the following code:

Console cons = System.console();
String username = cons.readLine("User name: ");
char[] passwd = cons.readPassword("Password: ");

For security reasons, the password is returned in an array of characters rather than a string.
After you are done processing the password, you should immediately overwrite the array
elements with a filler value. (Array processing is discussed later in this chapter.)

Input processing with a Console object is not as convenient as with a Scanner. You can only
read a line of input at a time. There are no methods for reading individual words or numbers.

java.util.Scanner 5.0

e Scanner(InputStream in)
constructs a Scanner object from the given input stream.

e String nextlLine()
reads the next line of input.

Chapter 3. Fundamental Programming Structures in Java

Input and Output n

e String next()
reads the next word of input (delimited by whitespace).

e int nextInt()

e double nextDouble()
reads and converts the next character sequence that represents an integer or
floating-point number.

e poolean hasNext()
tests whether there is another word in the input.

e poolean hasNextInt()

e hoolean hasNextDouble()
tests whether the next character sequence represents an integer or floating-point
number.

java.lang.System 1.0

e static Console console() 6
returns a Console object for interacting with the user through a console window if
such an interaction is possible, nu11 otherwise. A Console object is available for any
program that is launched in a console window. Otherwise, the availability is
system-dependent.

java.io.Console 6

e static char[] readPassword(String prompt, Object... args)
e static String readLine(String prompt, Object... args)
displays the prompt and reads the user input until the end of the input line. The
args parameters can be used to supply formatting arguments, as described in the
next section.
Formatting Output
You can print a number x to the console with the statement System. out.print(x). That com-
mand will print x with the maximum number of non-zero digits for that type. For example,

double x = 10000.0 / 3.0;
System.out.print(x);

prints
3333.3333333333335
That is a problem if you want to display, for example, dollars and cents.

In early versions of Java, formatting numbers was a bit of a hassle. Fortunately, Java SE
5.0 brought back the venerable printf method from the C library. For example, the call

System.out.printf("%8.2f", x);

prints x with a field width of 8 characters and a precision of 2 characters. That is, the print-
out contains a leading space and the seven characters

3333.33
You can supply multiple parameters to printf. For example:
System.out.printf("Hello, %s. Next year, you'll be %d", name, age);

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 B Fundamental Programming Structures in Java

Each of the format specifiers that start with a% character is replaced with the correspond-
ing argument. The conversion character that ends a format specifier indicates the type of
the value to be formatted: f is a floating-point number, s a string, and d a decimal integer.
Table 3-5 shows all conversion characters.

Table 3-5 Conversions for printf

Conversion

Character Type Example
d Decimal integer 159

X Hexadecimal integer 9f

0 Octal integer 237

f Fixed-point floating-point 15.9

e Exponential floating-point 1.59+01

g General floating-point (the shorter of e and f) —

a Hexadecimal floating-point 0x1. fcedp3
s String Hello

9 Character H

b boolean true

h Hash code 42628b2

tx Date and time See Table 3-7

The percent symbol

%

The platform-dependent line separator

In addition, you can specify flags that control the appearance of the formatted output.
Table 3-6 shows all flags. For example, the comma flag adds group separators. That is,
System.out.printf("%,.2f", 10000.0 / 3.0);

prints
3,333.33

You can use multiple flags, for example, "%, (.2f", to use group separators and enclose
negative numbers in parentheses.

NOTE: You can use the s conversion to format arbitrary objects. If an arbitrary object imple-
ments the Formattable interface, the object’s formatTo method is invoked. Otherwise, the

toString method is invoked to turn the object into a string. We discuss the toString method in
Chapter 5 and interfaces in Chapter 6.

Chapter 3. Fundamental Programming Structures in Java

Input and Output

Table 3-6 Flags for printf

Flag Purpose Example
+ Prints sign for positive and negative numbers +3333.33
space Adds a space before positive numbers | 3333.33]
0 Adds leading zeroes 003333.33
- Left-justifies field [3333.33 |
(Encloses negative number in parentheses (3333.33)
, Adds group separators 3,333.33
(for f format) Always includes a decimal point 3,333.
(for x or 0 format) Adds 0x or 0 prefix Oxcafe
$ Specifies the index of the argument to be formatted; 159 9F

for example, %1$d %19x prints the first argument in

decimal and hexadecimal
< Formats the same value as the previous specification; 159 9F

for example, %d %<x prints the same number in decimal
and hexadecimal

You can use the static String.format method to create a formatted string without printing

it

String message = String.format("Hello, %s. Next year, you'll be %d", name, age);

Although we do not describe the Date type in detail until Chapter 4, we do, in the interest
of completeness, briefly discuss the date and time formatting options of the printf
method. You use a two-letter format, starting with t and ending in one of the letters of
Table 3-7. For example,

System.out.printf("%tc", new Date());

prints the current date and time in the format
Mon Feb 09 18:05:19 PST 2004

Table 3-7 Date and Time Conversion Characters

Conversion

Character Type Example

c Complete date and time Mon Feb 09
18:05:19 PST
2004

F ISO 8601 date 2004-02-09

D U.S. formatted date (month/day/year) 02/09/2004

T 24-hour time 18:05:19

Chapter 3. Fundamental Programming Structures in Java

n Chapter 3 B Fundamental Programming Structures in Java

Table 3-7 Date and Time Conversion Characters (continued)

Conversion
Character Type Example
r 12-hour time 06:05:19 pm
R 24-hour time, no seconds 18:05
Y Four-digit year (with leading zeroes) 2004
y Last two digits of the year (with leading zeroes) 04
C First two digits of the year (with leading zeroes) 20
B Full month name February
borh Abbreviated month name Feb
m Two-digit month (with leading zeroes) 02
d Two-digit day (with leading zeroes) 09
e Two-digit day (without leading zeroes) 9
A Full weekday name Monday
a Abbreviated weekday name Mon
j Three-digit day of year (with leading zeroes), between 001 069
and 366
H Two-digit hour (with leading zeroes), between 00 and 23 18
k Two-digit hour (without leading zeroes), between 0 and 23 18
I Two-digit hour (with leading zeroes), between 01 and 12 06
1 Two-digit hour (without leading zeroes), between 1 and 12 6
M Two-digit minutes (with leading zeroes) 05
S Two-digit seconds (with leading zeroes) 19
L Three-digit milliseconds (with leading zeroes) 047
N Nine-digit nanoseconds (with leading zeroes) 047000000
P Uppercase morning or afternoon marker PM
p Lowercase morning or afternoon marker pm
z RFC 822 numeric offset from GMT -0800
z Time zone PST
s Seconds since 1970-01-01 00:00:00 GMT 1078884319
Q Milliseconds since 1970-01-01 00:00:00 GMT 1078884319047

Chapter 3. Fundamental Programming Structures in Java

Input and Output n

As you can see in Table 3-7, some of the formats yield only a part of a given date, for
example, just the day or just the month. It would be a bit silly if you had to supply the
date multiple times to format each part. For that reason, a format string can indicate the
index of the argument to be formatted. The index must immediately follow the %, and it
must be terminated by a $. For example,

System.out.printf("%1$s %2$tB %2$te, %2$tY", "Due date:", new Date());
prints
Due date: February 9, 2004
Alternatively, you can use the < flag. It indicates that the same argument as in the pre-
ceding format specification should be used again. That is, the statement
System.out.printf("%s %tB %<te, %<tY", "Due date:", new Date());
yields the same output as the preceding statement.

CAUTION: Argument index values start with 1, not with 0: %1$. .. formats the first argument.
This avoids confusion with the 0 flag.

You have now seen all features of the printf method. Figure 3-6 shows a syntax diagram
for format specifiers.

format-specifier.

)
Fre I)] -

corrgrsion
chéacter

Figure 3-6 Format specifier syntax

NOTE: A number of the formatting rules are locale specific. For example, in Germany, the
decimal separator is a period, not a comma, and Monday is formatted as Montag. You will
see in Volume Il how to control the international behavior of your applications.

File Input and Output
To read from a file, construct a Scanner object from a File object, like this:
Scanner in = new Scanner(new File("myfile.txt"));

If the file name contains backslashes, remember to escape each of them with an addi-
tional backslash: "c:\\mydirectory\\myfile.txt".

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 B Fundamental Programming Structures in Java

Now you can read from the file, using any of theScanner methods that we already
described.

To write to a file, construct a PrintWriter object. In the constructor, simply supply the file
name:

PrintWriter out = new PrintWriter("myfile.txt");
If the file does not exist, you can simply use theprint, println, and printf commands as
you did when printing to System.out.

CAUTION: You can construct a Scanner with a string parameter, but the scanner interprets
n the string as data, not a file name. For example, if you call

Scanner in = new Scanner("myfile.txt"); // ERROR?
,'y', 'f', and so on. That is probably not

then the scanner will see ten characters of data: 'm
what was intended in this case.

NOTE: When you specify a relative file name, such as "myfile.txt", "mydirectory/myfile.txt",
or"../myfile.txt", the file is located relative to the directory in which the Java virtual
machine was started. If you launched your program from a command shell, by executing
java MyProg
then the starting directory is the current directory of the command shell. However, if you use
an integrated development environment, the starting directory is controlled by the IDE. You
can find the directory location with this call:
String dir = System.getProperty("user.dir");

If you run into grief with locating files, consider using absolute path names such as
"c:\\mydirectory\\myfile.txt" or "/home/me/mydirectory/myfile.txt".

As you just saw, you can access files just as easily as you can useSysten.in and System.out.
There is just one catch: If you construct a Scanner with a file that does not exist or a Print-
Writer with a file name that cannot be created, an exception occurs. The Java compiler
considers these exceptions to be more serious than a “divide by zero” exception, for
example. In Chapter 11, you will learn various ways for handing exceptions. For now,
you should simply tell the compiler that you are aware of the possibility of a “file not
found” exception. You do this by tagging themain method with a throws clause, like this:

public static void main(String[] args) throws FileNotFoundException

{

Scanner in = new Scanner(new File("myfile.txt"));

}
You have now seen how to read and write files that contain textual data. For more
advanced topics, such as dealing with different character encodings, processing binary
data, reading directories, and writing zip files, please turn to Chapter 1 of Volume II.

Chapter 3. Fundamental Programming Structures in Java

Control Flow

NOTE: When you launch a program from a command shell, you can use the redirection syn-
tax of your shell and attach any file to System.in and System.out:

java MyProg < myfile.txt > output.txt
Then, you need not worry about handling the FileNotFoundException.

java.util.Scanner 5.0

e Scanner(File f)
constructs a Scanner that reads data from the given file.

e Scanner(String data)
constructs a Scanner that reads data from the given string.

java.io.PrintWriter 1.1

e PrintWriter(File f)
constructs a Printiriter that writes data to the given file.
e PrintWriter(String fileName)
constructs a Printiiriter that writes data to the file with the given file name.

APII java.io.File 1.0

e File(String fileName)
constructs a File object that describes a file with the given name. Note that the file
need not currently exist.

Control Flow

Java, like any programming language, supports both conditional statements and loops
to determine control flow. We start with the conditional statements and then move on to
loops. We end with the somewhat cumbersome switch statement that you can use when
you have to test for many values of a single expression.

C++ NOTE: The Java control flow constructs are identical to those in C and C++, with a few

exceptions. There is no goto, but there is a “labeled” version of break that you can use to break
out of a nested loop (where you perhaps would have used a goto in C). Finally! Java SE 5.0
added a variant of the for loop that has no analog in C or C++. It is similar to the foreach loop
in C#.

Block Scope
Before we get into the actual control structures, you need to know more about blocks.

A block or compound statement is any number of simple Java statements that are sur-
rounded by a pair of braces. Blocks define the scope of your variables. Blocks can be
nested inside another block. Here is a block that is nested inside the block of themain
method.

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 B Fundamental Programming Structures in Java

public static void main(String[] args)

{

int n;

{
int k;

} // k is only defined up to here
}
However, you may not declare identically named variables in two nested blocks. For
example, the following is an error and will not compile:
public static void main(String[] args)

{

int n;

{
int k;
int n; // error--can't redefine n in inner block

E C++ NOTE: In C++, it is possible to redefine a variable inside a nested block. The inner def-
inition then shadows the outer one. This can be a source of programming errors; hence,
Java does not allow it.

Conditional Statements
The conditional statement in Java has the form

if (condition) statement
The condition must be surrounded by parentheses.
In Java, as in most programming languages, you will often want to execute multiple
statements when a single condition is true. In this case, you use a block statement that
takes the form

{
statement
statement,

}
For example:
if (yourSales >= target)

{
performance = "Satisfactory";
bonus = 100;
}
In this code all the statements surrounded by the braces will be executed whenyourSales
is greater than or equal to target (see Figure 3-7).

Chapter 3. Fundamental Programming Structures in Java

Control Flow

yourSales Ztarget

performance
=“Satisfactory”

)

bonus=100

e

Figure 3-7 Flowchart for the if statement

NOTE: A block (sometimes called a compound statement) allows you to have more
‘/I than one (simple) statement in any Java programming structure that might otherwise
have a single (simple) statement.

The more general conditional in Java looks like this (see Figure 3-8):
if (condition) statement, else statement,

For example:
if (yourSales >= target)

{
performance = "Satisfactory";
bonus = 100 + 0.01 « (yourSales - target);
}
else
{

performance = "Unsatisfactory";
bonus = 0;

}

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 B Fundamental Programming Structures in Java

\

perfc)mlculcc
—“GatISTACTOry”

.
bonus=

100+0.01*
(yourSales—target)

et

Y

perormeance
="Unsalistectory”

Figure 3-8 Flowchart for the if/else statement

The else part is always optional. Anelse groups with the closest if. Thus, in the statement

if (x <= 0) if (x == 0) sign = 0; else sign = -1;

the else belongs to the second if. Of course, it is a good idea to use braces to clarify this
code:

if (x <= 0) { if (x ==
Repeated if . .
if (yourSales >= 2 » target)

{

else if (yourSales >= 1.5 * target)

{

}

else if (yourSales >= target)

performance = "Excellent";

bonus = 1000;

performance = "Fine";

bonus = 500;

. else if . .

) sign = 0; else sign = -1; }
. alternatives are common (see Figure 3-9). For example:

Chapter 3. Fundamental Programming Structures in Java

Control Flow

{
performance = "Satisfactory";
bonus = 100;
}
else
{
System.out.printIn("You're fired");
}

performance

>o*
yourSales =2*target =“Excellent”

bonus=1000

R ——— LELELEELL

performance
=“Fine”

bonus=500

yourSales 21.5*target

YEE | performance

=“Satisfactory” bonus=100

yourSales 2target

Print
“You're fired”

Figure 3-9 Flowchart for the if/else if (multiple branches)

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 B Fundamental Programming Structures in Java

Loops
The while loop executes a statement (which may be a block statement) while a condi-
tion is true. The general form is
while (condition) statement
The while loop will never execute if the condition is false at the outset (see Figure 3-10).

balance < goal

update
balance

years++

Figure 3-10 Flowchart for the while statement

Chapter 3. Fundamental Programming Structures in Java

Control Flow

The program in Listing 3-3 determines how long it will take to save a specific amount of
money for your well-earned retirement, assuming that you deposit the same amount of
money per year and that the money earns a specified interest rate.

In the example, we are incrementing a counter and updating the amount currently
accumulated in the body of the loop until the total exceeds the targeted amount.
while (balance < goal)
{
balance += payment;
double interest = balance * interestRate / 100;
balance += interest;
years++;
}

System.out.printIn(years +

' years.");

(Don’t rely on this program to plan for your retirement. We left out a few niceties
such as inflation and your life expectancy.)

A while loop tests at the top. Therefore, the code in the block may never be exe-
cuted. If you want to make sure a block is executed at least once, you will need to
move the test to the bottom. You do that with the do/while loop. Its syntax looks like
this:

do statement while (condition);

This loop executes the statement (which is typically a block) and only then tests
the condition. It then repeats the statement and retests the condition, and so on.
The code in Listing 3-4 computes the new balance in your retirement account and
then asks if you are ready to retire:
do
{
balance += payment;
double interest = balance * interestRate / 100;
balance += interest;
year++;
// print current balance

// ask if ready to retire and get input

}

while (input.equals("N"));
As long as the user answers "N, the loop is repeated (see Figure 3-11). This program is a
good example of a loop that needs to be entered at least once, because the user needs to
see the balance before deciding whether it is sufficient for retirement.

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 B Fundamental Programming Structures in Java

i

update
balance

print balance

ask “Ready
to retire?

(Y/N)”

read
input

Figure 3-11 Flowchart for the do/while statement

B L7506 Ta S I Retirement. java

import java.util.s;

1.
2.
3. [ux

4. % This program demonstrates a <code>while</code> Toop.
5.« @version 1.20 2004-02-10

6. + @author Cay Horstmann

7.

o

Chapter 3. Fundamental Programming Structures in Java

Control Flow

IS ET51 TR S Retirement. java (continued)

s. pubTic class Retirement

o {

1. public static void main(String[] args)

11 {

12. // read inputs

13. Scanner in = new Scanner(System.in);

14.

15. System.out.print("How much money do you need to retire? ");
16. doubTe goal = in.nextDouble();

17.

18. System.out.print("How much money will you contribute every year? ");
19. doubTe payment = in.nextDouble();

20.

21, System.out.print("Interest rate in %: ");

22. doubTe interestRate = in.nextDouble();

23.

24. double balance = 0;

25. int years = 0;

26.

27. // update account balance while goal isn't reached

28. while (balance < goal)

29. {

30. // add this year's payment and interest

3t balance += payment;

32. double interest = balance * interestRate / 100;

33. balance += interest;

34. years++;

35. }

36.

37. System.out.printIn("You can retire in " + years + " years.");
38. }

)
©
—

Listing 3-4 EEaIIEIPAEVE

import java.util.x;

~

« This program demonstrates a <code>do/while</code> Toop.
+ @version 1.20 2004-02-10

+ @author Cay Horstmann

7

. pubTic class Retirement2

- {

1
2
3
4.
5.
6.
7.
8
9.

Chapter 3. Fundamental Programming Structures in Java

n Chapter 3 B Fundamental Programming Structures in Java

)R ET50 T IR 2 B Retirement2.java (continued)

0. public static void main(String[] args)

11. {

12. Scanner 1in = new Scanner(System.in);

13.

14. System.out.print("How much money will you contribute every year? ");
15. double payment = in.nextDouble();

16.

17. System.out.print("Interest rate in %: ");

18. double interestRate = in.nextDouble();

19.

20. double balance = 0;

21. int year = 0;

22.

23. String input;

24.

25. // update account balance while user isn't ready to retire
26. do

27. {

28. // add this year's payment and interest

29. balance += payment;

30. double interest = balance * interestRate / 100;
31. balance += interest;

32.

33. year++;

34.

35. // print current balance

36. System.out.printf("After year %d, your balance is %,.2f%n", year, balance);
37.

38. // ask if ready to retire and get input

39. System.out.print("Ready to retire? (Y/N) ");
40. input = in.next();

41. }

42. while (input.equals("N"));

43. }

4.}

Determinate Loops
The for loop is a general construct to support iteration that is controlled by a counter or
similar variable that is updated after every iteration. As Figure 3-12 shows, the follow-
ing loop prints the numbers from 1 to 10 on the screen.
for (inti=1; 1 <=10; i++)

System.out.printin(i);
The first slot of the for statement usually holds the counter initialization. The second slot
gives the condition that will be tested before each new pass through the loop, and the
third slot explains how to update the counter.

Chapter 3. Fundamental Programming Structures in Java

Control Flow n

Although Java, like C++, allows almost any expression in the various slots of a for loop,
it is an unwritten rule of good taste that the three slots of a for statement should only ini-

tialize, test, and update the same counter variable. One can write very obscure loops by
disregarding this rule.

Figure 3-12 Flowchart for the for statement

Even within the bounds of good taste, much is possible. For example, you can have
loops that count down:
for (int i =10; i > 0; i--)
System.out.printIn("Counting down . . . "

+1);
System.out.printIn("Blastoff!");

Chapter 3. Fundamental Programming Structures in Java

u Chapter 3 B Fundamental Programming Structures in Java

CAUTION: Be careful about testing for equality of floating-point numbers in loops. A for loop
n that looks like
for (double x = 0; x !=10; x +=0.1) . . .
may never end. Because of roundoff errors, the final value may not be reached

exactly. For example, in the loop above, x jumps from 9.99999999999998 to
10.09999999999998 because there is no exact binary representation for 0.1.

When you declare a variable in the first slot of the for statement, the scope of that vari-
able extends until the end of the body of the for loop.
for (int i =1; i <= 10; i++)

{
}

// i no Tonger defined here

In particular, if you define a variable inside a for statement, you cannot use the value of
that variable outside the loop. Therefore, if you wish to use the final value of a loop
counter outside the for loop, be sure to declare it outside the loop header!

int i;

for (i =1; 1 <=10; i++)

{

}
// i still defined here

On the other hand, you can define variables with the same name in separatefor loops:
for (int i =1; i <= 10; i++)

{
}

for (int i = 11; i <= 20; i++) // ok to define another variable named i

{
}

A for loop is merely a convenient shortcut for awhile loop. For example,
for (int i =10; i > 0; i--)
System.out.printIn("Counting down . . .

+1);

can be rewritten as

int i =10;
while (i > 0)
{

System.out.printIn("Counting down . . . " + 1);
i

}

Listing 3-5 shows a typical example of a for loop.

Chapter 3. Fundamental Programming Structures in Java

Control Flow “

The program computes the odds on winning a lottery. For example, if you must pick 6
numbers from the numbers 1 to 50 to win, then there are (50 x 49 x 48 x 47 x 46 x 45)/
(1 x2x3 x4 x5 x 6) possible outcomes, so your chance is 1 in 15,890,700. Good luck!

In general, if you pick k numbers out of 7, there are

nxm-1)xmn-2)x...x(n-k+1)
1x2x3x...xk

possible outcomes. The following for loop computes this value:
int TotteryOdds = 1;
for (int i =1; i <= k; i++)
TotteryOdds = TotteryOdds « (n - i + 1) / i;

NOTE: See “The ‘for each’ Loop” on page 91 for a description of the “generalized for loop
VI (also called “for each” loop) that was added to the Java language in Java SE 5.0.

Listing 3-5 QJEa¢IaIEHREVE!

_import java.util.s;

~

;
2
3. *%

4.« This program demonstrates a <code>for</code> loop.
5. %

6. *

7.

8

9

@version 1.20 2004-02-10
@author Cay Horstmann
. public class LotteryOdds
A

10. public static void main(String[] args)
1. {
12. Scanner in = new Scanner(System.in);
13.
14, System.out.print("How many numbers do you need to draw? ");
1. int k = in.nextInt();
16.
17. System.out.print("What is the highest number you can draw? ");
18. int n = in.nextInt();
19.
20. /%
21. + compute binomial coefficient n«(n-1)#(n-2)x...x(n-k+1)/(1%243%...%k)
22. #/
23.
24. int TotteryOdds = 1;
25. for (int i =1; i <=k; i++)
26. TotteryOdds = TotteryOdds = (n - i + 1) / 1;
27.
28. System.out.printIin("Your odds are 1 in " + lotteryOdds + ". Good Tuck!");
29. }

Chapter 3. Fundamental Programming Structures in Java

n Chapter 3 B Fundamental Programming Structures in Java

Multiple Selections—The switch Statement

The if/else construct can be cumbersome when you have to deal with multiple selec-
tions with many alternatives. Java has a switch statement that is exactly like the switch
statement in C and C++, warts and all.

For example, if you set up a menuing system with four alternatives like that in Figure
3-13, you could use code that looks like this:

Scanner in = new Scanner(System.in);

System.out.print("Select an option (1, 2, 3, 4) ");

int choice = in.nextInt();

switch (choice)

{

case 1:
break;

case 2:
break;

case 3:
break;

case 4:
break;

default:
// bad input
break;

}
Execution starts at the case label that matches the value on which the selection is per-

formed and continues until the next break or the end of the switch. If none of the case
labels match, then the default clause is executed, if it is present.

at the end of an alternative, then execution falls through to the next alternative! This behav-
ior is plainly dangerous and a common cause for errors. For that reason, we never use the
switch statement in our programs.

CAUTION: It is possible for multiple alternatives to be triggered. If you forget to add a break

The case labels must be integers or enumerated constants. You cannot test strings. For
example, the following is an error:

String input = . . .;

switch (input) // ERROR

{
case "A": // ERROR

break;

Chapter 3. Fundamental Programming Structures in Java

Control Flow n

T

(default)
bad input

Figure 3-13 Flowchart for the switch statement

Chapter 3. Fundamental Programming Structures in Java

n Chapter 3 B Fundamental Programming Structures in Java

When you use the switch statement with enumerated constants, you need not supply
the name of the enumeration in each label—it is deduced from the switch value. For

example:

Size sz =. . .;
switch (sz)

case SMALL: // no need to use Size.SMALL
break;
}

Statements That Break Control Flow

Although the designers of Java kept the goto as a reserved word, they decided not to
include it in the language. In general, goto statements are considered poor style. Some
programmers feel the anti-goto forces have gone too far (see, for example, the famous
article of Donald Knuth called “Structured Programming with goto statements”). They
argue that unrestricted use of goto is error prone but that an occasional jump out of a loop
is beneficial. The Java designers agreed and even added a new statement, the labeled
break, to support this programming style.

Let us first look at the unlabeled break statement. The same break statement that you use
to exit a switch can also be used to break out of a loop. For example:

while (years <= 100)
{
balance += payment;
double interest = balance * interestRate / 100;
balance += interest;
if (balance >= goal) break;
years++;
}
Now the loop is exited if either years > 100 occurs at the top of the loop or balance >= goal
occurs in the middle of the loop. Of course, you could have computed the same value
for years without a break, like this:

while (years <= 100 & balance < goal)

balance += payment;
double interest = balance * interestRate / 100;
balance += interest;
if (balance < goal)
years++;
}

But note that the test balance < goal is repeated twice in this version. To avoid this
repeated test, some programmers prefer the break statement.

Unlike C++, Java also offers a labeled break statement that lets you break out of multiple
nested loops. Occasionally something weird happens inside a deeply nested loop. In
that case, you may want to break completely out of all the nested loops. It is inconve-
nient to program that simply by adding extra conditions to the various loop tests.

Chapter 3. Fundamental Programming Structures in Java

Control Flow

Here’s an example that shows the break statement at work. Notice that the label must
precede the outermost loop out of which you want to break. It also must be followed by
a colon.

Scanner in = new Scanner(System.in);

int n;

read_data:

while (. . .) // this Toop statement is tagged with the Tabel

{

for (. . .) // this inner Toop is not Tabeled

System.out.print("Enter a number >= 0: ");

n = in.nextInt();

if (n < 0) // should never happen-can't go on
break read_data;
// break out of read_data loop

}
}

// this statement is executed immediately after the Tabeled break
if (n < 0) // check for bad situation

// deal with bad situation
}

else

{

// carry out normal processing

If there was a bad input, the labeled break moves past the end of the labeled block. As
with any use of the break statement, you then need to test whether the loop exited nor-
mally or as a result of a break.

statement, like this:

label:
{

NOTE: Curiously, you can apply a label to any statement, even an if statement or a block

if (condition) break label; // exits block

}

// jumps here when the break statement executes
Thus, if you are lusting after a goto and if you can place a block that ends just before the place
to which you want to jump, you can use a break statement! Naturally, we don’t recommend this
approach. Note, however, that you can only jump out of a block, never into a block.

Finally, there is a continue statement that, like the break statement, breaks the regular flow
of control. The continue statement transfers control to the header of the innermost enclos-
ing loop. Here is an example:

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 B Fundamental Programming Structures in Java

Scanner in = new Scanner(System.in);
while (sum < goal)

{

System.out.print("Enter a number: ");

n = in.nextInt();

if (n < 0) continue;

sum += n; // not executed if n <@

}

If n <0, then the continue statement jumps immediately to the loop header, skipping the
remainder of the current iteration.
If the continue statement is used in a for loop, it jumps to the “update” part of the for loop.
For example, consider this loop:

for (count = 1; count <= 100; count++)

{

System.out.print("Enter a number, -1 to quit: ");
n = in.nextInt();
if (n < 0) continue;
sum += n; // not executed if n <0
}
If n < 0, then the continue statement jumps to the count++ statement.
There is also a labeled form of the continue statement that jumps to the header of the loop

with the matching label.

TIP: Many programmers find the break and continue statements confusing. These state-
ments are entirely optional—you can always express the same logic without them. In this

book, we never use break or continue.

Big Numbers
If the precision of the basic integer and floating-point types is not sufficient, you can
turn to a couple of handy classes in the java.math package: BigInteger and BigDecimal. These
are classes for manipulating numbers with an arbitrarily long sequence of digits. The
BigInteger class implements arbitrary precision integer arithmetic, andBigDecimal does the
same for floating-point numbers.
Use the static value0f method to turn an ordinary number into a big number:

BigInteger a = BigInteger.value0f(100);
Unfortunately, you cannot use the familiar mathematical operators such as + and * to
combine big numbers. Instead, you must use methods such as add and m1tiply in the big
number classes.

BigInteger ¢ = a.add(b); // c=a+b
BigInteger d = c.multiply(b.add(BigInteger.value0f(2))); // d=c « (b + 2)

C++ NOTE: Unlike C++, Java has no programmable operator overloading. There was no way

for the programmer of the BigInteger class to redefine the + and * operators to give the add and
multiply operations of the BigInteger classes. The language designers did overload the + oper-
ator to denote concatenation of strings. They chose not to overload other operators, and they
did not give Java programmers the opportunity to overload operators in their own classes.

Chapter 3. Fundamental Programming Structures in Java

Big Numbers

Listing 3—-6 shows a modification of the lottery odds program of Listing 3-5, updated to
work with big numbers. For example, if you are invited to participate in a lottery in
which you need to pick 60 numbers out of a possible 490 numbers, then this program
will tell you that your odds are 1 in 7163958434619955574151162225400929334117176
12789263493493351 013459481104668848. Good luck!

The program in Listing 3-5 computed the statement
TotteryOdds = lotteryOdds « (n - 1 + 1) / i;
When big numbers are used, the equivalent statement becomes
TotteryOdds = lotteryOdds.multiply(BigInteger.valueOf(n - i + 1)).divide(BigInteger.value0f(i));

BigIntegerTest.java

1. import java.math.s;

2. import java.util.x;

3.

4, £

5.+ This program uses big numbers to compute the odds of winning the grand prize in a Tottery.
6. * @version 1.20 2004-02-10

7.+ @author Cay Horstmann
8,
9,

+/
. public class BigIntegerTest

10. {

1. public static void main(String[] args)

12. {

13. Scanner in = new Scanner(System.in);

14.

15. System.out.print("How many numbers do you need to draw? ");

16. int k = in.nextInt();

17.

18. System.out.print("What is the highest number you can draw? ");

19. int n = in.nextInt();

20.

21. /%

22. + compute binomial coefficient nx(n-1)#(n-2)«...x(n-k+1)/(1%243%...xk)

23. #/

24,

25. BigInteger TotteryOdds = BigInteger.valueOf(1);

26.

27. for (int i =1; i <= k; i++)

28. TotteryOdds = TotteryOdds.multiply(BigInteger.valueOf(n - i + 1)).divide(

29, BigInteger.valueOf(i));

30.

31. System.out.printIn("Your odds are 1 in " + lotteryOdds + ". Good Tuck!");

32. }

Chapter 3. Fundamental Programming Structures in Java

n Chapter 3 B Fundamental Programming Structures in Java

m java.math.BigInteger 1.1

BigInteger add(BigInteger other)

BigInteger subtract(BigInteger other)

BigInteger multiply(BigInteger other)

BigInteger divide(BigInteger other)

BigInteger mod(BigInteger other)

returns the sum, difference, product, quotient, and remainder of this big integer and
other.

e int compareTo(BigInteger other)
returns 0 if this big integer equals other, a negative result if this big integer is less
than other, and a positive result otherwise.

e static BigInteger valueOf(long x)
returns a big integer whose value equalsx.

java.math.BigDecimal 1.1

BigDecimal add(BigDecimal other)

BigDecimal subtract(BigDecimal other)

BigDecimal muTtipTy(BigDecimal other)

BigDecimal divide(BigDecimal other, RoundingMode mode) 5.0

returns the sum, difference, product, or quotient of this big decimal andother.
To compute the quotient, you must supply a rounding mode. The mode
RoundingMode.HALF_UP is the rounding mode that you learned in school (i.e., round
down digits 0. . . 4, round up digits 5. . . 9). It is appropriate for routine
calculations. See the API documentation for other rounding modes.

e int compareTo(BigDecimal other)
returns 0 if this big decimal equals other, a negative result if this big decimal is less
than other, and a positive result otherwise.

e static BigDecimal valueOf(Tong x)

e static BigDecimal valueOf(Tong x, int scale)
returns a big decimal whose value equalsx or x / 105%'e,

Arrays

An array is a data structure that stores a collection of values of the same type. You access
each individual value through an integer index. For example, ifa is an array of integers,
then a[i] is the ith integer in the array.

You declare an array variable by specifying the array type—which is the element type
followed by []—and the array variable name. For example, here is the declaration of an
array a of integers:

int[] a;
However, this statement only declares the variablea. It does not yet initialize a with an
actual array. You use the new operator to create the array.

int[] a = new int[100];
This statement sets up an array that can hold 100 integers.

Chapter 3. Fundamental Programming Structures in Java

u NOTE: You can define an array variable either as
. int[] a;
or as
int a[];

Most Java programmers prefer the former style because it neatly separates the type int[]
(integer array) from the variable name.

The array entries are numbered from 0 to 99 (and not 1 to 100). Once the array is created,
you can fill the entries in an array, for example, by using a loop:
int[] a = new int[100];
for (int i =0; i< 100; i++)
a[i] = i; // fills the array with 0 to 99

CAUTION: If you construct an array with 100 elements and then try to access the element
n a[100] (or any other index outside the range 0 . . . 99), then your program will terminate with
an “array index out of bounds” exception.

To find the number of elements of an array, usearray.length. For example:
for (int i = 0; i < a.length; i++)
System.out.printin(ali]);
Once you create an array, you cannot change its size (although you can, of course,
change an individual array element). If you frequently need to expand the size of an
array while a program is running, you should use a different data structure called an
array list. (See Chapter 5 for more on array lists.)

The “for each” Loop
Java SE 5.0 introduced a powerful looping construct that allows you to loop through
each element in an array (as well as other collections of elements) without having to
fuss with index values.
The enhanced for loop

for (variable : collection) statement
sets the given variable to each element of the collection and then executes the statement
(which, of course, may be a block). The collection expression must be an array or an object
of a class that implements the Iterable interface, such as ArrayList. We discuss array lists in
Chapter 5 and the Tterable interface in Chapter 2 of Volume II.
For example,

for (int element : a)
System.out.printin(element);

prints each element of the array a on a separate line.

You should read this loop as “for each element in a”. The designers of the Java language
considered using keywords such as foreach and in. But this loop was a late addition to
the Java language, and in the end nobody wanted to break old code that already con-
tains methods or variables with the same names (such as Systen.in).

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 B Fundamental Programming Structures in Java

Of course, you could achieve the same effect with a traditionalfor loop:
for (int i =0; i < a.length; i++)
System.out.printin(a[i]);
However, the “for each” loop is more concise and less error prone. (You don’t have to
worry about those pesky start and end index values.)

v NOTE: The loop variable of the “for each” loop traverses the elements of the array, not the
index values.

The “for each” loop is a pleasant improvement over the traditional loop if you need to
process all elements in a collection. However, there are still plenty of opportunities to
use the traditional for loop. For example, you may not want to traverse the entire collec-
tion, or you may need the index value inside the loop.

TIP: There is an even easier way to print all values of an array, using the toString method of

m the Arrays class. The call Arrays.toString(a) returns a string containing the array elements,
enclosed in brackets and separated by commas, such as "[2, 3, 5, 7, 11, 13]". To print the
array, simply call

System.out.printIn(Arrays.toString(a));

Array Initializers and Anonymous Arrays
Java has a shorthand to create an array object and supply initial values at the same time.
Here’s an example of the syntax at work:

int[] smallPrimes = { 2, 3, 5, 7, 11, 13 };
Notice that you do not call new when you use this syntax.
You can even initialize an anonymous array:

new int[] { 17, 19, 23, 29, 31, 37 }
This expression allocates a new array and fills it with the values inside the braces. It
counts the number of initial values and sets the array size accordingly. You can use this
syntax to reinitialize an array without creating a new variable. For example,

smallPrimes = new int[] { 17, 19, 23, 29, 31, 37 };
is shorthand for

int[] anonymous = { 17, 19, 23, 29, 31, 37 };
smallPrimes = anonymous;

NOTE: It is legal to have arrays of length 0. Such an array can be useful if you write a
method that computes an array result and the result happens to be empty. You construct an
array of length 0 as
new elementType[0]

Note that an array of length 0 is not the same as null. (See Chapter 4 for more information
about nu1l.)

Chapter 3. Fundamental Programming Structures in Java

Array Copying
You can copy one array variable into another, but then both variables refer to the same
array:

int[] TuckyNumbers = smallPrimes;
TuckyNumbers[5] = 12; // now smallPrimes[5] is also 12

Figure 3-14 shows the result. If you actually want to copy all values of one array into a
new array, you use the copyTo method in the Arrays class:

int[] copiedLuckyNumbers = Arrays.copyOf(TuckyNumbers, TuckyNumbers.length);
The second parameter is the length of the new array. A common use of this method is to
increase the size of an array:

TuckyNumbers = Arrays.copyOf(TuckyNumbers, 2 + TuckyNumbers.length);
The additional elements are filled with 0 if the array contains numbers, false if the array
contains hoolean values. Conversely, if the length is less than the length of the original
array, only the initial values are copied.

NOTE: Prior to Java SE 6, the arraycopy method in the System class was used to copy ele-
ments from one array to another. The syntax for this call is

System.arraycopy(from, fromIndex, to, toIndex, count);
The to array must have sufficient space to hold the copied elements.

smallPrimes = 2
il 3

luckyNumbers = 5
7

11

12

Figure 3-14 Copying an array variable

For example, the following statements, whose result is illustrated in Figure 3-15, set up
two arrays and then copy the last four entries of the first array to the second array. The
copy starts at position 2 in the source array and copies four entries, starting at position 3
of the target.

int[] smallPrimes = {2, 3, 5, 7, 11, 13};

int[] TuckyNumbers = {1001, 1002, 1003, 1004, 1005, 1006, 1007};

System.arraycopy(smallPrimes, 2, TuckyNumbers, 3, 4);

for (int i = 0; i < TuckyNumbers.length; i++)

System.out.printin(i + ": " + TuckyNumbers[i]);

Chapter 3. Fundamental Programming Structures in Java

n Chapter 3 B Fundamental Programming Structures in Java

The output is

0:

I= NV I RN R

1001
1002
1003
5
7
1
13
smallPrimes = E—V 2
_ 3
5
7
11
13
luckyNumbers = E—V 1001
P Y 1002
1003
5
7
11
13

Figure 3-15 Copying values between arrays

C++ NOTE: A Java array is quite different from a C++ array on the stack. It is, however,
essentially the same as a pointer to an array allocated on the heap. That is,

int[] a = new int[100]; // Java
is not the same as

int a[100]; // C++
but rather

int+ a = new int[100]; // C++

In Java, the [] operator is predefined to perform bounds checking. Furthermore, there is no
pointer arithmetic—you can’t increment a to point to the next element in the array.

Chapter 3. Fundamental Programming Structures in Java

Arrays

Command-Line Parameters

You have already seen one example of Java arrays repeated quite a few times. Every
Java program has a main method with a String[] args parameter. This parameter indicates
that the main method receives an array of strings, namely, the arguments specified on the
command line.

For example, consider this program:
public class Message

{
public static void main(String[] args)
{
if (args[0].equals("-h"))
System.out.print("Hello,");
else if (args[0].equals("-g"))
System.out.print("Goodbye,");
// print the other command-Tine arguments
for (int i =1; i < args.length; i++)
System.out.print(" " + args[i]);
System.out.printIn("!");
}
}

If the program is called as
java Message -g cruel world
then the args array has the following contents:

args[0]: "-g"
args[1]: "cruel"
args[2]: "world"

The program prints the message
Goodbye, cruel world!

C++ NOTE: In the main method of a Java program, the name of the program is not stored in
E the args array. For example, when you start up a program as

java Message -h world
from the command line, then args[@] will be "-h" and not "Message" or "java".

Array Sorting
To sort an array of numbers, you can use one of the sort methods in the Arrays class:
int[] a = new int[10000];

Arrays.sort(a)

This method uses a tuned version of the QuickSort algorithm that is claimed to be very
efficient on most data sets. The Arrays class provides several other convenience methods
for arrays that are included in the API notes at the end of this section.

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 B Fundamental Programming Structures in Java

The program in Listing 3-7 puts arrays to work. This program draws a random combi-
nation of numbers for a lottery game. For example, if you play a “choose 6 numbers
from 49” lottery, then the program might print this:
Bet the following combination. It'11 make you rich!
4
7
8
19
30
44
To select such a random set of numbers, we first fill an array numbers with the values 1, 2,
L, N
int[] numbers = new int[n];
for (int i = 0; i < numbers.length; i++)
numbers[i] =1 + 1;
A second array holds the numbers to be drawn:
int[] result = new int[k];

Now we draw k numbers. The Math. random method returns a random floating-point num-
ber that is between 0 (inclusive) and 1 (exclusive). By multiplying the result withn, we
obtain a random number between 0 and n - 1.

int r = (int) (Math.random() * n);

We set the ith result to be the number at that index. Initially, that is justr + 1, but as
you'll see presently, the contents of the numbers array are changed after each draw.

result[i] = numbers(r];

Now we must be sure never to draw that number again—all lottery numbers must be
distinct. Therefore, we overwrite nunbers[r] with the last number in the array and reduce
nby 1.

numbers[r] = numbers[n - 1];

n--;
The point is that in each draw we pick an index, not the actual value. The index points
into an array that contains the values that have not yet been drawn.

After drawing k lottery numbers, we sort the result array for a more pleasing output:

Arrays.sort(result);
for (int r : result)
System.out.printin(r);

IS TTa0 T Sl | otteryDrawing. java

import java.util.s;

1.
2.
3. [ux
4.+ This program demonstrates array manipulation.
5. % @version 1.20 2004-02-10

6. * @author Cay Horstmann

7.

*/

Chapter 3. Fundamental Programming Structures in Java

LotteryDrawing.java (continued)

8. public class LotteryDrawing

o {

1. public static void main(String[] args)

1. {

12. Scanner in = new Scanner(System.in);

13.

14, System.out.print("How many numbers do you need to draw? ");
15. int k = in.nextInt();

16.

17. System.out.print("What is the highest number you can draw? ");
18. int n = in.nextInt();

19.

20. // fi1l an array with numbers 123 . . . n

21, int[] numbers = new int[n];

22. for (int i = 0; i < numbers.Tlength; i++)

23, numbers[i] =i + 1;

24.

25. // draw k numbers and put them into a second array
26. int[] result = new int[k];

27. for (int i = 0; i < result.length; i++)

28. {

29. // make a random index between @ and n - 1

30. int r = (int) (Math.random() * n);

31.

32. // pick the element at the random location

33, result[i] = numbers[r];

34.

35. // move the Tast element into the random Tlocation
36. numbers[r] = numbers[n - 1];

a7. n--;

38. }

39.

40. // print the sorted array

1. Arrays.sort(result);

42. System.out.printIn("Bet the following combination. It'11 make you rich!");
43, for (int r : result)

44. System.out.printIn(r);

45. }

4. }

APII java.util.Arrays 1.2

o Static String toString(type[] a) 5.0
returns a string with the elements of 3, enclosed in brackets and delimited by
commas.

Parameters: a an array of type int, Tong, short, char, byte, booTean, float,
or double.

Chapter 3. Fundamental Programming Structures in Java

n Chapter 3 B Fundamental Programming Structures in Java

e static type copyOf(type[] a, int length) 6

e static type copyOf(type[] a, int start, int end) 6
returns an array of the same type asa, of length either Tength or end - start, filled
with the values of a.

Parameters: a an array of type int, long, short, char, byte, boolean, float,
or double.
start the starting index (inclusive).
end the ending index (exclusive). May be larger than

a.Tength, in which case the result is padded with 0 or
false values.

Tength the length of the copy. If Tength is larger than a.Tength,
the result is padded with 0 or false values. Other-
wise, only the initial Tength values are copied.

e static void sort(type[] a)
sorts the array, using a tuned QuickSort algorithm.
Parameters: a an array of type int, long, short, char, byte, float, or
doubTe.

static int binarySearch(type[] a, type v)
static int binarySearch(type(] a, int start, int end type v) 6
uses the binary search algorithm to search for the valuev. If it is found, its index is

returned. Otherwise, a negative value r is returned; -r - 1is the spot at which v
should be inserted to keep a sorted.
a sorted array of type int, Tong, short, char, byte, float,

Parameters: a
or double.
start the starting index (inclusive).
end the ending index (exclusive).
v a value of the same type as the elements ofa.

static void fill(typel] a, type v)
sets all elements of the array tov.

Parameters: a an array of type int, Tong, short, char, byte, booTean, float,
or doubTe.
v a value of the same type as the elements of a.

e static boolean equals(typel] a, type[] b)
returns true if the arrays have the same length, and if the elements in

corresponding indexes match.

Parameters: a,b arrays of type int, long, short, char, byte, boolean, float,
or double.

Chapter 3. Fundamental Programming Structures in Java

java.lang.System 1.1

e static void arraycopy(Object from, int fromIndex, Object to, int toIndex, int count)
copies elements from the first array to the second array.

Parameters: from an array of any type (Chapter 5 explains why this is
a parameter of type Object).
fromIndex the starting index from which to copy elements.
to an array of the same type as from.
toIndex the starting index to which to copy elements.
count the number of elements to copy.

Multidimensional Arrays

Multidimensional arrays use more than one index to access array elements. They are
used for tables and other more complex arrangements. You can safely skip this section
until you have a need for this storage mechanism.

Suppose you want to make a table of numbers that shows how much an investment of
$10,000 will grow under different interest rate scenarios in which interest is paid annu-
ally and reinvested. Table 3-8 illustrates this scenario.

Table 3-8 Growth of an Investment at Different Interest Rates

10% 11% 12% 13% 14% 15%
10,000.00 10,000.00 10,000.00 10,000.00 10,000.00 10,000.00
11,000.00 11,100.00 11,200.00 11,300.00 11,400.00 11,500.00
12,100.00 12,321.00 12,544.00 12,769.00 12,996.00 13,225.00
13,310.00 13,676.31 14,049.28 14,428.97 14,815.44 15,208.75
14,641.00 15,180.70 15,735.19 16,304.74 16,889.60 17,490.06
16,105.10 16,850.58 17,623.42 18,424.35 19,254.15 20,113.57
17,715.61 18,704.15 19,738.23 20,819.52 21,949.73 23,130.61
19,487.17 20,761.60 22,106.81 23,526.05 25,022.69 26,600.20
21,435.89 23,045.38 24,759.63 26,584.44 28,525.86 30,590.23
23,579.48 25,580.37 27,730.79 30,040.42 32,519.49 35,178.76

You can store this information in a two-dimensional array (or matrix), which we call
balances.

Declaring a two-dimensional array in Java is simple enough. For example:
double[][] balances;

Chapter 3. Fundamental Programming Structures in Java

m Chapter 3 B Fundamental Programming Structures in Java

As always, you cannot use the array until you initialize it with a call tonew. In this case,
you can do the initialization as follows:

balances = new doubTe[NYEARS][NRATES];

In other cases, if you know the array elements, you can use a shorthand notion for ini-
tializing multidimensional arrays without needing a call tonew. For example:
int[][] magicSquare =
{
{16, 3, 2, 13},
{5, 10, 11, 8},
{9, 6, 7, 12},
{4, 15, 14, 1}
b
Once the array is initialized, you can access individual elements by supplying two
brackets, for example, balances[i][]].
The example program stores a one-dimensional array interest of interest rates and a two-
dimensional array balance of account balances, one for each year and interest rate. We ini-
tialize the first row of the array with the initial balance:
for (int j = 0; j < balance[0].Tength; j++)
balances[0][j] = 10000;

Then we compute the other rows, as follows:
for (int i = 1; i < balances.length; i++)

{
for (int j = 0; j < balances[i].Tength; j++)

doubTe oldBalance = balances[i - 1]1[j];
double interest = . . .;
balances[i][j] = oldBalance + interest;
}
}

Listing 3-8 shows the full program.

array. Instead, it loops through the rows, which are themselves one-dimensional arrays. To

NOTE: A “for each” loop does not automatically loop through all entries in a two-dimensional
visit all elements of a two-dimensional array a, nest two loops, like this:

for (double[] row : a)
for (double value : row)
do something with value

TIP: To print out a quick and dirty list of the elements of a two-dimensional array, call
m System.out.printIn(Arrays.deepToString(a));
The output is formatted like this:
[(16, 3, 2, 13], [5, 1o, 11, 8], [9, 6, 7, 121, [4, 15, 14, 1]]

Chapter 3. Fundamental Programming Structures in Java

IBETR TS S CompoundInterest. java

1.

2.
3.
4.
5.
6.
7.
8

9.

Jax

+ This program shows how to store tabular data in a 2D array.

+ @version 1.40 2004-02-10
+ @author Cay Horstmann

s/
p
{

ublic class CompoundInterest

public static void main(String[] args)

{

final double STARTRATE = 10;
final int NRATES = 6;
final int NYEARS = 10;

// set interest rates to 10 . . . 15%

double[] interestRate = new double[NRATES];

for (int j = 0; j < interestRate.length; j++)
interestRate[j] = (STARTRATE + j) / 100.0;

doubTe[]1[] balances = new double[NYEARS][NRATES];

// set initial balances to 10000
for (int j = 0; j < balances[0].length; j++)
balances[0][j] = 10000;

// compute interest for future years
for (int i = 1; i < balances.length; i++)
{
for (int j = 0; j < balances[i].Tength; j++)
{
// get last year's balances from previous row
double oldBalance = balances[i - 1]1[j];

// compute interest
double interest = oldBalance « interestRate[j];

// compute this year's balances
balances[i][j] = oldBalance + interest;
}
}

// print one row of interest rates

for (int j = 0; j < interestRate.length; j++)
System.out.printf("%9.0f%%", 100 « interestRate[]j]);

System.out.printin();

// print balance table
for (double[] row : balances)

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 B Fundamental Programming Structures in Java

JBET50 IR 2 CompoundInterest.java (continued)

50. // print table row
51. for (double b : row)
52. System.out.printf("%10.2f", b);
53.
54. System.out.printin();
55. }
56. }
57. }
Ragged Arrays

So far, what you have seen is not too different from other programming languages. But
there is actually something subtle going on behind the scenes that you can sometimes turn
to your advantage: Java has 7o multidimensional arrays at all, only one-dimensional
arrays. Multidimensional arrays are faked as “arrays of arrays.”

For example, the balances array in the preceding example is actually an array that contains
ten elements, each of which is an array of six floating-point numbers (see Figure 3-16).

balances = @—P 10000.0
alances[1] = — 10000.0

10000.0
10000.0
10000.0
10000.0

11000.0
11100.0
11200.0
11300.0
11400.0
11500.0

balances[1][2] =

23579.48
25580.37
27730.79
30040.42
32519.49
35178.76

Figure 3-16 A two-dimensional array

Chapter 3. Fundamental Programming Structures in Java

Arrays

The expression balances[i] refers to the ith subarray, that is, the ith row of the table. It is
itself an array, and balances[i][j] refers to the jth entry of that array.

Because rows of arrays are individually accessible, you can actually swap them!

doubTe[] temp = balances[i];

balances[i] = balances[i + 1];

balances[i + 1] = temp;
It is also easy to make “ragged” arrays, that is, arrays in which different rows have dif-
ferent lengths. Here is the standard example. Let us make an array in which the entry at
row i and column j equals the number of possible outcomes of a “choose j numbers
from i numbers” lottery.

1

11

1 21
13 3 1

1 4 6 4 1

1 51010 5 1
1 6152 15 6 1

Because j can never be larger than 1, the matrix is triangular. The ith row has i + 1
elements. (We allow choosing 0 elements; there is one way to make such a choice.) To
build this ragged array, first allocate the array holding the rows.

int[][] odds = new int[NMAX + 1][];
Next, allocate the rows.

for (int n = 0; n <= NMAX; n++)

odds[n] = new int[n + 1];

Now that the array is allocated, we can access the elements in the normal way, provided
we do not overstep the bounds.

for (int n = 0; n < odds.length; n++)
for (int k = 0; k < odds[n].length; k++)
{
// compute lotteryOdds

odds[n][k] = TotteryOdds;
}

Listing 3-9 gives the complete program.

C++ NOTE: In C++, the Java declaration
double[][] balances = new double[10][6]; // Java
is not the same as
double balances[10][6]; // C++
or even
double (xbalances)[6] = new double[10]1[6]; // C++
Instead, an array of 10 pointers is allocated:
doublex+ balances = new doublex[10]; // C++

Chapter 3. Fundamental Programming Structures in Java

m Chapter 3 B Fundamental Programming Structures in Java

Then, each element in the pointer array is filled with an array of 6 numbers:
for (i =0; 1 <10; i++)
balances[i] = new double[6];

Mercifully, this loop is automatic when you ask for a new double[10][6]. When you want
ragged arrays, you allocate the row arrays separately.

ISR T IR 2 B otteryArray. java

1. [ax

2.+ This program demonstrates a triangular array.
3. % @version 1.20 2004-02-10

4.+ @author Cay Horstmann

6. pubTic class LotteryArray

7. {

8. public static void main(String[] args)

90 |

10. final int NMAX = 10;

11.

12. // allocate triangular array

13, int[][] odds = new int[NMAX + 1][];

14. for (int n = 0; n <= NMAX; n++)

15. odds[n] = new int[n + 1];

16.

17. // fill triangular array

18. for (int n = 0; n < odds.length; n++)

19. for (int k = 0; k < odds[n].length; k++)
20. {

21. /%

22. + compute binomial coefficient nx(n-1)x(n-2)«...«(n-k+1)/(1%2%3%...%k)
23, %/

24. int lotteryOdds = 1;

25. for (int i =1; i <= k; i++)

26. TotteryOdds = lotteryOdds = (n - 1 + 1) / i;
27.

28. odds[n][k] = TotteryOdds;

29. 1

30.

a1, // print triangular array

32. for (int[] row : odds)

33.

34. for (int odd : row)

35. System.out.printf("%4d", odd);

36. System.out.printin();

37. }

38. }

30. }

You have now seen the fundamental programming structures of the Java language. The
next chapter covers object-oriented programming in Java.

Chapter 4. Objects and Classes

OBJECTS AND CLASSES

INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING
USING PREDEFINED CLASSES

DEFINING YOUR OWN CLASSES

STATIC FIELDS AND METHODS

METHOD PARAMETERS

OBJECT CONSTRUCTION

PACKAGES

THE CLASS PATH

DOCUMENTATION COMMENTS

CLASS DESIGN HINTS

dd4d 44 gaqaadga

105

Chapter 4. Objects and Classes

Chapter 4 B Objects and Classes

In this chapter, we
¢ Introduce you to object-oriented programming;
* Show you how you can create objects that belong to classes in the standard Java
library; and
¢ Show you how to write your own classes.

If you do not have a background in object-oriented programming, you will want to read
this chapter carefully. Thinking about object-oriented programming requires a different
way of thinking than for procedural languages. The transition is not always easy, but
you do need some familiarity with object concepts to go further with Java.

For experienced C++ programmers, this chapter, like the previous chapter, presents
familiar information; however, there are enough differences between the two languages
that you should read the later sections of this chapter carefully. You'll find the C++ notes
helpful for making the transition.

Introduction to Object-Oriented Programming

Object-oriented programming (or OOP for short) is the dominant programming para-
digm these days, having replaced the “structured,” procedural programming tech-
niques that were developed in the 1970s. Java is totally object oriented, and you have to
be familiar with OOP to become productive with Java.

An object-oriented program is made of objects. Each object has a specific functionality
that is exposed to its users, and a hidden implementation. Many objects in your pro-
grams will be taken “off-the-shelf” from a library; others are custom designed. Whether
you build an object or buy it might depend on your budget or on time. But, basically, as
long as objects satisfy your specifications, you don’t care how the functionality was
implemented. In OOP, you don’t care how an object is implemented as long as it does
what you want.

Traditional structured programming consists of designing a set of procedures (or algo-
rithms) to solve a problem. After the procedures were determined, the traditional next
step was to find appropriate ways to store the data. This is why the designer of the Pas-
cal language, Niklaus Wirth, called his famous book on programming Algorithms + Data
Structures = Programs (Prentice Hall, 1975). Notice that in Wirth's title, algorithms come
first, and data structures come second. This mimics the way programmers worked at
that time. First, they decided the procedures for manipulating the data; then, they
decided what structure to impose on the data to make the manipulations easier. OOP
reverses the order and puts data first, then looks at the algorithms that operate on the
data.

For small problems, the breakdown into procedures works very well. But objects are
more appropriate for larger problems. Consider a simple web browser. It might
require 2,000 procedures for its implementation, all of which manipulate a set of glo-
bal data. In the object-oriented style, there might be 100 classes with an average of 20
methods per class (see Figure 4-1). The latter structure is much easier for a program-
mer to grasp. It is also much easier to find bugs. Suppose the data of a particular
object is in an incorrect state. It is far easier to search for the culprit among the 20
methods that had access to that data item than among 2,000 procedures.

Chapter 4. Objects and Classes

Introduction to Object-Oriented Programming 107

M’ IR
melnge ol Uoject date
proceaurs .
7O N Y Y S N
S
CEQUIS —Lualiog
RLL=22 29 Global data menge | Upject dats
| —
proceaure: O Y
YT >
procedurs —merac . Object data
e P e o o

Figure 4-1 Procedural vs. OO programming

Classes

A class is the template or blueprint from which objects are made. Thinking about classes
as cookie cutters. Objects are the cookies themselves. When you construct an object from
a class, you are said to have created an instance of the class.

As you have seen, all code that you write in Java is inside a class. The standard Java
library supplies several thousand classes for such diverse purposes as user interface
design, dates and calendars, and network programming. Nonetheless, you still have to
create your own classes in Java to describe the objects of the problem domains of your
applications.

Encapsulation (sometimes called information hiding) is a key concept in working with
objects. Formally, encapsulation is nothing more than combining data and behavior in one
package and hiding the implementation details from the user of the object. The data in an
object are called its instance fields, and the procedures that operate on the data are called its
methods. A specific object that is an instance of a class will have specific values for its
instance fields. The set of those values is the current state of the object. Whenever you
invoke a method on an object, its state may change.

The key to making encapsulation work is to have methods never directly access instance
fields in a class other than their own. Programs should interact with object data only
through the object’s methods. Encapsulation is the way to give the object its “black box”
behavior, which is the key to reuse and reliability. This means a class may totally change
how it stores its data, but as long as it continues to use the same methods to manipulate
the data, no other object will know or care.

When you do start writing your own classes in Java, another tenet of OOP makes this
easier: classes can be built by extending other classes. Java, in fact, comes with a “cosmic

Chapter 4. Objects and Classes

Chapter 4 B Objects and Classes

superclass” called Object. All other classes extend this class. You will see more about the
Object class in the next chapter.

When you extend an existing class, the new class has all the properties and methods of
the class that you extend. You supply new methods and data fields that apply to your
new class only. The concept of extending a class to obtain another class is called inherit-
ance. See the next chapter for details on inheritance.

Objects

To work with OOP, you should be able to identify three key characteristics of objects:

e The object’s behavior—What can you do with this object, or what methods can you
apply to it?

® The object’s state—How does the object react when you apply those methods?

e The object’s identity—How is the object distinguished from others that may have the
same behavior and state?

All objects that are instances of the same class share a family resemblance by supporting

the same behavior. The behavior of an object is defined by the methods that you can call.

Next, each object stores information about what it currently looks like. This is the
object’s state. An object’s state may change over time, but not spontaneously. A change
in the state of an object must be a consequence of method calls. (If the object state
changed without a method call on that object, someone broke encapsulation.)

However, the state of an object does not completely describe it, because each object has a
distinct identity. For example, in an order-processing system, two orders are distinct
even if they request identical items. Notice that the individual objects that are instances
of a class always differ in their identity and usually differ in their state.

These key characteristics can influence each other. For example, the state of an object can
influence its behavior. (If an order is “shipped” or “paid,” it may reject a method call
that asks it to add or remove items. Conversely, if an order is “empty,” that is, no items
have yet been ordered, it should not allow itself to be shipped.)

Identifying Classes

In a traditional procedural program, you start the process at the top, with themain func-
tion. When designing an object-oriented system, there is no “top,” and newcomers to
OOP often wonder where to begin. The answer is, you first find classes and then you
add methods to each class.

A simple rule of thumb in identifying classes is to look for nouns in the problem analy-
sis. Methods, on the other hand, correspond to verbs.

For example, in an order-processing system, some of these nouns are

e Jtem

e Order

e Shipping address
¢ DPayment

e Account

These nouns may lead to the classes Item, Order, and so on.

Chapter 4. Objects and Classes

Introduction to Object-Oriented Programming m

Next, look for verbs. Items are added to orders. Orders are shipped or canceled. Payments
are applied to orders. With each verb, such as “add,” “ship,” “cancel,” and “apply,” you
identify the one object that has the major responsibility for carrying it out. For example,
when a new item is added to an order, the order object should be the one in charge
because it knows how it stores and sorts items. That is, add should be a method of the
Order class that takes an Item object as a parameter.

Of course, the “noun and verb” rule is only a rule of thumb, and only experience can
help you decide which nouns and verbs are the important ones when building your
classes.

Relationships between Classes

The most common relationships between classes are

* Dependence (“uses—a”

o Aggregation (“has—a”)

e [nheritance (“is-a”

The dependence, or “uses—a” relationship, is the most obvious and also the most general.
For example, the Order class uses the Account class because Order objects need to access
Account objects to check for credit status. But the Item class does not depend on the Account
class, because Iten objects never need to worry about customer accounts. Thus, a class
depends on another class if its methods use or manipulate objects of that class.

Try to minimize the number of classes that depend on each other. The point is, if a class
Ais unaware of the existence of a classB, it is also unconcerned about any changes toB!
(And this means that changes to B do not introduce bugs intoA.) In software engineering
terminology, you want to minimize the coupling between classes.

The aggregation, or “has—-a” relationship, is easy to understand because it is concrete; for
example, an Order object contains Item objects. Containment means that objects of classA
contain objects of class B.

NOTE: Some methodologists view the concept of aggregation with disdain and prefer to use

a more general “association” relationship. From the point of view of modeling, that is under-
standable. But for programmers, the “has—a” relationship makes a lot of sense. We like to
use aggregation for a second reason—the standard notation for associations is less clear.
See Table 4—1.

The inheritance, or “is—a” relationship, expresses a relationship between a more special
and a more general class. For example, aRushOrder class inherits from an Order class. The
specialized RushOrder class has special methods for priority handling and a different
method for computing shipping charges, but its other methods, such as adding items
and billing, are inherited from the Order class. In general, if class A extends class B, class A
inherits methods from class B but has more capabilities. (We describe inheritance more
fully in the next chapter, in which we discuss this important notion at some length.)

Many programmers use the UML (Unified Modeling Language) notation to draw class
diagrams that describe the relationships between classes. You can see an example of such
a diagram in Figure 4-2. You draw classes as rectangles, and relationships as arrows
with various adornments. Table 4-1 shows the most common UML arrow styles.

Chapter 4. Objects and Classes

Chapter 4 B Objects and Classes

File Edit View Help

orders violet

Tt eror T R—————.—_,
I d

RushoOrder

The account
to which
the order

is charged

Order

Account

Item

[Note

A® =R P

. mselect

Hlass

Elinterface
FIPackage

O Note

T sz e
% Depends on

4 Inherits from

4 Implements interface
N Is associated with
Q Is an aggregate of
W |5 composed of

* Note connector

3 showsHide side bar

Figure 4-2 A class diagram

NOTE: A number of tools are available for drawing UML diagrams. Several vendors offer
high-powered (and high-priced) tools that aim to be the focal point of your development
process. Among them are Rational Rose (http://www.ibm.com/software/awdtools/developer/
rose) and Together (http://www.borland.com/us/products/together). Another choice is the open
source program ArgoUML (http://argouml.tigris.org). A commercially supported version is
available from GentleWare (http://gentleware.com). If you just want to draw a simple dia-

grams with a minimum of fuss, try out Violet (http://violet.sourceforge.net).

Table 4-1 UML Notation for Class Relationships

Relationship UML Connector

Inheritance ~
Interface inheritance @~ == - — — — — — — -~
Dependency 00 0- — — — — — — =
Aggregation

Association

Directed association

Chapter 4. Objects and Classes

Using Predefined Classes m

Using Predefined Classes

Because you can’t do anything in Java without classes, you have already seen several
classes at work. However, not all of these show off the typical features of object orienta-
tion. Take, for example, theMath class. You have seen that you can use methods of theMath
class, such as Math.random, without needing to know how they are implemented—all you
need to know is the name and parameters (if any). That is the point of encapsulation
and will certainly be true of all classes. But the Math class only encapsulates functionality;
it neither needs nor hides data. Because there is no data, you do not need to worry about
making objects and initializing their instance fields—there aren’t any!

In the next section, we look at a more typical class, the Date class. You will see how to
construct objects and call methods of this class.

Objects and Object Variables

To work with objects, you first construct them and specify their initial state. Then you
apply methods to the objects.

In the Java programming language, you use constructors to construct new instances. A
constructor is a special method whose purpose is to construct and initialize objects. Let
us look at an example. The standard Java library contains aDate class. Its objects describe
points in time, such as “December 31, 1999, 23:59:59 GMT”.

languages) a built-in type? For example, Visual Basic has a built-in date type and program-
mers can specify dates in the format #6/1/1995#¢. On the surface, this sounds convenient—
programmers can simply use the built-in date type rather than worrying about classes. But
actually, how suitable is the Visual Basic design? In some locales, dates are specified as
month/day/year, in others as day/month/year. Are the language designers really equipped
to foresee these kinds of issues? If they do a poor job, the language becomes an unpleas-
ant muddle, but unhappy programmers are powerless to do anything about it. With classes,
the design task is offloaded to a library designer. If the class is not perfect, other program-
mers can easily write their own classes to enhance or replace the system classes. (To
prove the point: The Java date library is a bit muddled, and a major redesign is underway;
see http://jcp.org/en/jsr/detail?id=310.)

NOTE: You may be wondering: Why use classes to represent dates rather than (as in some

Constructors always have the same name as the class name. Thus, the constructor for
the Date class is called Date. To construct a Date object, you combine the constructor with
the new operator, as follows:

new Date()
This expression constructs a new object. The object is initialized to the current date and
time.
If you like, you can pass the object to a method:

System.out.printIn(new Date());

Alternatively, you can apply a method to the object that you just constructed. One of the
methods of the Date class is the toString method. That method yields a string representation
of the date. Here is how you would apply the toString method to a newly constructed Date
object:

String s = new Date().toString();

Chapter 4. Objects and Classes

Chapter 4 B Objects and Classes

In these two examples, the constructed object is used only once. Usually, you will want
to hang on to the objects that you construct so that you can keep using them. Simply
store the object in a variable:

Date birthday = new Date();
Figure 4-3 shows the object variable birthday that refers to the newly constructed object.

birthday =

Figure 4-3 Creating a new object

There is an important difference between objects and object variables. For example,
the statement

Date deadline; // deadline doesn't refer to any object

defines an object variable, deadline, that can refer to objects of type Date. It is important to
realize that the variable deadline is not an object and, in fact, does not yet even refer to an
object. You cannot use any Date methods on this variable at this time. The statement

s = deadline.toString(); // not yet
would cause a compile-time error.

You must first initialize the deadline variable. You have two choices. Of course, you can
initialize the variable with a newly constructed object:

deadline = new Date();

Or you can set the variable to refer to an existing object:
deadline = birthday;

Now both variables refer to the same object (see Figure 4-4).

It is important to realize that an object variable doesn’t actually contain an object. It only
refers to an object.

In Java, the value of any object variable is a reference to an object that is stored else-
where. The return value of the new operator is also a reference. A statement such as

Date deadline = new Date();

has two parts. The expression new Date() makes an object of type Date, and its value is a ref-
erence to that newly created object. That reference is then stored in the deadline variable.

Chapter 4. Objects and Classes

Using Predefined Classes

pirgay =

prtaay =

Figure 4-4 Object variables that refer to the same object

You can explicitly set an object variable tonull to indicate that it currently refers to no
object.
deadline = null;

if (deadline != null)
System.out.printin(deadline);

If you apply a method to a variable that holdsnull, then a runtime error occurs.

birthday = null;

String s = birthday.toString(); // runtime error!
Variables are not automatically initialized tonu1l. You must initialize them, either by
calling new or by setting them to null.

C++ NOTE: Many people mistakenly believe that Java object variables behave like C++ ref-
E erences. But in C++ there are no null references, and references cannot be assigned. You
should think of Java object variables as analogous to object pointers in C++. For example,
Date birthday; // Java
is really the same as
Datex birthday; // C++
Once you make this association, everything falls into place. Of course, a Datex pointer isn’t
initialized until you initialize it with a call to new. The syntax is almost the same in C++ and
Java.
Datex birthday = new Date(); // C++
If you copy one variable to another, then both variables refer to the same date—they are
pointers to the same object. The equivalent of the Java null reference is the C++ NULL
pointer.
All Java objects live on the heap. When an object contains another object variable, that vari-
able still contains just a pointer to yet another heap object.

Chapter 4. Objects and Classes

Chapter 4 B Objects and Classes

In C++, pointers make you nervous because they are so error prone. It is easy to create bad
pointers or to mess up memory management. In Java, these problems simply go away. If
you use an uninitialized pointer, the runtime system will reliably generate a runtime error
instead of producing random results. You don’t worry about memory management, because
the garbage collector takes care of it.

C++ makes quite an effort, with its support for copy constructors and assignment operators,
to allow the implementation of objects that copy themselves automatically. For example, a
copy of a linked list is a new linked list with the same contents but with an independent set of
links. This makes it possible to design classes with the same copy behavior as the built-in
types. In Java, you must use the clone method to get a complete copy of an object.

The GregorianCalendar Class of the Java Library
In the preceding examples, we used theDate class that is a part of the standard Java
library. An instance of the Date class has a state, namely a particular point in time.

Although you don’t need to know this when you use the Date class, the time is repre-
sented by the number of milliseconds (positive or negative) from a fixed point, the so-
called epoch, which is 00:00:00 UTC, January 1, 1970. UTC is the Coordinated Universal
Time, the scientific time standard that is, for practical purposes, the same as the more
familiar GMT or Greenwich Mean Time.

But as it turns out, the Date class is not very useful for manipulating dates. The designers of
the Java library take the point of view that a date description such as “December 31, 1999,
23:59:59” is an arbitrary convention, governed by a calendar. This particular description
follows the Gregorian calendar, which is the calendar used in most places of the world.
The same point in time would be described quite differently in the Chinese or Hebrew
lunar calendars, not to mention the calendar used by your customers from Mars.

NOTE: Throughout human history, civilizations grappled with the design of calendars that

attached names to dates and brought order to the solar and lunar cycles. For a fascinating
explanation of calendars around the world, from the French Revolutionary calendar to the
Mayan long count, see Calendrical Calculations, Second Edition by Nachum Dershowitz
and Edward M. Reingold (Cambridge University Press, 2001).

The library designers decided to separate the concerns of keeping time and attaching
names to points in time. Therefore, the standard Java library contains two separate
classes: the Date class, which represents a point in time, and theGregorianCalendar class,
which expresses dates in the familiar calendar notation. In fact, the GregorianCalendar class
extends a more generic (alendar class that describes the properties of calendars in gen-
eral. In theory, you can extend the Calendar class and implement the Chinese lunar calen-
dar or a Martian calendar. However, the standard library does not contain any calendar
implementations besides the Gregorian calendar.

Separating time measurement from calendars is good object-oriented design. In general,
it is a good idea to use separate classes to express different concepts.

The Date class has only a small number of methods that allow you to compare two points
in time. For example, the before and after methods tell you if one point in time comes
before or after another:

Chapter 4. Objects and Classes

Using Predefined Classes

if (today.before(birthday))
System.out.printIn("Still time to shop for a gift.");

NOTE: Actually, the Date class has methods such as getDay, getMonth, and getYear, but these
methods are deprecated. A method is deprecated when a library designer realizes that the
method should have never been introduced in the first place.
These methods were a part of the Date class before the library designers realized that it
makes more sense to supply separate calendar classes. When the calendar classes were
introduced, the Date methods were tagged as deprecated. You can still use them in your pro-
grams, but you will get unsightly compiler warnings if you do. It is a good idea to stay away
from using deprecated methods because they may be removed in a future version of the
library.

The GregorianCalendar class has many more methods than theDate class. In particular, it has
several useful constructors. The expression
new GregorianCalendar()
constructs a new object that represents the date and time at which the object was con-
structed.
You can construct a calendar object for midnight on a specific date by supplying year,
month, and day:
new GregorianCalendar(1999, 11, 31)
Somewhat curiously, the months are counted from 0. Therefore, 11 is December. For
greater clarity, there are constants like Calendar.DECEMBER:
new GregorianCalendar(1999, Calendar.DECEMBER, 31)
You can also set the time:
new GregorianCalendar(1999, Calendar.DECEMBER, 31, 23, 59, 59)
Of course, you will usually want to store the constructed object in an object variable:
GregorianCalendar deadline = new GregorianCalendar(. . .);
The GregorianCalendar has encapsulated instance fields to maintain the date to which it is
set. Without looking at the source code, it is impossible to know the representation that

the class uses internally. But, of course, the point of encapsulation is that this doesn't
matter. What matters are the methods that a class exposes.

Mutator and Accessor Methods

At this point, you are probably asking yourself: How do I get at the current day or
month or year for the date encapsulated in a specificGregorianCalendar object? And how
do I change the values if I am unhappy with them? You can find out how to carry out
these tasks by looking at the on-line documentation or the API notes at the end of this
section. We go over the most important methods in this section.

The job of a calendar is to compute attributes, such as the date, weekday, month, or
year, of a certain point in time. To query one of these settings, you use the get method
of the GregorianCalendar class. To select the item that you want to get, you pass a constant
defined in the (Calendar class, such as Calendar.MONTH or Calendar.DAY_OF_WEEK:

Chapter 4. Objects and Classes

Chapter 4 B Objects and Classes

GregorianCalendar now = new GregorianCalendar();
int month = now.get(Calendar.MONTH);
int weekday = now.get(Calendar.DAY_OF_WEEK);

The API notes list all the constants that you can use.
You change the state with a call to the set method:
deadline.set(Calendar.YEAR, 2001);
deadline.set(Calendar.MONTH, Calendar.APRIL);
deadline.set(Calendar.DAY_OF_MONTH, 15);
There is also a convenience method to set the year, month, and day with a single call:
deadline.set (2001, Calendar.APRIL, 15);
Finally, you can add a number of days, weeks, months, and so on, to a given calendar
object:
deadline.add(Calendar.MONTH, 3); // move deadline by 3 months
If you add a negative number, then the calendar is moved backwards.
There is a conceptual difference between the get method on the one hand and the set and
add methods on the other hand. The get method only looks up the state of the object and
reports on it. The set and add methods modify the state of the object. Methods that change
instance fields are called mutator methods, and those that only access instance fields with-
out modifying them are called accessor methods.

C++ NOTE: In C++, the const suffix denotes accessor methods. A method that is not
declared as const is assumed to be a mutator. However, in the Java programming language,
no special syntax distinguishes between accessors and mutators.

A common convention is to prefix accessor methods with the prefixget and mutator
methods with the prefix set. For example, the GregorianCalendar class has methods getTime
and setTime that get and set the point in time that a calendar object represents:

Date time = calendar.getTime();

calendar.setTime(time);
These methods are particularly useful for converting between theGregorianCalendar and Date
classes. Here is an example. Suppose you know the year, month, and day and you want to
make a Date object with those settings. Because theDate class knows nothing about calendars,
first construct a GregorianCalendar object and then call the getTime method to obtain a date:

GregorianCalendar calendar = new GregorianCalendar(year, month, day);

Date hireDay = calendar.getTime();
Conversely, if you want to find the year, month, or day of aDate object, you construct a
GregorianCalendar object, set the time, and then call the get method:

GregorianCalendar calendar = new GregorianCalendar();

calendar.setTime(hireDay);

int year = calendar.get(Calendar.YEAR);
We finish this section with a program that puts theGregorianCalendar class to work. The
program displays a calendar for the current month, like this:

Chapter 4. Objects and Classes

Using Predefined Classes

Sun Mon Tue Wed Thu Fri Sat
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19«20 21 22
23 24 25 26 27 28 29
30 31
The current day is marked with an asterisk (x). As you can see, the program needs to
know how to compute the length of a month and the weekday of a given day.
Let us go through the key steps of the program. First, we construct a calendar object
that is initialized with the current date.
GregorianCalendar d = new GregorianCalendar();
We capture the current day and month by calling the get method twice.
int today = d.get(Calendar.DAY_OF_MONTH);
int month = d.get(Calendar.MONTH);
Then we set d to the first of the month and get the weekday of that date.
d.set(Calendar.DAY_OF_MONTH, 1);
int weekday = d.get(Calendar.DAY_OF_WEEK);
The variable weekday is set to Calendar.SUNDAY if the first day of the month is a Sunday, to(al-
endar.MONDAY if it is a Monday, and so on. (These values are actually the integers 1,2, ...,7,
but it is best not to write code that depends on that knowledge.)
Note that the first line of the calendar is indented, so that the first day of the month falls
on the appropriate weekday. This is a bit tricky since there are varying conventions
about the starting day of the week. In the United States, the week starts with Sunday
and ends with Saturday, whereas in Europe, the week starts with Monday and ends
with Sunday.
The Java virtual machine is aware of the locale of the current user. The locale describes
local formatting conventions, including the start of the week and the names of the
weekdays.

TIP: If you want to see the program output in a different locale, add a line such as the follow-
ing as the first line of the main method:

Locale.setDefault(Locale.ITALY);

The getFirstDayOfWeek method gets the starting weekday in the current locale. To deter-
mine the required indentation, we subtract 1 from the day of the calendar object until
we reach the first day of the week.

int firstDayOfWeek = d.getFirstDayOfWeek();

int indent = 0;

while (weekday != firstDayOfWeek)

{

indent++;
d.add(Calendar.DAY_OF_MONTH, -1);
weekday = d.get(Calendar.DAY_OF_WEEK);

}

117

Chapter 4. Objects and Classes

Chapter 4 B Objects and Classes

Next, we print the header with the weekday names. These are available from the class
DateFormatSymbols.

String [] weekdayNames = new DateFormatSymbols().getShortWeekdays();

The getShortWeekdays method returns a string with short weekday names in the user’s
language (such as "Sun", "Mon", and so on in English). The array is indexed by weekday
values. Here is the loop to print the header:

do

{
System.out.printf("%4s", weekdayNames[weekday]);

d.add(Calendar.DAY_OF_MONTH, 1);
weekday = d.get(Calendar.DAY_OF_WEEK);
}
while (weekday != firstDayOfWeek);
System.out.printin();
Now, we are ready to print the body of the calendar. We indent the first line and set the
date object back to the start of the month. We enter a loop in whichd traverses the days
of the month.
In each iteration, we print the date value. If dis today, the date is marked with an «. If we
reach the beginning of each new week, we print a new line. Then, we advance d to the
next day:
d.add(Calendar.DAY_OF_MONTH, 1);
When do we stop? We don’t know whether the month has 31, 30, 29, or 28 days. Instead,
we keep iterating while d is still in the current month.
do
{

}

while (d.get(Calendar.MONTH) == month);
Once d has moved into the next month, the program terminates.
Listing 4-1 shows the complete program.

As you can see, the GregorianCalendar class makes it possible to write a calendar program
that takes care of complexities such as weekdays and the varying month lengths. You
don’t need to know how the GregorianCalendar class computes months and weekdays. You
just use the interface of the class—the get, set, and add methods.

The point of this example program is to show you how you can use the interface of a class
to carry out fairly sophisticated tasks without having to know the implementation details.

IBETAE TS0 B CalendarTest. java

1. import java.text.DateFormatSymbols;
2. import java.util.;

3.
[
« @version 1.4 2007-04-07
+ @author Cay Horstmann

‘

N o o »

Chapter 4. Objects and Classes

Using Predefined Classes m

IS 150 TR B CalendarTest.java (continued)
8

o. pubTic class CalendarTest

10. {

1. public static void main(String[] args)

12 {

13. // construct d as current date

14. GregorianCalendar d = new GregorianCalendar();
15.

16. int today = d.get(Calendar.DAY_OF_MONTH);

17. int month = d.get(Calendar.MONTH);

18.

19. // set d to start date of the month

20. d.set(Calendar.DAY_OF_MONTH, 1);

21.

22. int weekday = d.get(Calendar.DAY_OF_WEEK);

23.

24. // get first day of week (Sunday in the U.S.)
25. int firstDayOfWeek = d.getFirstDayOfWeek();
26.

27. // determine the required indentation for the first Tine
28. int indent = 0;

29. while (weekday != firstDayOfWeek)

30. {

31, indent++;

32. d.add(Calendar.DAY_OF_MONTH, -1);

33. weekday = d.get(Calendar.DAY_OF_WEEK);

34. }

35.

36. // print weekday names

a7, String[] weekdayNames = new DateFormatSymbols().getShortWeekdays();
38. do

39. {

40. System.out.printf("%4s", weekdayNames[weekday]);
41. d.add(CaTendar.DAY_OF_MONTH, 1);

42. weekday = d.get(Calendar.DAY_OF_WEEK);

43.

44. while (weekday != firstDayOflWieek);

45. System.out.printin();

46.

47. for (int i = 1; i <= indent; i++)

48. System.out.print(" ");

49.

50. d.set(Calendar.DAY_OF_MONTH, 1);

51. do

52.

53. // print day

54. int day = d.get(Calendar.DAY_OF_MONTH);

55. System.out.printf("%3d", day);

Chapter 4. Objects and Classes

m Chapter 4 B Objects and Classes

)R TT50 T2 B CalendarTest.java (continued)

56.

57. // mark current day with «

58. if (day == today) System.out.print("«");

59. else System.out.print(" ");

60.

61. // advance d to the next day

62. d.add(Calendar.DAY_OF_MONTH, 1);

63. weekday = d.get(Calendar.DAY_OF_WEEK);

64.

65. // start a new Tine at the start of the week

66. if (weekday == firstDayOfWeek) System.out.printin();
67. }

68. while (d.get(Calendar.MONTH) == month);

69. // the Toop exits when d is day 1 of the next month
70.

7. // print final end of line if necessary

72. if (weekday != firstDayOfWeek) System.out.printin();
73. }

74. }

m java.util.GregorianCalendar 1.1

e GregorianCalendar()
constructs a calendar object that represents the current time in the default time
zone with the default locale.

e (GregorianCalendar(int year, int month, int day)

® (GregorianCalendar(int year, int month, int day, int hour, int minutes, int seconds)
constructs a Gregorian calendar with the given date and time.

Parameters: year the year of the date
month the month of the date. This value is 0-based; for
example, 0 for January
day the day of the month
hour the hour (between 0 and 23)
minutes the minutes (between 0 and 59)
seconds the seconds (between 0 and 59)

e int get(int field)
gets the value of a particular field.

Parameters: field one of Calendar.ERA, Calendar.YEAR, Calendar.MONTH,
Calendar.WEEK_OF_YEAR, Calendar.WEEK_OF_MONTH,
Calendar.DAY_OF__MONTH, Calendar.DAY_OF_YEAR,
Calendar.DAY_OF_WEEK, Calendar.DAY_OF_WEEK_IN_MONTH,
Calendar.AM_PM, Calendar.HOUR, Calendar.HOUR_OF_DAY,
Calendar.MINUTE, Calendar.SECOND, Calendar.MILLISECOND,
Calendar.ZONE_OFFSET, Calendar.DST_OFFSET

Chapter 4. Objects and Classes

Using Predefined Classes m

e void set(int field, int value)
sets the value of a particular field.

Parameters: field one of the constants accepted by get
value the new value
e void set(int year, int month, int day)

e void set(int year, int month, int day, int hour, int minutes, int seconds)
sets the fields to new values.

Parameters: year the year of the date
month the month of the date. This value is 0-based; for
example, 0 for January
day the day of the month
hour the hour (between 0 and 23)
minutes the minutes (between 0 and 59)
seconds the seconds (between 0 and 59)

e void add(int field, int amount)
is a date arithmetic method. Adds the specified amount of time to the given
time field. For example, to add 7 days to the current calendar date, call
c.add(Calendar.DAY_OF_MONTH, 7).

Parameters: field the field to modify (using one of the constants
documented in the get method)
amount the amount by which the field should be changed

(can be negative)

e int getFirstDayOfWeek()
gets the first day of the week in the locale of the current user, for example,
Calendar.SUNDAY in the United States.

e void setTime(Date time)
sets this calendar to the given point in time.

Parameters: time a point in time

e Date getTime()
gets the point in time that is represented by the current value of this calendar
object.

java.text.DateFormatSymbols 1.1

String[] getShortWeekdays()

String[] getShortMonths()

String[] getWeekdays()

String[] getMonths()

gets the names of the weekdays or months in the current locale. Uses(Calendar
weekday and month constants as array index values.

Chapter 4. Objects and Classes

m Chapter 4 B Objects and Classes

Defining Your Own Classes

In Chapter 3, you started writing simple classes. However, all those classes had just a
single main method. Now the time has come to show you how to write the kind of “work-
horse classes” that are needed for more sophisticated applications. These classes typi-
cally do not have a main method. Instead, they have their own instance fields and
methods. To build a complete program, you combine several classes, one of which has a
main method.

An Employee Class
The simplest form for a class definition in Java is

class ClassName

{
constructory
constructor;

methody
method,
field;
fieldy

NOTE: We adopt the style that the methods for the class come first and the fields come at
the end. Perhaps this, in a small way, encourages the notion of looking at the interface first
and paying less attention to the implementation.

Consider the following, very simplified, version of anEmployee class that might be used
by a business in writing a payroll system.

class Employee
{
// constructor
public Employee(String n, double s, int year, int month, int day)
{
name = n;
salary = s;
GregorianCalendar calendar = new GregorianCalendar(year, month - 1, day);
hireDay = calendar.getTime();

}

// a method

public String getName()
{

}

return name;

// more methods

Chapter 4. Objects and Classes

Defining Your Own Classes m

// instance fields

private String name;
private double salary;
private Date hireDay;
}
We break down the implementation of this class in some detail in the sections that fol-
low. First, though, Listing 4-2 shows a program that shows theEmployee class in action.

In the program, we construct an Employee array and fill it with three employee objects:
Employee[] staff = new Employee[3];

staff[0] = new Employee("Carl Cracker", . . .);
staff[1] = new Employee("Harry Hacker", . . .);
staff[2] = new Employee("Tony Tester", . . .);

Next, we use the raiseSalary method of the Employee class to raise each employee’s salary by
5%:
for (Employee e : staff)
e.raiseSalary(5);
Finally, we print out information about each employee, by calling thegetName, getSalary,
and getHireDay methods:
for (Employee e : staff)
System.out.printIn("name=" + e.getName()
+ " salary=" + e.getSalary()
+ ",hireDay=" + e.getHireDay());

Note that the example program consists of two classes: the Employee class and a class
EmployeeTest with the public access specifier. The main method with the instructions that we
just described is contained in the EmployeeTest class.

The name of the source file is EmployeeTest.java because the name of the file must match
the name of the public class. You can have only one public class in a source file, but you
can have any number of nonpublic classes.
Next, when you compile this source code, the compiler creates two class files in the
directory: EmployeeTest.class and Employee.class.
You start the program by giving the bytecode interpreter the name of the class that con-
tains the main method of your program:

java EmployeeTest
The bytecode interpreter starts running the code in themain method in the EmployeeTest
class. This code in turn constructs three new Employee objects and shows you their state.

Chapter 4. Objects and Classes

m Chapter 4 B Objects and Classes

EmpToyeeTest. java

)

0.

32.
33.

1

2
3
4
5.
6.
7
8
9

: [

o
N
{

}
}

. import java.util.s;

x This program tests the Employee class.
x @version 1.11 2004-02-19

+ @author Cay Horstmann

. public class EmployeeTest

public static void main(String[] args)

// fill the staff array with three Employee objects
Employee[] staff = new Employee[3];

staff[0] = new Employee("Carl Cracker", 75000, 1987, 12, 15);
staff[1] = new Employee("Harry Hacker", 50000, 1989, 10, 1)
staff[2] = new Employee("Tony Tester", 40000, 1990, 3, 15);

// raise everyone's salary by 5%
for (Employee e : staff)
e.raiseSalary(5);

// print out information about all Employee objects
for (Employee e : staff)
System.out.printIn("name=" + e.getName() + ",salary=
+ e.getHireDay());

. class EmpToyee

A
{

34.

35.

36.

37.
38.

39.

}

40.

41.
42.

{

43.

44.

}

45.

46.
47.

{

48.

49.

}

public EmpToyee(String n, double s, int year, int month, int day)

name = n;
salary = s;

GregorianCalendar calendar = new GregorianCalendar(year, month - 1, day);
// GregorianCalendar uses @ for January

hireDay = calendar.getTime();

public String getName()

return name;

public double getSalary()

return salary;

+ e.getSalary() + ",hireDay=

Chapter 4. Objects and Classes

Defining Your Own Classes m

IBTTR T S0 FriployeeTest. java (continued)

50.
s1. public Date getHireDay()

52. {
53. return hireDay;
54. }

55.
s6. public void raiseSalary(double byPercent)

57. {

58. double raise = salary = byPercent / 100;
59. salary += raise;

60. }

61.

62. private String name;
63. private double salary;
64. private Date hireDay;
65. }

Use of Multiple Source Files

The program in Listing 4-2 has two classes in a single source file. Many programmers
prefer to put each class into its own source file. For example, you can place theEmployee
class into a file Employee.java and the EmployeeTest class into EmployeeTest. java.

If you like this arrangement, then you have two choices for compiling the program. You
can invoke the Java compiler with a wildcard:

javac Employeex.java
Then, all source files matching the wildcard will be compiled into class files. Or, you can
simply type

javac EmployeeTest.java
You may find it surprising that the second choice works even though theEmployee.java
file is never explicitly compiled. However, when the Java compiler sees theEmployee
class being used inside EmployeeTest. java, it will look for a file named Employee.class. If it
does not find that file, it automatically searches for Employee.java and then compiles it.
Even more is true: if the time stamp of the version of Employee.java that it finds is newer
than that of the existing Employee.class file, the Java compiler will automatically recom-
pile the file.

NOTE: If you are familiar with the “make” facility of UNIX (or one of its Windows cousins
u such as “nmake”), then you can think of the Java compiler as having the “make” functionality
already built in.

Dissecting the Employee Class

In the sections that follow, we want to dissect the Employee class. Let’s start with the meth-
ods in this class. As you can see by examining the source code, this class has one con-
structor and four methods:

Chapter 4. Objects and Classes

m Chapter 4 B Objects and Classes

public Employee(String n, double s, int year, int month, int day)
public String getName()

public double getSalary()

public Date getHireDay()

pubTic void raiseSalary(double byPercent)

All methods of this class are tagged aspublic. The keyword public means that any method
in any class can call the method. (The four possible access levels are covered in this and
the next chapter.)

Next, notice that three instance fields will hold the data we will manipulate inside an
instance of the Employee class.

private String name;

private double salary;

private Date hireDay;
The private keyword makes sure that the only methods that can access these instance fields

are the methods of the Employee class itself. No outside method can read or write to these
fields.

NOTE: You could use the public keyword with your instance fields, but it would be a very bad

idea. Having public data fields would allow any part of the program to read and modify the
instance fields. That completely ruins encapsulation. Any method of any class can modify
public fields—and, in our experience, some code usually will take advantage of that access
privilege when you least expect it. We strongly recommend that you always make your
instance fields private.

Finally, notice that two of the instance fields are themselves objects: thename and hireDay
fields are references to String and Date objects. This is quite usual: classes will often con-
tain instance fields of class type.

First Steps with Constructors
Let’s look at the constructor listed in our Employee class.
public Employee(String n, double s, int year, int month, int day)
{
name = n;
salary = s;
GregorianCalendar calendar = new GregorianCalendar(year, month - 1, day);
hireDay = calendar.getTime();

}

As you can see, the name of the constructor is the same as the name of the class. This
constructor runs when you construct objects of theEmployee class—giving the instance
fields the initial state you want them to have.
For example, when you create an instance of the Employee class with code like this:

new Employee("James Bond", 100000, 1950, 1, 1);
you have set the instance fields as follows:

name = "James Bond";

salary = 100000;
hireDay = January 1, 1950;

Chapter 4. Objects and Classes

Defining Your Own Classes 127

There is an important difference between constructors and other methods. A construc-
tor can only be called in conjunction with the new operator. You can’t apply a constructor
to an existing object to reset the instance fields. For example,

james.EmpToyee("James Bond", 250000, 1950, 1, 1); // ERROR

is a compile-time error.

We have more to say about constructors later in this chapter. For now, keep the follow-
ing in mind:
® A constructor has the same name as the class.

¢ A class can have more than one constructor.

e A constructor can take zero, one, or more parameters.

e A constructor has no return value.

A constructor is always called with the new operator.

E C++ NOTE: Constructors work the same way in Java as they do in C++. But keep in mind
that all Java objects are constructed on the heap and that a constructor must be combined
with new. It is a common C++ programmer error to forget the new operator:

Employee number0@7("James Bond", 100000, 1950, 1, 1);
// C++, not Java

That works in C++ but does not work in Java.

CAUTION: Be careful not to introduce local variables with the same names as the instance
n fields. For example, the following constructor will not set the salary:

pubTic Employee(String n, double s, . . .)
{

String name = n; // ERROR

double salary = s; // ERROR

}

The constructor declares local variables name and salary. These variables are only accessi-
ble inside the constructor. They shadow the instance fields with the same name. Some
programmers—such as the authors of this book—write this kind of code when they type
faster than they think, because their fingers are used to adding the data type. This is a
nasty error that can be hard to track down. You just have to be careful in all of your meth-
ods that you don’t use variable names that equal the names of instance fields.

Implicit and Explicit Parameters

Methods operate on objects and access their instance fields. For example, the method
public void raiseSalary(double byPercent)
{
double raise = salary = byPercent / 100;
salary += raise;

Chapter 4. Objects and Classes

Chapter 4 B Objects and Classes

sets a new value for the salary instance field in the object on which this method is
invoked. Consider the call

number0@7. raiseSalary(5);

The effect is to increase the value of the number007.salary field by 5%. More specifically, the
call executes the following instructions:

double raise = number@07.salary = 5 / 100;

number0@7.salary += raise;

The raiseSalary method has two parameters. The first parameter, called the implicit param-
eter, is the object of type Employee that appears before the method name. The second param-
eter, the number inside the parentheses after the method name, is an explicit parameter.
As you can see, the explicit parameters are explicitly listed in the method declaration, for
example, double byPercent. The implicit parameter does not appear in the method declaration.
In every method, the keyword this refers to the implicit parameter. If you like, you can
write the raiseSalary method as follows:
pubTic void raiseSalary(double byPercent)
{
double raise = this.salary = byPercent / 100;
this.salary += raise;

}

Some programmers prefer that style because it clearly distinguishes between instance
fields and local variables.

E C++ NOTE: In C++, you generally define methods outside the class:
void Employee::raiseSalary(double byPercent) // C++, not Java

{
}

If you define a method inside a class, then it is automatically an inline method.
class Employee

{

int getName() { return name; } // inline in G+

}

In the Java programming language, all methods are defined inside the class itself. This does
not make them inline. Finding opportunities for inline replacement is the job of the Java vir-
tual machine. The just-in-time compiler watches for calls to methods that are short, com-
monly called, and not overridden, and optimizes them away.

Chapter 4. Objects and Classes

Defining Your Own Classes

Benefits of Encapsulation
Finally, let’s look more closely at the rather simple getName, getSalary, and getHireDay
methods.

public String getName()
{

}

return name;

pubTic double getSalary()
{

}

return salary;

public Date getHireDay()
{

}

These are obvious examples of accessor methods. Because they simply return the values
of instance fields, they are sometimes called field accessors.

return hireDay;

Wouldn't it be easier to simply make the name, salary, and hireDay fields public, instead of
having separate accessor methods?
The point is that the name field is a read-only field. Once you set it in the constructor,
there is no method to change it. Thus, we have a guarantee that the name field will
never be corrupted.
The salary field is not read-only, but it can only be changed by the raiseSalary method.
In particular, should the value ever be wrong, only that method needs to be
debugged. Had the salary field been public, the culprit for messing up the value
could have been anywhere.
Sometimes, it happens that you want to get and set the value of an instance field. Then
you need to supply three items:
* A private data field;
e A public field accessor method; and
e A public field mutator method.
This is a lot more tedious than supplying a single public data field, but there are consid-
erable benefits.
First, you can change the internal implementation without affecting any code other than
the methods of the class.
For example, if the storage of the name is changed to

String firstName;

String lastName;
then the getName method can be changed to return

firstName + + lastName

This change is completely invisible to the remainder of the program.

Chapter 4. Objects and Classes

m Chapter 4 B Objects and Classes

Of course, the accessor and mutator methods may need to do a lot of work and convert
between the old and the new data representation. But that leads us to our second bene-
fit: Mutator methods can perform error-checking, whereas code that simply assigns to a
field may not go to the trouble. For example, asetSalary method might check that the sal-
ary is never less than 0.

CAUTION: Be careful not to write accessor methods that return references to mutable objects.
n We violated that rule in our EmpToyee class in which the getHireDay method returns an object of
class Date:

class Employee

{
;;ul;11:c Date getHireDay()
{

return hireDay;

private Date hireDay;

}

This breaks the encapsulation! Consider the following rogue code:
Employee harry = . . .;
Date d = harry.getHireDay();
double tenYearsInMilliSeconds = 10 « 365.25 « 24 « 60 « 60 = 1000;
d.setTime(d.getTime() - (long) tenYearsInMilliSeconds);
// let's give Harry ten years added seniority
The reason is subtle. Both d and harry.hireDay refer to the same object (see Figure 4-5).
Applying mutator methods to d automatically changes the private state of the employee
object!

If you need to return a reference to a mutable object, you should clone it first. A clone is an
exact copy of an object that is stored in a new location. We discuss cloning in detail in Chap-
ter 6. Here is the corrected code:

class Employee
{
public Date getHireDay()

return (Date) hireDay.clone();

}
o

As a rule of thumb, always use clone whenever you need to return a copy of a mutable data
field.

Chapter 4. Objects and Classes

Defining Your Own Classes m

Figure 4-5 Returning a reference to a mutable data field

Class-Based Access Privileges

You know that a method can access the private data of the object on which it is invoked.
What many people find surprising is that a method can access the private data of all
objects of its class. For example, consider a method equals that compares two employees.

class Employee

l:JO(lﬂ éan equals(Employee other)

{

}
}

A typical call is

return name.equals(other.name);

if (harry.equals(boss)) . . .

This method accesses the private fields of harry, which is not surprising. It also accesses the
private fields of boss. This is legal because boss is an object of type Employee, and a method of
the Employee class is permitted to access the private fields of any object of typeEmployee.

C++ NOTE: C++ has the same rule. A method can access the private features of any object
E of its class, not just of the implicit parameter.

Chapter 4. Objects and Classes

Chapter 4 B Objects and Classes

Private Methods

When implementing a class, we make all data fields private because public data are
dangerous. But what about the methods? While most methods are public, private
methods are used in certain circumstances. Sometimes, you may wish to break up
the code for a computation into separate helper methods. Typically, these helper
methods should not become part of the public interface—they may be too close to
the current implementation or require a special protocol or calling order. Such meth-
ods are best implemented as private.

To implement a private method in Java, simply change the public keyword to private.

By making a method private, you are under no obligation to keep it available if you
change to another implementation. The method may well be harder to implement or
unnecessary if the data representation changes: this is irrelevant. The point is that as long
as the method is private, the designers of the class can be assured that it is never used
outside the other class operations and can simply drop it. If a method is public, you can-
not simply drop it because other code might rely on it.

Final Instance Fields

You can define an instance field as final. Such a field must be initialized when the object
is constructed. That is, it must be guaranteed that the field value has been set after the
end of every constructor. Afterwards, the field may not be modified again. For example,
the name field of the Employee class may be declared as final because it never changes after
the object is constructed—there is no setName method.

class Employee

private final String name;

}
The final modifier is particularly useful for fields whose type is primitive or an immuta-
ble class. (A class is immutable if none of its methods ever mutate its objects. For exam-
ple, the String class is immutable.) For mutable classes, the final modifier is likely to
confuse the reader. For example,

private final Date hiredate;
merely means that the object reference stored in thehiredate variable doesn’t get changed
after the object is constructed. That does not mean that the hiredate object is constant.
Any method is free to invoke the setTime mutator on the object to which hiredate refers.

Static Fields and Methods

In all sample programs that you have seen, themain method is tagged with the static
modifier. We are now ready to discuss the meaning of this modifier.

Static Fields

If you define a field as static, then there is only one such field per class. In contrast, each
object has its own copy of all instance fields. For example, let’s suppose we want to
assign a unique identification number to each employee. We add an instance fieldid and
a static field nextId to the Employee class:

class Employee

Chapter 4. Objects and Classes

Static Fields and Methods

private int id;
private static int nextId = 1;
}

Every employee object now has its own id field, but there is only one nextId field that is
shared among all instances of the class. Let’s put it another way. If there are 1,000 objects
of the Employee class, then there are 1,000 instance fieldsid, one for each object. But there is
a single static field nextId. Even if there are no employee objects, the static field nextId is
present. It belongs to the class, not to any individual object.

NOTE: In most object-oriented programming languages, static fields are called class fields.
u The term “static” is a meaningless holdover from C++.

Let’s implement a simple method:
pubTic void setId()
{

id = nextId;
nextId++;

Suppose you set the employee identification number forharry:
harry.setId();

Then, the id field of harry is set to the current value of the static field nextId, and the value
of the static field is incremented:

harry.id = Employee.nextId;
Employee.nextId++;
Static Constants

Static variables are quite rare. However, static constants are more common. For exam-
ple, the Math class defines a static constant:

pubTic class Math

public static final double PT = 3.14159265358979323846;
}

You can access this constant in your programs asMath.PI.

If the keyword static had been omitted, then PI would have been an instance field of the
Math class. That is, you would need an object of theMath class to access PI, and every Math
object would have its own copy of PI.

Another static constant that you have used many times is System.out. It is declared in the
System class as follows:

pubTic class System

{

public static final PrintStream out = . . .;

Chapter 4. Objects and Classes

Chapter 4 B Objects and Classes

As we mentioned several times, it is never a good idea to have public fields, because
everyone can modify them. However, public constants (that is, final fields) are fine.
Because out has been declared as final, you cannot reassign another print stream to it:

System.out = new PrintStream(. . .); // ERROR--out is final

System.out to a different stream. You may wonder how that method can change the value of
a final variable. However, the setOut method is a native method, not implemented in the
Java programming language. Native methods can bypass the access control mechanisms
of the Java language. This is a very unusual workaround that you should not emulate in
your own programs.

NOTE: If you look at the System class, you will notice a method setOut that lets you set

Static Methods
Static methods are methods that do not operate on objects. For example, thepow method
of the Math class is a static method. The expression

Math.pow(x, a)
computes the power x%. It does not use any Math object to carry out its task. In other
words, it has no implicit parameter.
You can think of static methods as methods that don’t have a this parameter. (In a non-
static method, the this parameter refers to the implicit parameter of the method—see the
section “Implicit and Explicit Parameters” on page 127.)
Because static methods don’t operate on objects, you cannot access instance fields from
a static method. But static methods can access the static fields in their class. Here is an
example of such a static method:

public static int getNextId()
{

return nextId; // returns static field

}
To call this method, you supply the name of the class:
int n = Employee.getNextId();

Could you have omitted the keyword static for this method? Yes, but then you would
need to have an object reference of type Employee to invoke the method.

NOTE: It is legal to use an object to call a static method. For example, if harry is an Employee
object, then you can call harry.getNextId() instead of Employee.getnextId(). However, we find

that notation confusing. The getNextId method doesn’t look at harry at all to compute the

result. We recommend that you use class names, not objects, to invoke static methods.

You use static methods in two situations:
¢ When a method doesn’t need to access the object state because all needed
parameters are supplied as explicit parameters (example:Math.pow)

* When a method only needs to access static fields of the class (example:
Employee.getNextId)

Chapter 4. Objects and Classes

Static Fields and Methods m

E C++ NOTE: Static fields and methods have the same functionality in Java and C++. How-
ever, the syntax is slightly different. In C++, you use the :: operator to access a static field or
method outside its scope, such as Math::PI.

The term “static” has a curious history. At first, the keyword static was introduced in C to
denote local variables that don’t go away when a block is exited. In that context, the term
“static” makes sense: the variable stays around and is still there when the block is entered
again. Then static got a second meaning in C, to denote global variables and functions that
cannot be accessed from other files. The keyword static was simply reused, to avoid intro-
ducing a new keyword. Finally, C++ reused the keyword for a third, unrelated, interpreta-
tion—to denote variables and functions that belong to a class but not to any particular object
of the class. That is the same meaning that the keyword has in Java.

Factory Methods
Here is another common use for static methods. The NumberFormat class uses factory meth-
ods that yield formatter objects for various styles.
NumberFormat currencyFormatter = NumberFormat.getCurrencyInstance();
NumberFormat percentFormatter = NumberFormat.getPercentInstance();
double x = 0.1;
System.out.printIn(currencyFormatter.format(x)); // prints $0.10
System.out.printin(percentFormatter.format(x)); // prints 10%

Why doesn’t the NumberFormat class use a constructor instead? There are two reasons:

* You can’t give names to constructors. The constructor name is always the same as
the class name. But we want two different names to get the currency instance and
the percent instance.

* When you use a constructor, you can’t vary the type of the constructed object. But
the factory methods actually return objects of the class DecimalFormat, a subclass that
inherits from NumberFormat. (See Chapter 5 for more on inheritance.)

The main Method
Note that you can call static methods without having any objects. For example, you
never construct any objects of the Math class to call Math. pow.

For the same reason, the main method is a static method.
public class Application

{

public static void main(String[] args)

{

// construct objects here

}
}
The main method does not operate on any objects. In fact, when a program starts, there
aren’t any objects yet. The staticmain method executes, and constructs the objects that the
program needs.

Chapter 4. Objects and Classes

m Chapter 4 B Objects and Classes

TIP: Every class can have a main method. That is a handy trick for unit testing of classes. For
example, you can add a main method to the Employee class:
class Employee

{
public Employee(String n, double s, int year, int month, int day)
{
name = n;
salary = s;
GregorianCalendar calendar = new GregorianCalendar(year, month - 1, day);
hireDay = calendar.getTime();
}
public static void main(String[] args) // unit test
{
Employee e = new Employee("Romeo", 50000, 2003, 3, 31);
e.raiseSalary(10);
System.out.printIn(e.getName() + " " + e.getSalary());

}
o

If you want to test the EmpTloyee class in isolation, you simply execute
java Employee

If the employee class is a part of a larger application, then you start the application with
java Application

and the main method of the EmpTloyee class is never executed.

The program in Listing 4-3 contains a simple version of theEmployee class with a static field
nextId and a static method getNextId. We fill an array with three Employee objects and then print
the employee information. Finally, we print the next available identification number, to dem-
onstrate the static method.
Note that the Employee class also has a staticmain method for unit testing. Try running both
java Employee
and
java StaticTest
to execute both main methods.

Listing 4-3 RNERMEGAETE

[
x This program demonstrates static methods.
x @version 1.01 2004-02-19
+ @author Cay Horstmann
. public class StaticTest
{

public static void main(String[] args)

{

© ® N @ o s w P o

Chapter 4. Objects and Classes

Static Fields and Methods

IS ET5L TR I StaticTest.java (continued)

@

0.

57.

-}

// fi11 the staff array with three Employee objects
Employee[] staff = new Employee[3];

staff[0] = new Employee("Tom", 40000);
staff[1] = new EmpToyee("Dick", 60000);
staff[2] = new Employee("Harry", 65000);

// print out information about all Employee objects
for (Employee e : staff)

e.setld();

System.out.printIn("name=" + e.getName() + ",id=" + e.getId() + ",salary="

+ e.getSalary());
}

int n = Employee.getNextId(); // calls static method
System.out.printIn("Next available id=" + n);

}

. class Employee

A

public Employee(String n, double s)
{

name = n;

salary = s;

id = 0;
}

public String getName()
{

return name;

}

pubTic double getSalary()
{

return salary;

}

public int getId()
{

return id;

}

pubTic void setId()

{
id = nextId; // set id to next available id
nextId++;

}

137

Chapter 4. Objects and Classes

Chapter 4 B Objects and Classes

ISR TR BRI StaticTest.java (continued)

59.
60. public static int getNextId()

61. {
62. return nextId; // returns static field
63. }

64.
65. public static void main(String[] args) // unit test

66. {

67. Employee e = new Employee("Harry", 50000);

68. System.out.printin(e.getName() + " " + e.getSalary());
69. }

70.

71. private String name;

72. private double salary;

73. private int id;

74, private static int nextld = 1;
75}

Method Parameters

Let us review the computer science terms that describe how parameters can be passed to a
method (or a function) in a programming language. The term call by value means that the
method gets just the value that the caller provides. In contrast, call by reference means that
the method gets the location of the variable that the caller provides. Thus, a method can mod-
ify the value stored in a variable that is passed by reference but not in one that is passed by
value. These “call by . .. ” terms are standard computer science terminology that describe
the behavior of method parameters in various programming languages, not just Java. (In
fact, there is also a call by name that is mainly of historical interest, being employed in the
Algol programming language, one of the oldest high-level languages.)

The Java programming language always uses call by value. That means that the method
gets a copy of all parameter values. In particular, the method cannot modify the con-
tents of any parameter variables that are passed to it.

For example, consider the following call:

double percent = 10;
harry.raiseSalary(percent);

No matter how the method is implemented, we know that after the method call, the
value of percent is still 10.

Let us look a little more closely at this situation. Suppose a method tried to triple the
value of a method parameter:

public static void tripleValue(double x) // doesn't work

Let’s call this method:

double percent = 10;
tripleValue(percent);

Chapter 4. Objects and Classes

Method Parameters

However, this does not work. After the method call, the value of percent is still 10. Here is
what happens:

1. xis initialized with a copy of the value of percent (that is, 10).
2. xis tripled—it is now 30. But percent is still 10 (see Figure 4-6).
3. The method ends, and the parameter variable x is no longer in use.

A value copied

percent = ,10

X= ¥ 30

value tripled

Figure 4-6 Modifying a numeric parameter has no lasting effect

There are, however, two kinds of method parameters:

* Primitive types (numbers, boolean values)
¢ Object references

You have seen that it is impossible for a method to change a primitive type parameter.
The situation is different for object parameters. You can easily implement a method that
triples the salary of an employee:

public static void tripleSalary(Employee x) // works

{
}

x.raiseSalary(200);

Chapter 4. Objects and Classes

Chapter 4 B Objects and Classes

When you call
harry = new Employee(. . .);
tripleSalary(harry);
then the following happens:
1. xis initialized with a copy of the value of harry, that is, an object reference.
2. The raiseSalary method is applied to that object reference. TheEmployee object to which
both x and harry refer gets its salary raised by 200 percent.
3. The method ends, and the parameter variable x is no longer in use. Of course, the
object variable harry continues to refer to the object whose salary was tripled (see
Figure 4-7).

reference

copied ¢| salary tripled

Employee

Figure 4-7 Modifying an object parameter has a lasting effect

As you have seen, it is easily possible—and in fact very common—to implement meth-
ods that change the state of an object parameter. The reason is simple. The method gets a
copy of the object reference, and both the original and the copy refer to the same object.
Many programming languages (in particular, C++ and Pascal) have two methods for
parameter passing: call by value and call by reference. Some programmers (and unfortu-
nately even some book authors) claim that the Java programming language uses call by
reference for objects. However, that is false. Because this is such a common misunder-
standing, it is worth examining a counterexample in detail.

Let’s try to write a method that swaps two employee objects:
public static void swap(Employee x, Employee y) // doesn't work

EmpToyee temp = Xx;
X =Y;

Chapter 4. Objects and Classes

Method Parameters m

y = temp;

If the Java programming language used call by reference for objects, this method would

work:
Employee a = new Employee("Alice", . . .);
Employee b = new Employee("Bob", . . .);
swap(a, b);

// does a now refer to Bob, b to Alice?
However, the method does not actually change the object references that are stored in
the variables a and b. The x and y parameters of the swap method are initialized with copies
of these references. The method then proceeds to swap these copies.

// x refers to Alice, y to Bob

Employee temp = x;

X =Y;

y = temp;

// now x refers to Bob, y to Alice
But ultimately, this is a wasted effort. When the method ends, the parameter variablesx
and y are abandoned. The original variablesa and b still refer to the same objects as they
did before the method call (see Figure 4-8).

references Employee

copied

references
swapped

Figure 4-8 Swapping object parameters has no lasting effect

This discussion demonstrates that the Java programming language does not use call by
reference for objects. Instead, object references are passed by value.

Here is a summary of what you can and cannot do with method parameters in the Java
programming language:

Chapter 4. Objects and Classes

ﬂ Chapter 4 B Objects and Classes

¢ A method cannot modify a parameter of primitive type (that is, numbers orboolean
values).

e A method can change the state of an object parameter.
* A method cannot make an object parameter refer to a new object.

The program in Listing 4-4 demonstrates these facts. The program first tries to triple the
value of a number parameter and does not succeed:

Testing tripleValue:

Before: percent=10.0

End of method: x=30.0

After: percent=10.0

It then successfully triples the salary of an employee:

Testing tripleSalary:
Before: salary=50000.0
End of method: salary=150000.0
After: salary=150000.0

After the method, the state of the object to whichharry refers has changed. This is possi-
ble because the method modified the state through a copy of the object reference.
Finally, the program demonstrates the failure of the swap method:

Testing swap:

Before: a=Alice

Before: b=Bob

End of method: x=Bob

End of method: y=Alice

After: a=Alice

After: b=Bob

As you can see, the parameter variablesx and y are swapped, but the variablesa and b
are not affected.

C++ NOTE: C++ has both call by value and call by reference. You tag reference parameters
E with & For example, you can easily implement methods void tripleValue(double& x) or
void swap(Employee& x, Employee& y) that modify their reference parameters.

) BET50 TSV S ParamTest. java

1. [

2. % This program demonstrates parameter passing in Java.
3.+ @version 1.00 2000-01-27

4. @author Cay Horstmann

5. %/

6. pubTic class ParamTest

7.{

8. public static void main(String[] args)

9. {

10. /%

1. + Test 1: Methods can't modify numeric parameters

12. %

Chapter 4. Objects and Classes

Method Parameters m

IS TT50 TR BV Bl ParamTest.java (continued)

System.out.printin("Testing triplevValue:");
doubTe percent = 10;

System.out.printin("Before: percent=" + percent);
tripleValue(percent);

System.out.printIn("After: percent=" + percent);

/%
» Test 2: Methods can change the state of object parameters
x/

System.out.printIn("\nTesting tripleSalary:");

Employee harry = new Employee("Harry", 50000);

System.out.printin("Before: salary=" + harry.getSalary());

tripleSalary(harry);

System.out.printIn("After: salary=

+ harry.getSalary());
/%
x/
System.out.printIn("\nTesting swap:");
Employee a = new Employee("Alice", 70000);
Employee b = new Employee("Bob", 60000);
System.out.printin("Before: a=" + a.getName());
System.out.printin("Before: b=" + b.getName());
swap(a, b);

System.out.printIn("After: a=" + a.getName());
System.out.printIn("After: b=" + b.getName());

}
public static void tripleValue(double x) // doesn't work
{
X =3 % X;
System.out.printin("End of method: x=" + X);
}

public static void tripleSalary(Employee x) // works
{

x.raiseSalary(200);

System.out.printin("End of method: salary=" + x.getSalary());
}

pubTlic static void swap(Employee x, Employee y)

{
Employee temp = Xx;
X =Y
y = temp;

System.out.printIn("End of method: x=" + x.getName());
System.out.printIn("End of method: y=" + y.getName());

Test 3: Methods can't attach new objects to object parameters

Chapter 4. Objects and Classes

m Chapter 4 B Objects and Classes

)R TT50 TR S S ParamTest.java (continued)

62.

63. Class Employee // simplified Employee class
64. {

65. public Employee(String n, double s)

67. name = n;
68. salary = s;

69. }

70.

71. public String getName()

72. {

73. return name;

74. 1

75.

76. public double getSalary()

77. {

78. return salary;

79. }

80.

s1. public void raiseSalary(double byPercent)
82. {

83. doubTe raise = salary = byPercent / 100;
84. salary += raise;

85. }

87. private String name;
ss. private double salary;

Object Construction

You have seen how to write simple constructors that define the initial state of your objects.
However, because object construction is so important, Java offers quite a variety of mecha-
nisms for writing constructors. We go over these mechanisms in the sections that follow.

Overloading
Recall that the GregorianCalendar class had more than one constructor. We could use
GregorianCalendar today = new GregorianCalendar();
or
GregorianCalendar deadline = new GregorianCalendar(2099, Calendar.DECEMBER, 31);
This capability is called overloading. Overloading occurs if several methods have the
same name (in this case, the GregorianCalendar constructor method) but different parame-
ters. The compiler must sort out which method to call. It picks the correct method by
matching the parameter types in the headers of the various methods with the types of
the values used in the specific method call. A compile-time error occurs if the compiler
cannot match the parameters or if more than one match is possible. (This process is
called overloading resolution.)

Chapter 4. Objects and Classes

Object Construction m

NOTE: Java allows you to overload any method—not just constructor methods. Thus, to
completely describe a method, you need to specify the name of the method together with its

parameter types. This is called the signature of the method. For example, the String class
has four public methods called index0f. They have signatures

index0f (int)

index0f (int, int)

index0f(String)

index0f(String, int)
The return type is not part of the method signature. That is, you cannot have two methods
with the same names and parameter types but different return types.

Default Field Initialization

If you don’t set a field explicitly in a constructor, it is automatically set to a default
value: numbers to 0, boolean values to false, and object references tonull. But it is consid-
ered poor programming practice to rely on this. Certainly, it makes it harder for some-
one to understand your code if fields are being initialized invisibly.

explicitly initialize local variables in a method. But if you don't initialize a field in a class, it is

NOTE: This is an important difference between fields and local variables. You must always
automatically initialized to a default (0, false, or nul1).

For example, consider the Employee class. Suppose you don’t specify how to initialize
some of the fields in a constructor. By default, the salary field would be initialized with 0
and the name and hireDay fields would be initialized with nu11.

However, that would not be a good idea. If anyone called the getName or getHireDay
method, then they would get anull reference that they probably don’t expect:

Date h = harry.getHireDay();
calendar.setTime(h); // throws exception if h is null

Default Constructors
A default constructor is a constructor with no parameters. For example, here is a default
constructor for the Employee class:

public Employee()
{
name = "";
salary = 0;
hireDay = new Date();
}
If you write a class with no constructors whatsoever, then a default constructor is pro-
vided for you. This default constructor sets all the instance fields to their default values.
So, all numeric data contained in the instance fields would be®, all boolean values would
be false, and all object variables would be set tonull.
If a class supplies at least one constructor but does not supply a default constructor, it is

illegal to construct objects without construction parameters. For example, our original
Employee class in Listing 4-2 provided a single constructor:

Chapter 4. Objects and Classes

Chapter 4 B Objects and Classes

Employee(String name, double salary, int y, int m, int d)
With that class, it was not legal to construct default employees. That is, the call
e = new EmpToyee();

would have been an error.

CAUTION: Please keep in mind that you get a free default constructor only when your class
n has no other constructors. If you write your class with even a single constructor of your own
and you want the users of your class to have the ability to create an instance by a call to
new ClassName()

then you must provide a default constructor (with no parameters). Of course, if you are
happy with the default values for all fields, you can simply supply

public ClassName()

{
}

Explicit Field Initialization
Because you can overload the constructor methods in a class, you can obviously build in
many ways to set the initial state of the instance fields of your classes. It is always a
good idea to make sure that, regardless of the constructor call, every instance field is set
to something meaningful.
You can simply assign a value to any field in the class definition. For example:

class Employee

{

private String name = "";
}
This assignment is carried out before the constructor executes. This syntax is particu-

larly useful if all constructors of a class need to set a particular instance field to the same
value.

The initialization value doesn’t have to be a constant value. Here is an example in which
a field is initialized with a method call. Consider an Employee class where each employee
has an id field. You can initialize it as follows:

class Employee

{

static int assignId()
{
int r = nextId;
nextId++;
return r;

}

private int id = assignId();

Chapter 4. Objects and Classes

Object Construction

E C++ NOTE: In C++, you cannot directly initialize instance fields of a class. All fields must be set
in a constructor. However, C++ has a special initializer list syntax, such as

Employee::Employee(String n, double s, int y, int m, int d) // C++
name(n),
salary(s),
hireDay(y, m, d)

{

}

C++ uses this special syntax to call field constructors. In Java, there is no need for it
because objects have no subobjects, only pointers to other objects.

Parameter Names

When you write very trivial constructors (and you'll write a lot of them), then it can be
somewhat frustrating to come up with parameter names.

We have generally opted for single-letter parameter names:

public Employee(String n, double s)
{

name = n;

salary = s;

}

However, the drawback is that you need to read the code to tell what thenand s
parameters mean.

Some programmers prefix each parameter with an “a”:

public Employee(String aName, double aSalary)
{

name = aName;
salary = aSalary;

}
That is quite neat. Any reader can immediately figure out the meaning of the parameters.

Another commonly used trick relies on the fact that parameter variables shadow instance
fields with the same name. For example, if you call a parametersalary, then salary refers to
the parameter, not the instance field. But you can still access the instance field as this.sal-
ary. Recall that this denotes the implicit parameter, that is, the object that is being con-
structed. Here is an example:

public Employee(String name, double salary)
{

this.name = name;

this.salary = salary;

}

C++ NOTE: In C++, it is common to prefix instance fields with an underscore or a fixed let-
ter. (The letters m and x are common choices.) For example, the salary field might be called
_salary, mSalary, or xSalary. Java programmers don’t usually do that.

147

Chapter 4. Objects and Classes

Chapter 4 B Objects and Classes

Calling Another Constructor
The keyword this refers to the implicit parameter of a method. However, the keyword
has a second meaning.
If the first statement of a constructor has the form this(. . .), then the constructor calls
another constructor of the same class. Here is a typical example:
pubTic Employee(double s)
{
// calls Employee(String, double)
this("EmpToyee #" + nextId, s);
nextId++;
}
When you call new Employee(60000), then the Employee(double) constructor calls the
Employee(String, double) constructor.

Using the this keyword in this manner is useful—you only need to write common
construction code once.

E C++ NOTE: The this reference in Java is identical to the this pointer in C++. However, in C++
it is not possible for one constructor to call another. If you want to factor out common initializa-
tion code in C++, you must write a separate method.

Initialization Blocks

You have already seen two ways to initialize a data field:
® By setting a value in a constructor

¢ By assigning a value in the declaration

There is actually a third mechanism in Java; it’s called an initialization block. Class decla-
rations can contain arbitrary blocks of code. These blocks are executed whenever an
object of that class is constructed. For example:

class Employee
public Employee(String n, double s)

name = n;
salary = s;

}

pubTic Employee()
name = "";
salary = 0;

}

private static int nextId;

private int id;
private String name;
private double salary;

Chapter 4. Objects and Classes

Object Construction m

// object initialization block

id = nextId;
nextId++;
}
}

In this example, the id field is initialized in the object initialization block, no matter
which constructor is used to construct an object. The initialization block runs first, and
then the body of the constructor is executed.

This mechanism is never necessary and is not common. It usually is more straightfor-
ward to place the initialization code inside a constructor.

NOTE: It is legal to set fields in initialization blocks even though they are only defined later in the

class. Some versions of Sun’s Java compiler handled this case incorrectly (bug # 4459133).
This bug has been fixed in Java SE 1.4.1. However, to avoid circular definitions, it is not legal
to read from fields that are only initialized later. The exact rules are spelled out in section
8.3.2.3 of the Java Language Specification (http://java.sun.com/docs/books/j1s). Because
the rules are complex enough to baffle the compiler implementors, we suggest that you
place initialization blocks after the field definitions.

With so many ways of initializing data fields, it can be quite confusing to give all possi-

ble pathways for the construction process. Here is what happens in detail when a con-

structor is called:

1. All data fields are initialized to their default value @, false, or null).

2. Allfield initializers and initialization blocks are executed, in the order in which they
occur in the class declaration.

3. If the first line of the constructor calls a second constructor, then the body of the sec-
ond constructor is executed.

4. The body of the constructor is executed.

Naturally, it is always a good idea to organize your initialization code so that another

programmer could easily understand it without having to be a language lawyer. For

example, it would be quite strange and somewhat error prone to have a class whose

constructors depend on the order in which the data fields are declared.

You initialize a static field either by supplying an initial value or by using a static initial-
ization block. You have already seen the first mechanism:

static int nextld = 1;
If the static fields of your class require complex initialization code, use a static ini-
tialization block.
Place the code inside a block and tag it with the keyword static. Here is an example. We
want the employee ID numbers to start at a random integer less than 10,000.

// static initialization block

static

{

Random generator = new Random();
nextId = generator.nextInt(10000);
}

Chapter 4. Objects and Classes

Chapter 4 B Objects and Classes

Static initialization occurs when the class is first loaded. Like instance fields, static fields
are 0, false, or nul1 unless you explicitly set them to another value. All static field initial-
izers and static initialization blocks are executed in the order in which they occur in the
class declaration.

NOTE: Here is a Java trivia fact to amaze your fellow Java coders: You can write a “Hello,
u World” program in Java without ever writing a main method.
public class Hello
{
static

{

}
}

When you invoke the class with java Hello, the class is loaded, the static initialization block
prints “Hello, World,” and only then do you get an ugly error message that main is not
defined. You can avoid that blemish by calling System.exit(@) at the end of the static initializa-
tion block.

System.out.printIn("Hello, World");

The program in Listing 4-5 shows many of the features that we discussed in this section:

e Opverloaded constructors

e A call to another constructor with this(...)
e A default constructor

* An object initialization block

e A static initialization block

e An instance field initialization

I BTTR 1T S8l ConstructorTest. java

_import java.util.s;

1

2.

3. [wx

4.+ This program demonstrates object construction.
5.« @version 1.01 2004-02-19

6. * @author Cay Horstmann

7.

8.

9.

Sy
. public class ConstructorTest
|
0. public static void main(String[] args)
11. {
12. // fill the staff array with three Employee objects
13. Employee[] staff = new Employee[3];
14.
15. staff[0] = new Employee("Harry", 40000);
16. staff[1] = new Employee(60000);

17. staff[2] = new Employee();

Chapter 4. Objects and Classes

Object Construction ﬂ

IS 150 TRl ConstructorTest.java (continued)

19. // print out information about all Employee objects

20. for (Employee e : staff)

21. System.out.printIn("name=" + e.getName() + ",id=" + e.getId() + ",salary="
22. + e.getSalary());

23. }

24. }

25.

26. Class Employee

27. {

28. // three overloaded constructors
20. public EmpToyee(String n, double s)

30. {

31, name = n;

32. salary = s;

33. }

34.

3. pubTic Employee(double s)

36. {

37. // calls the Employee(String, double) constructor
38. this("Employee #" + nextId, s);

39. }

40.
4. // the default constructor
42, public Employee()

43. {

44, // name initialized to ""--see below

45, // salary not explicitly set--initialized to 0
46. // id initialized in initialization block

47. }

48.
4. public String getName()

50. {
51. return name;
52. }

53.

54. public double getSalary()

55. {
56. return salary;
57. }

58.
so. public int getId()

60. {

61. return id;
62. }

63.

64. private static int nextld;

65.

66. private int id;

67. private String name = ""; // instance field initialization
es. private double salary;

Chapter 4. Objects and Classes

ﬂ Chapter 4 B Objects and Classes

)R TT50 TR 22 ConstructorTest.java (continued)

69.
70. // static initialization block

71, static
72. {
73. Random generator = new Random();
74. // set nextId to a random number between @ and 9999
75. nextId = generator.nextInt(10000);
76. }
77.
7s. // object initialization block
79. {
80. id = nextId;
81. nextId++;
8.}
83. }
java.util.Random 1.0
e Random()

constructs a new random number generator.

e int nextInt(int n) 1.2
returns a random number between 0 andn —1.

Object Destruction and the finalize Method

Some object-oriented programming languages, notably C++, have explicit destructor
methods for any cleanup code that may be needed when an object is no longer used.
The most common activity in a destructor is reclaiming the memory set aside for objects.
Because Java does automatic garbage collection, manual memory reclamation is not
needed and so Java does not support destructors.

Of course, some objects utilize a resource other than memory, such as a file or a handle
to another object that uses system resources. In this case, it is important that the resource
be reclaimed and recycled when it is no longer needed.

You can add a finalize method to any class. The finalize method will be called before the
garbage collector sweeps away the object. In practice, do not rely on the finalize method for
recycling any resources that are in short supply—you simply cannot know when this
method will be called.

NOTE: The method call System.runFinalizersOnExit(true) guarantees that finalizer meth-
u ods are called before Java shuts down. However, this method is inherently unsafe

and has been deprecated. An alternative is to add “shutdown hooks” with the method

Runtime.addShutdownHook—see the APl documentation for details.

If a resource needs to be closed as soon as you have finished using it, you need to man-
age it manually. Supply a method such as dispose or close that you call to clean up what

Chapter 4. Objects and Classes

Packages

needs cleaning. Just as importantly, if a class you use has such a method, you need to
call it when you are done with the object.

Packages

Java allows you to group classes in a collection called a package. Packages are conve-
nient for organizing your work and for separating your work from code libraries
provided by others.

The standard Java library is distributed over a number of packages, including
java.lang, java.util, java.net, and so on. The standard Java packages are examples of
hierarchical packages. Just as you have nested subdirectories on your hard disk, you
can organize packages by using levels of nesting. All standard Java packages are
inside the java and javax package hierarchies.

The main reason for using packages is to guarantee the uniqueness of class names.
Suppose two programmers come up with the bright idea of supplying anEmployee
class. As long as both of them place their class into different packages, there is no con-
flict. In fact, to absolutely guarantee a unique package name, Sun recommends that
you use your company’s Internet domain name (which is known to be unique) written
in reverse. You then use subpackages for different projects. For example,horstmann. com
is a domain that one of the authors registered. Written in reverse order, it turns into
the package com.horstmann. That package can then be further subdivided into subpack-
ages such as com.horstmann.corejava.

From the point of view of the compiler, there is absolutely no relationship between
nested packages. For example, the packages java.util and java.util.jar have nothing to
do with each other. Each is its own independent collection of classes.
Class Importation
A class can use all classes from its own package and all public classes from other packages.
You can access the public classes in another package in two ways. The first is simply to
add the full package name in front of every class name. For example:

java.util.Date today = new java.util.Date();
That is obviously tedious. The simpler, and more common, approach is to use theimport
statement. The point of the import statement is simply to give you a shorthand to refer to the

classes in the package. Once you use import, you no longer have to give the classes their full
names.

You can import a specific class or the whole package. You place import statements at the
top of your source files (but below any package statements). For example, you can import
all classes in the java.util package with the statement

import java.util.s;

Then you can use
Date today = new Date();

without a package prefix. You can also import a specific class inside a package:
import java.util.Date;

The java.util.x syntax is less tedious. It has no negative effect on code size. However, if you
import classes explicitly, the reader of your code knows exactly which classes you use.

Chapter 4. Objects and Classes

m Chapter 4 B Objects and Classes

TIP: In Eclipse, you can select the menu option Source -> Organize Imports. Package state-
ments such as import java.util.; are automatically expanded into a list of specific imports
such as

import java.util.Arraylist;

import java.util.Date;

This is an extremely convenient feature.

However, note that you can only use the » notation to import a single package. You can-
not use import java.x or import java.s.x to import all packages with the java prefix.
Most of the time, you just import the packages that you need, without worrying too
much about them. The only time that you need to pay attention to packages is when you
have a name conflict. For example, both the java.util and java.sql packages have a Date
class. Suppose you write a program that imports both packages.

import java.util.s;

import java.sql.x;
If you now use the Date class, then you get a compile-time error:

Date today; // ERROR--java.util.Date or java.sql.Date?
The compiler cannot figure out which Date class you want. You can solve this problem
by adding a specific import statement:

import java.util.x;

import java.sql.x;

import java.util.Date;
What if you really need both Date classes? Then you need to use the full package name
with every class name.

java.util.Date deadline = new java.util.Date();

java.sql.Date today = new java.sql.Date(...);
Locating classes in packages is an activity of the compiler. The bytecodes in class files
always use full package names to refer to other classes.

C++ NOTE: C++ programmers usually confuse import with #include. The two have nothing in

common. In C++, you must use #include to include the declarations of external features
because the C++ compiler does not look inside any files except the one that it is compiling and
explicitly included header files. The Java compiler will happily look inside other files provided
you tell it where to look.

In Java, you can entirely avoid the import mechanism by explicitly naming all classes, such
as java.util.Date. In C++, you cannot avoid the #include directives.

The only benefit of the import statement is convenience. You can refer to a class by a name
shorter than the full package name. For example, after an import java.util.x (or import
java.util.Date) statement, you can refer to the java.util.Date class simply as Date.

The analogous construction to the package mechanism in C++ is the namespace feature.

Think of the package and import statements in Java as the analogs of the namespace and using
directives in C++.

Chapter 4. Objects and Classes

Packages

Static Imports
Starting with Java SE 5.0, the import statement has been enhanced to permit the import-
ing of static methods and fields, not just classes.
For example, if you add the directive
import static java.lang.System.s:;

to the top of your source file, then you can use static methods and fields of theSysten
class without the class name prefix:

out.printIn("Goodbye, World!"); // i.e., System.out
exit(0); // i.e., System.exit

You can also import a specific method or field:
import static java.lang.System.out;
In practice, it seems doubtful that many programmers will want to abbreviateSystem.out
or System.exit. The resulting code seems less clear. But there are two practical uses for
static imports.
* Mathematical functions: If you use a static import for theMath class, you can use
mathematical functions in a more natural way. For example,
sqrt(pow(x, 2) + pow(y, 2))
seems much clearer than
Math.sqrt(Math.pow(x, 2) + Math.pow(y, 2))
e Cumbersome constants: If you use lots of constants with tedious names, you will
welcome static import. For example,
if (d.get(DAY_OF_WEEK) == MONDAY)
is easier on the eye than
if (d.get(Calendar.DAY_OF_WEEK) == Calendar.MONDAY)

Addition of a Class into a Package

To place classes inside a package, you must put the name of the package at the top of
your source file, before the code that defines the classes in the package. For example, the
file Employee. java in Listing 4-7 starts out like this:

package com.horstmann.corejava;

public class Employee

{
}

If you don’t put a package statement in the source file, then the classes in that source file
belong to the default package. The default package has no package name. Up to now, all
our example classes were located in the default package.

You place source files into a subdirectory that matches the full package name. For exam-
ple, all source files in the package com.horstmann.corejava package should be in a subdirec-
tory com/horstmann/corejava (com\horstmann\corejavaon Windows). The compiler places the
class files into the same directory structure.

Chapter 4. Objects and Classes

ﬂ Chapter 4 B Objects and Classes

The program in Listings 4-6 and 4-7 is distributed over two packages: thePackageTest class
belongs to the default package and the Employee class belongs to the com.horstmann.corejava
package. Therefore, the Employee. java file must be contained in a subdirectory com/horstmann/
corejava. In other words, the directory structure is as follows:

. (base directory)
PackageTest. java
PackageTest.class
com/
L horstmann/
L corejava/
EmpToyee.java
Employee.class

To compile this program, simply change to the base directory and run the command

javac PackageTest.java
The compiler automatically finds the file com/horstmann/corejava/Employee. java and compiles
it.
Let’s look at a more realistic example, in which we don’t use the default package but
have classes distributed over several packages (com.horstmann.corejava and com.mycompany).

. (base directory)
L com/
horstmann/
L corejava/
Employee.java
Employee.class
mycompany/
Payrol11App.java
Payro11App.class

In this situation, you still must compile and run classes from the base directory, that is,
the directory containing the com directory:
javac com/mycompany/PayroT1App.java
java com.mycompany.Payrol1App
Note again that the compiler operates on files (with file separators and an extension
.java), whereas the Java interpreter loads a class (with dot separators).

CAUTION: The compiler does not check the directory structure when it compiles source
files. For example, suppose you have a source file that starts with the directive

package com.mycompany;
You can compile the file even if it is not contained in a subdirectory com/mycompany. The source
file will compile without errors if it doesn’t depend on other packages. However, the resulting
program will not run. The virtual machine won't find the resulting classes when you try to run
the program.

Chapter 4. Objects and Classes

Packages 157

PackageTest. java

1. import com.horstmann.corejava.;
2. // the Employee class is defined in that package

. import static java.lang.System.s;

* This program demonstrates the use of packages.
* @author cay

« @version 1.11 2004-02-19

o. @author Cay Horstmann

3
4
5.
6. [ux
7
8
9

1. %/

12. pubTic class PackageTest

13 {

14, public static void main(String[] args)

5. {

16. // because of the import statement, we don't have to use com.horstmann.corejava.Employee here
17. EmpToyee harry = new Employee("Harry Hacker", 50000, 1989, 10, 1);

18.

19. harry.raiseSalary(5);

20.

21. // because of the static import statement, we don't have to use System.out here
22. out.printIn("name=" + harry.getName() + ",salary=" + harry.getSalary());
23}

2. }

. package com.horstmann.corejava;

. // the classes in this file are part of this package

1
2,
3.
4,
5. import java.util.x;
6.
7. // import statements come after the package statement
8,
9,

~

10. % @Gversion 1.10 1999-12-18
* @author Cay Horstmann

1.

12. %/

13. pubTic class Employee

14.

15, public Employee(String n, double s, int year, int month, int day)
16. {

17. name = nj

18. salary = s;

19. GregorianCalendar calendar = new GregorianCalendar(year, month - 1, day);

Chapter 4. Objects and Classes

m Chapter 4 B Objects and Classes

EmpToyee.java (continued)

20. // GregorianCalendar uses @ for January
21. hireDay = calendar.getTime();

22. 1

28.

22, public String getName()

25. {

26. return name;

27. }

28.

2. public double getSalary()

30. {

31. return salary;

32. 1

33.

34. public Date getHireDay()

35. {

36. return hireDay;

37}

38.

30. public void raiseSalary(double byPercent)
40. {

41. doubTe raise = salary = byPercent / 100;
2. salary += raise;

43. }

44.

4. private String name;
4. private double salary;
47, private Date hireDay;
48. }

Package Scope

You have already encountered the access modifierspublic and private. Features tagged as
public can be used by any class. Private features can be used only by the class that
defines them. If you don’t specify either public or private, the feature (that is, the class,
method, or variable) can be accessed by all methods in the same package.

Consider the program in Listing 4-2 on page 124. The Employee class was not defined as a
public class. Therefore, only other classes in the same package—the default package in
this case—such as EmployeeTest can access it. For classes, this is a reasonable default. How-
ever, for variables, this default was an unfortunate choice. Variables must explicitly be
marked

private or they will default to being package visible. This, of course, breaks encapsula-
tion. The problem is that it is awfully easy to forget to type theprivate keyword. Here is
an example from the Window class in the java.awt package, which is part of the source code
supplied with the JDK:

Chapter 4. Objects and Classes

Packages

pubTic class Window extends Container

{

String warningString;

}
Note that the warningString variable is not private! That means the methods of all classes
in the java.awt package can access this variable and set it to whatever they like (such as
"Trust me!"). Actually, the only methods that access this variable are in theWindow class, so
it would have been entirely appropriate to make the variable private. We suspect that
the programmer typed the code in a hurry and simply forgot the private modifier. (We
won’t mention the programmer’s name to protect the guilty—you can look into the
source file yourself.)

NOTE: Amazingly enough, this problem has never been fixed, even though we have pointed

it out in eight editions of this book—apparently the library implementors don’t read Core
Java. Not only that—new fields have been added to the class over time, and about half of
them aren’t private either.

Is this really a problem? It depends. By default, packages are not closed entities. That is,
anyone can add more classes to a package. Of course, hostile or clueless programmers
can then add code that modifies variables with package visibility. For example, in early
versions of the Java programming language, it was an easy matter to smuggle another
class into the java.awt package. Simply start out the class with

package java.awt;
Then, place the resulting class file inside a subdirectory java/awt somewhere on the class
path, and you have gained access to the internals of the java.awt package. Through this
subterfuge, it was possible to set the warning string (see Figure 4-9).

Egi Calc... [9=l E3

b

a1 2|3
45|67
a8+
bl i o B =

Figure 4-9 Changing the warning string in an applet window

Starting with version 1.2, the JDK implementors rigged the class loader to explicitly dis-
allow loading of user-defined classes whose package name starts with"java."! Of course,
your own classes won't benefit from that protection. Instead, you can use another mech-
anism, package sealing, to address the issue of promiscuous package access. If you seal a
package, no further classes can be added to it. You will see in Chapter 10 how you can
produce a JAR file that contains sealed packages.

Chapter 4. Objects and Classes

Chapter 4 B Objects and Classes

The Class Path

As you have seen, classes are stored in subdirectories of the file system. The path to
the class must match the package name.

Class files can also be stored in a JAR (Java archive) file. A JAR file contains multiple
class files and subdirectories in a compressed format, saving space and improving per-
formance. When you use a third-party library in your programs, you will usually be
given one or more JAR files to include. The JDK also supplies a number of JAR files,
such as the file jre/1ib/rt.jar that contains thousands of library classes. You will see in
Chapter 10 how to create your own JAR files.

TIP: JAR files use the ZIP format to organize files and subdirectories. You can use any ZIP
utility to peek inside rt.jar and other JAR files.

To share classes among programs, you need to do the following:

1. Place your class files inside a directory, for example, /home/user/classdir. Note
that this directory is the base directory for the package tree. If you add the class
com.horstmann.corejava.Employee, then the Employee.class file must be located in the
subdirectory /home/user/classdir/com/horstmann/corejava.

2. Place any JAR files inside a directory, for example, /home/user/archives.

3. Set the class path. The class path is the collection of all locations that can contain
class files.

On UNIX, the elements on the class path are separated by colons:
/home/user/classdir:.:/home/user/archives/archive.jar

On Windows, they are separated by semicolons:
c:\classdir;.;c:\archives\archive.jar

In both cases, the period denotes the current directory.

This class path contains

e The base directory /home/user/classdir or c:\classdir;

® The current directory (.); and

e The JAR file /home/user/archives/archive.jar or c:\archives\archive.jar.

Starting with Java SE 6, you can specify a wildcard for a JAR file directory, like this:
/home/user/classdir:.:/home/user/archives/" '

or
c:\classdir;.;c:\archives\

In UNIX, the » must be escaped to prevent shell expansion.

Al JAR files (but not .class files) in the archives directory are included in this class path.

The runtime library files (rt.jar and the other JAR files in the jre/1ib and jre/Tib/ext
directories) are always searched for classes; you don’t include them explicitly in the
class path.

Chapter 4. Objects and Classes

The Class Path

CAUTION: The javac compiler always looks for files in the current directory, but the java vir-

tual machine launcher only looks into the current directory if the “.” directory is on the class
path. If you have no class path set, this is not a problem—the default class path consists of
the “.” directory. But if you have set the class path and forgot to include the “.” directory, your
programs will compile without error, but they won’t run.

The class path lists all directories and archive files that are starting points for locating
classes. Let’s consider our sample class path:

/home/user/classdir:.:/home/user/archives/archive.jar

Suppose the virtual machine searches for the class file of thecom.horstmann.corejava.Employee
class. It first looks in the system class files that are stored in archives in thejre/1ib and
jre/lib/ext directories. It won't find the class file there, so it turns to the class path. It then
looks for the following files:

e /home/user/classdir/com/horstmann/corejava/Employee.class

e com/horstmann/corejava/Employee. class starting from the current directory

e com/horstmann/corejava/Employee.class inside /home/user/archives/archive.jar

The compiler has a harder time locating files than does the virtual machine. If you refer
to a class without specifying its package, the compiler first needs to find out the package
that contains the class. It consults all import directives as possible sources for the class.
For example, suppose the source file contains directives

import java.util.s;

import com.horstmann.corejava.;
and the source code refers to a class Employee. The compiler then tries to find
java.lang.Employee (because the java.lang package is always imported by default),
java.util.Employee, com.horstmann.corejava.Employee, and Employee in the current package. It
searches for each of these classes in all of the locations of the class path. It is a compile-time
error if more than one class is found. (Because classes must be unique, the order of the
import statements doesn’t matter.)
The compiler goes one step further. It looks at the source files to see if the source is newer
than the class file. If so, the source file is recompiled automatically. Recall that you can
import only public classes from other packages. A source file can only contain one pub-
lic class, and the names of the file and the public class must match. Therefore, the com-
piler can easily locate source files for public classes. However, you can import nonpublic
classes from the current package. These classes may be defined in source files with dif-
ferent names. If you import a class from the current package, the compiler searches all
source files of the current package to see which one defines the class.

Setting the Class Path
It is best to specify the class path with the -classpath (or -cp) option:

java -classpath /home/user/classdir:.:/home/user/archives/archive.jar MyProg.java
or

java -classpath c:\classdir;.;c:\archives\archive.jar MyProg.java

Chapter 4. Objects and Classes

m Chapter 4 B Objects and Classes

The entire command must be typed onto a single line. It is a good idea to place such a
long command line into a shell script or a batch file.

Using the -classpath option is the preferred approach for setting the class path. An alter-
nate approach is the CLASSPATH environment variable. The details depend on your shell.
With the Bourne Again shell (bash), use the command

export CLASSPATH=/home/user/classdir:.:/home/user/archives/archive.jar
With the C shell, use the command

setenv CLASSPATH /home/user/classdir:.:/home/user/archives/archive.jar
With the Windows shell, use

set CLASSPATH=c:\classdir;.;c:\archives\archive.jar
The class path is set until the shell exits.

CAUTION: Some people recommend to set the CLASSPATH environment variable permanently.
This is generally a bad idea. People forget the global setting, and then they are surprised
when their classes are not loaded properly. A particularly reprehensible example is Apple’s
QuickTime installer in Windows. It globally sets CLASSPATH to point to a JAR file that it needs,
but it does not include the current directory in the classpath. As a result, countless Java pro-
grammers have been driven to distraction when their programs compiled but failed to run.

CAUTION: Some people recommend to bypass the class path altogether, by dropping all

JAR files into the jre/1ib/ext directory. That is truly bad advice, for two reasons. Archives
that manually load other classes do not work correctly when they are placed in the extension
directory. (See Volume Il, Chapter 9 for more information on class loaders.) Moreover, pro-
grammers have a tendency to forget about the files they placed there months ago. Then,
they scratch their heads when the class loader seems to ignore their carefully crafted class
path, when it is actually loading long-forgotten classes from the extension directory.

Documentation Comments

The JDK contains a very useful tool, called javadoc, that generates HTML documentation
from your source files. In fact, the on-line API documentation that we described in Chap-
ter 3 is simply the result of running javadoc on the source code of the standard Java library.
If you add comments that start with the special delimiter /x+ to your source code, you
too can easily produce professional-looking documentation. This is a very nice scheme
because it lets you keep your code and documentation in one place. If you put your doc-
umentation into a separate file, then you probably know that the code and comments
tend to diverge over time. But because the documentation comments are in the same file
as the source code, it is an easy matter to update both and run javadoc again.

Comment Insertion

The javadoc utility extracts information for the following items:
e Packages

e Public classes and interfaces

e Public and protected methods

e Public and protected fields

Chapter 4. Objects and Classes

Documentation Comments m

Protected features are introduced in Chapter 5, interfaces in Chapter 6.

You can (and should) supply a comment for each of these features. Each comment is
placed immediately above the feature it describes. A comment starts with a /++ and ends
with a #/.

Each /#+ . . . »/ documentation comment contains free-form text followed by tags. A tag
starts with an @ such as @author or @paranm.

The first sentence of the free-form text should be a summary statement. The javadoc utility
automatically generates summary pages that extract these sentences.

In the free-form text, you can use HTML modifiers such as . .. for emphasis,
<code>. . .</code> for a monospaced “typewriter” font, ... for strong empha-
sis, and even to include an image. You should, however, stay away from headings
<h1> or rules <hr> because they can interfere with the formatting of the document.

NOTE: If your comments contain links to other files such as images (for example, dia-

m grams or images of user interface components), place those files into a subdirectory of the
directory containing the source file named doc-files. The javadoc utility will copy the doc-
files directories and their contents from the source directory to the documentation direc-
tory. You need to use the doc-files directory in your link, such as <img src="doc-files/
uml.png" alt="UML diagram"/>.

Class Comments

The class comment must be placed after any import statements, directly before the class
definition.

Here is an example of a class comment:

[
+ A <code>Card</code> object represents a playing card, such
+ as "Queen of Hearts". A card has a suit (Diamond, Heart,

+ Spade or Club) and a value (1 = Ace, 2 . . . 10, 11 = Jack,
x 12 = Queen, 13 = King)
x/

pubTic class Card

{

}

NOTE: There is no need to add an « in front of every line. For example, the following com-
ment is equally valid:
A <code>Card</code> object represents a playing card, such
as "Queen of Hearts". A card has a suit (Diamond, Heart,
Spade or Club) and a value (1 = Ace, 2 . . . 10, 11 = Jack,
12 = Queen, 13 = King).
s/

However, most IDEs supply the asterisks automatically and rearrange them when the line
breaks change.

Chapter 4. Objects and Classes

m Chapter 4 B Objects and Classes

Method Comments
Each method comment must immediately precede the method that it describes. In addi-
tion to the general-purpose tags, you can use the following tags:

e G@param variable description
This tag adds an entry to the “parameters” section of the current method. The
description can span multiple lines and can use HTML tags. All@aran tags for one
method must be kept together.

® Q@return description
This tag adds a “returns” section to the current method. The description can span
multiple lines and can use HTML tags.

e @throws class description
This tag adds a note that this method may throw an exception. Exceptions are the
topic of Chapter 11.

Here is an example of a method comment:

[ux

+ Raises the salary of an employee.

+ @param byPercent the percentage by which to raise the salary (e.g. 10 = 10%)
+ @return the amount of the raise

%/

pubTlic double raiseSalary(double byPercent)

{
double raise = salary = byPercent / 100;
salary += raise;
return raise;

}
Field Comments
You only need to document public fields—generally that means static constants. For
example:
« The "Hearts" card suit
*/
public static final int HEARTS = 1;
General Comments
The following tags can be used in class documentation comments:
e Qauthor name
This tag makes an “author” entry. You can have multiple@author tags, one for each
author.
e (Qversion text
This tag makes a “version” entry. The text can be any description of the current
version.
The following tags can be used in all documentation comments:
® (@since text
This tag makes a “since” entry. The text can be any description of the version that
introduced this feature. For example, @since version 1.7.1

Chapter 4. Objects and Classes

Documentation Comments

@deprecated text
This tag adds a comment that the class, method, or variable should no longer be
used. The text should suggest a replacement. For example:

@deprecated Use <code>setVisible(true)</code> instead

You can use hyperlinks to other relevant parts of the javadoc documentation, or to exter-
nal documents, with the @see and @1ink tags.

@see reference
This tag adds a hyperlink in the “see also” section. It can be used with both classes
and methods. Here, reference can be one of the following:

package .class#feature label

label

"text"
The first case is the most useful. You supply the name of a class, method, or variable,
and javadoc inserts a hyperlink to the documentation. For example,

@see com.horstmann.corejava.Employee#raiseSalary(double)
makes a link to the raiseSalary(double) method in the com.horstmann.corejava.Employee
class. You can omit the name of the package or both the package and class name.
Then, the feature will be located in the current package or class.
Note that you must use a #, not a period, to separate the class from the method or
variable name. The Java compiler itself is highly skilled in guessing the various
meanings of the period character, as separator between packages, subpackages,
classes, inner classes, and methods and variables. But the javadoc utility isn’t quite as
clever, and you have to help it along.
If the @see tag is followed by a < character, then you need to specify a hyperlink. You
can link to any URL you like. For example:

@see The Core Java home page
In each of these cases, you can specify an optionallabel that will appear as the link
anchor. If you omit the label, then the user will see the target code name or URL as
the anchor.
If the @see tag is followed by a " character, then the text is displayed in the “see also”
section. For example:

@see "Core Java 2 volume 2"
You can add multiple @see tags for one feature, but you must keep them all together.
If you like, you can place hyperlinks to other classes or methods anywhere in any of
your documentation comments. You insert a special tag of the form

{@link package.class#feature label}
anywhere in a comment. The feature description follows the same rules as for the
@see tag.

Package and Overview Comments

You place class, method, and variable comments directly into the Java source files,
delimited by /#+ . . . #/ documentation comments. However, to generate package com-
ments, you need to add a separate file in each package directory. You have two choices:

Chapter 4. Objects and Classes

m Chapter 4 B Objects and Classes

1. Supply an HTML file named package.html. All text between the tags <body>...</body> is
extracted.

2. Supply aJava file named package-info.java. The file must contain an initial Javadoc
comment, delimited with /«+ and +/, followed by a package statement. It should con-
tain no further code or comments.

You can also supply an overview comment for all source files. Place it in a file called
overview.html, located in the parent directory that contains all the source files. All text
between the tags <body>...</body> is extracted. This comment is displayed when the user
selects “Overview” from the navigation bar.

Comment Extraction
Here, docDirectory is the name of the directory where you want the HTML files to go. Fol-
low these steps:

1. Change to the directory that contains the source files you want to document. If
you have nested packages to document, such as com. horstmann. corejava, you must be
working in the directory that contains the subdirectory com. (This is the directory
that contains the overview.htnl file if you supplied one.)

2. Run the command
javadoc -d docDirectory nameOfPackage
for a single package. Or run
javadoc -d docDirectory nameOfPackage; nameOfPackage;. . .

to document multiple packages. If your files are in the default package, then instead
run

javadoc -d docDirectory *.java

If you omit the -d docDirectory option, then the HTML files are extracted to the current
directory. That can get messy, and we don’t recommend it.
The javadoc program can be fine-tuned by numerous command-line options. For
example, you can use the -author and -version options to include the @author and @version
tags in the documentation. (By default, they are omitted.) Another useful option is
-Tink, to include hyperlinks to standard classes. For example, if you use the command

javadoc -Tink http://java.sun.com/javase/6/docs/api +.java
all standard library classes are automatically linked to the documentation on the Sun
web site.
If you use the -Tinksource option, each source file is converted to HTML (without color
coding, but with line numbers), and each class and method name turns into a hyperlink
to the source.

For additional options, we refer you to the on-line documentation of the javadoc utility at
http://java.sun.com/javase/javadoc.

NOTE: If you require further customization, for example, to produce documentation in a format

u other than HTML, you can supply your own docletto generate the output in any form you desire.
Clearly, this is a specialized need, and we refer you to the on-line documentation for details on
doclets at http://java.sun.com/j2se/javadoc.

Chapter 4. Objects and Classes

Class Design Hints

TIP: A useful doclet is DocCheck at http://java.sun.com/j2se/javadoc/doccheck/. It scans a
set of source files for missing documentation comments.

Class Design Hints
Without trying to be comprehensive or tedious, we want to end this chapter with some
hints that may make your classes more acceptable in well-mannered OOP circles.

1.

Always keep data private.
This is first and foremost: doing anything else violates encapsulation. You may
need to write an accessor or mutator method occasionally, but you are still better
off keeping the instance fields private. Bitter experience has shown that how the
data are represented may change, but how they are used will change much less
frequently. When data are kept private, changes in their representation do not
affect the user of the class, and bugs are easier to detect.
Always initialize data.
Java won't initialize local variables for you, but it will initialize instance fields of
objects. Don’t rely on the defaults, but initialize the variables explicitly, either by
supplying a default or by setting defaults in all constructors.
Don'’t use too many basic types in a class.
The idea is to replace multiple related uses of basic types with other classes. This
keeps your classes easier to understand and to change. For example, replace the fol-
lowing instance fields in a Customer class
private String street;
private String city;
private String state;
private int zip;
with a new class called Address. This way, you can easily cope with changes to
addresses, such as the need to deal with international addresses.
Not all fields need individual field accessors and mutators.
You may need to get and set an employee’s salary. You certainly won’t need to
change the hiring date once the object is constructed. And, quite often, objects have
instance fields that you don’t want others to get or set, for example, an array of state
abbreviations in an Address class.
Use a standard form for class definitions.
We always list the contents of classes in the following order:
public features
package scope features
private features
Within each section, we list:
instance methods
static methods
instance fields
static fields

167

Chapter 4. Objects and Classes

m Chapter 4 B Objects and Classes

After all, the users of your class are more interested in the public interface than in
the details of the private implementation. And they are more interested in meth-
ods than in data.

However, there is no universal agreement on what is the best style. The Sun coding
style guide for the Java programming language recommends listing fields first and
then methods. Whatever style you use, the most important thing is to be consistent.

6. Break up classes that have too many responsibilities.
This hint is, of course, vague: “too many” is obviously in the eye of the beholder.
However, if there is an obvious way to make one complicated class into two classes
that are conceptually simpler, seize the opportunity. (On the other hand, don’t go
overboard; 10 classes, each with only one method, is usually overkill.)
Here is an example of a bad design.

public class CardDeck // bad design
{
public CardDeck() { . . .}
public void shuffle() { . . .}
public int getTopValue() { . . . }
public int getTopSuit() { . . .}
pubTlic void draw() { . . . }

private int[] value;
private int[] suit;
}
This class really implements two separate concepts: a deck of cards, with itsshuffe
and draw methods, and a card, with the methods to inspect the value and suit of a
card. It makes sense to introduce a Card class that represents an individual card.
Now you have two classes, each with its own responsibilities:

public class CardDeck

{
public CardDeck() { . . .}
public void shuffle() { . . .}
public Card getTop() { . . . }
public void draw() { . . .}

private Card[] cards;

}

pubTic class Card

{
pubTic Card(int avalue, int aSuit) { . . .}
public int getvalue() { . . .}
public int getSuit() { . . . }

private int value;
private int suit;

Chapter 4. Objects and Classes

Class Design Hints

7. Make the names of your classes and methods reflect their responsibilities.

Just as variables should have meaningful names that reflect what they represent, so
should classes. (The standard library certainly contains some dubious examples,
such as the Date class that describes time.)

A good convention is that a class name should be a noun (Order) or a noun preceded
by an adjective (RushOrder) or a gerund (an “-ing” word, like Bi1lingAddress). As for
methods, follow the standard convention that accessor methods begin with a lower-
case get (getSalary), and that mutator methods use a lowercase set (setSalary).

In this chapter, we covered the fundamentals of objects and classes that make Java an
“object-based” language. In order to be truly object oriented, a programming language
must also support inheritance and polymorphism. The Java support for these features is
the topic of the next chapter.

Chapter 4. Objects and Classes

Chapter 5. Inheritance

Chapter

INHERITANCE

CLASSES, SUPERCLASSES, AND SUBCLASSES

Object: THE COSMIC SUPERCLASS

GENERIC ARRAY LISTS

OBJECT WRAPPERS AND AUTOBOXING

METHODS WITH A VARIABLE NUMBER OF PARAMETERS
ENUMERATION CLASSES

REFLECTION

DESIGN HINTS FOR INHERITANCE

4d 4 4949494444«

171

Chapter 5. Inheritance

172

Chapter 5 W Inheritance

Chapter 4 introduced you to classes and objects. In this chapter, you learn about
inheritance, another fundamental concept of object-oriented programming. The idea
behind inheritance is that you can create new classes that are built on existing classes.
When you inherit from an existing class, you reuse (or inherit) its methods and fields
and you add new methods and fields to adapt your new class to new situations. This
technique is essential in Java programming.

As with the previous chapter, if you are coming from a procedure-oriented language
like C, Visual Basic, or COBOL, you will want to read this chapter carefully. For experi-
enced C++ programmers or those coming from another object-oriented language like
Smalltalk, this chapter will seem largely familiar, but there are many differences
between how inheritance is implemented in Java and how it is done in C++ or in other
object-oriented languages.

This chapter also covers reflection, the ability to find out more about classes and their
properties in a running program. Reflection is a powerful feature, but it is undeniably
complex. Because reflection is of greater interest to tool builders than to application pro-
grammers, you can probably glance over that part of the chapter upon first reading and
come back to it later.

Classes, Superclasses, and Subclasses

Let’s return to the Employee class that we discussed in the previous chapter. Suppose (alas)
you work for a company at which managers are treated differently from other employees.
Managers are, of course, just like employees in many respects. Both employees and man-
agers are paid a salary. However, while employees are expected to complete their
assigned tasks in return for receiving their salary, managers get bonuses if they actually
achieve what they are supposed to do. This is the kind of situation that cries out for
inheritance. Why? Well, you need to define a new class, Manager, and add functionality.
But you can retain some of what you have already programmed in the Employee class,
and all the fields of the original class can be preserved. More abstractly, there is an obvi-
ous “is-a” relationship between Manager and Employee. Every manager is an employee: This
“is—a” relationship is the hallmark of inheritance.

Here is how you define a Manager class that inherits from the Employee class. You use the
Java keyword extends to denote inheritance.
class Manager extends Employee

{
added methods and fields

}

C++ NOTE: Inheritance is similar in Java and C++. Java uses the extends keyword instead of
E the : token. All inheritance in Java is public inheritance; there is no analog to the C++ fea-
tures of private and protected inheritance.

The keyword extends indicates that you are making a new class that derives from an
existing class. The existing class is called the superclass, base class, or parent class. The new
class is called the subclass, derived class, or child class. The terms superclass and subclass
are those most commonly used by Java programmers, although some programmers pre-
fer the parent/child analogy, which also ties in nicely with the “inheritance” theme.

Chapter 5. Inheritance

Classes, Superclasses, and Subclasses 173

The Employee class is a superclass, but not because it is superior to its subclass or contains
more functionality. In fact, the opposite is true: subclasses have more functionality than
their superclasses. For example, as you will see when we go over the rest of theManager

class code, the Manager class encapsulates more data and has more functionality than its
superclass Employee.

NOTE: The prefixes super and sub come from the language of sets used in theoretical com-

m puter science and mathematics. The set of all employees contains the set of all managers,
and this is described by saying it is a superset of the set of managers. Or, put it another way,
the set of all managers is a subset of the set of all employees.

Our Manager class has a new field to store the bonus, and a new method to set it:
class Manager extends Employee

{

public void setBonus(double b)
{

}

bonus = b;

private double bonus;

}

There is nothing special about these methods and fields. If you have aManager object, you
can simply apply the setBonus method.

Manager boss = . . .;

boss. setBonus(5000);

Of course, if you have an Employee object, you cannot apply the setBonus method—it is not
among the methods that are defined in the Employee class.

However, you can use methods such as getName and getHireDay with Manager objects. Even
though these methods are not explicitly defined in the Manager class, they are automati-
cally inherited from the Employee superclass.

Similarly, the fields name, salary, and hireDay are inherited from the superclass. EveryManager
object has four fields: name, salary, hireDay, and bonus.

When defining a subclass by extending its superclass, you only need to indicate the
differences between the subclass and the superclass. When designing classes, you place
the most general methods into the superclass and more specialized methods in the sub-
class. Factoring out common functionality by moving it to a superclass is common in
object-oriented programming.
However, some of the superclass methods are not appropriate for the Manager subclass. In
particular, the getSalary method should return the sum of the base salary and the bonus.
You need to supply a new method to override the superclass method:

class Manager extends Employee

{

Chapter 5. Inheritance

174

Chapter 5 W Inheritance

public double getSalary()
{

}
}
How can you implement this method? At first glance, it appears to be simple—just
return the sum of the salary and bonus fields:

public double getSalary()
{

return salary + bonus; // won't work
}

However, that won’t work. The getSalary method of the Manager class has no direct access to the
private fields of the superclass. This means that the getSalary method of the Manager class cannot
directly access the salary field, even though every Manager object has a field called salary. Only
the methods of the Employee class have access to the private fields. If theManager methods want
to access those private fields, they have to do what every other method does—use the public
interface, in this case, the public getSalary method of the Employee class.

So, let’s try this again. You need to call getSalary instead of simply accessing the salary field.

public double getSalary()

double baseSalary = getSalary(); // still won't work
return baseSalary + bonus;

}
The problem is that the call to getSalary simply calls itself, because the Manager class has a
getSalary method (namely, the method we are trying to implement). The consequence is
an infinite set of calls to the same method, leading to a program crash.
We need to indicate that we want to call the getSalary method of the Employee superclass,
not the current class. You use the special keyword super for this purpose. The call
super.getSalary()
calls the getSalary method of the Employee class. Here is the correct version of the getSalary
method for the Manager class:
public double getSalary()

double baseSalary = super.getSalary();
return baseSalary + bonus;

}

NOTE: Some people think of super as being analogous to the this reference. However, that

u analogy is not quite accurate—super is not a reference to an object. For example, you cannot
assign the value super to another object variable. Instead, super is a special keyword that
directs the compiler to invoke the superclass method.

As you saw, a subclass can add fields, and it can add or override methods of the super-
class. However, inheritance can never take away any fields or methods.

Chapter 5. Inheritance

Classes, Superclasses, and Subclasses 175

E C++ NOTE: Java uses the keyword super to call a superclass method. In C++, you would use
the name of the superclass with the :: operator instead. For example, the getSalary method
of the Manager class would call EmpToyee: :getSalary instead of super.getSalary.

Finally, let us supply a constructor.
public Manager(String n, double s, int year, int month, int day)

{ super(n, s, year, month, day);
bonus = 0;
}
Here, the keyword super has a different meaning. The instruction
super(n, s, year, month, day);
is shorthand for “call the constructor of theEmployee superclass withn, s, year, month, and day
as parameters.”

Because the Manager constructor cannot access the private fields of the Employee class, it
must initialize them through a constructor. The constructor is invoked with the special
super syntax. The call using super must be the first statement in the constructor for the
subclass.

If the subclass constructor does not call a superclass constructor explicitly, then the
default (no-parameter) constructor of the superclass is invoked. If the superclass has no
default constructor and the subclass constructor does not call another superclass con-
structor explicitly, then the Java compiler reports an error.

NOTE: Recall that the this keyword has two meanings: to denote a reference to the implicit

parameter and to call another constructor of the same class. Likewise, the super keyword
has two meanings: to invoke a superclass method and to invoke a superclass constructor.
When used to invoke constructors, the this and super keywords are closely related. The con-
structor calls can only occur as the first statement in another constructor. The construction
parameters are either passed to another constructor of the same class (this) or a construc-
tor of the superclass (super).

C++ NOTE: In a C++ constructor, you do not call super, but you use the initializer list syntax
to construct the superclass. The Manager constructor looks like this in C++:

Manager::Manager(String n, double s, int year, int month, int day) // C++
: Employee(n, s, year, month, day)

{
}

bonus = 0;

Having redefined the getSalary method for Manager objects, managers will automatically
have the bonus added to their salaries.

Chapter 5. Inheritance

176

Chapter 5 W Inheritance

Here’s an example of this at work: we make a new manager and set the manager’s
bonus:
Manager boss = new Manager("Carl Cracker", 80000, 1987, 12, 15);
boss. setBonus(5000) ;
We make an array of three employees:
Employee[] staff = new Employee[3];
We populate the array with a mix of managers and employees:
staff[0] = boss;
staff[1] = new Employee("Harry Hacker", 50000, 1989, 10, 1);
staff[2] = new Employee("Tony Tester", 40000, 1990, 3, 15);
We print out everyone’s salary:

for (Employee e : staff)
System.out.printin(e.getName() +

+ e.getSalary());
This loop prints the following data:

Carl Cracker 85000.0

Harry Hacker 50000.0

Tommy Tester 40000.0
Now staff[1] and staff[2] each print their base salary because they areEmployee objects.
However, staff[0] is a Manager object and its getSalary method adds the bonus to the base
salary.

What is remarkable is that the call
e.getSalary()

picks out the correct getSalary method. Note that the declared type of e is Employee, but the
actual type of the object to which e refers can be either Employee or Manager.

When e refers to an Employee object, then the call e.getSalary() calls the getSalary method
of the Employee class. However, when e refers to a Manager object, then the getSalary
method of the Manager class is called instead. The virtual machine knows about the
actual type of the object to which e refers, and therefore can invoke the correct
method.

The fact that an object variable (such as the variable e) can refer to multiple actual types
is called polymorphism. Automatically selecting the appropriate method at runtime is
called dynamic binding. We discuss both topics in more detail in this chapter.

C++ NOTE: In Java, you do not need to declare a method as virtual. Dynamic binding is the
E default behavior. If you do not want a method to be virtual, you tag it as final. (We discuss
the final keyword later in this chapter.)

Listing 5-1 contains a program that shows how the salary computation differs for
Employee and Manager objects.

Chapter 5. Inheritance

Classes, Superclasses, and Subclasses

BT 70528 Bl ManagerTest. java

1.
2
3.
4
5.
6.
7.
8
9

@

33.
34.
35.
36.
37.
38.
39.
40.

42.
43,
44,

IS

47.
48.
49.

 publ
- {

5.

impo

: [k

% Tl
+ @
+ @
%/

p
{

}

-}

rt java.util.s;

his program demonstrates inheritance.
version 1.21 2004-02-21
author Cay Horstmann

ic class ManagerTest
ublic static void main(String[] args)

// construct a Manager object
Manager boss = new Manager("Carl Cracker", 80000, 1987, 12, 15);
boss. setBonus(5000) ;

Employee[] staff = new Employee[3];
// fi1l the staff array with Manager and Employee objects

staff[0] = boss;
staff[1] = new Employee("Harry Hacker", 50000, 1989, 10, 1)
staff[2] = new EmpToyee("Tommy Tester", 40000, 1990, 3, 15);

// print out information about all Employee objects
for (Employee e : staff)
System.out.printIn("name=

+ e.getName() + ",salary=" + e.getSalary());

o. class Employee
A

32.

public Employee(String n, double s, int year, int month, int day)

{

}

name = n;
salary = s;

GregorianCalendar calendar = new GregorianCalendar(year, month - 1, day)
hireDay = calendar.getTime();

public String getName()

{
}

return name;

public double getSalary()

{
}

return salary;

177

Chapter 5. Inheritance

178 Chapter 5 W Inheritance

BT 1T- 20 B ManagerTest. java (continued)

s0. public Date getHireDay()

51. {

52. return hireDay;

53. }

54.

s5. public void raiseSalary(double byPercent)
56. {

57. double raise = salary = byPercent / 100;
58. salary += raise;

59. }

60.

61. private String name;

62. private double salary;

63. private Date hireDay;

64. }

65.

6. Class Manager extends Employee

67. {

68. [ux

69. x @aram n the employee's name

70. + @param s the salary

7. + @param year the hire year
+ @param month the hire month
x @param day the hire day

72.
73.

74. %/

7. public Manager(String n, double s, int year, int month, int day)
76. {

77. super(n, s, year, month, day);

78. bonus = 0;

79. }

80.
81. public double getSalary()

82. {

83. double baseSalary = super.getSalary();
84. return baseSalary + bonus;

85. }

86.
87. public void setBonus(double b)

88. {
89. bonus = b;
90. }

91.
e private double bonus;

Chapter 5. Inheritance

Classes, Superclasses, and Subclasses 179

Inheritance Hierarchies

Inheritance need not stop at deriving one layer of classes. We could have anExecutive
class that extends Manager, for example. The collection of all classes extending from a com-
mon superclass is called an inheritance hierarchy, as shown in Figure 5-1. The path from a
particular class to its ancestors in the inheritance hierarchy is its inheritance chain.

There is usually more than one chain of descent from a distant ancestor class. You
could form a subclass Programmer or Secretary that extends Employee, and they would have
nothing to do with the Manager class (or with each other). This process can continue as
long as is necessary.

E C++ NOTE: Java does not support multiple inheritance. (For ways to recover much of the
functionality of multiple inheritance, see the section on Interfaces in the next chapter.)

=y
Employee
I I |
(ava \
]
Manager Secretary I Programmer
|
I b Tl —
I
Executive
—_—

Figure 5-1 Employee inheritance hierarchy

Polymorphism

A simple rule enables you to know whether or not inheritance is the right design for
your data. The “is—a” rule states that every object of the subclass is an object of the
superclass. For example, every manager is an employee. Thus, it makes sense for the
Manager class to be a subclass of the Employee class. Naturally, the opposite is not true—not
every employee is a manager.

Another way of formulating the “is—a” rule is the substitution principle. That principle states
that you can use a subclass object whenever the program expects a superclass object.

Chapter 5. Inheritance

Chapter 5 W Inheritance

For example, you can assign a subclass object to a superclass variable.

Employee e;
e = new Employee(. . .); // EmpToyee object expected
e = new Manager(. . .); // OK, Manager can be used as well

In the Java programming language, object variables are polymorphic. A variable of type
Employee can refer to an object of type Employee or to an object of any subclass of the Employee
class (such as Manager, Executive, Secretary, and so on).
We took advantage of this principle in Listing 5-1:

Manager boss = new Manager(. . .);
Employee[] staff = new Employee[3];
staff[0] = boss;

In this case, the variables staff[8] and boss refer to the same object. However, staff[0] is
considered to be only an Employee object by the compiler.
That means, you can call

boss.setBonus(5000); // OK
but you can’t call

staff[0].setBonus(5000); // ERROR
The declared type of staff[0] is Employee, and the setBonus method is not a method of the
Employee class.

However, you cannot assign a superclass reference to a subclass variable. For example,
it is not legal to make the assignment

Manager m = staff[i]; // ERROR
The reason is clear: Not all employees are managers. If this assignment were to succeed
and m were to refer to an Employee object that is not a manager, then it would later be pos-
sible to call m.setBonus(...) and a runtime error would occur.

CAUTION: In Java, arrays of subclass references can be converted to arrays of superclass
references without a cast. For example, consider this array of managers:

Manager[] managers = new Manager[10];
It is legal to convert this array to an Employee[] array:

Employee[] staff = managers; // OK
Sure, why not, you may think. After all, if manager[i] is a Manager, it is also an Employee. But
actually, something surprising is going on. Keep in mind that managers and staff are refer-
ences to the same array. Now consider the statement

staff[0] = new Employee("Harry Hacker", ...);

The compiler will cheerfully allow this assignment. But staff[0] and manager[0] are the same
reference, so it looks as if we managed to smuggle a mere employee into the management
ranks. That would be very bad—calling managers[0] .setBonus(1000) would try to access a
nonexistent instance field and would corrupt neighboring memory.

To make sure no such corruption can occur, all arrays remember the element type with
which they were created, and they monitor that only compatible references are stored into
them. For example, the array created as new Manager[10] remembers that it is an array of
managers. Attempting to store an EmpToyee reference causes an ArrayStoreException.

Chapter 5. Inheritance

Classes, Superclasses, and Subclasses m

Dynamic Binding

It is important to understand what happens when a method call is applied to an object.

Here are the details:

1. The compiler looks at the declared type of the object and the method name. Let’s say
we call x. f(param), and the implicit parameter x is declared to be an object of classC.
Note that there may be multiple methods, all with the same name, f, but with different
parameter types. For example, there may be a method f(int) and a method f(String).
The compiler enumerates all methods called f in the class C and all public methods
called f in the superclasses of C.

Now the compiler knows all possible candidates for the method to be called.

2. Next, the compiler determines the types of the parameters that are supplied in the
method call. If among all the methods called f there is a unique method whose
parameter types are a best match for the supplied parameters, then that method is
chosen to be called. This process is called overloading resolution. For example, in a call
x.f("Hell0"), the compiler picks f(String) and not f(int). The situation can get complex
because of type conversions (int to double, Manager to Employee, and so on). If the com-
piler cannot find any method with matching parameter types or if multiple methods
all match after applying conversions, then the compiler reports an error.

Now the compiler knows the name and parameter types of the method that needs to
be called.

NOTE: Recall that the name and parameter type list for a method is called the method’s
signature. For example, f(int) and f(String) are two methods with the same name but dif-

ferent signatures. If you define a method in a subclass that has the same signature as a
superclass method, then you override that method.
The return type is not part of the signature. However, when you override a method, you need
to keep the return type compatible. Prior to Java SE 5.0, the return types had to be identical.
However, it is now legal for the subclass to change the return type of an overridden method
to a subtype of the original type. For example, suppose that the Employee class has a

pubTic Employee getBuddy() { ... }
Then the Manager subclass can override this method as

public Manager getBuddy() { ... } // OK in Java SE 5.0
We say that the two getBuddy methods have covariant return types.

3. If the method is private, static, final, or a constructor, then the compiler knows exactly
which method to call. (The final modifier is explained in the next section.) This is
called static binding. Otherwise, the method to be called depends on the actual type of
the implicit parameter, and dynamic binding must be used at runtimeruntime. In our
example, the compiler would generate an instruction to call f(String) with dynamic
binding.

4. When the program runs and uses dynamic binding to call a method, then the virtual
machine must call the version of the method that is appropriate for the actual type of
the object to which x refers. Let’s say the actual type isD, a subclass of C. If the class D

Chapter 5. Inheritance

m Chapter 5 W Inheritance

defines a method f(String), that method is called. If not, D’s superclass is searched for
a method f(String), and so on.

It would be time consuming to carry out this search every time a method is called.
Therefore, the virtual machine precomputes for each class a method table that lists all
method signatures and the actual methods to be called. When a method is actually
called, the virtual machine simply makes a table lookup. In our example, the virtual
machine consults the method table for the class D and looks up the method to call for
f(String). That method may be D.f(String) or X.f(String), where X is some superclass of D.
There is one twist to this scenario. If the call is super.f(param), then the compiler con-
sults the method table of the superclass of the implicit parameter.

Let’s look at this process in detail in the call e.getSalary() in Listing 5-1. The declared type of
e is Employee. The Employee class has a single method, called getSalary, with no method parame-
ters. Therefore, in this case, we don’t worry about overloading resolution.

Because the getSalary method is not private, static, or final, it is dynamically bound. The
virtual machine produces method tables for the Employee and Manager classes. The Employee
table shows that all methods are defined in the Employee class itself:
Employee:

getName() -> Employee.getName()

getSalary() -> Employee.getSalary()

getHireDay() -> Employee.getHireDay()

raiseSalary(double) -> Employee.raiseSalary(double)
Actually, that isn’t the whole story—as you will see later in this chapter, theEmployee class
has a superclass Object from which it inherits a number of methods. We ignore theObject
methods for now.

The Manager method table is slightly different. Three methods are inherited, one method
is redefined, and one method is added.
Manager:

getName() -> Employee.getName()

getSalary() -> Manager.getSalary()

getHireDay() -> Employee.getHireDay()

raiseSalary(double) -> Employee.raiseSalary(double)

setBonus(double) -> Manager.setBonus(double)
At runtime, the call e.getSalary() is resolved as follows:

1. First, the virtual machine fetches the method table for the actual type ofe. That may be
the table for Employee, Manager, or another subclass of Employee.

2. Then, the virtual machine looks up the defining class for the getSalary() signature.
Now it knows which method to call.

3. Finally, the virtual machine calls the method.

Dynamic binding has a very important property: it makes programs extensible without
the need for modifying existing code. Suppose a new class Executive is added and there is
the possibility that the variable e refers to an object of that class. The code containing the
call e.getSalary() need not be recompiled. The Executive.getSalary() method is called auto-
matically if e happens to refer to an object of type Executive.

Chapter 5. Inheritance

Classes, Superclasses, and Subclasses

CAUTION: When you override a method, the subclass method must be at least as visible as

the superclass method. In particular, if the superclass method is public, then the subclass
method must also be declared as public. It is a common error to accidentally omit the pubTic
specifier for the subclass method. The compiler then complains that you try to supply a weaker
access privilege.

Preventing Inheritance: Final Classes and Methods
Occasionally, you want to prevent someone from forming a subclass from one of your
classes. Classes that cannot be extended are called final classes, and you use thefinal
modifier in the definition of the class to indicate this. For example, let us suppose we
want to prevent others from subclassing the Executive class. Then, we simply declare the
class by using the final modifier as follows:

final class Executive extends Manager

{
}

You can also make a specific method in a class final. If you do this, then no subclass can
override that method. (All methods in a final class are automatically final.) For example:

class EmpToyee

{

public final String getName()
{

}

return name;

NOTE: Recall that fields can also be declared as final. A final field cannot be changed after
the object has been constructed. However, if a class is declared as final, only the methods,
not the fields, are automatically final.

There is only one good reason to make a method or classfinal: to make sure that the
semantics cannot be changed in a subclass. For example, the getTime and setTime methods
of the Calendar class are final. This indicates that the designers of the Calendar class have
taken over responsibility for the conversion between the Date class and the calendar
state. No subclass should be allowed to mess up this arrangement. Similarly, the String
class is a final class. That means nobody can define a subclass of String. In other words, if
you have a String reference, then you know it refers to a String and nothing but a String.
Some programmers believe that you should declare all methods as final unless you have
a good reason that you want polymorphism. In fact, in C++ and C#, methods do not use
polymorphism unless you specifically request it. That may be a bit extreme, but we
agree that it is a good idea to think carefully about final methods and classes when you
design a class hierarchy.

Chapter 5. Inheritance

Chapter 5 W Inheritance

In the early days of Java, some programmers used thefinal keyword in the hope of avoid-
ing the overhead of dynamic binding. If a method is not overridden, and it is short, then a
compiler can optimize the method call away—a process called inlining. For example, inlin-
ing the call e.getName() replaces it with the field access e.name. This is a worthwhile improve-
ment—CPUs hate branching because it interferes with their strategy of prefetching
instructions while processing the current one. However, if getName can be overridden in
another class, then the compiler cannot inline it because it has no way of knowing what the
overriding code may do.

Fortunately, the just-in-time compiler in the virtual machine can do a better job than a
traditional compiler. It knows exactly which classes extend a given class, and it can
check whether any class actually overrides a given method. If a method is short, fre-
quently called, and not actually overridden, the just-in-time compiler can inline the
method. What happens if the virtual machine loads another subclass that overrides an
inlined method? Then the optimizer must undo the inlining. That’s slow, but it happens
rarely.

C++ NOTE: In C++, a method is not dynamically bound by default, and you can tag it as

E inline to have method calls replaced with the method source code. However, there is no
mechanism that would prevent a subclass from overriding a superclass method. In C++, you
can write classes from which no other class can derive, but doing so requires an obscure
trick, and there are few reasons to write such a class. (The obscure trick is left as an exer-
cise to the reader. Hint: Use a virtual base class.)

Casting

Recall from Chapter 3 that the process of forcing a conversion from one type to
another is called casting. The Java programming language has a special notation for
casts. For example,

double x = 3.405;
int nx = (int) x;

converts the value of the expressionx into an integer, discarding the fractional part.

Just as you occasionally need to convert a floating-point number to an integer, you also
need to convert an object reference from one class to another. To actually make a cast of
an object reference, you use a syntax similar to what you use for casting a numeric
expression. Surround the target class name with parentheses and place it before the
object reference you want to cast. For example:

Manager boss = (Manager) staff[0];

There is only one reason why you would want to make a cast—to use an object in its full
capacity after its actual type has been temporarily forgotten. For example, in theManagerTest
class, the staff array had to be an array of Employee objects because some of its entries were
regular employees. We would need to cast the managerial elements of the array back to
Manager to access any of its new variables. (Note that in the sample code for the first section,
we made a special effort to avoid the cast. We initialized theboss variable with a Manager
object before storing it in the array. We needed the correct type to set the bonus of the
manager.)

Chapter 5. Inheritance

Classes, Superclasses, and Subclasses m

As you know, in Java every object variable has a type. The type describes the kind of
object the variable refers to and what it can do. For example, staff[i] refers to an Employee
object (so it can also refer to aManager object).

The compiler checks that you do not promise too much when you store a value in a vari-
able. If you assign a subclass reference to a superclass variable, you are promising less,
and the compiler will simply let you do it. If you assign a superclass reference to a sub-
class variable, you are promising more. Then you must use a cast so that your promise
can be checked at runtimeruntime.

What happens if you try to cast down an inheritance chain and you are “lying” about
what an object contains?
Manager boss = (Manager) staff[1]; // ERROR

When the program runs, the Java runtime system notices the broken promise and gener-
ates a ClassCastException. If you do not catch the exception, your program terminates.
Thus, it is good programming practice to find out whether a cast will succeed before
attempting it. Simply use the instanceof operator. For example:

if (staff[1] instanceof Manager)
boss = (Manager) staff[1];

}

Finally, the compiler will not let you make a cast if there is no chance for the cast to
succeed. For example, the cast

Date ¢ = (Date) staff[1];
is a compile-time error because Date is not a subclass of Employee.
To sum up:
* You can cast only within an inheritance hierarchy.
e Use instanceof to check before casting from a superclass to a subclass.

NOTE: The test
x instanceof C
does not generate an exception if x is null. It simply returns false. That makes sense.
Because null refers to no object, it certainly doesn’t refer to an object of type C.

Actually, converting the type of an object by performing a cast is not usually a good idea. In
our example, you do not need to cast an Employee object to a Manager object for most purposes.
The getSalary method will work correctly on both objects of both classes. The dynamic bind-
ing that makes polymorphism work locates the correct method automatically.

The only reason to make the cast is to use a method that is unique to managers, such as
setBonus. If for some reason you find yourself wanting to call setBonus on Employee objects,
ask yourself whether this is an indication of a design flaw in the superclass. It may make
sense to redesign the superclass and add a setBonus method. Remember, it takes only one
uncaught ClassCastException to terminate your program. In general, it is best to minimize
the use of casts and the instanceof operator.

Chapter 5. Inheritance

m Chapter 5 W Inheritance

C++ NOTE: Java uses the cast syntax from the “bad old days” of C, but it works like the safe
dynamic_cast operation of C++. For example,

Manager boss = (Manager) staff[1]; // Java
is the same as

Manager: boss = dynamic_cast<Managers>(staff[1]); // C++
with one important difference. If the cast fails, it does not yield a null object but throws an
exception. In this sense, it is like a C++ cast of references. This is a pain in the neck. In C++,
you can take care of the type test and type conversion in one operation.

Manager: boss = dynamic_cast<Managers>(staff[1]); // C++

if (boss != NULL) . . .
In Java, you use a combination of the instanceof operator and a cast.

if (staff[1] instanceof Manager)

{
Manager boss = (Manager) staff[1];

Abstract Classes

As you move up the inheritance hierarchy, classes become more general and probably
more abstract. At some point, the ancestor class becomes so general that you think of it
more as a basis for other classes than as a class with specific instances you want to use.
Consider, for example, an extension of our Employee class hierarchy. An employee is a per-
son, and so is a student. Let us extend our class hierarchy to include classes Person and
Student. Figure 5-2 shows the inheritance relationships between these classes.

Person
._—F_-

Employee Student

Figure 5-2 Inheritance diagram for Person and its subclasses

Why bother with so high a level of abstraction? There are some attributes that make
sense for every person, such as the name. Both students and employees have names,

Chapter 5. Inheritance

Classes, Superclasses, and Subclasses 1k:74

and introducing a common superclass lets us factor out the getName method to a higher
level in the inheritance hierarchy.

Now let’s add another method, getDescription, whose purpose is to return a brief descrip-
tion of the person, such as

an employee with a salary of $50,000.00

a student majoring in computer science
It is easy to implement this method for the Employee and Student classes. But what informa-
tion can you provide in the Person class? The Person class knows nothing about the person
except the name. Of course, you could implement Person.getDescription() to return an
empty string. But there is a better way. If you use the abstract keyword, you do not need
to implement the method at all.

public abstract String getDescription();

// no implementation required

For added clarity, a class with one or more abstract methods must itself be declared
abstract.

abstract class Person

public abstract String getDescription();
}
In addition to abstract methods, abstract classes can have fields and concrete methods.
For example, the Person class stores the name of the person and has a concrete method
that returns it.

abstract class Person

{
public Person(String n)
{
name = n;
}

public abstract String getDescription();

public String getName()
{

}

return name;

private String name;

}

TIP: Some programmers don’t realize that abstract classes can have concrete methods. You
should always move common fields and methods (whether abstract or not) to the superclass
(whether abstract or not).

Abstract methods act as placeholders for methods that are implemented in the sub-
classes. When you extend an abstract class, you have two choices. You can leave some or
all of the abstract methods undefined. Then you must tag the subclass as abstract as
well. Or you can define all methods. Then the subclass is no longer abstract.

Chapter 5. Inheritance

188 Chapter 5 W Inheritance

For example, we will define a Student class that extends the abstract Person class and
implements the getDescription method. Because none of the methods of the Student class
are abstract, it does not need to be declared as an abstract class.

A class can even be declared as abstract even though it has no abstract methods.

Abstract classes cannot be instantiated. That is, if a class is declared as abstract, no
objects of that class can be created. For example, the expression

new Person("Vince Vu")
is an error. However, you can create objects of concrete subclasses.

Note that you can still create object variables of an abstract class, but such a variable must
refer to an object of a nonabstract subclass. For example:

Person p = new Student("Vince Vu", "Economics");

Here p is a variable of the abstract type Person that refers to an instance of the nonabstract
subclass Student.

E C++ NOTE: In C++, an abstract method is called a pure virtual function and is tagged with a
trailing = 0, such as in

class Person // C++

{
public:
virtual string getDescription() = 0;

};.”

A C++ class is abstract if it has at least one pure virtual function. In C++, there is no special
keyword to denote abstract classes.

Let us define a concrete subclass Student that extends the abstract Person class:
class Student extends Person

public Student(String n, String m)
{

super(n);

major = m;

}

public String getDescription()
{

return "a student majoring in

}

+ major;

private String major;
}
The Student class defines the getDescription method. Therefore, all methods in the Student
class are concrete, and the class is no longer an abstract class.

Chapter 5. Inheritance

Classes, Superclasses, and Subclasses

The program shown in Listing 5-2 defines the abstract superclass Person and two
concrete subclasses, Employee and Student. We fill an array of Person references with
employee and student objects:

Person[] people = new Person[2];

people[0] = new Employee(. . .);

people[1] = new Student(. . .);
We then print the names and descriptions of these objects:

for (Person p : people)

System.out.printIn(p.getName() + ", " + p.getDescription());

Some people are baffled by the call

p.getDescription()
Isn’t this call an undefined method? Keep in mind that the variablep never refers to a
Person object because it is impossible to construct an object of the abstractPerson class. The
variable p always refers to an object of a concrete subclass such asEmployee or Student. For
these objects, the getDescription method is defined.
Could you have omitted the abstract method altogether from the Person superclass and
simply defined the getDescription methods in the Employee and Student subclasses? If you
did that, then you wouldn’t have been able to invoke the getDescription method on the
variable p. The compiler ensures that you invoke only methods that are declared in the
class.
Abstract methods are an important concept in the Java programming language. You will
encounter them most commonly inside interfaces. For more information about inter-
faces, turn to Chapter 6.

ISR T2 B PersonTest. java

1. import java.util.s;

2.

3. [ux

4.« This program demonstrates abstract classes.

5.+ @version 1.01 2004-02-21

6. * @author Cay Horstmann

7. %/

s. pubTic class PersonTest

9 {

10. public static void main(String[] args)

1. {

12. Person[] people = new Person[2];

13.

14, // fi1l the people array with Student and Employee objects
15. people[0] = new Employee("Harry Hacker", 50000, 1989, 10, 1);
16. people[1] = new Student("Maria Morris", "computer science");
17.

18. // print out names and descriptions of all Person objects

19. for (Person p : people)

20. System.out.printIn(p.getName() + ", " + p.getDescription());

Chapter 5. Inheritance

m Chapter 5 W Inheritance

)R T150 T2V PersonTest.java (continued)

2. }
23.
24. abstract class Person

25. {

26. public Person(String n)
27. {

2. name = n;

29. }

30.

a1, public abstract String getDescription();
32.

3. public String getName()

34. {
35. return name;
36. }

37.

ss. private String name;

39. }

40.

1. class Employee extends Person

IS

43. public EmpToyee(String n, double s, int year, int month, int day)

4 A

45. super(n);

46. salary = s;

7. GregorianCalendar calendar = new GregorianCalendar(year, month - 1, day);
48. hireDay = calendar.getTime();

49}

50.

st public double getSalary()

52. {

53. return salary;

54. }

55.

s6. public Date getHireDay()

57. {

58. return hireDay;

59. }

60.

61. public String getDescription()

62. {

63. return String.format("an employee with a salary of §%.2f", salary);
64. }

65.

e6. public void raiseSalary(double byPercent)
67. {

68. double raise = salary = byPercent / 100;
69. salary += raise;

70}

Chapter 5. Inheritance

Classes, Superclasses, and Subclasses m

IS 151 T 20 PersonTest. java (continued)

71.

72. private double salary;

73, private Date hireDay;

74. }

75.

76. Class Student extends Person

7. {

78 [ax

79. x @param n the student's name
80. « @param m the student's major

81. *
82. public Student(String n, String m)

83. {

84. // pass n to superclass constructor
85. super(n);

86. major = m;

87. }

88.
so. public String getDescription()

90 {
91. return "a student majoring in " + major;
92}

93.
94. private String major;

9. }

Protected Access

As you know, fields in a class are best tagged asprivate, and methods are usually tagged
as public. Any features declared private won’t be visible to other classes. As we said at the
beginning of this chapter, this is also true for subclasses: a subclass cannot access the pri-
vate fields of its superclass.

There are times, however, when you want to restrict a method to subclasses only or, less
commonly, to allow subclass methods to access a superclass field. In that case, you
declare a class feature as protected. For example, if the superclass Employee declares the
hireDay field as protected instead of private, then the Manager methods can access it directly.

However, the Manager class methods can peek inside thehireDay field of Manager objects only,
not of other Employee objects. This restriction is made so that you can’t abuse the protected
mechanism and form subclasses just to gain access to the protected fields.

In practice, use protected fields with caution. Suppose your class is used by other pro-
grammers and you designed it with protected fields. Unknown to you, other pro-
grammers may inherit classes from your class and then start accessing your protected
fields. In this case, you can no longer change the implementation of your class without
upsetting the other programmers. That is against the spirit of OOP, which encourages
data encapsulation.

Chapter 5. Inheritance

Chapter 5 W Inheritance

Protected methods make more sense. A class may declare a method asprotected if it is
tricky to use. This indicates that the subclasses (which, presumably, know their ances-
tors well) can be trusted to use the method correctly, but other classes cannot.

A good example of this kind of method is the clone method of the Object class—see Chap-
ter 6 for more details.

E C++ NOTE: As it happens, protected features in Java are visible to all subclasses as well as
to all other classes in the same package. This is slightly different from the C++ meaning of
protected, and it makes the notion of protected in Java even less safe than in C++.

Here is a summary of the four access modifiers in Java that control visibility:

1. Visible to the class only (private).

2. Visible to the world (public).

3. Visible to the package and all subclasses (protected).

4. Visible to the package—the (unfortunate) default. No modifiers are needed.

Object: The Cosmic Superclass
The Object class is the ultimate ancestor—every class in Java extendsObject. However,
you never have to write

class Employee extends Object
The ultimate superclass Object is taken for granted if no superclass is explicitly men-
tioned. Because every class in Java extends Object, it is important to be familiar with the
services provided by the Object class. We go over the basic ones in this chapter and refer
you to later chapters or to the on-line documentation for what is not covered here. (Sev-
eral methods of Object come up only when dealing with threads—see Volume II for more
on threads.)
You can use a variable of type Object to refer to objects of any type:

Object obj = new Employee("Harry Hacker", 35000);
Of course, a variable of type Object is only useful as a generic holder for arbitrary values.
To do anything specific with the value, you need to have some knowledge about the
original type and then apply a cast:

Employee e = (Employee) obj;
In Java, only the primitive types (numbers, characters, and boolean values) are not objects.
All array types, no matter whether they are arrays of objects or arrays of primitive
types, are class types that extend the Object class.

Employee[] staff = new Employee[10];

obj = staff; // OK

obj = new int[10]; // OK

C++ NOTE: In C++, there is no cosmic root class. However, every pointer can be converted
E to a void+ pointer.

Chapter 5. Inheritance

Object: The Cosmic Superclass m

The equals Method
The equals method in the Object class tests whether one object is considered equal to another.
The equals method, as implemented in the Object class, determines whether two object refer-
ences are identical. This is a pretty reasonable default—if two objects are identical, they
should certainly be equal. For quite a few classes, nothing else is required. For example, it
makes little sense to compare two PrintStreanm objects for equality. However, you will often
want to implement state-based equality testing, in which two objects are considered equal
when they have the same state.
For example, let us consider two employees equal if they have the same name, salary,
and hire date. (In an actual employee database, it would be more sensible to compare
IDs instead. We use this example to demonstrate the mechanics of implementing the
equals method.)

class Employee

{

public boolean equals(Object otherObject)
{

// a quick test to see if the objects are identical
if (this == otherObject) return true;

// must return false if the explicit parameter is null
if (otherObject == nu1l) return false;

// if the classes don't match, they can't be equal
if (getClass() != otherObject.getClass())
return false;

// now we know otherObject is a non-null Employee
Employee other = (Employee) otherObject;

// test whether the fields have identical values
return name.equals(other.name)
&& salary == other.salary
&& hireDay.equals(other.hireDay);
}
}

The get(lass method returns the class of an object—we discuss this method in detail later
in this chapter. In our test, two objects can only be equal when they belong to the same

class.

When you define the equals method for a subclass, first call equals on the superclass. If that
test doesn’t pass, then the objects can’t be equal. If the superclass fields are equal, then you
are ready to compare the instance fields of the subclass.

class Manager extends Employee

{

public boolean equals(Object otherObject)
{

if (!super.equals(otherObject)) return false;

Chapter 5. Inheritance

m Chapter 5 W Inheritance

// super.equals checked that this and otherObject belong to the same class
Manager other = (Manager) otherObject;
return bonus == other.bonus;
}
}

Equality Testing and Inheritance

How should the equals method behave if the implicit and explicit parameters don’t
belong to the same class? This has been an area of some controversy. In the preceding
example, the equals method returns false if the classes don’t match exactly. But many pro-
grammers use an instanceof test instead:

if (!(otherObject instanceof Employee)) return false;

This leaves open the possibility thatotherObject can belong to a subclass. However, this
approach can get you into trouble. Here is why. The Java Language Specification
requires that the equals method has the following properties:

1. It is reflexive: For any non-null reference x, x.equals(x) should return true.

2. Itis symmetric: For any references x and y, x.equals(y) should return true if and only if
y.equals(x) returns true.

3. ltis transitive: For any references x, y, and z, if x.equals(y) returns true and y.equals(z)
returns true, then x.equals(z) should return true.

4. Ttis consistent: If the objects to which x and y refer haven’t changed, then repeated
calls to x.equals(y) return the same value.

5. For any non-null reference x, x.equals(nu11) should return false.

These rules are certainly reasonable. You wouldn’t want a library implementor to pon-
der whether to call x.equals(y) or y.equals(x) when locating an element in a data structure.

However, the symmetry rule has subtle consequences when the parameters belong to
different classes. Consider a call

e.equals(m)
where e is an Enployee object and m is a Manager object, both of which happen to have the

same name, salary, and hire date. If Employee.equals uses an instanceof test, the call returns
true. But that means that the reverse call

m.equals(e)

also needs to return true—the symmetry rule does not allow it to return false or to throw
an exception.

That leaves the Manager class in a bind. Its equals method must be willing to compare itself
to any Employee, without taking manager-specific information into account! All of a sud-
den, the instanceof test looks less attractive!

Some authors have gone on record that the getClass test is wrong because it violates the
substitution principle. A commonly cited example is the equals method in the AbstractSet
class that tests whether two sets have the same elements. TheAbstractSet class has two
concrete subclasses, TreeSet and HashSet, that use different algorithms for locating set ele-
ments. You really want to be able to compare any two sets, no matter how they are
implemented.

Chapter 5. Inheritance

Object: The Cosmic Superclass m

However, the set example is rather specialized. It would make sense to declare Abstract-
Set.equals as final, because nobody should redefine the semantics of set equality. (The
method is not actually final. This allows a subclass to implement a more efficient algo-
rithm for the equality test.)

The way we see it, there are two distinct scenarios:

¢ If subclasses can have their own notion of equality, then the symmetry requirement
forces you to use the get(lass test.

e If the notion of equality is fixed in the superclass, then you can use the instanceof test
and allow objects of different subclasses to be equal to another.

In the example of the employees and managers, we consider two objects to be equal
when they have matching fields. If we have two Manager objects with the same name, sal-
ary, and hire date, but with different bonuses, we want them to be different. Therefore,
we used the getClass test.

But suppose we used an employee ID for equality testing. This notion of equality makes
sense for all subclasses. Then we could use the instanceof test, and we should declare
Employee.equals as final.

NOTE: The standard Java library contains over 150 implementations of equals methods, with
a mishmash of using instanceof, calling getClass, catching a ClassCastException, or doing
nothing at all.

Here is a recipe for writing the perfectequals method:

1. Name the explicit parameter other0bject—later, you need to cast it to another variable
that you should call other.

2. Test whether this happens to be identical to otherObject:
if (this == otherObject) return true;

This statement is just an optimization. In practice, this is a common case. It is much
cheaper to check for identity than to compare the fields.

3. Test whether otherObject is null and return false if it is. This test is required.
if (otherObject == null) return false;

4. Compare the classes of this and otherObject. If the semantics of equals can change in
subclasses, use the getClass test:

if (getClass() != otherObject.getClass()) return false;
If the same semantics holds for all subclasses, you can use aninstanceof test:
if (!(otherObject instanceof ClassName)) return false;
5. Cast otherObject to a variable of your class type:
ClassName other = (ClassName) otherObject
6. Now compare the fields, as required by your notion of equality. Use== for primitive
type fields, equals for object fields. Return true if all fields match, false otherwise.
return field, == other.field;
&& field,.equals(other.field,)
& .. .

If you redefine equals in a subclass, include a call to super.equals(other).

Chapter 5. Inheritance

m Chapter 5 W Inheritance

m TIP: If you have fields of array type, you can use the static Arrays.equals method to check
that corresponding array elements are equal.

CAUTION: Here is a common mistake when implementing the equals method. Can you spot
n the problem?
pubTic class Employee

{

pubTic boolean equals(Employee other)

{
return name.equals(other.name)
&& salary == other.salary
&& hireDay.equals(other.hireDay);

}
This method declares the explicit parameter type as Employee. As a result, it does not over-
ride the equals method of the Object class but defines a completely unrelated method.
Starting with Java SE 5.0, you can protect yourself against this type of error by tagging
methods that are intended to override superclass methods with @verride:

@0verride public boolean equals(Object other)
If you made a mistake and you are defining a new method, the compiler reports an error. For
example, suppose you add the following declaration to the EmpTloyee class:

@verride public boolean equals(Employee other)
An error is reported because this method doesn’t override any method from the Object
superclass.

java.util.Arrays 1.2

e static boolean equals(typel] a, type[] b) 5.0
returns true if the arrays have equal lengths and equal elements in corresponding
positions. The arrays can have component types Object, int, Tong, short, char, byte,
boolean, float, or double.

The hashCode Method

A hash code is an integer that is derived from an object. Hash codes should be scram-
bled—if x and y are two distinct objects, there should be a high probability thatx.hash-
Code() and y.hashCode() are different. Table 5-1 lists a few examples of hash codes that
result from the hashCode method of the String class.

The String class uses the following algorithm to compute the hash code:

int hash = 0;
for (int i =0; i < Tength(); i++)
hash = 31 « hash + charAt(i);

Chapter 5. Inheritance

Object: The Cosmic Superclass 197

Table 5-1 Hash Codes Resulting from the hashCode Function

String Hash Code
Hello 69609650
Harry 69496448
Hacker -2141031506

The hashCode method is defined in the Object class. Therefore, every object has a default
hash code. That hash code is derived from the object’s memory address. Consider this
example:

String s = "0k";

StringBuilder sb = new StringBuilder(s);

System.out.printIn(s.hashCode() + " " + sh.hashCode());

String t = new String("0k");

StringBuilder th = new StringBuilder(t);

System.out.printIn(t.hashCode() + " " + tb.hashCode());

Table 5-2 shows the result.

Table 5-2 Hash Codes of Strings and String Builders

Object Hash Code
s 2556

sh 20526976

t 2556

th 20527144

Note that the strings s and t have the same hash code because, for strings, the hash
codes are derived from their contents. The string builders sh and tb have different hash
codes because no hashCode method has been defined for the StringBuilder class, and the
default hashCode method in the Object class derives the hash code from the object’s mem-
ory address.

If you redefine the equals method, you will also need to redefine thehashCode method for
objects that users might insert into a hash table. (We discuss hash tables in Chapter 2
of Volume II.)

The hashCode method should return an integer (which can be negative). Just combine the
hash codes of the instance fields so that the hash codes for different objects are likely to
be widely scattered.

For example, here is a hashCode method for the Employee class:
class Employee

{
pubTic int hashCode()
{

Chapter 5. Inheritance

m Chapter 5 W Inheritance

return 7 x name.hashCode()
+ 11 « new Double(salary).hashCode()
+ 13 « hireDay.hashCode();

}

Your definitions of equals and hashCode must be compatible: if x.equals(y) is true, then
x.hashCode() must be the same value as y.hashCode(). For example, if you define
Employee.equals to compare employee IDs, then the hashCode method needs to hash
the IDs, not employee names or memory addresses.

m TIP: If you have fields of array type, you can use the static Arrays.hashCode method to com-
pute a hash code that is composed of the hash codes of the array elements.

java.lang.Object 1.0

e int hashCode()
returns a hash code for this object. A hash code can be any integer, positive or
negative. Equal objects need to return identical hash codes.

java.util.Arrays 1.2

e static int hashCode(type[] a) 5.0
computes the hash code of the array a, which can have component type Object, int,
Tong, short, char, byte, boolean, float, or double.

The toString Method

Another important method in Object is the toString method that returns a string repre-
senting the value of this object. Here is a typical example. The toString method of the
Point class returns a string like this:

java.awt.Point[x=10,y=20]

Most (but not all) toString methods follow this format: the name of the class, followed by
the field values enclosed in square brackets. Here is an implementation of the toString
method for the Employee class:

public String toString()
{
return "Employee[name=" + name
+ " salary=" + salary
+ ",hireDay=" + hireDay
NI
}
Actually, you can do a little better. Rather than hardwiring the class name into the
toString method, call getClass().getName() to obtain a string with the class name.

public String toString()

{
return getClass().getName()

Chapter 5. Inheritance

Object: The Cosmic Superclass

"[name=" + name
",salary=" + salary
" hireDay=" + hireDay

+ + + +

}
The toString method then also works for subclasses.

Of course, the subclass programmer should define its own toString method and add the
subclass fields. If the superclass uses getClass().getName(), then the subclass can simply
call super.toString(). For example, here is a toString method for the Manager class:

class Manager extends Employee

{

public String toString()
{
return super.toString()
+ "[bonus="+ bonus
+'1"
}
}

Now a Manager object is printed as
Manager[name=...,salary=...,hireDay=...][bonus=...]
The toString method is ubiquitous for an important reason: whenever an object is concat-

enated with a string by the “+” operator, the Java compiler automatically invokes the
toString method to obtain a string representation of the object. For example:
Point p = new Point(10, 20);
String message = "The current position is
// automatically invokes p.toString()

+p;

TIP: Instead of writing x.toString(), you can write "" + x. This statement concatenates the
empty string with the string representation of x that is exactly x.toString(). Unlike toString,
this statement even works if x is of primitive type.

If x is any object and you call
System.out.printIn(x);
then the printTn method simply calls x.toString() and prints the resulting string.

The 0Object class defines the toString method to print the class name and the hash code of
the object. For example, the call

System.out.printIn(System.out)
produces an output that looks like this:
java.io.PrintStream@2f6684

The reason is that the implementor of the PrintStrean class didn’t bother to override the
toString method.

Chapter 5. Inheritance

Chapter 5 W Inheritance

CAUTION: Annoyingly, arrays inherit the toString method from Object, with the added twist
n that the array type is printed in an archaic format. For example,

int[] TuckyNumbers = { 2, 3, 5, 7, 11, 13 };
String s = "" + TuckyNumbers;

yields the string "[I@1a46e30". (The prefix [I denotes an array of integers.) The remedy is to
call the static Arrays.toString method instead. The code

String s = Arrays.toString(luckyNumbers);
yields the string "[2, 3, 5, 7, 11, 13]".
To correctly print multidimensional arrays (that is, arrays of arrays), use Arrays.deepToString.

The toString method is a great tool for logging. Many classes in the standard class library
define the toString method so that you can get useful information about the state of an
object. This is particularly useful in logging messages like this:

System.out.printIn("Current position = " + position);

As we explain in Chapter 11, an even better solution is

Logger.global.info("Current position = " + position);

TIP: We strongly recommend that you add a toString method to each class that you write.
You, as well as other programmers who use your classes, will be grateful for the logging
support.

The program in Listing 5-3 implements the equals, hashCode, and toString methods for the
Employee and Manager classes.

IBTTR TR I EqualsTest. java

1. import java.util.s;

2.

3. [ax

4.+ This program demonstrates the equals method.

5.+ @version 1.11 2004-02-21

6. * @author Cay Horstmann

7. %/

s. public class EqualsTest

9 {

10. public static void main(String[] args)

1. {

12, Employee alicel = new Employee("ATice Adams", 75000, 1987, 12, 15);
13. Employee alice2 = alicel;

14. Employee alice3 = new Employee("ATice Adams", 75000, 1987, 12, 15);
15. Employee bob = new Employee("Bob Brandson", 50000, 1989, 10, 1);

17. System.out.printIn("alicel == alice2: " + (alicel == alice2));

Chapter 5. Inheritance

Object: The Cosmic Superclass m

EqualsTest.java (continued)

19. System.out.printIn("alicel == alice3: " + (alicel == alice3));
20.

21. System.out.printIn("alicel.equals(alice3): " + alicel.equals(alice3));
22.

23. System.out.printIn("alicel.equals(bob): " + alicel.equals(bob));
24.

25. System.out.printTn("bob.toString(): " + bob);

26.

27. Manager carl = new Manager("Carl Cracker", 80000, 1987, 12, 15);
28. Manager boss = new Manager("Carl Cracker", 80000, 1987, 12, 15);
29. boss.setBonus(5000);

30. System.out.printIn("boss.toString(): " + boss);

31. System.out.printIn("carl.equals(boss): " + carl.equals(boss));
32. System.out.printIn("alicel.hashCode(): " + alicel.hashCode());
33. System.out.printIn("alice3.hashCode(): " + alice3.hashCode());
34. System.out.printTn("bob.hashCode(): " + bob.hashCode());

35. System.out.printIn("carl.hashCode(): " + carl.hashCode());
3.}

37. }

38.

o. class Employee

40. {

41, public Employee(String n, double s, int year, int month, int day)
42.

@

43. name = n;

2. salary = s;

45. GregorianCalendar calendar = new GregorianCalendar(year, month - 1, day);
46. hireDay = calendar.getTime();

47. }

48.
49, public String getName()

50. {

51, return name;

52. }

53.

5. public double getSalary()
55. {

56. return salary;

57. }

58.

so. public Date getHireDay()
60. {

61. return hireDay;

62. }

63.
6. public void raiseSalary(double byPercent)

65. {
66. doubTe raise = salary = byPercent / 100;
67. salary += raise;

68. }

Chapter 5. Inheritance

m Chapter 5 W Inheritance

EqualsTest.java (continued)

69.
70. public boolean equals(Object otherObject)

71. {

72. // a quick test to see if the objects are identical

73. if (this == otherObject) return true;

74.

75. // must return false if the explicit parameter is null
76. if (otherObject == null) return false;

77.

78. // if the classes don't match, they can't be equal

79. if (getClass() != otherObject.getClass()) return false;
80.

81. // now we know otherObject is a non-null Employee

82. Employee other = (Employee) otherObject;

83.

84. // test whether the fields have identical values

85. return name.equals(other.name) && salary == other.salary & hireDay.equals(other.hireDay);
86. }

87.

ss. public int hashCode()

89. {

90. return 7 x name.hashCode() + 11 * new Double(salary).hashCode() + 13 * hireDay.hashCode();
o1. }

92.

93, public String toString()

. |

95. return getClass().getName() + "[name=" + name + ",salary=" + salary + ",hireDay=" + hireDay
9%. + "1

a7. }

98.

9. private String name;

100. private double salary;

101, private Date hireDay;

102, }

108.

104. c1ass Manager extends Employee

105. {

106. public Manager(String n, double s, int year, int month, int day)
107 |

108. super(n, s, year, month, day);

109. bonus = 0;

110, }

111.

2. public double getSalary()

113.

114, doubTe baseSalary = super.getSalary();
115, return baseSalary + bonus;

6.}

117.

Chapter 5. Inheritance

Object: The Cosmic Superclass

EqualsTest.java (continued)

118,
119.
120.
121,
122,
123,
124,
125.
126.
127.
128,
129.
130.
131.
132.
133.
134,
135.
136.
137.
138.
139.
140.
141,
142,
143. }

public void setBonus(double b)
{

}

bonus = b;

public boolean equals(Object otherObject)
{
if (!super.equals(otherObject)) return false;
Manager other = (Manager) otherObject;
// super.equals checked that this and other belong to the same class
return bonus == other.bonus;

}

public int hashCode()
{

}

return super.hashCode() + 17 = new Double(bonus).hashCode();

public String toString()
{

}

return super.toString() + "[bonus=" + bonus + "1";

private double bonus;

java.lang.Object 1.0

(Tass getClass()

returns a class object that contains information about the object. As you see later
in this chapter, Java has a runtime representation for classes that is encapsulated
in the (lass class.

boolean equals(Object otherObject)

compares two objects for equality; returns true if the objects point to the same area
of memory, and false otherwise. You should override this method in your own
classes.

String toString()

returns a string that represents the value of this object. You should override this
method in your own classes.

Object clone()

creates a clone of the object. The Java runtime system allocates memory for the
new instance and copies the memory allocated for the current object.

Chapter 5. Inheritance

Chapter 5 W Inheritance

NOTE: Cloning an object is important, but it also turns out to be a fairly subtle process filled
with potential pitfalls for the unwary. We will have a lot more to say about the clone method in
Chapter 6.

m java.lang.Class 1.0

e String getName()
returns the name of this class.
e (lass getSuperclass()
returns the superclass of this class as aClass object.

Generic Array Lists

In many programming languages—in particular, in C—you have to fix the sizes of all
arrays at compile time. Programmers hate this because it forces them into uncomfort-
able trade-offs. How many employees will be in a department? Surely no more than 100.
What if there is a humongous department with 150 employees? Do we want to waste 90
entries for every department with just 10 employees?

In Java, the situation is much better. You can set the size of an array at runtime.

int actualSize = . . .;

Employee[] staff = new Employee[actualSize];
Of course, this code does not completely solve the problem of dynamically modifying
arrays at runtime. Once you set the array size, you cannot change it easily. Instead, the
easiest way in Java to deal with this common situation is to use another Java class, called
ArrayList. The ArrayList class is similar to an array, but it automatically adjusts its capacity
as you add and remove elements, without your needing to write any code.

As of Java SE 5.0, ArrayList is a generic class with a type parameter. To specify the type of the
element objects that the array list holds, you append a class name enclosed in angle brack-
ets, such as ArrayList<Employee>. You will see in Chapter 13 how to define your own generic
class, but you don’t need to know any of those technicalities to use the ArrayList type.
Here we declare and construct an array list that holds Employee objects:

ArraylList<Employee> staff = new ArrayList<Employee>();

NOTE: Before Java SE 5.0, there were no generic classes. Instead, there was a single

ArrayList class, a “one size fits all” collection that holds elements of type Object. If you must
use an older version of Java, simply drop all <...> suffixes. You can still use ArrayList without
a <...> suffix in Java SE 5.0 and beyond. It is considered a “raw” type, with the type param-
eter erased.

NOTE: In even older versions of the Java programming language, programmers used the
Vector class for dynamic arrays. However, the ArrayList class is more efficient, and there is
no longer any good reason to use the Vector class.

Chapter 5. Inheritance

Generic Array Lists

You use the add method to add new elements to an array list. For example, here is how
you populate an array list with employee objects:

staff.add(new EmpToyee("Harry Hacker", . . .));
staff.add(new Employee("Tony Tester", . . .));

The array list manages an internal array of object references. Eventually, that array will
run out of space. This is where array lists work their magic: If you calladd and the inter-
nal array is full, the array list automatically creates a bigger array and copies all the
objects from the smaller to the bigger array.
If you already know, or have a good guess, how many elements you want to store, then
call the ensureCapacity method before filling the array list:

staff.ensureCapacity(100);
That call allocates an internal array of 100 objects. Then, the first 100 calls toadd do not
involve any costly reallocation.
You can also pass an initial capacity to the Arraylist constructor:

ArraylList<Employee> staff = new ArraylList<Employee>(100);

CAUTION: Allocating an array list as

new ArraylList<Employee>(100) // capacity is 100
is not the same as allocating a new array as

new Employee[100] // size is 100
There is an important distinction between the capacity of an array list and the size of an
array. If you allocate an array with 100 entries, then the array has 100 slots, ready for use.
An array list with a capacity of 100 elements has the potential of holding 100 elements (and,
in fact, more than 100, at the cost of additional reallocations); but at the beginning, even
after its initial construction, an array list holds no elements at all.

The size method returns the actual number of elements in the array list. For example,

staff.size()
returns the current number of elements in the staff array list. This is the equivalent of

a.length

for an array a.

Once you are reasonably sure that the array list is at its permanent size, you can call the
trinToSize method. This method adjusts the size of the memory block to use exactly as
much storage space as is required to hold the current number of elements. The garbage
collector will reclaim any excess memory.

Once you trim the size of an array list, adding new elements will move the block again,
which takes time. You should only use trinToSize when you are sure you won't add any
more elements to the array list.

Chapter 5. Inheritance

m Chapter 5 W Inheritance

C++ NOTE: The ArrayList class is similar to the C++ vector template. Both ArrayList and
vector are generic types. But the C++ vector template overloads the [] operator for conve-
nient element access. Because Java does not have operator overloading, it must use explicit
method calls instead. Moreover, C++ vectors are copied by value. If a and b are two vectors,
then the assignment a = b makes a into a new vector with the same length as b, and all
elements are copied from b to a. The same assignment in Java makes both a and b refer to
the same array list.

java.util.ArrayList<T> 1.2

e Arraylist<T>()
constructs an empty array list.

e Arraylist<T>(int initialCapacity)
constructs an empty array list with the specified capacity.
Parameters: ~ initialCapacity the initial storage capacity of the array list

e hoolean add(T obj)
appends an element at the end of the array list. Always returnstrue.

Parameters: obj the element to be added

o int size()
returns the number of elements currently stored in the array list. (Of course, this is
never larger than the array list’s capacity.)

e void ensureCapacity(int capacity)
ensures that the array list has the capacity to store the given number of elements
without reallocating its internal storage array.

Parameters: ~ capacity the desired storage capacity

e void trimToSize()
reduces the storage capacity of the array list to its current size.
Accessing Array List Elements
Unfortunately, nothing comes for free. The automatic growth convenience that array
lists give requires a more complicated syntax for accessing the elements. The reason is
that the ArrayList class is not a part of the Java programming language; it is just a utility
class programmed by someone and supplied in the standard library.

Instead of using the pleasant [] syntax to access or change the element of an array, you
use the get and set methods.

For example, to set the ith element, you use
staff.set(i, harry);
This is equivalent to
a[i] = harry;
for an array a. (As with arrays, the index values are zero-based.)

Chapter 5. Inheritance

Generic Array Lists 207

CAUTION: Do not call Tist.set(i, x) until the size of the array list is larger than i. For exam-
n ple, the following code is wrong:
ArrayList<Employee> 1ist = new ArraylList<Employee>(100); // capacity 100, size 0
Tist.set(0, x); // no element 0 yet
Use the add method instead of set to fill up an array, and use set only to replace a previously
added element.

To get an array list element, use
Employee e = staff.get(i);

This is equivalent to
Employee e = a[i];

ArraylList class had no choice but to return an Object. Consequently, callers of get had to
cast the returned value to the desired type:

NOTE: Before Java SE 5.0, there were no generic classes, and the get method of the raw

Employee e = (Employee) staff.get(i);
The raw ArrayList is also a bit dangerous. Its add and set methods accept objects of any
type. A call

staff.set(i, new Date());

compiles without so much as a warning, and you run into grief only when you retrieve the
object and try to cast it. If you use an ArrayList<Employee> instead, the compiler will detect
this error.

You can sometimes get the best of both worlds—flexible growth and convenient ele-
ment access—with the following trick. First, make an array list and add all the elements:

ArrayList<X> Tist = new ArrayList<X>();

while (. . .)
{
X=..
Tist.add(x);
}

When you are done, use the toArray method to copy the elements into an array:

X[] a = new X[Tist.size()];

Tist.toArray(a);
Sometimes, you need to add elements in the middle of an array list. Use theadd method
with an index parameter:

int n = staff.size() / 2;

staff.add(n, e);
The elements at locations n and above are shifted up to make room for the new entry. If
the new size of the array list after the insertion exceeds the capacity, then the array list
reallocates its storage array.

Chapter 5. Inheritance

Chapter 5 W Inheritance

Similarly, you can remove an element from the middle of an array list:

Employee e = staff.remove(n);
The elements located above it are copied down, and the size of the array is reduced by
one.

Inserting and removing elements is not terribly efficient. It is probably not worth worry-
ing about for small array lists. But if you store many elements and frequently insert and
remove in the middle of a collection, consider using a linked list instead. We explain
how to program with linked lists in Chapter 13.

As of Java SE 5.0, you can use the “for each” loop to traverse the contents of an array list:

for (Employee e : staff)
do something with e

This loop has the same effect as
for (int i = 0; i < staff.size(); i++)

{
Employee e = staff.get(i);
do something with e

}
Listing 5-4 is a modification of the EmployeeTest program of Chapter 4. The Employee[] array
is replaced by an ArrayList<Employee>. Note the following changes:
* You don't have to specify the array size.
¢ You use add to add as many elements as you like.
® You use size() instead of Tength to count the number of elements.
* You use a.get(i) instead of a[i] to access an element.

Listing 5-4 EWEVREAEIME

_import java.util.s;

1

2.

3. [ux

4.« This program demonstrates the Arraylist class.
5.« Qversion 1.1 2004-02-21
6.

7.

8

9

%

+ @author Cay Horstmann

. public class ArraylistTest
o
0. public static void main(String[] args)
11. {
12, // fill the staff array Tist with three Employee objects
13. ArraylList<Employee> staff = new ArraylList<Employee>();
14.
15. staff.add(new EmpToyee("Carl Cracker", 75000, 1987, 12, 15));
16. staff.add(new Employee("Harry Hacker", 50000, 1989, 10, 1));

17. staff.add(new Employee("Tony Tester", 40000, 1990, 3, 15));

Chapter 5. Inheritance

Generic Array Lists m

ArraylListTest.java (continued)

19. // raise everyone's salary by 5%

20. for (Employee e : staff)

21. e.raiseSalary(5);

22.

23, // print out information about all Employee objects

24. for (Employee e : staff)

25, System.out.printin("name=" + e.getName() + ",salary=" + e.getSalary() + ",hireDay="
26. + e.getHireDay());

27. }

28. }

30. class Employee

3. public Employee(String n, double s, int year, int month, int day)

33. {

34. name = n;

35. salary = s;

36. GregorianCalendar calendar = new GregorianCalendar(year, month - 1, day);
37. hireDay = calendar.getTime();

38. }

4. public String getName()

. {
42, return name;
43. }

4. public double getSalary()

46. {
47. return salary;
48. }

50. public Date getHireDay()

51. {
52, return hireDay;
53. }

ss. public void raiseSalary(double byPercent)

56. {

57. double raise = salary = byPercent / 100;
58. salary += raise;

59. }

61. private String name;
e2. private double salary;
e3. private Date hireDay;

Chapter 5. Inheritance

m Chapter 5 W Inheritance

java.util.ArrayList<T> 1.2

e void set(int index, T obj)
puts a value in the array list at the specified index, overwriting the previous
contents.

Parameters: index the position (must be between 0 and size() - 1)

obj the new value

e T get(int index)
gets the value stored at a specified index.
Parameters: ~ index the index of the element to get (must be between0 and
size() - 1)
e void add(int index, T obj)
shifts up elements to insert an element.

Parameters: index the insertion position (must be between 0 and size())

obj the new element

e T remove(int index)
removes an element and shifts down all elements above it. The removed element
is returned.

Parameters: ~ index the position of the element to be removed (must be
between 0 and size() - 1)

Compatibility between Typed and Raw Array Lists

When you write new code with Java SE 5.0 and beyond, you should use type parame-
ters, such as ArrayList<Employee>, for array lists. However, you may need to interoperate
with existing code that uses the raw ArrayList type.

Suppose that you have the following legacy class:

public class EmployeeDB

{
public void update(ArrayList Tist) { ... }
public ArrayList find(String query) { ... }
}
You can pass a typed array list to the update method without any casts.
ArraylList<Employee> staff = ...;
employeeDB. update(staff);

The staff object is simply passed to the update method.

CAUTION: Even though you get no error or warning from the compiler, this call is not com-

n pletely safe. The update method might add elements into the array list that are not of type
Employee. When these elements are retrieved, an exception occurs. This sounds scary, but if
you think about it, the behavior is simply as it was before Java SE 5.0. The integrity of the
virtual machine is never jeopardized. In this situation, you do not lose security, but you also
do not benefit from the compile-time checks.

Chapter 5. Inheritance

Object Wrappers and Autoboxing

Conversely, when you assign a raw ArraylList to a typed one, you get a warning.
ArrayList<Employee> result = employeeDB.find(query); // yields warning

NOTE: To see the text of the warning, compile with the option -XTint:unchecked.

Using a cast does not make the warning go away.
ArrayList<Employee> result = (ArrayList<Employee>)
employeeDB. find(query); // yields another warning
Instead, you get a different warning, telling you that the cast is misleading.

This is the consequence of a somewhat unfortunate limitation of generic types in Java.
For compatibility, the compiler translates all typed array lists into raw ArrayList objects

after checking that the type rules were not violated. In a running program, all array lists

are the same—there are no type parameters in the virtual machine. Thus, the casts
(ArrayList) and (Arraylist<Employee>) carry out identical runtime checks.

There isn’t much you can do about that situation. When you interact with legacy code,
study the compiler warnings and satisfy yourself that the warnings are not serious.

Object Wrappers and Autoboxing
Occasionally, you need to convert a primitive type likeint to an object. All primitive types
have class counterparts. For example, a class Integer corresponds to the primitive type int.
These kinds of classes are usually called wrappers. The wrapper classes have obvious
names: Integer, Long, Float, Double, Short, Byte, Character, Void, and Boolean. (The first six inherit
from the common superclass Number.) The wrapper classes are immutable—you cannot
change a wrapped value after the wrapper has been constructed. They are alsofinal, so
you cannot subclass them.
Suppose we want an array list of integers. Unfortunately, the type parameter inside the
angle brackets cannot be a primitive type. It is not possible to form an Arraylist<int>.
Here, the Integer wrapper class comes in. It is ok to declare an array list of Integer objects.
ArrayList<Integer> list = new ArraylList<Integer>();

is separately wrapped inside an object. You would only want to use this construct for small

CAUTION: An ArrayList<Integer> is far less efficient than an int[] array because each value
collections when programmer convenience is more important than efficiency.

Another Java SE 5.0 innovation makes it easy to add and get array elements. The call
Tist.add(3);

is automatically translated to
Tist.add(new Integer(3));

This conversion is called autoboxing.

NOTE: You might think that autowrapping would be more consistent, but the “boxing” meta-
u phor was taken from C#.

Chapter 5. Inheritance

Chapter 5 W Inheritance

Conversely, when you assign an Integer object to an int value, it is automatically
unboxed. That is, the compiler translates

int n = list.get(i);
into

int n = list.get(i).intValue();
Automatic boxing and unboxing even works with arithmetic expressions. For example,
you can apply the increment operator to a wrapper reference:

Integer n = 3;

N++;
The compiler automatically inserts instructions to unbox the object, increment the
resulting value, and box it back.

In most cases, you get the illusion that the primitive types and their wrappers are one
and the same. There is just one point in which they differ considerably: identity. As you
know, the == operator, applied to wrapper objects, only tests whether the objects have
identical memory locations. The following comparison would therefore probably fail:

Integer a = 1000;

Integer b = 1000;

if (a==b) ...
However, a Java implementation may, if it chooses, wrap commonly occurring values
into identical objects, and thus the comparison might succeed. This ambiguity is not
what you want. The remedy is to call the equals method when comparing wrapper
objects.

NOTE: The autoboxing specification requires that boolean, byte, char = 127, and short and
int between —128 and 127 are wrapped into fixed objects. For example, if a and b had been
initialized with 100 in the preceding example, then the comparison would have had to

succeed.

Finally, let us emphasize that boxing and unboxing is a courtesy of the compiler, not the
virtual machine. The compiler inserts the necessary calls when it generates the byte-
codes of a class. The virtual machine simply executes those bytecodes.
You will often see the number wrappers for another reason. The designers of Java found
the wrappers a convenient place to put certain basic methods, like the ones for convert-
ing strings of digits to numbers.
To convert a string to an integer, you use the following statement:

int x = Integer.parseInt(s);
This has nothing to do with Integer objects—parseInt is a static method. But the Integer
class was a good place to put it.
The API notes show some of the more important methods of theInteger class. The other
number classes implement corresponding methods.

Chapter 5. Inheritance

Object Wrappers and Autoboxing

CAUTION: Some people think that the wrapper classes can be used to implement methods
that can modify numeric parameters. However, that is not correct. Recall from Chapter 4 that
it is impossible to write a Java method that increments an integer parameter because
parameters to Java methods are always passed by value.

public static void triple(int x) // won't work
{

X =3 % x; // modifies local variable
}

Could we overcome this by using an Integer instead of an int?

public static void triple(Integer x) // won't work
{

}
The problem is that Integer objects are immutable: the information contained inside the
wrapper can’t change. You cannot use these wrapper classes to create a method that modi-
fies numeric parameters.

If you do want to write a method to change numeric parameters, you can use one of the
holder types defined in the org.omg.CORBA package. There are types IntHolder, BooleanHolder,
and so on. Each holder type has a public (!) field value through which you can access the
stored value.

public static void triple(IntHolder x)
{

x.value = 3 = x.value;

}

java.lang.Integer 1.0

int intValue()

returns the value of this Integer object as an int (overrides the intValue method in
the Number class).

static String toString(int 1)

returns a new String object representing the number i in base 10.

static String toString(int i, int radix)

lets you return a representation of the number i in the base specified by the radix
parameter.

static int parseInt(String s)

static int parseInt(String s, int radix)

returns the integer whose digits are contained in the strings. The string must
represent an integer in base 10 (for the first method) or in the base given by the
radix parameter (for the second method).

static Integer valueOf(String s)

static Integer valueOf(String s, int radix)

returns a new Integer object initialized to the integer whose digits are contained in
the string s. The string must represent an integer in base 10 (for the first method)
or in the base given by the radix parameter (for the second method).

Chapter 5. Inheritance

Chapter 5 W Inheritance

m java.text.NumberFormat 1.1

o Number parse(String s)
returns the numeric value, assuming the specified String represents a number.

Methods with a Variable Number of Parameters

Before Java SE 5.0, every Java method had a fixed number of parameters. However, it is
now possible to provide methods that can be called with a variable number of parame-
ters. (These are sometimes called “varargs” methods.)

You have already seen such a method: printf. For example, the calls
System.out.printf("%d", n);
and
System.out.printf("%d %s", n, "widgets");
both call the same method, even though one call has two parameters and the other has
three.
The printf method is defined like this:
public class PrintStream

{
public PrintStream printf(String fmt, Object... args) { return format(fmt, args); }

}
Here, the ellipsis ... is a part of the Java code. It denotes that the method can receive an
arbitrary number of objects (in addition to the fmt parameter).

The printf method actually receives two parameters, the format string, and anObject[]
array that holds all other parameters. (If the caller supplies integers or other primitive
type values, autoboxing turns them into objects.) It now has the unenviable task of scan-
ning the fnt string and matching up the ith format specifier with the value args[i].
In other words, for the implementor of printf, the Object... parameter type is exactly the
same as Object[].
The compiler needs to transform each call to printf, bundling the parameters into an
array and autoboxing as necessary:

System.out.printf("%d %s", new Object[] { new Integer(n), "widgets" });
You can define your own methods with variable parameters, and you can specify any
type for the parameters, even a primitive type. Here is a simple example: a function that
computes the maximum of a variable number of values.

public static double max(double... values)

{
doubTe Targest = Double.MIN_VALUE;
for (double v : values) if (v > largest) largest = v;
return largest;

}
Simply call the function like this:

doubTe m = max(3.1, 40.4, -5);
The compiler passes anew double[] { 3.1, 40.4, -5 } to the max function.

Chapter 5. Inheritance

Enumeration Classes

NOTE: It is legal to pass an array as the last parameter of a method with variable parame-
ters. For example:
System.out.printf("%d %s", new Object[] { new Integer(1l), "widgets" });
Therefore, you can redefine an existing function whose last parameter is an array to a
method with variable parameters, without breaking any existing code. For example, Message-
Format.format was enhanced in this way in Java SE 5.0. If you like, you can even declare the
main method as

public static void main(String... args)

Enumeration Classes
You saw in Chapter 3 how to define enumerated types in Java SE 5.0 and beyond. Here
is a typical example:

public enum Size { SMALL, MEDIUM, LARGE, EXTRA_LARGE };
The type defined by this declaration is actually a class. The class has exactly four
instances—it is not possible to construct new objects.
Therefore, you never need to use equals for values of enumerated types. Simply use==to
compare them.
You can, if you like, add constructors, methods, and fields to an enumerated type. Of
course, the constructors are only invoked when the enumerated constants are con-
structed. Here is an example.

enum Size

{
SMALL("S"), MEDIUM("M"), LARGE("L"), EXTRA_LARGE("XL");

private Size(String abbreviation) { this.abbreviation = abbreviation; }
public String getAbbreviation() { return abbreviation; }

private String abbreviation;
}
All enumerated types are subclasses of the class Enun. They inherit a number of methods
from that class. The most useful one is toString, which returns the name of the enumer-
ated constant. For example, Size.SMALL.toString() returns the string "SMALL".

The converse of toString is the static value0f method. For example, the statement
Size s = (Size) Enum.valueOf(Size.class, "SMALL");
sets s to Size.SMALL.

Each enumerated type has a static values method that returns an array of all values of the
enumeration. For example, the call

Size[] values = Size.values();
returns the array with elements Size.SMALL, Size .MEDIUM, Size.LARGE, and Size.EXTRA_LARGE.

The ordinal method yields the position of an enumerated constant in theenum declaration,
counting from zero. For example, Size.MEDIUM.ordinal() returns 1.

The short program in Listing 5-5 demonstrates how to work with enumerated types.

Chapter 5. Inheritance

m Chapter 5 W Inheritance

NOTE: The Enum class has a type parameter that we have ignored for simplicity. For example,
the enumerated type Size actually extends Enum<Size>. The type parameter is used in the
compareTo method. (We discuss the compareTo method in Chapter 6 and type parameters in
Chapter 12.)

EnumTest. java

1. import java.util.s;

N o o > 0 N

Iz

x This program demonstrates enumerated types.
x @version 1.0 2004-05-24
+ @author Cay Horstmann

o

8. pubTic class EnumTest

9 {

10.

22.
23. enum Size
24. {
25.

26.
27.

28.
29.
30.

31.

}

public static void main(String[] args)

Scanner in = new Scanner(System.in);

System.out.print("Enter a size: (SMALL, MEDIUM, LARGE, EXTRA_LARGE) ");

String input = in.next().toUpperCase();

Size size = Enum.valueOf(Size.class, input);

System.out.printin("size=" + size);

System.out.printIn("abbreviation="

if (size == Size.EXTRA_LARGE)
System.out.printin("Good job--you paid attention to the _.");

+ size.getAbbreviation());

SMALL("S"), MEDIUM("M"), LARGE("L"), EXTRA_LARGE("XL");

private Size(String abbreviation) { this.abbreviation = abbreviation; }
public String getAbbreviation() { return abbreviation; }

private String abbreviation;

java.lang.Enum<E> 5.0

static Enum valueOf(Class enumClass, String name)

returns the enumerated constant of the given class with the given name.

String toString()

returns the name of this enumerated constant.

int ordinal()

returns the zero-based position of this enumerated constant in theenun declaration.

Chapter 5. Inheritance

Reflection

e int compareTo(E other)
returns a negative integer if this enumerated constant comes beforeother, zero if
this == other, and a positive integer otherwise. The ordering of the constants is
given by the enun declaration.

Reflection

The reflection library gives you a very rich and elaborate toolset to write programs

that manipulate Java code dynamically. This feature is heavily used in JavaBeans, the

component architecture for Java (see Volume II for more on JavaBeans). Using reflec-

tion, Java can support tools like the ones to which users of Visual Basic have grown

accustomed. In particular, when new classes are added at design or runtime, rapid

application development tools can dynamically inquire about the capabilities of the

classes that were added.

A program that can analyze the capabilities of classes is called reflective. The reflection

mechanism is extremely powerful. As the next sections show, you can use it to

* Analyze the capabilities of classes at runtime;

e Inspect objects at runtime, for example, to write a single toString method that works
for all classes;

¢ Implement generic array manipulation code; and

e Take advantage of Method objects that work just like function pointers in languages
such as C++.

Reflection is a powerful and complex mechanism; however, it is of interest mainly to

tool builders, not application programmers. If you are interested in programming appli-

cations rather than tools for other Java programmers, you can safely skip the remainder

of this chapter and return to it later.

The Class Class
While your program is running, the Java runtime system always maintains what is
called runtime type identification on all objects. This information keeps track of the class
to which each object belongs. Runtime type information is used by the virtual machine
to select the correct methods to execute.
However, you can also access this information by working with a special Java class. The
class that holds this information is called, somewhat confusingly,Class. The getClass()
method in the Object class returns an instance of Class type.

Employee e;

(lass c1 = e.getClass();

Just like an Employee object describes the properties of a particular employee, aClass object
describes the properties of a particular class. Probably the most commonly used method
of (lass is getName. This returns the name of the class. For example, the statement

+ e.getName());

System.out.printin(e.getClass().getName() +
prints

EmpToyee Harry Hacker
if e is an employee, or

Manager Harry Hacker

217

Chapter 5. Inheritance

m Chapter 5 W Inheritance

if e is a manager.
If the class is in a package, the package name is part of the class name:

Date d = new Date();

(lass c1 = d.getClass();

String name = c1.getName(); // name is set to "java.util.Date"
You can obtain a (lass object corresponding to a class name by using the static forName
method.

String className = "java.util.Date";

(lass c1 = Class.forName(className);
You would use this method if the class name is stored in a string that varies at runtim-
eruntime. This works if className is the name of a class or interface. Otherwise, the forName
method throws a checked exception. See the section “A Primer on Catching Exceptions”
on page 219 to see how to supply an exception handler whenever you use this method.

TIP: At startup, the class containing your main method is loaded. It loads all classes that it

m needs. Each of those loaded classes loads the classes that it needs, and so on. That can
take a long time for a big application, frustrating the user. You can give users of your pro-
gram the illusion of a faster start with the following trick. Make sure that the class containing
the main method does not explicitly refer to other classes. First display a splash screen. Then
manually force the loading of other classes by calling Class. forName.

A third method for obtaining an object of type(lass is a convenient shorthand. If T is any
Java type, then T.class is the matching class object. For example:

(lass c11 = Date.class; // if you import java.util.s;

Class c12 = int.class;

Class c13 = Double[].class;
Note that a Class object really describes a type, which may or may not be a class. For
example, int is not a class, but int.class is nevertheless an object of type Class.

NOTE: As of Java SE 5.0, the (lass class is parameterized. For example, Employee.class is of

type Class<Employee>. We are not dwelling on this issue because it would further complicate
an already abstract concept. For most practical purposes, you can ignore the type parame-
ter and work with the raw Class type. See Chapter 13 for more information on this issue.

CAUTION: For historical reasons, the getName method returns somewhat strange names for
array types:

e Double[].class.getName() returns "[Ljava.lang.Double;"

e int[].class.getName() returns "[I"

The virtual machine manages a unique Class object for each type. Therefore, you can use
the == operator to compare class objects. For example:

if (e.getClass() == Employee.class) . . .

Chapter 5. Inheritance

Reflection

Another example of a useful method is one that lets you create an instance of a class on

the fly. This method is called, naturally enough, newInstance(). For example,
e.getClass().newInstance();

creates a new instance of the same class type ase. The newInstance method calls the default

constructor (the one that takes no parameters) to initialize the newly created object. An

exception is thrown if the class has no default constructor.

Using a combination of forName and newInstance lets you create an object from a class name

stored in a string.

String s = "java.util.Date";
Object m = Class.forName(s).newInstance();

name in this manner, then you can’t use statements like the preceding. Instead, you must
use the newInstance method in the Constructor class.

NOTE: If you need to provide parameters for the constructor of a class you want to create by

C++ NOTE: The newInstance method corresponds to the idiom of a virtual constructorin C++.

However, virtual constructors in C++ are not a language feature but just an idiom that needs
to be supported by a specialized library. The Class class is similar to the type_info class in
C++, and the getClass method is equivalent to the typeid operator. The Java (lass is quite a
bit more versatile than type_info, though. The C++ type_info can only reveal a string with the
name of the type, not create new objects of that type.

A Primer on Catching Exceptions
We cover exception handling fully in Chapter 11, but in the meantime you will occasion-
ally encounter methods that threaten to throw exceptions.

When an error occurs at runtime, a program can “throw an exception.” Throwing an
exception is more flexible than terminating the program because you can provide a han-
dler that “catches” the exception and deals with it.

If you don’t provide a handler, the program still terminates and prints a message to the
console, giving the type of the exception. You may already have seen exception reports
when you accidentally used anull reference or overstepped the bounds of an array.

There are two kinds of exceptions: unchecked exceptions and checked exceptions. With
checked exceptions, the compiler checks that you provide a handler. However, many
common exceptions, such as accessing a null reference, are unchecked. The compiler
does not check whether you provide a handler for these errors—after all, you should
spend your mental energy on avoiding these mistakes rather than coding handlers for
them.

But not all errors are avoidable. If an exception can occur despite your best efforts,
then the compiler insists that you provide a handler. The (1ass.forName method is an
example of a method that throws a checked exception. In Chapter 11, you will see sev-
eral exception handling strategies. For now, we just show you the simplest handler
implementation.

Chapter 5. Inheritance

m Chapter 5 W Inheritance

Place one or more statements that might throw checked exceptions inside atry block.
Then provide the handler code in the catch clause.

try
{

statements that might throw exceptions

}

catch(Exception e)

{

handler action

}
Here is an example:

try

{
String name = . . .; // get class name
(lass c1 = (lass.forName(name); // might throw exception
. . . // do something with cl

}

catch(Exception e)

{
e.printStackTrace();

}
If the class name doesn’t exist, the remainder of the code in thetry block is skipped and
the program enters the catch clause. (Here, we print a stack trace by using the printStack-
Trace method of the Throwable class. Throwable is the superclass of the Exception class.) If none
of the methods in the try block throws an exception, the handler code in the catch clause
is skipped.
You only need to supply an exception handler for checked exceptions. It is easy to find
out which methods throw checked exceptions—the compiler will complain whenever
you call a method that threatens to throw a checked exception and you don’t supply a
handler.

java.lang.Class 1.0

e static Class forName(String className)
returns the (lass object representing the class with name className.

e (Object newInstance()
returns a new instance of this class.

java.lang.reflect.Constructor 1.1

e (Object newInstance(Object[] args)
constructs a new instance of the constructor’s declaring class.

Parameters: ~ args the parameters supplied to the constructor. See the
section on reflection for more information on how to
supply parameters.

Chapter 5. Inheritance

Reflection m

m java.lang.Throwable 1.0

e void printStackTrace()
prints the Throwable object and the stack trace to the standard error stream.

Using Reflection to Analyze the Capabilities of Classes
Here is a brief overview of the most important parts of the reflection mechanism for let-
ting you examine the structure of a class.

The three classes Field, Method, and Constructor in the java.lang.reflect package describe the
fields, methods, and constructors of a class, respectively. All three classes have a
method called getName that returns the name of the item. The Field class has a method
getType that returns an object, again of type Class, that describes the field type. The Method
and Constructor classes have methods to report the types of the parameters, and the
Method class also reports the return type. All three of these classes also have a method
called getModifiers that returns an integer, with various bits turned on and off, that
describes the modifiers used, such as public and static. You can then use the static
methods in the Modifier class in the java.lang.reflect package to analyze the integer that
getModifiers returns. Use methods like isPublic, isPrivate, or isFinal in the Modifier class to
tell whether a method or constructor was public, private, or final. All you have to do is
have the appropriate method in the Modifier class work on the integer that getModifiers
returns. You can also use the Modifier.toString method to print the modifiers.

The getFields, getMethods, and getConstructors methods of the Class class return arrays of the
public fields, methods, and constructors that the class supports. This includes public
members of superclasses. The getDeclaredFields, getDeclaredMethods, and getDeclaredConstruc-
tors methods of the Class class return arrays consisting of all fields, methods, and con-
structors that are declared in the class. This includes private and protected members,
but not members of superclasses.

Listing 5-6 shows you how to print out all information about a class. The program
prompts you for the name of a class and then writes out the signatures of all methods
and constructors as well as the names of all data fields of a class. For example, if you
enter

java.lang.Double
the program prints

public class java.lang.Double extends java.lang.Number

{ public java.lang.Double(java.lang.String);

public java.lang.Double(double);

public int hashCode();

public int compareTo(java.lang.Object);

public int compareTo(java.lang.Double);

public hoolean equals(java.lang.Object);

public java.lang.String toString();

public static java.lang.String toString(double);
public static java.lang.Double valueOf(java.lang.String);
pubTic static boolean isNaN(double);

public boolean isNaN();

public static boolean isInfinite(double);

public boolean isInfinite();

Chapter 5. Inheritance

ﬂ Chapter 5 W Inheritance

pubTic byte byteValue();

public short shortValue();

public int intValue();

pubTic Tlong longValue();

public float floatValue();

public double doubleValue();

pubTic static double parseDouble(java.lang.String);
public static native Tong doubleToLongBits(double);
public static native long doubleToRawlLongBits(double);
public static native double TongBitsToDouble(long);

public static final double POSITIVE_INFINITY;

public static final double NEGATIVE_INFINITY;

public static final double NaN;

public static final double MAX_VALUE

public static final double MIN_VALUE

public static final java.lang.Class TYPE;

private double value;

private static final Tong serialVersionUID;

}

What is remarkable about this program is that it can analyze any class that the Java
interpreter can load, not just the classes that were available when the program was com-
piled. We use this program in the next chapter to peek inside the inner classes that the
Java compiler generates automatically.

)BTRS ReflectionTest. java

1. import java.util.«;
2. import java.lang.reflect.x;
3.

4 [ax

5. % This program uses reflection to print all features of a class.
6. * @version 1.1 2004-02-21

7. % @author Cay Horstmann

8 %/

9. pubTic class ReflectionTest

10. {

11. public static void main(String[] args)

12. {

13, // read class name from command Tine args or user input

14. String name;

15. if (args.length > 0) name = args[0];

16. else

17. {

18. Scanner in = new Scanner(System.in);

19. System.out.printIn("Enter class name (e.g. java.util.Date): ");
20. name = in.next();

21. }

22.

23. try

24. {

Chapter 5. Inheritance

Reflection m

ReflectionTest.java (continued)

25. // print class name and superclass name (if != Object)
26. Class c1 = Class.forName(name);

27. (lass supercl = c1.getSuperclass();

28. String modifiers = Modifier.toString(cl.getModifiers());
29. if (modifiers.length() > @) System.out.print(modifiers + " ");
30. System.out.print("class " + name);

31, if (supercl != null & supercl != Object.class) System.out.print(" extends "
32. + supercl.getName());

33.

34, System.out.print("\n{\n");

35. printConstructors(cl);

36. System.out.printin();

a7. printMethods(cT);

38. System.out.printin();

30. printFields(c1);

40. System.out.printIn("}");

. }

2. catch (ClassNotFoundException e)

43. {

44, e.printStackTrace();

45. }

46. System.exit(0);

47. }

48.

49, [ux

50. # Prints all constructors of a class

51, + @param c1 a class

52. %/

53. public static void printConstructors(Class c1)

54. {

55. Constructor[] constructors = c1.getDeclaredConstructors();
56.

57. for (Constructor c : constructors)

58. {

59. String name = c.getName();

60. System.out.print(" ");

61. String modifiers = Modifier.toString(c.getModifiers());
62. if (modifiers.length() > @) System.out.print(modifiers + " ");
63. System.out.print(name + "(");

64.

65. // print parameter types

66. (lass[] paramTypes = c.getParameterTypes();

67. for (int j = 0; j < paramTypes.length; j++)

68. {

69. if (j > 0) System.out.print(", ");

70. System.out.print(paramTypes[j].getName());

7. }

72. System.out.printin(");");

Chapter 5. Inheritance

m Chapter 5 W Inheritance

)R T150 T2 ReflectionTest. java (continued)

74. }

75.

76 [xx

7. + Prints all methods of a class

78. + @param c1 a class

79. %/

80. public static void printMethods(Class c1)

s, {

82. Method[] methods = cT.getDecTaredMethods();

83.

84. for (Method m : methods)

85. {

86. (Tass retType = m.getReturnType();

87. String name = m.getName();

88.

89. System.out.print(" ");

0. // print modifiers, return type, and method name
ot. String modifiers = Modifier.toString(m.getModifiers());
9. if (modifiers.length() > @) System.out.print(modifiers + " ");
93. System.out.print(retType.getName() + " " + name + "(");
94.

95. // print parameter types

9. (lass[] paramTypes = m.getParameterTypes();

97. for (int j = 0; j < paramTypes.length; j++)

98.

99. if (j > 0) System.out.print(", ");

100. System.out.print(paramTypes[j].getName());

101. }

102. System.out.printin(");");

103. }

104, }

105.

106, [

107. « Prints all fields of a class
+ @param c1 a class

109. %/

10, public static void printFields(Class c1)

1. o

112, Field[] fields = c1.getDeclaredFields();

118.

114, for (Field f : fields)

115. {

116. (lass type = f.getType();

117. String name = f.getName();

118, System.out.print(" ");

119, String modifiers = Modifier.toString(f.getModifiers());
120. if (modifiers.length() > @) System.out.print(modifiers + " ");
121. System.out.printIn(type.getName() + " " + name + ";");
122. }

123}

124. }

Chapter 5. Inheritance

Reflection m

m java.lang.Class 1.0

e Field[] getFields() 1.1

e Field[] getDeclaredFields() 1.1
getFields returns an array containing Field objects for the public fields of this class
or its superclasses; getDeclaredField returns an array of Field objects for all fields of
this class. The methods return an array of length 0 if there are no such fields or if
the Class object represents a primitive or array type.

e Method[] getMethods() 1.1

® Method[] getDeclaredMethods() 1.1
returns an array containing Method objects: getMethods returns public methods and
includes inherited methods; getDeclaredMethods returns all methods of this class or
interface but does not include inherited methods.

e Constructor[] getConstructors() 1.1

e (onstructor[] getDeclaredConstructors() 1.1
returns an array containing Constructor objects that give you all the public
constructors (for getConstructors) or all constructors (for getDeclaredConstructors) of the
class represented by this Class object.

m java.lang.reflect.Field 1.1

java.lang.reflect.Method 1.1

m java.lang.reflect.Constructor 1.1

e (lass getDeclaringClass()
returns the Class object for the class that defines this constructor, method, or field.
e (lass[] getExceptionTypes() (in Constructor and Method classes)
returns an array of (lass objects that represent the types of the exceptions thrown
by the method.
e int getModifiers()
returns an integer that describes the modifiers of this constructor, method, or
field. Use the methods in theModifier class to analyze the return value.
e String getName()
returns a string that is the name of the constructor, method, or field.
e (lass[] getParameterTypes() (in Constructor and Method classes)
returns an array of Class objects that represent the types of the parameters.
e (lass getReturnType() (in Method classes)
returns a Class object that represents the return type.

java.lang.reflect.Modifier 1.1

e static String toString(int modifiers)
returns a string with the modifiers that correspond to the bits set inmodifiers.

Chapter 5. Inheritance

ﬂ Chapter 5 W Inheritance

static boolean isAbstract(int modifiers)
static boolean isFinal(int modifiers)

static boolean isInterface(int modifiers)
static boolean isNative(int modifiers)
static boolean isPrivate(int modifiers)
static boolean isProtected(int modifiers)
static boolean isPublic(int modifiers)
static boolean isStatic(int modifiers)
static boolean isStrict(int modifiers)
static boolean isSynchronized(int modifiers)
static boolean isVolatile(int modifiers)
tests the bit in the modifiers value that corresponds to the modifier in the method

name.
Using Reflection to Analyze Objects at Runtime

In the preceding section, we saw how we can find out the names and types of the data
fields of any object:

® Get the corresponding Class object.
e Call getDeclaredrields on the Class object.

In this section, we go one step further and actually look at the contents of the data fields.
Of course, it is easy to look at the contents of a specific field of an object whose name
and type are known when you write a program. But reflection lets you look at fields of
objects that were not known at compile time.

The key method to achieve this examination is the get method in the Field class. If f is
an object of type Field (for example, one obtained from getDeclaredFields) and obj is an
object of the class of which f is a field, then f.get(obj) returns an object whose value
is the current value of the field of obj. This is all a bit abstract, so let’s run through an
example.
Employee harry = new Employee("Harry Hacker", 35000, 10, 1, 1989);
(lass c1 = harry.getClass();
// the class object representing Employee
Field f = cl.getDeclaredField("name");
// the name field of the Employee class
Object v = f.get(harry);
// the value of the name field of the harry object
// i.e., the String object "Harry Hacker"
Actually, there is a problem with this code. Because thename field is a private field,
the get method will throw an ITlegalAccessException. You can only use the get method to
get the values of accessible fields. The security mechanism of Java lets you find out
what fields any object has, but it won’t let you read the values of those fields unless
you have access permission.
The default behavior of the reflection mechanism is to respect Java access control. How-
ever, if a Java program is not controlled by a security manager that disallows it, you can
override access control. To do this, invoke the setAccessible method on a Field, Method, or
Constructor object. For example:
f.setAccessible(true); // now OK to call f.get(harry);

Chapter 5. Inheritance

Reflection 227

The setAccessible method is a method of the AccessibleObject class, the common superclass of
the Field, Method, and Constructor classes. This feature is provided for debuggers, persistent
storage, and similar mechanisms. We use it for a generic toString method later in this section.

There is another issue with the get method that we need to deal with. The name field is a
String, and so it is not a problem to return the value as an0bject. But suppose we want to
look at the salary field. That is a double, and in Java, number types are not objects. To han-
dle this, you can either use the getDouble method of the Field class, or you can call get,
whereby the reflection mechanism automatically wraps the field value into the appro-
priate wrapper class, in this case, Double.

Of course, you can also set the values that you can get. The call f.set(obj, value) sets the
field represented by f of the object obj to the new value.

Listing 5-7 shows how to write a generic toString method that works for any class. It
uses getDeclaredFields to obtain all data fields. It then uses the setAccessible convenience
method to make all fields accessible. For each field, it obtains the name and the value.
Listing 5-7 turns each value into a string by recursively invoking toString.

class ObjectAnalyzer
{
public String toString(Object obj)
{
(lass c1 = obj.getClass();

String r = cl.getName();
// inspect the fields of this class and all superclasses
do
{
o=l
Field[] fields = c1.getDeclaredFields();
AccessibleObject.setAccessible(fields, true);
// get the names and values of all fields
for (Field f : fields)
{
if (IModifier.isStatic(f.getModifiers()))
{
if (!r.endsWith("[")) r +=
r += f.getName() + "=";
try
{
Object val = f.get(obj);
r += toString(val);

catch (Exception e) { e.printStackTrace(); }
}
}
BT
¢l = cl.getSuperclass();

}
while (c1 != null);
return r;

}

Chapter 5. Inheritance

Chapter 5 W Inheritance

The complete code in Listing 5-7 needs to address a couple of complexities. Cycles of
references could cause an infinite recursion. Therefore, theObjectAnalyzer keeps track of
objects that were already visited. Also, to peek inside arrays, you need a different
approach. You'll learn about the details in the next section.
You can use this toString method to peek inside any object. For example, the call
ArraylList<Integer> squares = new Arraylist<Integer>();
for (int i =1; 1 <= 5; i++) squares.add(i = 1);
System.out.printIn(new ObjectAnalyzer().toString(squares));

yields the printout

java.util.ArrayList[elementData=class java.lang.Object[]{java.lang.Integer[value=1][][],
java.lang.Integer[value=4][][],java.lang.Integer[value=9][][],java.lang.Integer[value=16][][],
java.lang.Integer[value=25][][],nul1,null,nulT,nul1,null},size=5] [modCount=5][1[]
You can use this generic toString method to implement the toString methods of your own
classes, like this:

public String toString()

{
return new ObjectAnalyzer().toString(this);

}
This is a hassle-free method for supplying atoString method that you may find useful in
your own programs.

| B ET50 -l 27l ObjectAnalyzerTest.java

1. import java.lang.reflect.«;
2. import java.util.;
3.

4 [ax

5. % This program uses reflection to spy on objects.

6. + @version 1.11 2004-02-21

7. @author Cay Horstmann

8. %/

9. pubTic class ObjectAnalyzerTest

10. {

1. public static void main(String[] args)

12, {

13. ArrayList<Integer> squares = new ArraylList<Integer>();
14, for (inti=1;1 <= 5; i++)

15. squares.add(i = i);

16. System.out.printTn(new ObjectAnalyzer().toString(squares));
17. }

18. }

20. class ObjectAnalyzer

21 {

Chapter 5. Inheritance

Reflection m

ObjectAnalyzerTest.java (continued)

[

{

+ Converts an object to a string representation that Tists all fields.
x @param obj an object

x @return a string with the object's class name and all field names and
* values

public String toString(Object obj)

if (obj == null) return "null";

if (visited.contains(obj)) return "...";
visited.add(obj);

(Tass c1 = obj.getClass();

if (c1 == String.class) return (String) obj;
if (cl.isArray())

{
String r = c1.getComponentType() + "[1{";
for (int i = 0; i < Array.getlength(obj); i++)
{
if(i>0) r+=""
Object val = Array.get(obj, 1);
if (c1.getComponentType().isPrimitive()) r += val;
else r += toString(val);
}
return r + "}";
}

String r = cl.getName();
// inspect the fields of this class and all superclasses
do
{
F e
Field[] fields = c1.getDeclaredFields();
AccessibleObject.setAccessible(fields, true);
// get the names and values of all fields
for (Field f : fields)
{
if (IModifier.isStatic(f.getModifiers()))

if (Ir.endsWith("[")) r +=",";
r += f.getName() + "=";
try
{
(lass t = f.getType();
Object val = f.get(obj);
if (t.isPrimitive()) r += val;
else r += toString(val);
}

catch (Exception e)

Chapter 5. Inheritance

m Chapter 5 W Inheritance

ISR T2 A ObjectAnalyzerTest.java (continued)

70. {

7. e.printStackTrace();
72. }

73. }

74. }

75. r+= "]";

76. ¢l = cl.getSuperclass();
77. }

78. while (c1 != null);

79.

80. return r;

81. }

82.
8. private ArrayList<Object> visited = new Arraylist<Object>();
84. }

m java.lang.reflect.AccessibleObject 1.2

o void setAccessible(boolean flag)
sets the accessibility flag for this reflection object. A value oftrue indicates that
Java language access checking is suppressed and that the private properties of the
object can be queried and set.

e poolean isAccessible()
gets the value of the accessibility flag for this reflection object.

e static void setAccessible(AccessibleObject[] array, boolean flag)
is a convenience method to set the accessibility flag for an array of objects.

java.lang.Class 1.1

e Field getField(String name)
Field[] getFields()
gets the public field with the given name, or an array of all fields.

e Field getDeclaredField(String name)

Field[] getDeclaredFields()

gets the field that is declared in this class with the given name, or an array of all
fields.

java.lang.reflect.Field 1.1

e (Object get(Object obj)
gets the value of the field described by this Field object in the object obj.

e void set(Object obj, Object newValue)
sets the field described by this Field object in the object obj to a new value.

Chapter 5. Inheritance

Reflection m

Using Reflection to Write Generic Array Code

The Array class in the java.lang.reflect package allows you to create arrays dynamically.
For example, when you use this feature with the arraycopy method from Chapter 3, you
can dynamically expand an existing array while preserving the current contents.

The problem we want to solve is pretty typical. Suppose you have an array of some type
that is full and you want to grow it. And suppose you are sick of writing the grow-and-
copy code by hand. You want to write a generic method to grow an array.

Employee[] a = new Employee[100];

// array is full

a = (Employee[]) arrayGrow(a);
How can we write such a generic method? It helps that anEmployee[] array can be con-
verted to an Object[] array. That sounds promising. Here is a first attempt to write a
generic method. We simply grow the array by 10% + 10 elements (because the 10 per-
cent growth is not substantial enough for small arrays).

static Object[] badArrayGrow(Object[] a) // not useful

int newLength = a.Tength « 11 / 10 + 10;
Object[] newArray = new Object[newLength];
System.arraycopy(a, @, newArray, 0, a.length);
return newArray;
}
However, there is a problem with actually using the resulting array. The type of array
that this code returns is an array of objects (Object[]) because we created the array using
the line of code
new Object[newLength]
An array of objects cannot be cast to an array of employees (Employee[]). Java would gen-
erate a ClassCastException at runtime. The point is, as we mentioned earlier, that a Java
array remembers the type of its entries, that is, the element type used in thenew expres-
sion that created it. It is legal to cast an Employee[] temporarily to an Object[] array and
then cast it back, but an array that started its life as an Object[] array can never be cast
into an Employee[] array. To write this kind of generic array code, we need to be able to
make a new array of the same type as the original array. For this, we need the methods of
the Array class in the java.lang.reflect package. The key is the static newInstance method of
the Array class that constructs a new array. You must supply the type for the entries and
the desired length as parameters to this method.
Object newArray = Array.newInstance(componentType, newlLength);
To actually carry this out, we need to get the length and component type of the new array.

We obtain the length by calling Array.getLength(a). The static getLength method of the Array
class returns the length of any array. To get the component type of the new array:

1. First, get the class object of a.

2. Confirm that it is indeed an array.

3. Use the getComponentType method of the Class class (which is defined only for class
objects that represent arrays) to find the right type for the array.

Chapter 5. Inheritance

m Chapter 5 W Inheritance

Why is getlength a method of Array but getComponentType a method of Class? We don’t know—
the distribution of the reflection methods seems a bit ad hoc at times.

Here’s the code:

static Object goodArrayGrow(Object a) // useful
{
(lass c1 = a.getClass();
if (Icl.isArray()) return null;
(Tass componentType = c1.getComponentType();
int Tength = Array.getlength(a);
int newLength = Tength « 11 / 10 + 10;
Object newArray = Array.newInstance(componentType, newlLength);
System.arraycopy(a, 0, newArray, 0, length);
return newArray;
}
Note that this arrayGrow method can be used to grow arrays of any type, not just arrays
of objects.
intfla=1{1,234}
a = (int[]) goodArrayGrow(a);
To make this possible, the parameter of goodArrayGrow is declared to be of type Object, not an
array of objects (Object[]). The integer array type int[] can be converted to an Object, but
not to an array of objects!

Listing 5-8 shows both array grow methods in action. Note that the cast of the return
value of badArrayGrow will throw an exception.

NOTE: We present this program to illustrate how to work with arrays through reflection. If
u you just want to grow an array, use the copy0f method in the Arrays class.

Employee[] a = new Employee[100];

// array is full
a = Arrays.copyOf(a, a.length « 11 / 10 + 10);

) BET50 T ArrayGrowTest. java

. import java.lang.reflect.x;

1
2.
3. [#x

4. % This program demonstrates the use of reflection for manipulating arrays.
5.« @version 1.01 2004-02-21

6. + @author Cay Horstmann

7. %/

8. pubTic class ArrayGrowTest

9 {

0. public static void main(String[] args)

11. {

12. int[la={1,23};

13, a = (int[]) goodArrayGrow(a);

Chapter 5. Inheritance

Reflection m

IR 150 T B ArrayGrowTest. java (continued)

14, arrayPrint(a);

15.

16. String[] b = { "Tom", "Dick", "Harry" };

17. b = (String[]) goodArrayGrow(b);

18. arrayPrint(b);

19.

20. System.out.printIn("The following call will generate an exception.");

21. b = (String[]) badArrayGrow(b);

22. }

23.

24, [

25. + This method attempts to grow an array by allocating a new array and copying all elements.
26. x @param a the array to grow

27. » @return a larger array that contains all elements of a. However, the returned array has

28. + type Object[], not the same type as a

30. static Object[] badArrayGrow(Object[] a)

3. {

32. int newLength = a.length « 11 / 10 + 10;

33. Object[] newArray = new Object[newLength];

34, System.arraycopy(a, @, newArray, @, a.length);

3s. return newArray;

36. }

37.

38 [ux

39. + This method grows an array by allocating a new array of the same type and
40. + copying all elements.

a1, x @param a the array to grow. This can be an object array or a primitive
4. % type array

43, + @return a larger array that contains all elements of a.

44. /

45, static Object goodArrayGrow(Object a)

46. {

47. (Tass c1 = a.getClass();

4. if (!cl.isArray()) return null;

49. (Tass componentType = c1.getComponentType();

50. int length = Array.getlength(a);

51. int newlength = length « 11 / 10 + 10;

52.

53, Object newArray = Array.newInstance(componentType, newlength);
54. System.arraycopy(a, 0, newArray, 0, length);

55. return newArray;

56. }

57.

58 [x%

59. « A convenience method to print all elements in an array

60. x @param a the array to print. It can be an object array or a primitive type array
61. /

e2. static void arrayPrint(Object a)

Chapter 5. Inheritance

m Chapter 5 W Inheritance

B TTE 1T I ArrayGrowTest.java (continued)

63. {

64. (lass c1 = a.getClass();

65. if (!cl.isArray()) return;

66. (lass componentType = c1.getComponentType();
67. int Tlength = Array.getlength(a);

68. System.out.print(componentType.getName() + "[" + length + "] = { ");
69. for (int i = 0; i < Array.getlength(a); i++)
70. System.out.print(Array.get(a, i) + " ");
71. System.out.printin("}");

72. }

73. }

m java.lang.reflect.Array 1.1

e static Object get(Object array, int index)

® static xxx getXxx(Object array, int index)
(xxx is one of the primitive types boolean, byte, char, double, float, int, Tong, short.) These
methods return the value of the given array that is stored at the given index.

e static void set(Object array, int index, Object newValue)

e static setXxx(Object array, int index, xxx newValue)
(xxx is one of the primitive types boolean, byte, char, double, float, int, Tong, short.) These
methods store a new value into the given array at the given index.

e static int getlLength(Object array)
returns the length of the given array.

e static Object newInstance(Class componentType, int Tength)

e static Object newInstance(Class componentType, int[] lengths)
returns a new array of the given component type with the given dimensions.

Method Pointers!

On the surface, Java does not have method pointers—ways of giving the location of a
method to another method so that the second method can invoke it later. In fact, the
designers of Java have said that method pointers are dangerous and error prone and
that Java interfaces (discussed in the next chapter) are a superior solution. However, as of
Java 1.1, it turns out that Java does have method pointers, as a (perhaps accidental) by-
product of the reflection package.

tive J++ (and its successor, C#) is another method pointer type, called a delegate, that is dif-
ferent from the Method class that we discuss in this section. However, inner classes (which
we will introduce in the next chapter) are a more useful construct than delegates.

NOTE: Among the nonstandard language extensions that Microsoft added to its Java deriva-

To see method pointers at work, recall that you can inspect a field of an object with the
get method of the Field class. Similarly, the Method class has an invoke method that lets you
call the method that is wrapped in the current Method object. The signature for the invoke
method is

Chapter 5. Inheritance

Reflection m

Object invoke(Object obj, Object... args)
The first parameter is the implicit parameter, and the remaining objects provide the
explicit parameters. (Before Java SE 5.0, you had to pass an array of objects ornull if the
method had no explicit parameters.)

For a static method, the first parameter is ignored—you can set it to nu11.

For example, if ml represents the getName method of the Employee class, the following code
shows how you can call it:

String n = (String) ml.invoke(harry);
As with the get and set methods of the Field type, there’s a problem if the parameter or
return type is not a class but a primitive type. You either rely on autoboxing or, before
Java SE 5.0, wrap primitive types into their corresponding wrappers.

Conversely, if the return type is a primitive type, the invoke method will return the wrap-
per type instead. For example, suppose that m2 represents the getSalary method of the
Employee class. Then, the returned object is actually aDouble, and you must cast it accord-
ingly. As of Java SE 5.0, automatic unboxing takes care of the rest.

double s = (Double) m2.invoke(harry);

How do you obtain a Method object? You can, of course, call getDeclaredMethods and search
through the returned array of Method objects until you find the method that you want. Or,
you can call the getMethod method of the Class class. This is similar to the getField method
that takes a string with the field name and returns a Field object. However, there may be
several methods with the same name, so you need to be careful that you get the right
one. For that reason, you must also supply the parameter types of the desired method.
The signature of getMethod is

Method getMethod(String name, Class... parameterTypes)

For example, here is how you can get method pointers to thegetNane and raiseSalary meth-
ods of the Employee class:

Method ml = Employee.class.getMethod("getName");

Method m2 = EmpTloyee.class.getMethod("raiseSalary", double.class);
(Before Java SE 5.0, you had to package the Class objects into an array or to supply null if
there were no parameters.)
Now that you have seen the rules for using Method objects, let’s put them to work. Listing
5-9 is a program that prints a table of values for a mathematical function such as
Math.sqrt or Math.sin. The printout looks like this:

public static native double java.lang.Math.sqrt(double)

1.0000 | 1.0000
2.0000 | 1.4142
3.0000 | 1.7321
4.0000 | 2.0000
5.0000 | 2.2361
6.0000 | 2.4495
7.0000 | 2.6458
8.0000 | 2.8284
9.0000 | 3.0000

10.0000 | 3.1623

Chapter 5. Inheritance

Chapter 5 W Inheritance

The code for printing a table is, of course, independent of the actual function that is
being tabulated.
doubTle dx = (to - from) / (n - 1);
for (double x = from; x <= to; x += dx)
{
double y = (Double) f.invoke(null, x);
System.out.printf("%10.4f | %10.4f%", x, y);
}
Here, f is an object of type Method. The first parameter of invoke is null because we are call-
ing a static method.

To tabulate the Math.sqrt function, we set f to
Math.class.getMethod("sqrt", double.class)

That is the method of the Math class that has the name sqrt and a single parameter of type
doubTe.

Listing 5-9 shows the complete code of the generic tabulator and a couple of test runs.

750 Tl B MethodPointerTest. java

. import java.lang.reflect.«;

1

2.

3 [ux

4.+ This program shows how to invoke methods through reflection.
5. % @version 1.1 2004-02-21

6. * @author Cay Horstmann

.

8.

9.

. 1:/
. public class MethodPointerTest
o
10. public static void main(String[] args) throws Exception
11. {
12. // get method pointers to the square and sqrt methods
13. Method square = MethodPointerTest.class.getMethod("square", double.class);
14. Method sqrt = Math.class.getMethod("sqrt", double.class);
15.
16. // print tables of x- and y-values
17.
18. printTable(1, 10, 10, square);
19. printTable(1, 10, 10, sqrt);
20. 1
21.
22 [xx

Returns the square of a number
@param x a number
@return x squared

% sk %

26. %/

27. public static double square(double x)
28. {

29. return x X;

30. }

Chapter 5. Inheritance

Reflection 237

IS T151 T Il MethodPointerTest. java (continued)

31.

32 [ux

33. # Prints a table with x- and y-values for a method
34, + @param from the Tower bound for the x-values

35. + @param to the upper bound for the x-values

36. + @param n the number of rows in the table

37. + @param f a method with a double parameter and double return value
38. %/

39. public static void printTable(double from, double to, int n, Method f)
40. {

. // print out the method as table header

42. System.out.printIn(f);

43.

44, double dx = (to - from) / (n - 1);

45.

46. for (double x = from; x <= to; x += dx)

47. {

48. try

49. {

50. double y = (Double) f.invoke(null, x);

51. System.out.printf("%10.4f | %10.4f%n", x, y);
52. }

53. catch (Exception e)

54. {

55. e.printStackTrace();

56. }

57. }

58. }

59. }

As this example shows clearly, you can do anything with Yethod objects that you can do
with function pointers in C (or delegates in C#). Just as in C, this style of programming

is usually quite inconvenient and always error prone. What happens if you invoke a
method with the wrong parameters? The invoke method throws an exception.

Also, the parameters and return values of invoke are necessarily of type Object. That
means you must cast back and forth a lot. As a result, the compiler is deprived of the
chance to check your code. Therefore, errors surface only during testing, when they are
more tedious to find and fix. Moreover, code that uses reflection to get at method point-
ers is significantly slower than code that simply calls methods directly.

For that reason, we suggest that you use Method objects in your own programs only when
absolutely necessary. Using interfaces and inner classes (the subject of the next chapter)
is almost always a better idea. In particular, we echo the developers of Java and suggest
not using Method objects for callback functions. Using interfaces for the callbacks (see the
next chapter as well) leads to code that runs faster and is a lot more maintainable.

Chapter 5. Inheritance

m Chapter 5 W Inheritance

java.lang.reflect.Method 1.1

e public Object invoke(Object implicitParameter, Object[] explicitParameters)

invokes the method described by this object, passing the given parameters and
returning the value that the method returns. For static methods, passnull as the
implicit parameter. Pass primitive type values by using wrappers. Primitive type
return values must be unwrapped.

Design Hints for Inheritance
We want to end this chapter with some hints that we have found useful when using
inheritance.

1.

Place common operations and fields in the superclass.
This is why we put the name field into thePerson class rather than replicating it in the
Employee and Student classes.
Don'’t use protected fields.
Some programmers think it is a good idea to define most instance fields asprotected,
“just in case,” so that subclasses can access these fields if they need to. However, the
protected mechanism doesn’t give much protection, for two reasons. First, the set of
subclasses is unbounded—anyone can form a subclass of your classes and then
write code that directly accesses protected instance fields, thereby breaking encapsu-
lation. And second, in the Java programming language, all classes in the same pack-
age have access to protected fields, whether or not they are subclasses.
However, protected methods can be useful to indicate methods that are not ready
for general use and should be redefined in subclasses. The clone method is a good
example.
Use inheritance to model the “is—a” relationship.
Inheritance is a handy code-saver, and sometimes people overuse it. For example,
suppose we need a Contractor class. Contractors have names and hire dates, but they
do not have salaries. Instead, they are paid by the hour, and they do not stay around
long enough to get a raise. There is the temptation to form a subclass Contractor from
Employee and add an hourlyWage field.

class Contractor extends Employee

{
}

This is not a good idea, however, because now each contractor object has both a sal-
ary and hourly wage field. It will cause you no end of grief when you implement
methods for printing paychecks or tax forms. You will end up writing more code
than you would have by not inheriting in the first place.

The contractor /employee relationship fails the “is—a” test. A contractor is not a spe-
cial case of an employee.

Don’t use inheritance unless all inherited methods make sense.

Suppose we want to write a Holiday class. Surely every holiday is a day, and days can
be expressed as instances of the GregorianCalendar class, so we can use inheritance.

private double hourlyWage;

class Holiday extends GregorianCalendar { . . . }

Chapter 5. Inheritance

Design Hints for Inheritance m

Unfortunately, the set of holidays is not closed under the inherited operations. One of the
public methods of GregorianCalendar is add. And add can turn holidays into nonholidays:

Holiday christmas;
christmas.add(Calendar.DAY_OF_MONTH, 12);
Therefore, inheritance is not appropriate in this example.
5. Don’t change the expected behavior when you override a method.
The substitution principle applies not just to syntax but, more important, to behav-
ior. When you override a method, you should not unreasonably change its behavior.
The compiler can’t help you—it cannot check whether your redefinitions make
sense. For example, you can “fix” the issue of theadd method in the Holiday class by
redefining add, perhaps to do nothing, or to throw an exception, or to move on to the
next holiday.
However, such a fix violates the substitution principle. The sequence of statements
int d1 = x.get(Calendar.DAY_OF_MONTH);
x.add(CaTendar.DAY_OF_MONTH, 1);
int d2 = x.get(Calendar.DAY_OF_MONTH);
System.out.printin(d2 - d1);
should have the expected behavior, no matter whetherx is of type GregorianCalendar or
Hol1iday.
Of course, therein lies the rub. Reasonable and unreasonable people can argue
at length what the expected behavior is. For example, some authors argue that
the substitution principle requires Manager.equals to ignore the bonus field because
Employee.equals ignores it. These discussions are always pointless if they occur in a
vacuum. Ultimately, what matters is that you do not circumvent the intent of the
original design when you override methods in subclasses.
6. Use polymorphism, not type information.
Whenever you find code of the form
if (x is of type 1)
actionl(x);
else if (xis of type 2)
action2(x);
think polymorphism.
Do actionl and action2 represent a common concept? If so, make the concept a method
of a common superclass or interface of both types. Then, you can simply call
x.action();
and have the dynamic dispatch mechanism inherent in polymorphism launch the
correct action.
Code using polymorphic methods or interface implementations is much easier to
maintain and extend than code that uses multiple type tests.
7. Don’t overuse reflection.
The reflection mechanism lets you write programs with amazing generality, by
detecting fields and methods at runtime. This capability can be extremely useful for
systems programming, but it is usually not appropriate in applications. Reflection is
fragile—the compiler cannot help you find programming errors. Any errors are
found at runtime and result in exceptions.

Chapter 5. Inheritance

m Chapter 5 W Inheritance

You have now seen how Java supports the fundamentals of object-oriented program-
ming: classes, inheritance, and polymorphism. In the next chapter, we will tackle two
advanced topics that are very important for using Java effectively: interfaces and inner
classes.

Chapter 6. Interfaces and Inner Classes

CH ap ter

INTERFACES AND
INNER CLASSES

INTERFACES

OBJECT CLONING
INTERFACES AND CALLBACKS
INNER CLASSES

PROXIES

4 4 444«

241

Chapter 6. Interfaces and Inner Classes

Chapter 6 W Interfaces and Inner Classes

You have now seen all the basic tools for object-oriented programming in Java.
This chapter shows you several advanced techniques that are commonly used. Despite
their less obvious nature, you will need to master them to complete your Java tool chest.

The first, called an interface, is a way of describing what classes should do, without spec-
ifying how they should do it. A class can implement one or more interfaces. You can then
use objects of these implementing classes anytime that conformance to the interface is
required. After we cover interfaces, we take up cloning an object (or deep copying, as it
is sometimes called). A clone of an object is a new object that has the same state as the
original. In particular, you can modify the clone without affecting the original.

Next, we move on to the mechanism of inner classes. Inner classes are technically some-
what complex—they are defined inside other classes, and their methods can access the
fields of the surrounding class. Inner classes are useful when you design collections of
cooperating classes. In particular, inner classes enable you to write concise, professional-
looking code to handle GUI events.

This chapter concludes with a discussion of proxies, objects that implement arbitrary
interfaces. A proxy is a very specialized construct that is useful for building system-
level tools. You can safely skip that section on first reading.

Interfaces

In the Java programming language, an interface is not a class but a set of requirements for
classes that want to conform to the interface.

Typically, the supplier of some service states: “If your class conforms to a particular
interface, then I'll perform the service.” Let’s look at a concrete example. Thesort
method of the Arrays class promises to sort an array of objects, but under one condition:
The objects must belong to classes that implement the Comparable interface.

Here is what the Comparable interface looks like:
public interface Comparable

{

int compareTo(Object other);
}
This means that any class that implements the Comparable interface is required to have a
compareTo method, and the method must take anObject parameter and return an integer.

NOTE: As of Java SE 5.0, the Comparable interface has been enhanced to be a generic type.
public interface Comparable<T>

{
int compareTo(T other); // parameter has type T

}
For example, a class that implements Comparable<Employee> must supply a method
int compareTo(Employee other)

You can still use the “raw” Comparable type without a type parameter, but then you have to
manually cast the parameter of the compareTo method to the desired type.

All methods of an interface are automatically pubTic. For that reason, it is not necessary to
supply the keyword public when declaring a method in an interface.

Chapter 6. Interfaces and Inner Classes

Interfaces

Of course, there is an additional requirement that the interface cannot spell out: When
calling x.compareTo(y), the compareTo method must actually be able to compare two objects
and return an indication whether x or y is larger. The method is supposed to return a
negative number if x is smaller thany, zero if they are equal, and a positive number
otherwise.

This particular interface has a single method. Some interfaces have more than one
method. As you will see later, interfaces can also define constants. What is more impor-
tant, however, is what interfaces cannot supply. Interfaces never have instance fields,
and the methods are never implemented in the interface. Supplying instance fields and
method implementations is the job of the classes that implement the interface. You can
think of an interface as being similar to an abstract class with no instance fields. How-
ever, there are some differences between these two concepts—we look at them later in
some detail.

Now suppose we want to use the sort method of the Arrays class to sort an array of
Employee objects. Then the Employee class must implement the Comparable interface.

To make a class implement an interface, you carry out two steps:
1. You declare that your class intends to implement the given interface.
2. You supply definitions for all methods in the interface.
To declare that a class implements an interface, use the implements keyword:
class Employee implements Comparable
Of course, now the Employee class needs to supply the compareTo method. Let’s suppose
that we want to compare employees by their salary. Here is a compareTo method that

returns -1 if the first employee’s salary is less than the second employee’s salary, 0 if
they are equal, and 1 otherwise.

public int compareTo(Object otherObject)

{
Employee other = (EmpToyee) otherObject;
if (salary < other.salary) return -1;
if (salary > other.salary) return 1;
return 0;

CAUTION: In the interface declaration, the compareTo method was not declared public

because all methods in an interface are automatically public. However, when implementing
the interface, you must declare the method as public. Otherwise, the compiler assumes that
the method has package visibility—the default for a class. Then the compiler complains that
you try to supply a weaker access privilege.

As of Java SE 5.0, we can do a little better. We’ll decide to implement theComparable<Employee>
interface type instead.

class Employee implements Comparable<Employee>

{

public int compareTo(Employee other)

{

if (salary < other.salary) return -1;

Chapter 6. Interfaces and Inner Classes

m Chapter 6 W Interfaces and Inner Classes

if (salary > other.salary) return 1;
return 0;

}

}
Note that the unsightly cast of the Object parameter has gone away.

TIP: The compareTo method of the ComparabTe interface returns an integer. If the objects are not
equal, it does not matter what negative or positive value you return. This flexibility can be use-
ful when you are comparing integer fields. For example, suppose each employee has a unique
integer id and you want to sort by employee ID number. Then you can simply return id -
other.id. That value will be some negative value if the first ID number is less than the other, O if
they are the same ID, and some positive value otherwise. However, there is one caveat: The
range of the integers must be small enough that the subtraction does not overflow. If you know
that the IDs are not negative or that their absolute value is at most (Integer.MAX_VALUE - 1) / 2,
you are safe.

Of course, the subtraction trick doesn’t work for floating-point numbers. The difference
salary - other.salary can round to O if the salaries are close together but not identical.

Now you saw what a class must do to avail itself of the sorting service—it must imple-
ment a compareTo method. That’s eminently reasonable. There needs to be some way for
the sort method to compare objects. But why can’t the Employee class simply provide a
compareTo method without implementing the Comparable interface?

The reason for interfaces is that the Java programming language is strongly typed. When
making a method call, the compiler needs to be able to check that the method actually
exists. Somewhere in the sort method will be statements like this:

if (a[i].compareTo(a[j]) > @)
{
// rearrange a[i] and a[j]

}
The compiler must know thata[i] actually has a compareTo method. If a is an array of Compa-
rable objects, then the existence of the method is assured because every class that imple-
ments the Comparable interface must supply the method.

NOTE: You would expect that the sort method in the Arrays class is defined to accept a
Comparable[] array so that the compiler can complain if anyone ever calls sort with an array
whose element type doesn’t implement the Comparable interface. Sadly, that is not the case.
Instead, the sort method accepts an Object[] array and uses a clumsy cast:
// from the standard Tibrary--not recommended
if (((Comparable) a[i]).compareTo(a[j]) > @)
{

// rearrange a[i] and a[j]

}

If a[i] does not belong to a class that implements the Comparable interface, then the virtual
machine throws an exception.

Chapter 6. Interfaces and Inner Classes

Interfaces m

Listing 6-1 presents the full code for sorting an employee array.

EmployeeSortTest. java

import java.util.s;

1.

2.

3. [ux

4.+ This program demonstrates the use of the Comparable interface.
5. @version 1.30 2004-02-27

6. * @author Cay Horstmann

7. %/

s. public class EmployeeSortTest

9 {

0. public static void main(String[] args)

11. {

12. Employee[] staff = new Employee[3];

13.

14. staff[0] = new Employee("Harry Hacker", 35000);

15. staff[1] = new Employee("Carl Cracker", 75000);

16. staff[2] = new EmpToyee("Tony Tester", 38000);

17.

18. Arrays.sort(staff);

19.

20. // print out information about all Employee objects
21, for (Employee e : staff)

22. System.out.printIn("name=" + e.getName() + ",salary=" + e.getSalary());
23. }

24, }

N

6. class Employee implements Comparable<Employee>

28. public Employee(String n, double s)

29. {

30. name = n;
31. salary = s;
32. }

a4, public String getName()

35. {
36. return name;
a7. }

3. public double getSalary()

40. {
. return salary;
2. }

4. public void raiseSalary(double byPercent)

45. {
46. doubTe raise = salary « byPercent / 100;
a7, salary += raise;

48. }

Chapter 6. Interfaces and Inner Classes

m Chapter 6 W Interfaces and Inner Classes

EmployeeSortTest.java (continued)

49.
50.

o

~

B

Compares employees by salary

@param other another Employee object

@return a negative value if this employee has a lower salary than
otherObject, 0 if the salaries are the same, a positive value otherwise

51.
52.
53.
54.

55. 5/

se. public int compareTo(Employee other)

57. {

58. if (salary < other.salary) return -1;
59. if (salary > other.salary) return 1;
60. return 0;

61. 1

62.

63. private String name;
64. private double salary;
65. }

m java.lang.Comparable<T> 1.0

e int compareTo(T other)
compares this object with other and returns a negative integer if this object is less
than other, zero if they are equal, and a positive integer otherwise.

java.util.Arrays 1.2

e static void sort(Object[] a)
sorts the elements in the array a, using a tuned mergesort algorithm. All elements in
the array must belong to classes that implement the Comparable interface, and they
must all be comparable to each other.

NOTE: According to the language standard: “The implementor must ensure

sgn(x.compareTo(y)) = —sgn(y.compareTo(x)) for all x and y. (This implies that x. comp-
areTo(y) must throw an exception if y.compareTo(x) throws an exception.)” Here, “sgn”
is the sign of a number: sgn(n) is -1 if n is negative, 0 if n equals 0, and 1 if n is pos-
itive. In plain English, if you flip the parameters of compareTo, the sign (but not neces-
sarily the actual value) of the result must also flip.

As with the equals method, problems can arise when inheritance comes into play.

Because Manager extends Employee, it implements Comparable<Employee> and not Compara-
ble<Manager>. If Manager chooses to override compareTo, it must be prepared to compare
managers to employees. It can’t simply cast the employee to a manager:

class Manager extends Employee

{

public int compareTo(Employee other)

{
Manager otherManager = (Manager) other; // NO

Chapter 6. Interfaces and Inner Classes

Interfaces 247

}

That violates the “antisymmetry” rule. If x is an Employee and y is a Manager, then the call
x.compareTo(y) doesn’t throw an exception—it simply compares x and y as employees. But
the reverse, y.compareTo(x), throws a ClassCastException.

This is the same situation as with the equals method that we discussed in Chapter 5, and the
remedy is the same. There are two distinct scenarios.

If subclasses have different notions of comparison, then you should outlaw comparison of
objects that belong to different classes. Each compareTo method should start out with the test

if (getClass() != other.getClass()) throw new ClassCastException();

If there is a common algorithm for comparing subclass objects, simply provide a single
compareTo method in the superclass and declare it as final.

For example, suppose that you want managers to be better than regular employees, regard-
less of the salary. What about other subclasses such as Executive and Secretary? If you need
to establish a pecking order, supply a method such as rank in the EmpToyee class. Have each
subclass override rank, and implement a single compareTo method that takes the rank values
into account.

Properties of Inter.faces
Interfaces are not classes. In particular, you can never use thenew operator to instantiate
an interface:

x = new Comparable(. . .); // ERROR

However, even though you can’t construct interface objects, you can still declare
interface variables.

Comparable x; // 0K
An interface variable must refer to an object of a class that implements the interface:
x = new Employee(. . .); // OK provided Employee implements Comparable

Next, just as you use instanceof to check whether an object is of a specific class, you can
use instanceof to check whether an object implements an interface:

if (anObject instanceof Comparable) { . . .}
Just as you can build hierarchies of classes, you can extend interfaces. This allows for

multiple chains of interfaces that go from a greater degree of generality to a greater
degree of specialization. For example, suppose you had an interface calledMoveable.

public interface Moveable

{
}

Then, you could imagine an interface called Powered that extends it:

void move(double x, double y);

public interface Powered extends Moveable

{
}

doubTe milesPerGallon();

Chapter 6. Interfaces and Inner Classes

Chapter 6 W Interfaces and Inner Classes

Although you cannot put instance fields or static methods in an interface, you can sup-
ply constants in them. For example:

public interface Powered extends Moveable

{
double milesPerGallon();
double SPEED_LIMIT = 95; // a public static final constant
}
Just as methods in an interface are automatically public, fields are always
public static final.

NOTE: Itis legal to tag interface methods as public, and fields as public static final. Some

u programmers do that, either out of habit or for greater clarity. However, the Java Language
Specification recommends that the redundant keywords not be supplied, and we follow that
recommendation.

Some interfaces define just constants and no methods. For example, the standard
library contains an interface SwingConstants that defines constants NORTH, SOUTH, HORIZONTAL,
and so on. Any class that chooses to implement the SwingConstants interface automati-
cally inherits these constants. Its methods can simply refer to NORTH rather than the more
cumbersome SwingConstants.NORTH. However, this use of interfaces seems rather degener-
ate, and we do not recommend it.

While each class can have only one superclass, classes can implement multiple interfaces.
This gives you the maximum amount of flexibility in defining a class’s behavior. For
example, the Java programming language has an important interface built into it, called
CToneable. (We discuss this interface in detail in the next section.) If your class implements
Cloneable, the clone method in the Object class will make an exact copy of your class’s objects.
Suppose, therefore, you want cloneability and comparability. Then you simply implement
both interfaces.

class Employee implements Cloneable, Comparable
Use commas to separate the interfaces that describe the characteristics that you want
to supply.
Interfaces and Abstract Classes
If you read the section about abstract classes in Chapter 5, you may wonder why the
designers of the Java programming language bothered with introducing the concept of
interfaces. Why can'’t Comparable simply be an abstract class:

abstract class Comparable // why not?

{
public abstract int compareTo(Object other);

}
The Employee class would then simply extend this abstract class and supply the compareTo
method:

class Employee extends Comparable // why not?

{
public int compareTo(Object other) { . . . }

}

Chapter 6. Interfaces and Inner Classes

Object Cloning m

There is, unfortunately, a major problem with using an abstract base class to express a
generic property. A class can only extend a single class. Suppose that the Employee class
already extends a different class, say, Person. Then it can’t extend a second class.

class Employee extends Person, Comparable // ERROR

But each class can implement as many interfaces as it likes:

class Employee extends Person implements Comparable // OK
Other programming languages, in particular C++, allow a class to have more than one
superclass. This feature is called multiple inheritance. The designers of Java chose not to
support multiple inheritance, because it makes the language either very complex (as in
C++) or less efficient (as in Eiffel).

Instead, interfaces afford most of the benefits of multiple inheritance while avoiding the
complexities and inefficiencies.

C++ NOTE: C++ has multiple inheritance and all the complications that come with it, such as

E virtual base classes, dominance rules, and transverse pointer casts. Few C++ programmers
use multiple inheritance, and some say it should never be used. Other programmers recom-
mend using multiple inheritance only for “mix in” style inheritance. In the mix-in style, a pri-
mary base class describes the parent object, and additional base classes (the so-called
mix-ins) may supply auxiliary characteristics. That style is similar to a Java class with a sin-
gle base class and additional interfaces. However, in C++, mix-ins can add default behavior,
whereas Java interfaces cannot.

Object Cloning

When you make a copy of a variable, the original and the copy are references to the
same object. (See Figure 6-1.) This means a change to either variable also affects the
other.

EmpToyee original = new Employee("John Public", 50000);

Employee copy = original;

copy.raiseSalary(10); // oops--also changed original
If you would like copy to be a new object that begins its life being identical tooriginal but
whose state can diverge over time, then you use the clone method.

EmpToyee copy = original.clone();

copy.raiseSalary(10); // OK--original unchanged

But it isn’t quite so simple. The clone method is a protected method of Object, which means
that your code cannot simply call it. Only the Employee class can clone Employee objects.
There is a reason for this restriction. Think about the way in which the Object class can
implement clone. It knows nothing about the object at all, so it can make only a field-by-
field copy. If all data fields in the object are numbers or other basic types, copying the
fields is just fine. But if the object contains references to subobjects, then copying the
field gives you another reference to the subobject, so the original and the cloned objects
still share some information.

To visualize that phenomenon, let’s consider the Employee class that was introduced in
Chapter 4. Figure 6-2 shows what happens when you use the clone method of the Object

Chapter 6. Interfaces and Inner Classes

m Chapter 6 W Interfaces and Inner Classes

class to clone such an Employee object. As you can see, the default cloning operation is
“shallow”—it doesn’t clone objects that are referenced inside other objects.

Does it matter if the copy is shallow? It depends. If the subobject that is shared between
the original and the shallow clone is immutable, then the sharing is safe. This certainly
happens if the subobject belongs to an immutable class, such as String. Alternatively, the
subobject may simply remain constant throughout the lifetime of the object, with no
mutators touching it and no methods yielding a reference to it.

Copying
original = |
copy =
"% U (I (U N R N N .
Cloning
original = ’
‘e ————
copy = Y

Figure 6-1 Copying and cloning

Chapter 6. Interfaces and Inner Classes

Object Cloning ﬂ

original = E Stri

salary = [50000.0 \

copy Employee Date
salary = [50000.0 f’

T ———

Figure 6-2 A shallow copy

Quite frequently, however, subobjects are mutable, and you must redefine theclone
method to make a deep copy that clones the subobjects as well. In our example, thehireDay
field is a Date, which is mutable.

For every class, you need to decide whether

1. The default clone method is good enough;

2. The default clone method can be patched up by calling clone on the mutable subobjects; and
3. clone should not be attempted.

The third option is actually the default. To choose either the first or the second option, a
class must

1. Implement the Cloneable interface; and

2. Redefine the clone method with the public access modifier.

NOTE: The clone method is declared protected in the Object class so that your code can't sim-

u ply call anObject.clone(). But aren’t protected methods accessible from any subclass, and isn’t
every class a subclass of Object? Fortunately, the rules for protected access are more subtle
(see Chapter 5). A subclass can call a protected clone method only to clone its own objects.
You must redefine clone to be public to allow objects to be cloned by any method.

In this case, the appearance of the Cloneable interface has nothing to do with the normal
use of interfaces. In particular, it does not specify the clone method—that method is
inherited from the Object class. The interface merely serves as a tag, indicating that the

Chapter 6. Interfaces and Inner Classes

m Chapter 6 W Interfaces and Inner Classes

class designer understands the cloning process. Objects are so paranoid about cloning
that they generate a checked exception if an object requests cloning but does not imple-
ment that interface.

NOTE: The (loneable interface is one of a handful of tagging interfaces that Java provides.
(Some programmers call them marker interfaces.) Recall that the usual purpose of an
interface such as Comparable is to ensure that a class implements a particular method or
set of methods. A tagging interface has no methods; its only purpose is to allow the use of
instanceof in a type inquiry:

if (obj instanceof Cloneable) . . .
We recommend that you do not use tagging interfaces in your own programs.

Even if the default (shallow copy) implementation of clone is adequate, you still need to
implement the Cloneable interface, redefine clone to be public, and call super.clone(). Here is
an example:

class Employee implements Cloneable

{
// raise visibility level to public, change return type
public Employee clone() throws CloneNotSupportedException

{
}

return (Employee) super.clone();

NOTE: Before Java SE 5.0, the clone method always had return type Object. The covariant
return types of Java SE 5.0 let you specify the correct return type for your clone methods.

The clone method that you just saw adds no functionality to the shallow copy provided
by Object.clone. It merely makes the method public. To make a deep copy, you have to
work harder and clone the mutable instance fields.

Here is an example of a clone method that creates a deep copy:
class Employee implements Cloneable

{

pubTic Employee clone() throws CloneNotSupportedException

{
// call Object.clone()
Employee cloned = (Employee) super.clone();

// clone mutable fields
cloned.hireDay = (Date) hireDay.clone()

return cloned;

Chapter 6. Interfaces and Inner Classes

Object Cloning

The clone method of the Object class threatens to throw a CloneNotSupportedException—it does
that whenever clone is invoked on an object whose class does not implement theCloneable
interface. Of course, the Employee and Date class implements the Cloneable interface, so the
exception won’t be thrown. However, the compiler does not know that. Therefore, we
declared the exception:

public Employee clone() throws CloneNotSupportedException
Would it be better to catch the exception instead?

public Employee clone()
{

try

{

return super.clone();

catch (CloneNotSupportedException e) { return null; }
// this won't happen, since we are Cloneable
}
This is appropriate for final classes. Otherwise, it is a good idea to leave the throws speci-
fier in place. That gives subclasses the option of throwing a CloneNotSupportedException if
they can’t support cloning.

You have to be careful about cloning of subclasses. For example, once you have defined
the clone method for the Employee class, anyone can use it to clone Manager objects. Can the
Employee clone method do the job? It depends on the fields of theManager class. In our case,
there is no problem because the bonus field has primitive type. ButManager might have
acquired fields that require a deep copy or that are not cloneable. There is no guarantee
that the implementor of the subclass has fixed clone to do the right thing. For that reason,
the clone method is declared as protected in the Object class. But you don’t have that luxury
if you want users of your classes to invoke clone.

Should you implement clone in your own classes? If your clients need to make deep cop-
ies, then you probably should. Some authors feel that you should avoid clone altogether
and instead implement another method for the same purpose. We agree that clone is
rather awkward, but you'll run into the same issues if you shift the responsibility to
another method. At any rate, cloning is less common than you may think. Less than 5
percent of the classes in the standard library implement clone.

The program in Listing 6-2 clones an Employee object, then invokes two mutators. The
raiseSalary method changes the value of the salary field, whereas the setHireDay method
changes the state of the hireDay field. Neither mutation affects the original object because
clone has been defined to make a deep copy.

NOTE: All array types have a clone method that is public, not protected. You can use it to
make a new array that contains copies of all elements. For example:

int[] TuckyNumbers = { 2, 3, 5, 7, 11, 13 };

int[] cloned = (int[]) TuckyNumbers.clone();

cloned[5] = 12; // doesn't change TuckyNumbers[5S]

Chapter 6. Interfaces and Inner Classes

m Chapter 6 W Interfaces and Inner Classes

NOTE: Chapter 1 of Volume Il shows an alternate mechanism for cloning objects, using the
object serialization feature of Java. That mechanism is easy to implement and safe, but it is

not very efficient.

IBETR LT ACEV A (ToneTest. java

N

9.

31.
32.
33.
34.
35.
36.

1

2,
3.
4
5.
6.
7.
8.
9.

: [k

+
K
{

{

{

}
}
-}

try

_import java.util.s;

+ This program demonstrates cloning.
x @version 1.10 2002-07-01

+ @author Cay Horstmann

. public class CloneTest

pubTlic static void main(String[] args)

Employee original = new Employee("John Q. Public", 50000);
original.setHireDay(2000, 1, 1);

Employee copy = original.clone();

copy.raiseSalary(10);

copy.setHireDay(2002, 12, 31);
System.out.printin("original=" + original);
System.out.printIn("copy=" + copy);

catch (CloneNotSupportedException e)

e.printStackTrace();

. class Employee implements Cloneable

{

}

37.

38.

39.

40.
41.

42.

public EmpToyee(String n, double s)
name = n;
salary = s;
hireDay = new Date();

public Employee clone() throws CloneNotSupportedException

// call Object.cTone()
Employee cloned = (Employee) super.clone();

Chapter 6. Interfaces and Inner Classes

Interfaces and Callbacks m

IS 151 TR0 CloneTest. java (continued)

43, // clone mutable fields

4. cloned.hireDay = (Date) hireDay.clone();
45,

46. return cloned;

47. }

48.

49, [ux

50. + Set the hire day to a given date.

51. « @param year the year of the hire day

52, + @param month the month of the hire day
53. + @param day the day of the hire day

54. #/

55. pubTlic void setHireDay(int year, int month, int day)
56. {

57. Date newHireDay = new GregorianCalendar(year, month - 1, day).getTime();
58.

59. // Example of instance field mutation
60. hireDay.setTime(newHireDay.getTime());
61. }

62.

63. public void raiseSalary(double byPercent)
64. {

65. double raise = salary « byPercent / 100;
66. salary += raise;

67. }

68.
6. public String toString()

70. {
7. return "EmpToyee[name=" + name + ",salary=" + salary + ",hireDay=" + hireDay + "]";
72. }

73.

74. private String name;
7. private double salary;
76. private Date hireDay;
77. }

Interfaces and Callbacks

A common pattern in programming is the callback pattern. In this pattern, you want to
specify the action that should occur whenever a particular event happens. For example,
you may want a particular action to occur when a button is clicked or a menu item is
selected. However, because you have not yet seen how to implement user interfaces, we
consider a similar but simpler situation.

The javax.swing package contains a Timer class that is useful if you want to be notified
whenever a time interval has elapsed. For example, if a part of your program contains a
clock, then you can ask to be notified every second so that you can update the clock face.
When you construct a timer, you set the time interval and you tell it what it should do
whenever the time interval has elapsed.

Chapter 6. Interfaces and Inner Classes

Chapter 6 W Interfaces and Inner Classes

How do you tell the timer what it should do? In many programming languages, you
supply the name of a function that the timer should call periodically. However, the
classes in the Java standard library take an object-oriented approach. You pass an
object of some class. The timer then calls one of the methods on that object. Passing an
object is more flexible than passing a function because the object can carry additional
information.
Of course, the timer needs to know what method to call. The timer requires that you
specify an object of a class that implements theActionListener interface of the java.awt.event
package. Here is that interface:

public interface ActionListener

{

void actionPerformed(ActionEvent event);
}

The timer calls the actionPerformed method when the time interval has expired.

C++ NOTE: As you saw in Chapter 5, Java does have the equivalent of function pointers,

E namely, Method objects. However, they are difficult to use, slower, and cannot be checked for
type safety at compile time. Whenever you would use a function pointer in C++, you should
consider using an interface in Java.

Suppose you want to print a message “At the tone, the time is . . .”, followed by a beep,
once every 10 seconds. You would define a class that implements theActionListener inter-
face. You would then place whatever statements you want to have executed inside the
actionPerformed method.

class TimePrinter implements ActionlListener

public void actionPerformed(ActionEvent event)
{
Date now = new Date();
System.out.printIn("At the tone, the time is
Toolkit.getDefaultToolkit().beep();

+ now);

}
}

Note the ActionEvent parameter of the actionPerformed method. This parameter gives infor-
mation about the event, such as the source object that generated it—see Chapter 8 for
more information. However, detailed information about the event is not important in
this program, and you can safely ignore the parameter.
Next, you construct an object of this class and pass it to the Timer constructor.
ActionListener Tistener = new TimePrinter();
Timer t = new Timer(10000, listener);
The first parameter of the Timer constructor is the time interval that must elapse between
notifications, measured in milliseconds. We want to be notified every 10 seconds. The
second parameter is the listener object.
Finally, you start the timer.
t.start();

Chapter 6. Interfaces and Inner Classes

Interfaces and Callbacks

Every 10 seconds, a message like
At the tone, the time is Thu Apr 13 23:29:08 PDT 2000

is displayed, followed by a beep.

Listing 6-3 puts the timer and its action listener to work. After the timer is started,
the program puts up a message dialog and waits for the user to click the Ok button to
stop. While the program waits for the user, the current time is displayed in 10-second
intervals.

Be patient when running the program. The “Quit program?” dialog box appears right
away, but the first timer message is displayed after 10 seconds.

Note that the program imports the javax.swing.Timer class by name, in addition to import-
ing javax.swing.+ and java.util.s. This breaks the ambiguity between javax.swing.Timer and
java.util.Timer, an unrelated class for scheduling background tasks.

JBET50 TG TimerTest. java

@version 1.00 2000-04-13
@author Cay Horstmann

«/

. import java.awt.s;

_ import java.awt.event.:;

import java.util.x;

. import javax.swing.x;

10. import javax.swing.Timer;

1. // to resolve conflict with java.util.Timer

© ® N o o » N oo

13. public class TimerTest

14. {

15, public static void main(String[] args)

16. {

17. ActionListener Tistener = new TimePrinter();
18.

19. // construct a timer that calls the listener
20. // once every 10 seconds

21. Timer t = new Timer(10000, listener);

22. t.start();

23.

24, JOptionPane.showMessageDialog(null, "Quit program?");
25. System.exit(0);

26. }

27. }

28.
29. class TimePrinter implements ActionListener
30. {

257

Chapter 6. Interfaces and Inner Classes

m Chapter 6 W Interfaces and Inner Classes

) BTTR LT AGER I TimerTest. java (continued)

31. public void actionPerformed(ActionEvent event)

32. {

33. Date now = new Date();

34. System.out.printIn("At the tone, the time is " + now);
35. TooTkit.getDefaultToolkit().bheep();

36. }

37. }

javax.swing.JOptionPane 1.2

e static void showMessageDialog(Component parent, Object message)
displays a dialog box with a message prompt and an OK button. The dialog is centered
over the parent component. If parent is nu11, the dialog is centered on the screen.

m javax.swing.Timer 1.2

e Timer(int interval, ActionListener listener)
constructs a timer that notifies Tistener whenever interval milliseconds have elapsed.

e void start()
starts the timer. Once started, the timer calls actionPerformed on its listeners.

e void stop()
stops the timer. Once stopped, the timer no longer callsactionPerformed on its
listeners.

m javax.awt.Toolkit 1.0

e static Toolkit getDefaultToolkit()
gets the default toolkit. A toolkit contains information about the GUI environment.

e void beep()
emits a beep sound.

Inner Classes

An inner class is a class that is defined inside another class. Why would you want to do

that? There are three reasons:

e Inner class methods can access the data from the scope in which they are defined—
including data that would otherwise be private.

¢ Inner classes can be hidden from other classes in the same package.

® Anonymous inner classes are handy when you want to define callbacks without writ-
ing a lot of code.

We will break up this rather complex topic into several steps.

e Starting on page 260, you will see a simple inner class that accesses an instance field
of its outer class.

e On page 263, we cover the special syntax rules for inner classes.

Chapter 6. Interfaces and Inner Classes

Inner Classes m

e Starting on page 264, we peek inside inner classes to see how they are translated
into regular classes. Squeamish readers may want to skip that section.

e Starting on page 266, we discuss local inner classes that can access local variables of
the enclosing scope.

e Starting on page 269, we introduce anonymous inner classes and show how they are
commonly used to implement callbacks.

e Finally, starting on page 271, you will see how static inner classes can be used for
nested helper classes.

E C++ NOTE: C++ has nested classes. A nested class is contained inside the scope of the
enclosing class. Here is a typical example: a linked list class defines a class to hold the
links, and a class to define an iterator position.

class LinkedList
{
pubTic:
class Iterator // a nested class
{
pubTic:
void insert(int x);
int erase();

};...

private:
class Link // a nested class
{
public:
Link# next;
int data;

5
};”'

The nesting is a relationship between classes, not objects. A LinkedList object does nothave
subobjects of type Iterator or Link.

There are two benefits: name control and access control. Because the name Iterator is
nested inside the LinkedList class, it is externally known as LinkedList::Iterator and cannot
conflict with another class called Iterator. In Java, this benefit is not as important because
Java packages give the same kind of name control. Note that the Link class is in the private
part of the LinkedList class. It is completely hidden from all other code. For that reason, it is
safe to make its data fields public. They can be accessed by the methods of the LinkedList
class (which has a legitimate need to access them), and they are not visible elsewhere. In
Java, this kind of control was not possible until inner classes were introduced.

However, the Java inner classes have an additional feature that makes them richer and more
useful than nested classes in C++. An object that comes from an inner class has an implicit ref-
erence to the outer class object that instantiated it. Through this pointer, it gains access to the
total state of the outer object. You will see the details of the Java mechanism later in this chapter.

In Java, static inner classes do not have this added pointer. They are the Java analog to
nested classes in C++.

Chapter 6. Interfaces and Inner Classes

Chapter 6 W Interfaces and Inner Classes

Use of an Inner Class to Access Object State

The syntax for inner classes is rather complex. For that reason, we use a simple but
somewhat artificial example to demonstrate the use of inner classes. We refactor the
TimerTest example and extract a TalkingClock class. A talking clock is constructed with two
parameters: the interval between announcements and a flag to turn beeps on or off.

pubTic class TalkingClock

{
public TalkingClock(int interval, boolean beep) { . . . }

public void start() { . . . }

private int interval;
private boolean beep;

public class TimePrinter implements ActionlListener
// an inner class

{

}
}

Note that the TimePrinter class is now located inside the TalkingClock class. This does not
mean that every TalkingClock has a TimePrinter instance field. As you will see, the TimePrinter
objects are constructed by methods of the TalkingClock class.
Here is the TimePrinter class in greater detail. Note that the actionPerformed method checks
the beep flag before emitting a beep.

private class TimePrinter implements ActionListener

{
public void actionPerformed(ActionEvent event)
{
Date now = new Date();
System.out.printIn("At the tone, the time is
if (beep) Toolkit.getDefaultToolkit().beep();

}

+ now);

}
Something surprising is going on. The TimePrinter class has no instance field or variable
named beep. Instead, beep refers to the field of the TalkingClock object that created this Time-
Printer. This is quite innovative. Traditionally, a method could refer to the data fields of the
object invoking the method. An inner class method gets to access both its own data fields
and those of the outer object creating it.
For this to work, an object of an inner class always gets an implicit reference to the object
that created it. (See Figure 6-3.)
This reference is invisible in the definition of the inner class. However, to illuminate the
concept, let us call the reference to the outer object outer. Then, theactionPerformed method
is equivalent to the following:

public void actionPerformed(ActionEvent event)

{
Date now = new Date();
System.out.printIn("At the tone, the time is

+ now);

Chapter 6. Interfaces and Inner Classes

Inner Classes m

if (outer.beep) Toolkit.getDefaultToolkit().beep();

}
The outer class reference is set in the constructor. The compiler modifies all inner class
constructors, adding a parameter for the outer class reference. Because theTimePrinter
class defines no constructors, the compiler synthesizes a default constructor, generating
code like this:

public TimePrinter(TalkingClock clock) // automatically generated code

{

}

outer = clock;

ouer= [——H
interval =
beep -

Figure 6-3 An inner class object has a reference to an outer class object

Again, please note, outer is not a Java keyword. We just use it to illustrate the mecha-
nism involved in an inner class.
When a TimePrinter object is constructed in the start method, the compiler passes the this
reference to the current talking clock into the constructor:

ActionListener listener = new TimePrinter(this); // parameter automatically added
Listing 6-4 shows the complete program that tests the inner class. Have another look at
the access control. Had the TimePrinter class been a regular class, then it would have
needed to access the beep flag through a public method of the TalkingClock class. Using an
inner class is an improvement. There is no need to provide accessors that are of interest

only to one other class.

methods would be able to construct TimePrinter objects. Only inner classes can be private.

NOTE: We could have declared the TimePrinter class as private. Then only TalkingClock
Regular classes always have either package or public visibility.

Chapter 6. Interfaces and Inner Classes

ﬂ Chapter 6 W Interfaces and Inner Classes

Listing 6-4 RUIEGFIEIE

1. import java.awt.s;

2. import java.awt.event.:;
3. import java.util.;

4. import javax.swing.x;

5. import javax.swing.Timer;
6.

7.

8.

9.

+ This program demonstrates the use of inner classes.
+ @version 1.10 2004-02-27

10. + @author Cay Horstmann

x/

12. pubTic class InnerClassTest

13 {
14, public static void main(String[] args)

{
16. TalkingClock clock = new TalkingClock(1000, true);

17. clock.start();

18.

19. // keep program running until user selects "Ok"
20. JOptionPane.showMessageDialog(null, "Quit program?");
21. System.exit(0);

22. }

23. }

24.

25. [ux

26. * A clock that prints the time in regular intervals.
27,/

28. class TalkingClock

20. {

30. [k

at. + Constructs a talking clock

32. « @param interval the interval between messages (in milliseconds)
33. + @param beep true if the clock should beep

34. %/

ss. public TalkingClock(int interval, boolean beep)
36. {

37. this.interval = interval;

38. this.beep = beep;

39. }

40.

4. [ax

2. + Starts the clock.

43. x/

44. pubTic void start()

5. {

46. ActionListener Tistener = new TimePrinter();
47. Timer t = new Timer(interval, listener);

48. t.start();

4.}

Chapter 6. Interfaces and Inner Classes

Inner Classes

InnerClassTest.java (continued)

50.

s1. private int interval;

s2. private hoolean beep;

53.

s, public class TimePrinter implements ActionlListener
55. {

56. public void actionPerformed(ActionEvent event)
57. {

58. Date now = new Date();

59. System.out.printIn("At the tone, the time is "
60. if (beep) Toolkit.getDefaultToolkit().beep();
61. }

62. }

+ now);

Special Syntax Rules for Inner Classes

In the preceding section, we explained the outer class reference of an inner class by call-
ing it outer. Actually, the proper syntax for the outer reference is a bit more complex. The
expression

OuterClass.this

denotes the outer class reference. For example, you can write theactionPerformed method
of the TimePrinter inner class as

public void actionPerformed(ActionEvent event)

{

if (TalkingClock.this.beep) Toolkit.getDefaultToolkit().beep();
}

Conversely, you can write the inner object constructor more explicitly, using the syntax
outerObject .new InnerClass(construction parameters)

For example:
ActionListener listener = this.new TimePrinter();

Here, the outer class reference of the newly constructedTimePrinter object is set to the this
reference of the method that creates the inner class object. This is the most common case.
As always, the this. qualifier is redundant. However, it is also possible to set the outer
class reference to another object by explicitly naming it. For example, becauseTimePrinter
is a public inner class, you can construct aTimePrinter for any talking clock:

TalkingClock jabberer = new TalkingClock(1000, true);

TalkingClock.TimePrinter Tistener = jabberer.new TimePrinter();

Note that you refer to an inner class as
OuterClass . InnerClass

when it occurs outside the scope of the outer class.

Chapter 6. Interfaces and Inner Classes

Chapter 6 W Interfaces and Inner Classes

Are Inner Classes Useful? Actually Necessary? Secure?

When inner classes were added to the Java language in Java 1.1, many programmers
considered them a major new feature that was out of character with the Java philosophy
of being simpler than C++. The inner class syntax is undeniably complex. (It gets more
complex as we study anonymous inner classes later in this chapter.) It is not obvious
how inner classes interact with other features of the language, such as access control
and security.

By adding a feature that was elegant and interesting rather than needed, has Java
started down the road to ruin that has afflicted so many other languages?

While we won't try to answer this question completely, it is worth noting that inner
classes are a phenomenon of the compiler, not the virtual machine. Inner classes are
translated into regular class files with § (dollar signs) delimiting outer and inner class
names, and the virtual machine does not have any special knowledge about them.
For example, the TimePrinter class inside the TalkingClock class is translated to a class file
TalkingClockSTimePrinter.class. To see this at work, try the following experiment: run the
ReflectionTest program of Chapter 5, and give it the classTalkingClock§TimePrinter to reflect
upon. Alternatively, simply use the javap utility:

javap -private ClassName

NOTE: If you use UNIX, remember to escape the § character if you supply the class name
on the command line. That is, run the ReflectionTest or javap program as

java ReflectionTest TalkingClock\$TimePrinter
or
javap -private TalkingClock\$TimePrinter

You will get the following printout:
public class TalkingClock§TimePrinter

pubTic TalkingClock$TimePrinter(TalkingClock);
public void actionPerformed(java.awt.event.ActionEvent);

final TalkingClock this$0;
}

You can plainly see that the compiler has generated an additional instance field, this$0,
for the reference to the outer class. (The name this$0 is synthesized by the compiler—you
cannot refer to it in your code.) You can also see the TalkingClock parameter for the con-
structor.

If the compiler can automatically do this transformation, couldn’t you simply program
the same mechanism by hand? Let’s try it. We would make TimePrinter a regular class,
outside the TalkingClock class. When constructing a TimePrinter object, we pass it the this
reference of the object that is creating it.

Chapter 6. Interfaces and Inner Classes

Inner Classes

class TalkingClock
{

public void start()
{
ActionListener Tlistener = new TimePrinter(this);
Timer t = new Timer(interval, listener);
t.start();
}
}

class TimePrinter implements ActionListener

{
public TimePrinter(TalkingClock clock)

{
}

outer = clock;

private TalkingClock outer;
}

Now let us look at the actionPerformed method. It needs to access outer.beep.

if (outer.beep) . . . // ERROR
Here we run into a problem. The inner class can access the private data of the outer
class, but our external TimePrinter class cannot.
Thus, inner classes are genuinely more powerful than regular classes because they have
more access privileges.
You may well wonder how inner classes manage to acquire those added access privi-
leges, because inner classes are translated to regular classes with funny names—the vir-
tual machine knows nothing at all about them. To solve this mystery, let’s again use the
ReflectionTest program to spy on the TalkingClock class:

class TalkingClock

{
public TalkingClock(int, boolean);

static boolean access$0(TalkingClock);
public void start();

private int interval;
private hoolean beep;

}

Notice the static access$0 method that the compiler added to the outer class. It returns the
beep field of the object that is passed as a parameter.

The inner class methods call that method. The statement
if (beep)
in the actionPerformed method of the TimePrinter class effectively makes the following call:

if (access$0(outer));

Chapter 6. Interfaces and Inner Classes

Chapter 6 W Interfaces and Inner Classes

Is this a security risk? You bet it is. It is an easy matter for someone else to invoke the
access$0 method to read the private beep field. Of course, access$ is not a legal name for a
Java method. However, hackers who are familiar with the structure of class files can eas-
ily produce a class file with virtual machine instructions to call that method, for exam-
ple, by using a hex editor. Because the secret access methods have package visibility, the
attack code would need to be placed inside the same package as the class under attack.

To summarize, if an inner class accesses a private data field, then it is possible to access
that data field through other classes that are added to the package of the outer class, but
to do so requires skill and determination. A programmer cannot accidentally obtain
access but must intentionally build or modify a class file for that purpose.

NOTE: The synthesized constructors and methods can get quite convoluted. (Skip this note

if you are squeamish.) Suppose we turn TimePrinter into a private inner class. There are no
private classes in the virtual machine, so the compiler produces the next best thing, a pack-
age-visible class with a private constructor

private TalkingClock$TimePrinter(TalkingClock);

Of course, nobody can call that constructor, so there is a second package-visible constructor
TalkingClock$§TimePrinter(TalkingClock, TalkingClock$1);

that calls the first one.

The complier translates the constructor call in the start method of the TalkingClock class to
new TalkingClock§TimePrinter(this, null)

Local Inner Classes

If you look carefully at the code of the TalkingClock example, you will find that you need
the name of the type TimePrinter only once: when you create an object of that type in the
start method.

When you have a situation like this, you can define the class locally in a single method.

pubTic void start()
{
class TimePrinter implements ActionListener
{
public void actionPerformed(ActionEvent event)
{
Date now = new Date();
System.out.printIn("At the tone, the time is '
if (beep) Toolkit.getDefaultToolkit().beep();

+ now);

}
}

ActionListener Tlistener = new TimePrinter();
Timer t = new Timer(interval, Tistener);
t.start();
}
Local classes are never declared with an access specifier (that is,public or private). Their
scope is always restricted to the block in which they are declared.

Chapter 6. Interfaces and Inner Classes

Inner Classes 267

Local classes have a great advantage: they are completely hidden from the outside
world—not even other code in the TalkingClock class can access them. No method except
start has any knowledge of the TimePrinter class.

Accessing final Variables from Outer Methods

Local classes have another advantage over other inner classes. Not only can they access
the fields of their outer classes, they can even access local variables! However, those
local variables must be declared final. Here is a typical example. Let’s move the interval
and beep parameters from the TalkingClock constructor to the start method.

public void start(int interval, final boolean beep)
{
class TimePrinter implements ActionListener
{
public void actionPerformed(ActionEvent event)
{
Date now = new Date();
System.out.printIn("At the tone, the time is '
if (beep) Toolkit.getDefaultToolkit().beep();

+ now);

}

ActionListener Tistener = new TimePrinter();
Timer t = new Timer(interval, Tistener);
t.start();
}
Note that the TalkingClock class no longer needs to store a beep instance field. It simply
refers to the beep parameter variable of the start method.

Maybe this should not be so surprising. The line

if (beep) . . .
is, after all, ultimately inside the start method, so why shouldn’t it have access to the
value of the beep variable?
To see why there is a subtle issue here, let’s consider the flow of control more closely.
1. The start method is called.

2. The object variable Tistener is initialized by a call to the constructor of the inner class
TimePrinter.

3. The Tistener reference is passed to the Timer constructor, the timer is started, and the
start method exits. At this point, the beep parameter variable of the start method no
longer exists.

4. A second later, the actionPerformed method executes if (beep)

For the code in the actionPerformed method to work, the TimePrinter class must have
copied the beep field, as a local variable of the start method, before the beep parameter
value went away. That is indeed exactly what happens. In our example, the compiler
synthesizes the name TalkingClock$1TimePrinter for the local inner class. If you use the
ReflectionTest program again to spy on the TalkingClock$1TimePrinter class, you get the
following output:

Chapter 6. Interfaces and Inner Classes

m Chapter 6 W Interfaces and Inner Classes

class TalkingClock$1TimePrinter

TalkingClock$1TimePrinter(TalkingClock, boolean);
public void actionPerformed(java.awt.event.ActionEvent);

final boolean val$beep;
final TalkingClock this$0;
}

Note the boolean parameter to the constructor and theval$beep instance variable. When an
object is created, the value beep is passed into the constructor and stored in theval$heep
field. The compiler detects access of local variables, makes matching instance fields for
each one of them, and copies the local variables into the constructor so that the instance
fields can be initialized.

From the programmer’s point of view, local variable access is quite pleasant. It makes
your inner classes simpler by reducing the instance fields that you need to program
explicitly.

As we already mentioned, the methods of a local class can refer only to local variables
that are declared final. For that reason, the beep parameter was declared final in our
example. A local variable that is declared final cannot be modified after it has been ini-
tialized. Thus, it is guaranteed that the local variable and the copy that is made inside
the local class always have the same value.

NOTE: You have seen final variables used for constants, such as
public static final double SPEED_LIMIT = 55;

The final keyword can be applied to local variables, instance variables, and static variables.
In all cases it means the same thing: You can assign to this variable once after it has been
created. Afterwards, you cannot change the value—it is final.

However, you don’t have to initialize a final variable when you define it. For example, the
final parameter variable beep is initialized once after its creation, when the start method is
called. (If the method is called multiple times, each call has its own newly created beep
parameter.) The val$beep instance variable that you can see in the TalkingClock$1TimePrinter
inner class is set once, in the inner class constructor. A final variable that isn’t initialized
when it is defined is often called a blank final variable.

The final restriction is somewhat inconvenient. Suppose, for example, you want to
update a counter in the enclosing scope. Here, we want to count how often thecompareTo
method is called during sorting.
int counter = 0;
Date[] dates = new Date[100];
for (int i = 0; i < dates.length; i++)
dates[i] = new Date()

{

public int compareTo(Date other)

{
counter++; // ERROR

Chapter 6. Interfaces and Inner Classes

Inner Classes m

return super.compareTo(other);
}
b
Arrays.sort(dates);
System.out.printIn(counter + " comparisons.");

You can’t declare counter as final because you clearly need to update it. You can’t replace

it with an Integer because Integer objects are immutable. The remedy is to use an array of
length 1:

final int[] counter = new int[1];
for (int i = 0; i < dates.length; i++)
dates[i] = new Date()
{
public int compareTo(Date other)
{
counter[0]++;
return super.compareTo(other);
}
b

(The array variable is still declared as final, but that merely means that you can’t have it
refer to a different array. You are free to mutate the array elements.)

When inner classes were first invented, the prototype compiler automatically made this
transformation for all local variables that were modified in the inner class. However,
some programmers were fearful of having the compiler produce heap objects behind
their backs, and the final restriction was adopted instead. It is possible that a future ver-
sion of the Java language will revise this decision.

Anonymous Inner Classes

When using local inner classes, you can often go a step further. If you want to make only
a single object of this class, you don’t even need to give the class a name. Such a class is
called an anonymous inner class.

public void start(int interval, final boolean beep)
{
ActionListener Tistener = new ActionListener()
{
pubTic void actionPerformed(ActionEvent event)
{
Date now = new Date();
System.out.printIn("At the tone, the time is " + now);
if (beep) Toolkit.getDefaultToolkit().beep();
}
b
Timer t = new Timer(interval, Tistener);
t.start();
}

This syntax is very cryptic indeed. What it means is this: Create a new object of a class
that implements the ActionListener interface, where the required method actionPerformed is
the one defined inside the braces { }.

Chapter 6. Interfaces and Inner Classes

270

Chapter 6 W Interfaces and Inner Classes

In general, the syntax is
new SuperType(construction parameters)

inner class methods and data
}
Here, SuperType can be an interface, such asActionListener; then, the inner class imple-
ments that interface. Or SuperType can be a class; then, the inner class extends that class.

An anonymous inner class cannot have constructors because the name of a constructor
must be the same as the name of a class, and the class has no name. Instead, the con-
struction parameters are given to the superclass constructor. In particular, whenever an
inner class implements an interface, it cannot have any construction parameters. Never-
theless, you must supply a set of parentheses as in

new InterfaceType()
{

methods and data

}

You have to look carefully to see the difference between the construction of a new object
of a class and the construction of an object of an anonymous inner class extending that
class.
Person queen = new Person("Mary");
// a Person object
Person count = new Person("Dracula") { . . .};
// an object of an inner class extending Person
If the closing parenthesis of the construction parameter list is followed by an opening
brace, then an anonymous inner class is being defined.

Are anonymous inner classes a great idea or are they a great way of writing obfuscated
code? Probably a bit of both. When the code for an inner class is short, just a few lines of
simple code, then anonymous inner classes can save typing time, but it is exactly time-
saving features like this that lead you down the slippery slope to “Obfuscated Java
Code Contests.”

Listing 6-5 contains the complete source code for the talking clock program with an
anonymous inner class. If you compare this program with Listing 64, you will find that
in this case the solution with the anonymous inner class is quite a bit shorter, and, hope-
fully, with a bit of practice, as easy to comprehend.

750 Tl I AnonymousInnerClassTest. java

. import java.awt.x;

. import java.awt.event.:;
. import java.util.s;

. import javax.swing.x;

. import javax.swing.Timer;

L N

Chapter 6. Interfaces and Inner Classes

Inner Classes 271

IS TTR 1T AnonymousInnerClassTest.java (continued)

7. [xx

s. * This program demonstrates anonymous inner classes.
o. * @version 1.10 2004-02-27

10. * @author Cay Horstmann

1. %/

12. pubTic class AnonymousInnerClassTest

13. {

14, public static void main(String[] args)

15. {

16. TalkingClock clock = new TalkingClock();

17. clock.start(1000, true);

18.

19. // keep program running until user selects "Ok"

20. JOptionPane.showMessageDialog(null, "Quit program?");
21. System.exit(0);

22, }

23. }

24.

25 [wx

2. * A clock that prints the time in regular intervals.

27. %/

28. class TalkingClock

20. {

30. Jux

3t + Starts the clock.

32 + @param interval the interval between messages (in milliseconds)
33. + @param beep true if the clock should beep

34, %/

35. public void start(int interval, final hoolean beep)

36. {

37. ActionListener Tistener = new ActionListener()

38. {

39. public void actionPerformed(ActionEvent event)
40. {

. Date now = new Date();

42. System.out.printIn("At the tone, the time is " + now);
43. if (beep) Toolkit.getDefaultToolkit().beep();
44. }

5. 1

46. Timer t = new Timer(interval, listener);

47. t.start();

48. }

49. }

Static Inner Classes

Occasionally, you want to use an inner class simply to hide one class inside another, but
you don’t need the inner class to have a reference to the outer class object. You can sup-
press the generation of that reference by declaring the inner classstatic.

Chapter 6. Interfaces and Inner Classes

272 Chapter 6 W Interfaces and Inner Classes

Here is a typical example of where you would want to do this. Consider the task of
computing the minimum and maximum value in an array. Of course, you write one
method to compute the minimum and another method to compute the maximum.
When you call both methods, then the array is traversed twice. It would be more effi-
cient to traverse the array only once, computing both the minimum and the maximum
simultaneously.
double min = Double.MAX_VALUE;
double max = Double.MIN_VALUE;
for (double v : values)
{
if (min > v) min = v;
if (max < v) max = v;
}
However, the method must return two numbers. We can achieve that by defining a class
Pair that holds two values:

class Pair

{
public Pair(double f, double s)

{
first = f;
second = s;

}
public double getFirst() { return first; }
public double getSecond() { return second; }

private double first;
private double second;
}

The minmax function can then return an object of type Pair.

class ArrayAlg
{

public static Pair minmax(double[] values)

{

return new Pair(min, max);
}
}

The caller of the function uses the getFirst and getSecond methods to retrieve the answers:

Pair p = ArrayAlg.minmax(d);
System.out.printn("min = " + p.getFirst());

System.out.printIn("max = " + p.getSecond());
Of course, the name Pair is an exceedingly common name, and in a large project, it is
quite possible that some other programmer had the same bright idea, except that the
other programmer made a Pair class that contains a pair of strings. We can solve this
potential name clash by making Pair a public inner class inside ArrayAlg. Then the class
will be known to the public as ArrayAlg.Pair:

ArrayAlg.Pair p = ArrayAlg.minmax(d);

Chapter 6. Interfaces and Inner Classes

Inner Classes 273

However, unlike the inner classes that we used in previous examples, we do not want to
have a reference to any other object inside a Pair object. That reference can be suppressed
by declaring the inner class static:

class ArrayAlg

public static class Pair

{
}
}

Of course, only inner classes can be declared static. A static inner class is exactly like any
other inner class, except that an object of a static inner class does not have a reference to
the outer class object that generated it. In our example, we must use a static inner class
because the inner class object is constructed inside a static method:

public static Pair minmax(double[] d)

{

return new Pair(min, max);
}
Had the Pair class not been declared as static, the compiler would have complained
that there was no implicit object of type ArrayAlg available to initialize the inner class
object.

NOTE: You use a static inner class whenever the inner class does not need to access an
outer class object. Some programmers use the term nested class to describe static inner
classes.

u NOTE: Inner classes that are declared inside an interface are automatically static and
public.

Listing 6-6 contains the complete source code of theArrayAlg class and the nested Pair
class.

B 150 TGEGI StaticInnerClassTest. java

1 [wn
2.« This program demonstrates the use of static inner classes.
3.« @version 1.01 2004-02-27
4.+ @author Cay Horstmann
5. %/
6. pubTic class StaticInnerClassTest
7. {
8 public static void main(String[] args)
o {

double[] d = new double[20];

o

Chapter 6. Interfaces and Inner Classes

274 Chapter 6 B Interfaces and Inner Classes

) BTTR LT AGE M StaticInnerClassTest. java (continued)

1. for (int i = 0; i < d.length; i++)

12, d[i] = 100 = Math.random();

13, ArrayAlg.Pair p = ArrayAlg.minmax(d);
14. System.out.printin("min = " + p.getFirst());
15. System.out.printIn("max = " + p.getSecond());
16. }

17. }

18.

19. class ArrayAlg

20.

o1 [wx

22. + A pair of floating-point numbers

23. %/

24, public static class Pair

25. {

26. %

27. + Constructs a pair from two floating-point numbers
2. « @param f the first number

20, + @param s the second number

30. %/

31, public Pair(double f, double s)

32. {

33. first = f;

34. second = s;

35. }

36.

ar. [ux

38. « Returns the first number of the pair
30, « @return the first number

40. #/

41. public double getFirst()

42. {

43. return first;

44. }

45.

46. e

a7, + Returns the second number of the pair
48. + @return the second number

49. x/

50. public double getSecond()

51. {

52. return second;

53. }

54.

55. private double first;

56. private double second;

57 }

Chapter 6. Interfaces and Inner Classes

Proxies 275

StaticInnerClassTest.java (continued)

59. [ux
60. + Computes both the minimum and the maximum of an array
61. + @param values an array of floating-point numbers
62. + @return a pair whose first element is the minimum and whose second element
63. + 1S the maximum
64. /
65. public static Pair minmax(double[] values)
66. {
67. double min = Double.MAX_VALUE;
68. double max = Double.MIN_VALUE;
69. for (double v : values)
70. {
7. if (min > v) min = v;
72. if (max < v) max = v;
73. }
74. return new Pair(min, max);
75. }
76. }
Proxies

In the final section of this chapter, we discuss proxies, a feature that became available with
Java SE 1.3. You use a proxy to create at runtime new classes that implement a given set of
interfaces. Proxies are only necessary when you don’t yet know at compile time which
interfaces you need to implement. This is not a common situation for application pro-
grammers, and you should feel free to skip this section if you are not interested in
advanced wizardry. However, for certain system programming applications, the flexibil-
ity that proxies offer can be very important.

Suppose you want to construct an object of a class that implements one or more inter-
faces whose exact nature you may not know at compile time. This is a difficult problem.
To construct an actual class, you can simply use thenenInstance method or use reflection
to find a constructor. But you can’t instantiate an interface. You need to define a new
class in a running program.

To overcome this problem, some programs generate code, place it into a file, invoke the
compiler, and then load the resulting class file. Naturally, this is slow, and it also
requires deployment of the compiler together with the program. The proxy mechanism
is a better solution. The proxy class can create brand-new classes at runtime. Such a
proxy class implements the interfaces that you specify. In particular, the proxy class has
the following methods:

e All methods required by the specified interfaces; and
e All methods defined in the Object class (toString, equals, and so on).

However, you cannot define new code for these methods at runtime. Instead, you must
supply an invocation handler. An invocation handler is an object of any class that imple-
ments the InvocationHandler interface. That interface has a single method:

Object invoke(Object proxy, Method method, Object[] args)

Chapter 6. Interfaces and Inner Classes

276

Chapter 6 W Interfaces and Inner Classes

Whenever a method is called on the proxy object, theinvoke method of the invocation
handler gets called, with the Method object and parameters of the original call. The invoca-
tion handler must then figure out how to handle the call.

To create a proxy object, you use the newProxyInstance method of the Proxy class. The
method has three parameters:

* A class loader. As part of the Java security model, different class loaders for system
classes, classes that are downloaded from the Internet, and so on, can be used. We
discuss class loaders in Chapter 9 of Volume II. For now, we specify null to use the
default class loader.

e Anarray of (lass objects, one for each interface to be implemented.

* Aninvocation handler.

There are two remaining questions. How do we define the handler? And what can we do

with the resulting proxy object? The answers depend, of course, on the problem that we

want to solve with the proxy mechanism. Proxies can be used for many purposes, such as

* Routing method calls to remote servers;

* Associating user interface events with actions in a running program; and

e Tracing method calls for debugging purposes.

In our example program, we use proxies and invocation handlers to trace method calls.

We define a TraceHandler wrapper class that stores a wrapped object. Its invoke method

simply prints the name and parameters of the method to be called and then calls the

method with the wrapped object as the implicit parameter.
class TraceHandler implements InvocationHandler

{
public TraceHandler(Object t)
{
target = t;

}

public Object invoke(Object proxy, Method m, Object[] args)
throws Throwable

{

// print method name and parameters

// invoke actual method
return m.invoke(target, args);

}

private Object target;

}
Here is how you construct a proxy object that causes the tracing behavior whenever one
of its methods is called:

Object value = . . .;

// construct wrapper

InvocationHandler handler = new TraceHandler(value);

// construct proxy for one or more interfaces

(lass[] interfaces = new Class[] { Comparable.class };

Object proxy = Proxy.newProxyInstance(null, interfaces, handler);

Chapter 6. Interfaces and Inner Classes

Proxies 277

Now, whenever a method from one of the interfaces is called on proxy, the method name
and parameters are printed out and the method is then invoked on value.
In the program shown in Listing 67, we use proxy objects to trace a binary search. We
fill an array with proxies to the integers 1. .. 1000. Then we invoke the binarySearch
method of the Arrays class to search for a random integer in the array. Finally, we print
the matching element.

Object[] elements = new Object[1000];

// fill elements with proxies for the integers 1 . . . 1000
for (int i = 0; i < elements.length; i++)
{

Integer value = i + 1;

elements[i] = Proxy.newInstance(. . .); // proxy for value;
}

// construct a random integer
Integer key = new Random().nextInt(elements.length) + 1;

// search for the key
int result = Arrays.binarySearch(elements, key);

// print match if found

if (result >= 0) System.out.printin(elements[result]);
The Integer class implements the Comparable interface. The proxy objects belong to a class
that is defined at runtime. (It has a name such as $Proxy0.) That class also implements the
Comparable interface. However, its compareTo method calls the invoke method of the proxy
object’s handler.

NOTE: As you saw earlier in this chapter, as of Java SE 5.0, the Integer class actually imple-
ments Comparable<Integer>. However, at runtime, all generic types are erased and the proxy
is constructed with the class object for the raw Comparable class.

The binarySearch method makes calls like this:

if (elements[i].compareTo(key) < @) . . .
Because we filled the array with proxy objects, the compareTo calls call the invoke method of
the TraceHandler class. That method prints the method name and parameters and then
invokes compareTo on the wrapped Integer object.
Finally, at the end of the sample program, we call

System.out.printIn(elements[result]);
The println method calls toString on the proxy object, and that call is also redirected to the
invocation handler.
Here is the complete trace of a program run:

500. compareTo(288)
250. compareTo(288
375.compareTo(288
312.compareTo(288
281. compareTo(288

Chapter 6. Interfaces and Inner Classes

278 Chapter 6 W Interfaces and Inner Classes

296.compareTo(288)

288.compareTo(288)

288.toString()
You can see how the binary search algorithm homes in on the key by cutting the search
interval in half in every step. Note that the toString method is proxied even though it
does not belong to the Comparable interface—as you will see in the next section, certain
Object methods are always proxied.

ProxyTest.java

1. import java.lang.reflect.;

2. import java.util.x;

3.

4 [

5. « This program demonstrates the use of proxies.
6. * @version 1.00 2000-04-13

7.« @author Cay Horstmann
8.

9.

7

. pubTic class ProxyTest
10. {
1. public static void main(String[] args)
12, {
13, Object[] elements = new Object[1000];
14.
15. // fi1l elements with proxies for the integers 1 ... 1000
16. for (int i = 0; i < elements.length; i++)
17. {
18. Integer value = i + 1;
19. InvocationHandler handler = new TraceHandler(value);
20. Object proxy = Proxy.newProxyInstance(null, new Class[] { Comparable.class } , handler);
21. elements[i] = proxy;
22. }
23.
24, // construct a random integer
25. Integer key = new Random().nextInt(elements.length) + 1;
26.
27. // search for the key
28. int result = Arrays.binarySearch(elements, key);
29.
30. // print match if found
31. if (result >= 0) System.out.printIn(elements[result]);
32. }
33 }
34,
35. /%

36. + An invocation handler that prints out the method name and parameters, then
37. + invokes the original method

38 #/

30. class TraceHandler implements InvocationHandler

0. {

Chapter 6. Interfaces and Inner Classes

Proxies

ProxyTest.java (continued)

o [

2. + Constructs a TraceHandler

43, + @param t the implicit parameter of the method call
44. %/

45. public TraceHandler(Object t)

46. {

47. target = t;

s}

49.
o. pubTlic Object invoke(Object proxy, Method m, Object[] args) throws Throwable
51. {

o

52. // print implicit argument

53. System.out.print(target);

54. // print method name

55. System.out.print("." + m.getName() + "(");
56. // print explicit arguments

57. if (args != null)

58. {

59. for (int i = 0; i < args.length; i++)
60. {

61. System.out.print(args[i]);

62. if (i < args.length - 1) System.out.print(", ");
63. }

64. }

65. System.out.printIn(")");

66.

67. // invoke actual method

68. return m.invoke(target, args);

69. }

70.
71, private Object target;
72. }

Properties of Proxy Classes

Now that you have seen proxy classes in action, we want to go over some of their prop-
erties. Remember that proxy classes are created on the fly in a running program. How-
ever, once they are created, they are regular classes, just like any other classes in the
virtual machine.

All proxy classes extend the class Proxy. A proxy class has only one instance field—the
invocation handler, which is defined in the Proxy superclass. Any additional data that are
required to carry out the proxy objects’ tasks must be stored in the invocation handler.
For example, when we proxied Comparable objects in the program shown in Listing 6-7,
the TraceHandler wrapped the actual objects.

All proxy classes override the toString, equals, and hashCode methods of the Object class.

Like all proxy methods, these methods simply call invoke on the invocation handler. The
other methods of the Object class (such as clone and getClass) are not redefined.

279

Chapter 6. Interfaces and Inner Classes

m Chapter 6 W Interfaces and Inner Classes

The names of proxy classes are not defined. TheProxy class in Sun’s virtual machine gen-
erates class names that begin with the string $Proxy.

There is only one proxy class for a particular class loader and ordered set of interfaces.
That is, if you call the newProxyInstance method twice with the same class loader and inter-
face array, then you get two objects of the same class. You can also obtain that class with
the getProxyClass method:

(lass proxyClass = Proxy.getProxyClass(null, interfaces);

A proxy class is always pubTic and final. If all interfaces that the proxy class implements
are public, then the proxy class does not belong to any particular package. Otherwise, all
non-public interfaces must belong to the same package, and then the proxy class also
belongs to that package.

You can test whether a particular Class object represents a proxy class by calling the
isProxyClass method of the Proxy class.

java.lang.reflect.InvocationHandler 1.3

e (Object invoke(Object proxy, Method method, Object[] args)
define this method to contain the action that you want carried out whenever a
method was invoked on the proxy object.

java.lang.reflect.Proxy 1.3

e static Class getProxyClass(ClassLoader Toader, Class[] interfaces)
returns the proxy class that implements the given interfaces.

e static Object newProxyInstance(ClassLoader Toader, Class[] interfaces, InvocationHandler
handler)
constructs a new instance of the proxy class that implements the given interfaces.
All methods call the invoke method of the given handler object.

e static hoolean isProxyClass(Class c)
returns true if ¢ is a proxy class.

This ends our final chapter on the fundamentals of the Java programming language.
Interfaces and inner classes are concepts that you will encounter frequently. However,
as we already mentioned, proxies are an advanced technique that is of interest mainly to
tool builders, not application programmers. You are now ready to go on to learn about
graphics and user interfaces, starting with Chapter 7.

Chapter 7. Graphics Programming

GRAPHICS
PROGRAMMING

INTRODUCING SWING

CREATING A FRAME

POSITIONING A FRAME

DISPLAYING INFORMATION IN A COMPONENT
WORKING WITH 2D SHAPES

UsiNe COLOR

USING SPECIAL FONTS FOR TEXT

DISPLAYING IMAGES

4dd4d 44 dqadaadga

281

Chapter 7. Graphics Programming

Chapter 7 B Graphics Programming

To this point, you have seen only how to write programs that take input from the
keyboard, fuss with it, and then display the results on a console screen. This is not what
most users want now. Modern programs don’t work this way and neither do web pages.
This chapter starts you on the road to writing Java programs that use a graphical user
interface (GUI). In particular, you learn how to write programs that size and locate win-
dows on the screen, display text with multiple fonts in a window, display images, and
so on. This gives you a useful, valuable repertoire of skills that you will put to good use
in subsequent chapters as you write interesting programs.

The next two chapters show you how to process events, such as keystrokes and mouse
clicks, and how to add interface elements, such as menus and buttons, to your applica-
tions. When you finish these three chapters, you will know the essentials for writing
graphical applications. For more sophisticated graphics programming techniques, we
refer you to Volume II.

If, on the other hand, you intend to use Java for server-side programming only and are
not interested in writing GUI programming, you can safely skip these chapters.

Introducing Swing

When Java 1.0 was introduced, it contained a class library, which Sun called the Abstract
Window Toolkit (AWT), for basic GUI programming. The basic AWT library deals with
user interface elements by delegating their creation and behavior to the native GUI tool-
kit on each target platform (Windows, Solaris, Macintosh, and so on). For example, if
you used the original AWT to put a text box on a Java window, an underlying “peer”
text box actually handled the text input. The resulting program could then, in theory,
run on any of these platforms, with the “look and feel” of the target platform—hence
Sun’s trademarked slogan “Write Once, Run Anywhere.”

The peer-based approach worked well for simple applications, but it soon became appar-
ent that it was fiendishly difficult to write a high-quality portable graphics library that
depended on native user interface elements. User interface elements such as menus,
scrollbars, and text fields can have subtle differences in behavior on different platforms. It
was hard, therefore, to give users a consistent and predictable experience with this
approach. Moreover, some graphical environments (such as X11/Motif) do not have as
rich a collection of user interface components as does Windows or the Macintosh. This in
turn further limits a portable library based on peers to a “lowest common denominator”
approach. As a result, GUI applications built with the AWT simply did not look as nice as
native Windows or Macintosh applications, nor did they have the kind of functionality
that users of those platforms had come to expect. More depressingly, there were different
bugs in the AWT user interface library on the different platforms. Developers complained
that they needed to test their applications on each platform, a practice derisively called
“write once, debug everywhere.”

In 1996, Netscape created a GUI library they called the IFC (Internet Foundation Classes)
that used an entirely different approach. User interface elements, such as buttons, menus,
and so on, were painted onto blank windows. The only functionality required from the
underlying windowing system was a way to put up windows and to paint on the win-
dow. Thus, Netscape’s IFC widgets looked and behaved the same no matter which plat-
form the program ran on. Sun worked with Netscape to perfect this approach, creating a
user interface library with the code name “Swing.” Swing was available as an extension
to Java 1.1 and became a part of the standard library in Java SE 1.2.

Chapter 7. Graphics Programming

Introducing Swing

Since, as Duke Ellington said, “It Don’t Mean a Thing If It Ain’t Got That Swing,” Swing is
now the official name for the non-peer-based GUI toolkit. Swing is part of the Java Foun-
dation Classes (JFC). The full JFC is vast and contains far more than the Swing GUI toolkit.
JEC features not only include the Swing components but also an accessibility API, a 2D
API, and a drag-and-drop APL

NOTE: Swing is not a complete replacement for the AWT—it is built on top of the AWT architec-

ture. Swing simply gives you more capable user interface components. You use the foundations
of the AWT, in particular, event handling, whenever you write a Swing program. From now on, we
say “Swing” when we mean the “painted” user interface classes, and we say “AWT” when we
mean the underlying mechanisms of the windowing toolkit, such as event handling.

Of course, Swing-based user interface elements will be somewhat slower to appear on
the user’s screen than the peer-based components used by the AWT. Our experience is
that on any reasonably modern machine, the speed difference shouldn’t be a problem.
On the other hand, the reasons to choose Swing are overwhelming:

* Swing has a rich and convenient set of user interface elements.

e Swing has few dependencies on the underlying platform; it is therefore less prone to
platform-specific bugs.

* Swing gives a consistent user experience across platforms.

Still, the third plus is also a potential drawback: If the user interface elements look the
same on all platforms, then they will look different from the native controls and thus
users will be less familiar with them.

Swing solves this problem in a very elegant way. Programmers writing Swing programs
can give the program a specific “look and feel.” For example, Figures 7-1 and 7-2 show
the same program running with the Windows and the GTK look and feel.

L] SwingSet2 [= =]

File Look & Feel Themes Options
1 Hlm= T Y E ==
Bl = FF B o38O = G

Button Demo | Source Code

Buttens | Radio Buttens | Check Baxes|

Texk Buttons Display Options: Text Position:

int Borch

[one | [1we ||] 7] Paint Border /3/0\0
] Paint Forus

[7] Enabled ? O 1

Image Buttans Content Filed O\O/G/

Pad Amount:
© Defaut Content Alignment:

Press Shift-F10 to activate popup menu

)

=

=]
Q-
&
e}

Figure 7-1 The Windows look and feel of Swing

Chapter 7. Graphics Programming

Chapter 7 B Graphics Programming

Furthermore, Sun developed a platform-independent look and feel that was called
“Metal” until the marketing folks renamed it as the “Java look and feel.” However, most
programmers continue to use the term “Metal,” and we will do the same in this book.

B |swingSet2 [_[a]x]

File Look & Feel Options
— o= |

— e [=
B =
Button Demo | Source Code

Buttons I Radio Buttons] Check Euxas}

Text Buttons

[|

Display Options: Text Position:
& Paint Border
[Paint Focus
=] o 2
[Enabled Te

Content Filled

Image Buttons
Pad Amount:
@ Default
(o))
O 10

Press Shift-F10 to activate popup menu
; :

Content Alignment:

Figure 7-2 The GTK look and feel of Swing

Some people criticized Metal as being stodgy, and the look was freshened up for the
Java SE 5.0 release (see Figure 7-3). Now the Metal look supports multiple themes—
minor variations in colors and fonts. The default theme is called “Ocean.”

B
Button Demo [Source Code

Buttans | Radio Buttons | Check Boxes |

Vg

il

5=

Text Buttons Display Dptions: Text Position:
Faint Border
| One ‘ | Two ‘ I Three! | e Paint & /{O\D
Paint Focus /
[e]
[¥] Enabled ¢ f.
Image Buttons Cortent Filled Q\O/C
Pad Amount.
@ Defauh Content Alignment
Co o
C10 6 o o
e
Q\-O/G

Press Shift-F10 to activate popup menu
T

Figure 7-3 The Ocean theme of the Metal look and feel

In Java SE 6, Sun improved the support for the native look and feel for Windows and
GTK. A Swing application will now pick up color scheme customizations and faithfully
render the throbbing buttons and scrollbars that have become fashionable.

Chapter 7. Graphics Programming

Creating a Frame

Some users prefer that their Java applications use the native look and feel of their plat-
forms, others like Metal or a third-party look and feel. As you will see in Chapter 8, it is
very easy to let your users choose their favorite look and feel

NOTE: Although we won’t have space in this book to tell you how to do it, Java programmers
can extend an existing look and feel or even design a totally new look and feel. This is a
tedious process that involves specifying how each Swing component is painted. Some
developers have done just that, especially when porting Java to nontraditional platforms
such as kiosk terminals or handheld devices. See http://ww.javootoo.com for a collection of
interesting look-and-feel implementations.
Java SE 5.0 introduced a look and feel, called Synth, that makes this process easier. In
Synth, you can define a new look and feel by providing image files and XML descriptors,
without doing any programming.

exception. The Eclipse integrated development environment uses a graphics toolkit called
SWT that is similar to the AWT, mapping to native components on various platforms. You
can find articles describing SWT at http://www.eclipse.org/articles/.

NOTE: Most Java user interface programming is nowadays done in Swing, with one notable

If you have programmed Microsoft Windows applications with Visual Basic or C#, you
know about the ease of use that comes with the graphical layout tools and resource editors
these products provide. These tools let you design the visual appearance of your applica-
tion, and then they generate much (often all) of the GUI code for you. GUI builders are avail-
able for Java programming, but we feel that in order to use these tools effectively, you
should know how to build a user interface manually. The remainder of this chapter tells you
the basics about displaying a window and painting its contents.

Creating a Frame

A top-level window (that is, a window that is not contained inside another window) is
called a frame in Java. The AWT library has a class, called Frame, for this top level. The
Swing version of this class is called JFrame and extends the Frame class. The JFrame is one of
the few Swing components that is not painted on a canvas. Thus, the decorations (but-
tons, title bar, icons, and so on) are drawn by the user’s windowing system, not by
Swing.

are classes such as Button and Frame, but they are AWT components. If you accidentally omit
a “J”, your program may still compile and run, but the mixture of Swing and AWT compo-
nents can lead to visual and behavioral inconsistencies.

CAUTION: Most Swing component classes start with a “J”: JButton, JFrame, and so on. There

In this section, we go over the most common methods for working with a Swing JFrame.
Listing 7-1 lists a simple program that displays an empty frame on the screen, as illus-
trated in Figure 7—4.

Chapter 7. Graphics Programming

m Chapter 7 B Graphics Programming

[I (=]]

Figure 7-4 The simplest visible frame

IS T150 T2 B SimpleFrameTest. java

. import javax.swing.s;

1

2.

3. [ax

4. % @version 1.32 2007-06-12

5.+ @author Cay Horstmann

6. #/

7. public class SimpleFrameTest

s {

o. public static void main(String[] args)
10. {

1. SimpleFrame frame = new SimpleFrame();
12, frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13. frame.setVisible(true);

14. }

15. }

16.

17. class SimpleFrame extends JFrame

18. {

19, pubTic SimpleFrame()

20. {

21. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
22. }

24. public static final int DEFAULT_WIDTH = 300;
25. public static final int DEFAULT_HEIGHT = 200;

Let’s work through this program, line by line.

The Swing classes are placed in the javax.swing package. The package name javaxindicates a
Java extension package, not a core package. For historical reasons, Swing is considered an
extension. However, it is present in every Java SE implementation since version 1.2.

By default, a frame has a rather useless size of 0 x 0 pixels. We define a subclass Simple-
Frame whose constructor sets the size to 300 x 200 pixels. This is the only difference
between a SimpleFrame and a JFrame.

Chapter 7. Graphics Programming

Creating a Frame v1:74

In the main method of the SimpleFrameTest class, we construct a SimpleFrame object and make it
visible.

There are two technical issues that we need to address in every Swing program.

First, all Swing components must be configured from the event dispatch thread, the thread
of control that passes events such as mouse clicks and keystrokes to the user interface
components. The following code fragment is used to execute statements in the event
dispatch thread:

EventQueue.invokelLater(new Runnable()

public void run()

{

statements
}
b;

We discuss the details in Chapter 14. For now, you should simply consider it a magic
incantation that is used to start a Swing program.

NOTE: You will see many Swing programs that do not initialize the user interface in the
event dispatch thread. It used to be perfectly acceptable to carry out the initialization in the
main thread. Sadly, as Swing components got more complex, the programmers at Sun were
no longer able to guarantee the safety of that approach. The probability of an error is
extremely low, but you would not want to be one of the unlucky few who encounter an inter-
mittent problem. It is better to do the right thing, even if the code looks rather mysterious.

Next, we define what should happen when the user closes the application’s frame. For
this particular program, we want the program to exit. To select this behavior, we use the
statement

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

In other programs with multiple frames, you would not want the program to exit just
because the user closes one of the frames. By default, a frame is hidden when the user
closes it, but the program does not terminate. (It might have been nice if the program
terminated after the last frame became invisible, but that is not how Swing works.)

Simply constructing a frame does not automatically display it. Frames start their life invis-
ible. That gives the programmer the chance to add components into the frame before
showing it for the first time. To show the frame, themain method calls the setVisible method
of the frame.

NOTE: Before Java SE 5.0, it was possible to use the show method that the JFrame class inher-

its from the superclass Window. The Window class has a superclass Component that also has a
show method. The Component. show method was deprecated in Java SE 1.2. You are supposed
to call setVisible(true) instead if you want to show a component. However, until Java SE 1.4,
the Window. show method was not deprecated. In fact, it was quite useful, making the window
visible and bringing it to the front. Sadly, that benefit was lost on the deprecation police, and
Java SE 5.0 deprecated the show method for windows as well.

Chapter 7. Graphics Programming

288

Chapter 7 B Graphics Programming

After scheduling the initialization statements, themain method exits. Note that exiting
main does not terminate the program, just the main thread. The event dispatch thread
keeps the program alive until it is terminated, either by closing the frame or by calling
the System.exit method.

The running program is shown in Figure 7—4 on page 286—it is a truly boring top-level
window. As you can see in the figure, the title bar and surrounding decorations, such as
resize corners, are drawn by the operating system and not the Swing library. If you run
the same program in Windows, GTK, or the Mac, the frame decorations are different.
The Swing library draws everything inside the frame. In this program, it just fills the
frame with a default background color.

NOTE: As of Java SE 1.4, you can turn off all frame decorations by calling
u frame.setUndecorated(true).

Positioning a Frame

The JFrane class itself has only a few methods for changing how frames look. Of course,

through the magic of inheritance, most of the methods for working with the size and position

of a frame come from the various superclasses of JFrame. Here are some of the most important

methods:

* The setlocation and setBounds methods for setting the position of the frame

¢ The setIconImage method, which tells the windowing system which icon to display in
the title bar, task switcher window, and so on

¢ The setTitle method for changing the text in the title bar

e The setResizable method, which takes a boolean to determine if a frame will be resize-
able by the user

Figure 7-5 illustrates the inheritance hierarchy for the JFrame class.

TIP: The API notes for this section give what we think are the most important methods for

m giving frames the proper look and feel. Some of these methods are defined in the JFrame
class. Others come from the various superclasses of JFrame. At some point, you may need to
search the API docs to see if there are methods for some special purpose. Unfortunately,
that is a bit tedious to do with inherited methods. For example, the toFront method is applica-
ble to objects of type JFrame, but because it is simply inherited from the Window class, the
JFrame documentation doesn’t explain it. If you feel that there should be a method to do
something and it isn’t explained in the documentation for the class you are working with, try
looking at the APl documentation for the methods of the superclasses of that class. The top
of each API page has hyperlinks to the superclasses, and inherited methods are listed
below the method summary for the new and overridden methods.

As the API notes indicate, the Component class (which is the ancestor of all GUI objects)
and the Window class (which is the superclass of the Frame class) are where you need to look
to find the methods to resize and reshape frames. For example, the setLocation method in
the Component class is one way to reposition a component. If you make the call

setlocation(x, y)

Chapter 7. Graphics Programming

Positioning a Frame m

the top-left corner is located x pixels across and y pixels down, where (0, 0) is the top-left
corner of the screen. Similarly, the setBounds method in Component lets you resize and relo-
cate a component (in particular, a JFrame) in one step, as

setBounds(x, y, width, height)

Object
Component
Container
JComponent
JPanel Frame
——————’ W
A
JFrame

Figure 7-5 Inheritance hierarchy for the frame and component classes in
AWT and Swing

Chapter 7. Graphics Programming

m Chapter 7 B Graphics Programming

Alternatively, you can give the windowing system control on window placement. If you
call

setLoationByPTatform(true);

before displaying the window, the windowing system picks the location (but not the
size), typically with a slight offset from the last window.

whole screen. As you will see in Chapter 9, for other components inside a container, the
measurements are taken relative to the container.

NOTE: For a frame, the coordinates of the setLocation and setBounds are taken relative to the

Frame Properties
Many methods of component classes come in getter/setter pairs, such as the following
methods of the Frame class:

public String getTitle()

public void setTitle(String title)
Such a getter/setter pair is called a property. A property has a name and a type. The
name is obtained by changing the first letter after theget or set to lowercase. For exam-
ple, the Frame class has a property with name title and type String.

Conceptually, titleis a property of the frame. When we set the property, we expect that
the title changes on the user’s screen. When we get the property, we expect that we get
back the value that we set.
We do not know (or care) how the Frame class implements this property. Perhaps it sim-
ply uses its peer frame to store the title. Perhaps it has an instance field

private String title; // not required for property
If the class does have a matching instance field, we don’t know (or care) how the getter
and setter methods are implemented. Perhaps they just read and write the instance
field. Perhaps they do more, such as notifying the windowing system whenever the title
changes.
There is one exception to the get/set convention: For properties of typeboolean, the get-
ter starts with is. For example, the following two methods define the locationByPlatform
property:

public boolean isLocationByPlatform()

public void setlLocationByPlatform(boolean b)

We will look at properties in much greater detail in Chapter 8 of Volume II.

port for properties. It is possible that a future version of Java will also have a language con-
struct for properties.

u NOTE: Many programming languages, in particular, Visual Basic and C#, have built-in sup-

Determining a Good Frame Size

Remember: if you don’t explicitly size a frame, all frames will default to being 0 by 0
pixels. To keep our example programs simple, we resize the frames to a size that we
hope works acceptably on most displays. However, in a professional application,

Chapter 7. Graphics Programming

Positioning a Frame

you should check the resolution of the user’s screen and write code that resizes the
frames accordingly: a window that looks nice on a laptop screen will look like a
postage stamp on a high-resolution screen.

To find out the screen size, use the following steps. Call the static getDefaultToolkit
method of the Toolkit class to get the Toolkit object. (The Toolkit class is a dumping ground
for a variety of methods that interface with the native windowing system.) Then call the
getScreenSize method, which returns the screen size as aDimension object. A Dimension object
simultaneously stores a width and a height, in public (!) instance variables width and
height. Here is the code:

Toolkit kit = Toolkit.getDefaultToolkit();

Dimension screenSize = kit.getScreenSize();

int screenWidth = screenSize.width;

int screenHeight = screenSize.height;
We use 50% of these values for the frame size, and tell the windowing system to
position the frame:

setSize(screenWidth / 2, screenHeight / 2);

setLocationByPlatform(true);

We also supply an icon. Because the representation of images is also system depen-
dent, we again use the toolkit to load an image. Then, we set the image as the icon
for the frame:

Image img = kit.getImage("icon.gif");

setIconImage(img);
Depending on your operating system, you can see the icon in various places. For exam-
ple, in Windows, the icon is displayed in the top-left corner of the window, and you can
see it in the list of active tasks when you press ALT+TAB.

Listing 7-2 is the complete program. When you run the program, pay attention to the
“Core Java” icon.

Here are a few additional tips for dealing with frames:

e If your frame contains only standard components such as buttons and text fields,
you can simply call the pack method to set the frame size. The frame will be set to the
smallest size that contains all components. It is quite common to set the main frame
of a program to the maximum size. As of Java SE 1.4, you can simply maximize a
frame by calling

frame.setExtendedState(Frame.MAXIMIZED_BOTH);
e [Itisalso a good idea to remember how the user positions and sizes the frame of

your application and restore those bounds when you start the application again.
You will see in Chapter 10 how to use the Preferences API for this purpose.

¢ If you write an application that takes advantage of multiple display screens, use the
GraphicsEnvironment and GraphicsDevice classes to find the dimensions of the display
screens.

e The GraphicsDevice class also lets you execute your application in full-screen mode.

Chapter 7. Graphics Programming

m Chapter 7 B Graphics Programming

Listing 7-2 NILIEIESEVE

. import java.awt.s;
. import javax.swing.x;

*

@version 1.32 2007-04-14
« @author Cay Horstmann
. public class SizedFrameTest

10. {

1. public static void main(String[] args)

12, {

13. EventQueue.invokeLater(new Runnable()

1
2.
3.
4.
5/
6.
7.
8.
9,

15. public void run()

17. SizedFrame frame = new SizedFrame();

18. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
19. frame.setVisible(true);

20. }

21. b

22. }

23. }

25. class SizedFrame extends JFrame

26.

27. public SizedFrame()

8 1

29. // get screen dimensions

30.

31. Toolkit kit = Toolkit.getDefaultToolkit();
32. Dimension screenSize = kit.getScreenSize();
33. int screenHeight = screenSize.height;

34, int screenWidth = screenSize.width;

35.

36. // set frame width, height and let platform pick screen location
37.

38. setSize(screenWidth / 2, screenHeight / 2);
39. setLocationByPlatform(true);

40.

a1, // set frame icon and title

42.

43. Image img = kit.getImage("icon.gif");

44. setIconImage(img);

45. setTitle("SizedFrame");

46. 1

Chapter 7. Graphics Programming

Positioning a Frame

java.awt.Component 1.0

boolean isVisible()

void setVisible(boolean b)

gets or sets the visible property. Components are initially visible, with the
exception of top-level components such as JFrame.

void setSize(int width, int height) 1.1

resizes the component to the specified width and height.

void setlocation(int x, inty) 1.1

moves the component to a new location. The x- and y-coordinates use the
coordinates of the container if the component is not a top-level component, or the
coordinates of the screen if the component is top level (for example, aJFrame).
void setBounds(int x, int y, int width, int height) 1.1

moves and resizes this component.

Dimension getSize() 1.1

void setSize(Dimension d) 1.1

gets or sets the size property of this component.

java.awt.Window 1.0

void toFront()
shows this window on top of any other windows.

void toBack()

moves this window to the back of the stack of windows on the desktop and
rearranges all other visible windows accordingly.

boolean isLocationByPlatform() 5.0

void setLocationByPlatform(boolean b) 5.0

gets or sets the TocationByPlatform property. When the property is set before this
window is displayed, the platform picks a suitable location.

java.awt.Frame 1.0

boolean isResizable()

void setResizable(boolean b)

gets or sets the resizable property. When the property is set, the user can resize the
frame.

String getTitle()

void setTitle(String s)

gets or sets the title property that determines the text in the title bar for the frame.
Image getIconImage()

void setIconImage(Image image)

gets or sets the iconImage property that determines the icon for the frame. The
windowing system may display the icon as part of the frame decoration or in
other locations.

Chapter 7. Graphics Programming

Chapter 7 B Graphics Programming

e hoolean isUndecorated() 1.4
e void setUndecorated(boolean b) 1.4
gets or sets the undecorated property. When the property is set, the frame is
displayed without decorations such as a title bar or close button. This method
must be called before the frame is displayed.
e int getExtendedState() 1.4
e void setExtendedState(int state) 1.4
gets or sets the extended window state. The state is one of
Frame . NORMAL
Frame.ICONIFIED
Frame .MAXIMIZED_HORIZ
Frame .MAXIMIZED_VERT
Frame .MAXIMIZED_BOTH

java.awt.Toolkit 1.0

e static Toolkit getDefaultToolkit()
returns the default toolkit.

e Dimension getScreenSize()
gets the size of the user’s screen.

e Image getImage(String filename)
loads an image from the file with name f1ilename.
Displaying Information in a Component
In this section, we show you how to display information inside a frame. For example,

rather than displaying “Not a Hello, World program” in text mode in a console window
as we did in Chapter 3, we display the message in a frame, as shown in Figure 7-6.

B[NotHelloworld [_]O[x]

Mot a Hello, World program

Figure 7-6 A frame that displays information

You could draw the message string directly onto a frame, but that is not considered
good programming practice. In Java, frames are really designed to be containers for
components such as a menu bar and other user interface elements. You normally draw
on another component which you add to the frame.

The structure of a JFrame is surprisingly complex. Look at Figure 7-7, which shows the
makeup of a JFrame. As you can see, four panes are layered in a JFrame. The root pane, lay-
ered pane, and glass pane are of no interest to us; they are required to organize the
menu bar and content pane and to implement the look and feel. The part that most con-

Chapter 7. Graphics Programming

Displaying Information in a Component m

cerns Swing programmers is the content pane. When designing a frame, you add compo-
nents into the content pane, using code such as the following:

Container contentPane = frame.getContentPane();

Component ¢ = . . .;

contentPane.add(c);
Up to Java SE 1.4, the add method of the JFrame class was defined to throw an exception
with the message “Do not use JFrame.add(). Use JFrame.getContentPane().add() instead.” As of
Java SE 5.0, the JFrame.add method has given up trying to reeducate programmers, and it
simply calls add on the content pane.

Thus, as of Java SE 5.0, you can simply use the call
frame.add(c);

[OTitle ooog

[’/frame
N [~~~root pane

N
B N A S H N
\Iayered pane
\\menu bar (optional)

[~~~content pane

\glass pane

Z

Figure 7-7 Internal structure of a JFrame

In our case, we want to add a single component to the frame onto which we will draw
our message. To draw on a component, you define a class that extends JComponent and
override the paintComponent method in that class.

The paintComponent method takes one parameter of type Graphics. A Graphics object
remembers a collection of settings for drawing images and text, such as the font you
set or the current color. All drawing in Java must go through a Graphics object. It has
methods that draw patterns, images, and text.

Chapter 7. Graphics Programming

Chapter 7 B Graphics Programming

NOTE: The Graphics parameter is similar to a device context in Windows or a graphics
context in X11 programming.

Here’s how to make a component onto which you can draw:
class MyComponent extends JComponent

public void paintComponent(Graphics g)
{
code for drawing
}
}

Each time a window needs to be redrawn, no matter what the reason, the event han-
dler notifies the component. This causes the paintComponent methods of all components
to be executed.

Never call the paintComponent method yourself. It is called automatically whenever a part
of your application needs to be redrawn, and you should not interfere with this auto-
matic process.

What sorts of actions trigger this automatic response? For example, painting occurs
because the user increased the size of the window or minimized and then restored
the window. If the user popped up another window and it covered an existing win-
dow and then made the overlaid window disappear, the application window that
was covered is now corrupted and will need to be repainted. (The graphics system
does not save the pixels underneath.) And, of course, when the window is displayed
for the first time, it needs to process the code that specifies how and where it should
draw the initial elements.

TIP: If you need to force repainting of the screen, call the repaint method instead of
paintComponent. The repaint method will cause paintComponent to be called for all compo-
nents, with a properly configured Graphics object.

As you saw in the code fragment above, the paintComponent method takes a single param-
eter of type Graphics. Measurement on a Graphics object for screen display is done in pix-
els. The (0, 0) coordinate denotes the top-left corner of the component on whose
surface you are drawing.
Displaying text is considered a special kind of drawing. The Graphics class has a drawString
method that has the following syntax:

g.drawString(text, x, y)
In our case, we want to draw the string "Not a Hello, World Program” in our original win-
dow, roughly one-quarter of the way across and halfway down. Although we don’t
yet know how to measure the size of the string, we’ll start the string at coordinates
(75, 100). This means the first character in the string will start at a position 75 pixels to
the right and 100 pixels down. (Actually, it is the baseline for the text that is 100 pixels
down—see page 313 for more on how text is measured.) Thus, our paintComponent
method looks like this:

Chapter 7. Graphics Programming

Displaying Information in a Component 297

class NotHelloWorTdComponent extends JComponent

{
public void paintComponent(Graphics g)

{

}

public static final int MESSAGEX = 75;
public static final int MESSACE_Y = 100;
}

Listing 7-3 shows the complete code.

g.drawString("Not a Hello, World program", MESSAGE_X, MESSAGE_Y);

NOTE: Instead of extending JComponent, some programmers prefer to extend the JPanel

class. A JPanel is intended to be a container that can contain other components, but it is
also possible to paint on it. There is just one difference. A panel is opaque, which means
that it is responsible for painting all pixels within its bounds. The easiest way to achieve
that is to paint the panel with the background color, by calling super.paintComponent in the
paintComponent method of each panel subclass:

class NotHelloWorldPanel extends JPanel

{
public void paintComponent(Graphics g)

{

super.paintComponent(g);

.. . // code for drawing will go here

}
}

IS T151 Ty 22 0 NotHellolor1d. java

1. import javax.swing.x;
2. import java.awt.x;

4. [xx

5.+ @version 1.32 2007-06-12

6. * @author Cay Horstmann

7. %/

s. pubTic class NotHelloWorld

9 {

10. public static void main(String[] args)

1. {

12. EventQueue.invokelLater(new Runnable()

13. {

14. pubTic void run()

15.

16. NotHelloWor1dFrame frame = new NotHelloWorTldFrame();
17. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
18. frame.setVisible(true);

19. }

Chapter 7. Graphics Programming

m Chapter 7 B Graphics Programming

)BT T 2 B NotHelToWor1d. java (continued)

20. b

21. }

2. }

23.

24, [

25. « A frame that contains a message panel

2. #/

27. class NotHelloWorldFrame extends JFrame

28 {

2. public NotHelloWor1dFrame()

30. {

31. setTitle("NotHelToWor1d");

32. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
33.

34. // add panel to frame

35.

36. NotHeTToWor1dPanel panel = new NotHelloWorldPanel();
37. add(panel);

38. }

39.
40. public static final int DEFAULT_WIDTH = 300;
41. public static final int DEFAULT_HEIGHT = 200;

42}

43.

44, [%

45. « A panel that displays a message.

4. %/

47. class NotHelloWorl1dPanel extends JPanel
8. {

4. public void paintComponent(Graphics g)
50. {

51. g.drawString("Not a Hello, World program", MESSAGE_X, MESSAGE.Y);
52. }

53.

s4. public static final int MESSAGE_X = 75;
s5. public static final int MESSAGE_Y = 100;
56. }

57.

m javax.swing.JFrame 1.2

o Container getContentPane()
returns the content pane object for this JFrame.

e (Component add(Component c)
adds and returns the given component to the content pane of this frame. (Before
Java SE 5.0, this method threw an exception.)

Chapter 7. Graphics Programming

Working with 2D Shapes

m java.awt.Component 1.0

e void repaint()
causes a repaint of the component “as soon as possible.”
e public void repaint(int x, int y, int width, int height)
causes a repaint of a part of the component “as soon as possible.”

javax.swing.JComponent 1.2

e void paintComponent(Graphics g)
overrides this method to describe how your component needs to be painted.

Working with 2D Shapes

Starting with Java 1.0, the Graphics class had methods to draw lines, rectangles, ellipses,
and so on. But those drawing operations are very limited. For example, you cannot vary
the line thickness and you cannot rotate the shapes.

Java SE 1.2 introduced the Java 2D library, which implements a powerful set of graphical
operations. In this chapter, we only look at the basics of the Java 2D library—see the
Advanced AWT chapter in Volume II for more information on the advanced features.
To draw shapes in the Java 2D library, you need to obtain an object of the Graphics2D
class. This class is a subclass of the Graphics class. Ever since Java SE 2, methods such
as paintComponent automatically receive an object of the Graphics2D class. Simply use a
cast, as follows:

public void paintComponent(Graphics g)

{
Graphics2D g2 = (Graphics2D) g;

}
The Java 2D library organizes geometric shapes in an object-oriented fashion. In particu-
lar, there are classes to represent lines, rectangles, and ellipses:

Line2D

Rectangle2D
E1Tipse2D

These classes all implement the Shape interface.

NOTE: The Java 2D library supports more complex shapes—in particular, arcs, quadratic
and cubic curves, and general paths. See Chapter 7 of Volume Il for more information.

To draw a shape, you first create an object of a class that implements theShape interface
and then call the draw method of the Graphics2D class. For example:

Rectangle2D rect = . . .;
g2.draw(rect);

Chapter 7. Graphics Programming

Chapter 7 B Graphics Programming

NOTE: Before the Java 2D library appeared, programmers used methods of the Graphics
class such as drawRectangle to draw shapes. Superficially, the old-style method calls look a

bit simpler. However, by using the Java 2D library, you keep your options open—you can

later enhance your drawings with some of the many tools that the Java 2D library supplies.

Using the Java 2D shape classes introduces some complexity. Unlike the 1.0 draw
methods, which used integer pixel coordinates, the Java 2D shapes use floating-
point coordinates. In many cases, that is a great convenience because it allows you
to specify your shapes in coordinates that are meaningful to you (such as millime-
ters or inches) and then translate to pixels. The Java 2D library uses single-precision
float quantities for many of its internal floating-point calculations. Single precision is
sufficient—after all, the ultimate purpose of the geometric computations is to set
pixels on the screen or printer. As long as any roundoff errors stay within one pixel,
the visual outcome is not affected. Furthermore, float computations are faster on
some platforms, and float values require half the storage of double values.

However, manipulating float values is sometimes inconvenient for the programmer
because the Java programming language is adamant about requiring casts when
converting double values into float values. For example, consider the following statement:
float f = 1.2; // Error
This statement does not compile because the constant1.2 has type double, and the com-
piler is nervous about loss of precision. The remedy is to add an F suffix to the floating-
point constant:
float f = 1.2F; // Ok
Now consider this statement:

Rectangle2D r = . . .

float f = r.getWidth(); // Error
This statement does not compile either, for the same reason. ThegetWidth method returns
a double. This time, the remedy is to provide a cast:

float f = (float) r.getWidth(); // Ok

Because the suffixes and casts are a bit of a pain, the designers of the 2D library decided
to supply two versions of each shape class: one with float coordinates for frugal program-
mers, and one with double coordinates for the lazy ones. (In this book, we fall into the sec-
ond camp and use double coordinates whenever we can.)

The library designers chose a curious, and initially confusing, method for packaging
these choices. Consider the Rectangle2D class. This is an abstract class with two concrete
subclasses, which are also static inner classes:

Rectangle2D.Float

Rectangle2D.Double

Figure 7-8 shows the inheritance diagram.

Chapter 7. Graphics Programming

Working with 2D Shapes m

Rectangle2D

Rectangle2D Rectangle2D
.Float .Double

Figure 7-8 2D rectangle classes

It is best to try to ignore the fact that the two concrete classes are static inner classes—
that is just a gimmick to avoid names such as FloatRectangle2D and DoubleRectangle2D. (For
more information on static inner classes, see Chapter 6.)
When you construct a Rectangle2D.Float object, you supply the coordinates as float num-
bers. For a Rectangle2D.Double object, you supply them as double numbers.

Rectangle2D.Float floatRect = new Rectangle2D.Float(10.0F, 25.0F, 22.5F, 20.0F);

Rectangle2D.Double doubleRect = new Rectangle2D.Double(10.0, 25.0, 22.5, 20.0);
Actually, because both Rectangle2D.Float and Rectangle2D.Double extend the common
Rectangle2D class and the methods in the subclasses simply override methods in the
Rectangle2D superclass, there is no benefit in remembering the exact shape type. You can
simply use Rectangle2D variables to hold the rectangle references.

Rectangle2D floatRect = new Rectangle2D.Float(10.0F, 25.0F, 22.5F, 20.0F);

Rectangle2D doubleRect = new Rectangle2D.Double(10.0, 25.0, 22.5, 20.0);
That is, you only need to use the pesky inner classes when you construct the shape
objects.

The construction parameters denote the top-left corner, width, and height of the
rectangle.

from Rectangle2D, namely, setRect(float x, float y, float h, float w). You lose that method if
you store the Rectangle2D.Float reference in a Rectangle2D variable. But it is not a big loss—
the Rectangle2D class has a setRect method with double parameters.

NOTE: Actually, the Rectangle2D.Float class has one additional method that is not inherited

The Rectangle2D methods use double parameters and return values. For example, the getWidth
method returns a double value, even if the width is stored as a float in a Rectangle2D.Float
object.

Chapter 7. Graphics Programming

Chapter 7 B Graphics Programming

TIP: Simply use the Double shape classes to avoid dealing with float values altogether. How-
ever, if you are constructing thousands of shape objects, then you can consider using the
Float classes to conserve memory.

What we just discussed for the Rectangle2D classes holds for the other shape classes as
well. Furthermore, there is a Point2D class with subclasses Point2D.Float and Point2D.Double.
Here is how to make a point object.

Point2D p = new Point2D.Double(10, 20);

TIP: The Point2D class is very useful—it is more object oriented to work with Point2D objects

m than with separate x- and y- values. Many constructors and methods accept Point2D param-
eters. We suggest that you use Point2D objects when you can—they usually make geometric
computations easier to understand.

The classes Rectangle2D and E11ipse2D both inherit from the common superclassRectangularShape.
Admittedly, ellipses are not rectangular, but they have a bounding rectangle (see Figure 7-9).

Figure 7-9 The bounding rectangle of an ellipse

The RectangularShape class defines over 20 methods that are common to these shapes, among
them such useful methods as getWidth, getHeight, getCenterX, and getCenterY (but sadly, at the
time of this writing, not a getCenter method that returns the center as a Point2D object).
Finally, a couple of legacy classes from Java 1.0 have been fitted into the shape class hier-
archy. The Rectangle and Point classes, which store a rectangle and a point with integer
coordinates, extend the Rectangle2D and Point2D classes.

Figure 7-10 shows the relationships between the shape classes. However, the Double and
Float subclasses are omitted. Legacy classes are marked with a gray fill.

Rectangle2D and E11ipse2D objects are simple to construct. You need to specify
e The x- and y-coordinates of the top-left corner; and
¢ The width and height.
For ellipses, these refer to the bounding rectangle. For example,
E11ipse2D e = new E11ipse2D.Double(150, 200, 100, 50);

constructs an ellipse that is bounded by a rectangle with the top-left corner at (150, 200),
width 100, and height 50.

Chapter 7. Graphics Programming

Working with 2D Shapes m

JENNENEES
Point2D =t = Shape
1
1
1
1
1
1
JEERIiiEENE
Point Line2D ' Rectangular
Shape
m—'-.. ———

m

Figure 7-10 Relationships between the shape classes

However, sometimes you don’t have the top-left corner readily available. It is quite
common to have two diagonal corner points of a rectangle, but perhaps they aren’t the
top-left and bottom-right corners. You can’t simply construct a rectangle as

Rectangle2D rect = new Rectangle2D.Double(px, py, ax - px, qy - py); // Error
If p isn’t the top-left corner, one or both of the coordinate differences will be negative
and the rectangle will come out empty. In that case, first create a blank rectangle and use
the setFrameFromDiagonal method, as follows:

Rectangle2D rect = new Rectangle2D.Double();

rect.setFrameFromDiagonal (px, py, ax, qy);
Or, even better, if you know the corner points as Point2D objects p and g, then

rect.setFrameFromDiagonal(p, q);
When constructing an ellipse, you usually know the center, width, and height, and not
the corner points of the bounding rectangle (which don’t even lie on the ellipse). The
setFrameFromCenter method uses the center point, but it still requires one of the four corner
points. Thus, you will usually end up constructing an ellipse as follows:

Chapter 7. Graphics Programming

m Chapter 7 B Graphics Programming

E1Tipse2D ellipse = new E1Tipse2D.Double(centerX - width / 2, centerY - height / 2, width, height);

To construct a line, you supply the start and end points, either asPoint2D objects or as
pairs of numbers:

Line2D Tine = new Line2D.Double(start, end);
or
Line2D Tine = new Line2D.Double(startX, startY, endX, endY);

The program in Listing 7—4 draws a rectangle, the ellipse that is enclosed in the rectan-
gle, a diagonal of the rectangle, and a circle that has the same center as the rectangle.
Figure 7-11 shows the result.

Bprawrest _________|_|ox|

Figure 7-11 Drawing geometric shapes

Listing 7-4 DIElIEIME!

1. import java.awt.s;
. import java.awt.geom.«;
. import javax.swing.s;

+ @version 1.32 2007-04-14
+ @author Cay Horstmann
. pubTic class DrawTest
10. {
11, public static void main(String[] args)
12. {
13. EventQueue.invokelater(new Runnable()

14. {

15. pubTic void run()

2
3.
4
5.
6.
7
8.
9.

Chapter 7. Graphics Programming

Working with 2D Shapes m

IS T150 Tl 2 B DrawTest.java (continued)

16. {

17. DrawFrame frame = new DrawFrame();
18. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
19. frame.setVisible(true);

20. }

21, b;

22. }

23 }

24,

25. [¥%

26 A frame that contains a panel with drawings
27. %/

28. class DrawFrame extends JFrame

29. {

30. public DrawFrame()

3. |

32. setTitle("DrawTest");

33. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

34.

35. // add panel to frame

36.

37. DrawComponent component = new DrawComponent();
38. add(component);

39. }

4. public static final int DEFAULT_WIDTH = 400;
42. public static final int DEFAULT_HEICHT = 400;

3.}

45, [xx

46. + A component that displays rectangles and ellipses.
a7, %/

4s. class DrawComponent extends JComponent

so. public void paintComponent(Graphics g)

51. {

52. Graphics2D g2 = (Graphics2D) g;
53.

54. // draw a rectangle

55.

56. double TeftX = 100;

57. doubTe topY = 100;

58. double width = 200;

59. doubTe height = 150;

60.

61. Rectangle2D rect = new Rectangle2D.Double(leftX, topY, width, height);
62. g2.draw(rect);

64. // draw the enclosed ellipse

Chapter 7. Graphics Programming

m Chapter 7 B Graphics Programming

RTS8 Tl 2% B DrawTest.java (continued)

65.

66. E11ipse2D ellipse = new ET1ipse2D.Double();

67. ellipse.setFrame(rect);

68. g2.draw(ellipse);

69.

70. // draw a diagonal Tine

71.

72. g2.draw(new Line2D.Double(leftX, topY, TeftX + width, topY + height));
73.

74, // draw a circle with the same center

75.

76. double centerX = rect.getCenterX();

7. double centerY = rect.getCenterY();

78. double radius = 150;

79.

80. E11ipse2D circle = new E11ipse2D.Double();

81. circle.setFrameFromCenter(centerX, centerY, centerX + radius, centerY + radius);
82. g2.draw(circle);

83. }

84. }

m java.awt.geom.RectangularShape 1.2

doubTe getCenterX()

doubTe getCenterY()

doubTe getMinX()

doubTe getMinY()

doubTe getMaxX()

doubTe getMaxY()

returns the center, minimum, or maximum x- or y-value of the enclosing rectangle.
® double getWidth()

® double getHeight()

returns the width or height of the enclosing rectangle.

doubTe getX()

doubTe getY()

returns the x- or y-coordinate of the top-left corner of the enclosing rectangle.

java.awt.geom.Rectangle2D.Double 1.2

e Rectangle2D.Double(double x, double y, double w, double h)
constructs a rectangle with the given top-left corner, width, and height.

java.awt.geom.Rectangle2D.Float 1.2

e Rectangle2D.Float(float x, float y, float w, float h)
constructs a rectangle with the given top-left corner, width, and height.

Chapter 7. Graphics Programming

Using Color 307

java.awt.geom.E1Tipse2D.Double 1.2

e ETTipse2D.Double(double x, double y, double w, double h)
constructs an ellipse whose bounding rectangle has the given top-left corner,
width, and height.

java.awt.geom.Point2D.Double 1.2

e Point2D.Double(double x, double y)
constructs a point with the given coordinates.

APII java.awt.geom.Line2D.Double 1.2

e Line2D.Double(Point2D start, Point2D end)
e |ine2D.Double(double startX, double startY, double endX, double endY)
constructs a line with the given start and end points.

Using Color
The setPaint method of the Graphics2D class lets you select a color that is used for all subse-
quent drawing operations on the graphics context. For example:

g2.setPaint(Color.RED);

g2.drawString("Warning!", 100, 100);
You can fill the interiors of closed shapes (such as rectangles or ellipses) with a color.
Simply call fi11 instead of draw:

Rectangle2D rect = . . .;

g2.setPaint(Color.RED);

g2.fil1(rect); // fills rect with red color
To draw in multiple colors, you select a color, draw or fill, then select another color, and
draw or fill again.
You define colors with the Color class. The java.awt.Color class offers predefined constants
for the following 13 standard colors:

BLACK, BLUE, CYAN, DARK_GRAY, GRAY, GREEN, LIGHT_GRAY, MAGENTA, ORANGE, PINK, RED, WHITE, YELLOW

NOTE: Before Java SE 1.4, color constant names were lowercase, such as Color.red. This is

odd because the standard coding convention is to write constants in uppercase. You can
now write the standard color names in uppercase or, for backward compatibility, in lower-
case.

You can specify a custom color by creating aColor object by its red, green, and blue com-
ponents. Using a scale of 0-255 (that is, one byte) for the redness, blueness, and green-
ness, call the Color constructor like this:

Color(int redness, int greenness, int blueness)
Here is an example of setting a custom color:

g2.setPaint(new Color(0, 128, 128)); // a dull blue-green
g2.drawString("Welcome!", 75, 125);

Chapter 7. Graphics Programming

Chapter 7 B Graphics Programming

NOTE: In addition to solid colors, you can select more complex “paint” settings, such as
varying hues or images. See the Advanced AWT chapter in Volume Il for more details. If you
use a Graphics object instead of a Graphics2D object, you need to use the setColor method to
set colors.

To set the background color, you use the setBackground method of the Component class, an
ancestor of JComponent.

MyComponent p = new MyComponent();

p.setBackground(Color.PINK);
There is also a setForeground method. It specifies the default color that is used for drawing
on the component.

TIP: The brighter() and darker() methods of the Color class produce, as their names sug-

m gest, either brighter or darker versions of the current color. Using the brighter method is also
a good way to highlight an item. Actually, brighter() is just a little bit brighter. To make a
color really stand out, apply it three times: c.brighter().brighter().brighter().

Java gives you predefined names for many more colors in itsSystemColor class. The con-
stants in this class encapsulate the colors used for various elements of the user’s system.
For example,

p.setBackground(SystemColor.window)

sets the background color of the component to the default used by all windows on the
user’s desktop. (The background is filled in whenever the window is repainted.) Using
the colors in the SystemColor class is particularly useful when you want to draw user inter-
face elements so that the colors match those already found on the user’s desktop. Table
7-1 lists the system color names and their meanings.

Table 7-1 System Colors

Name Purpose

desktop Background color of desktop
activeCaption Background color for captions
activeCaptionText Text color for captions
activeCaptionBorder Border color for caption text
inactiveCaption Background color for inactive captions
inactiveCaptionText Text color for inactive captions
inactiveCaptionBorder Border color for inactive captions
window Background for windows

windowBorder Color of window border frame

Chapter 7. Graphics Programming

Using Color m

Table 7-1 System Colors (continued)

Name Purpose

windowText Text color inside windows

menu Background for menus

menuText Text color for menus

text Background color for text

textText Text color for text

textInactiveText Text color for inactive controls
textHighlight Background color for highlighted text
textHighlightText Text color for highlighted text
control Background color for controls
controlText Text color for controls
controlLtHighTight Light highlight color for controls
controlHighlight Highlight color for controls
controlShadow Shadow color for controls
controlDkShadow Dark shadow color for controls
scrollbar Background color for scrollbars
info Background color for spot-help text
infoText Text color for spot-help text

m java.awt.Color 1.0

e Color(int r, int g, int b)
creates a color object.

Parameters: r The red value (0-255)
g The green value (0-255)
b The blue value (0-255)

m java.awt.Graphics 1.0

e (olor getColor()

e void setColor(Color c)
gets or sets the current color. All subsequent graphics operations will use the new
color.

Parameters: c The new color

Chapter 7. Graphics Programming

m Chapter 7 B Graphics Programming

m java.awt.Graphics2D 1.2

e Paint getPaint()

e void setPaint(Paint p)
gets or sets the paint property of this graphics context. TheColor class implements
the Paint interface. Therefore, you can use this method to set the paint attribute to a
solid color.

e void fill(Shape s)
fills the shape with the current paint.

m java.awt.Component 1.0

e (olor getBackground()
e void setBackground(Color c)
gets or sets the background color.

Parameters: c The new background color

e (olor getForeground()
® void setForeground(Color c)
gets or sets the foreground color.

Parameters: ¢ The new foreground color

Using Special Fonts for Text

The “Not a Hello, World” program at the beginning of this chapter displayed a string in
the default font. Often, you want to show text in a different font. You specify a font by its
font face name. A font face name is composed of a font family name, such as “Helvetica,”
and an optional suffix such as “Bold.” For example, the font faces “Helvetica” and
“Helvetica Bold” are both considered to be part of the family named “Helvetica.”

To find out which fonts are available on a particular computer, call thegetAvailable-
FontFamiTyNames method of the GraphicsEnvironment class. The method returns an array of
strings that contains the names of all available fonts. To obtain an instance of the
GraphicsEnvironment class that describes the graphics environment of the user’s system,
use the static getLocalGraphicsEnvironment method. Thus, the following program prints
the names of all fonts on your system:

import java.awt.s;

public class ListFonts

{
public static void main(String[] args)
{

String[] fontNames = GraphicsEnvironment
.getLocalGraphicsEnvironment()
.getAvailableFontFamiTyNames();

for (String fontName : fontNames)
System.out.printIn(fontName);

Chapter 7. Graphics Programming

Using Special Fonts for Text m

On one system, the list starts out like this:
Abadi MT Condensed Light
Arial
Arial Black
Arial Narrow
Arioso
Baskerville
Binner Gothic

and goes on for another 70 fonts or so.

Font face names can be trademarked, and font designs can be copyrighted in some juris-
dictions. Thus, the distribution of fonts often involves royalty payments to a font
foundry. Of course, just as there are inexpensive imitations of famous perfumes, there
are lookalikes for name-brand fonts. For example, the Helvetica imitation that is
shipped with Windows is called Arial.
To establish a common baseline, the AWT defines five logical font names:

SansSerif

Serif

Monospaced

Dialog

DialogInput
These names are always mapped to fonts that actually exist on the client machine. For
example, on a Windows system, SansSerif is mapped to Arial.

In addition, the Sun JDK always includes three font families named “Lucida Sans,”
“Lucida Bright,” and “Lucida Sans Typewriter.”

To draw characters in a font, you must first create an object of the classFont. You specify
the font face name, the font style, and the point size. Here is an example of how you con-
struct a Font object:

Font sansboldl4 = new Font("SansSerif", Font.BOLD, 14);

The third argument is the point size. Points are commonly used in typography to indi-
cate the size of a font. There are 72 points per inch.

You can use a logical font name in the place of a font face name in theFont constructor.
You specify the style (plain, bold, italic, or bold italic) by setting the second Font con-
structor argument to one of the following values:

Font. PLAIN

Font.BOLD

Font.ITALIC

Font.BOLD + Font.ITALIC

NOTE: The mapping from logical to physical font names is defined in the fontconfig.proper-
u ties file in the jre/1ib subdirectory of the Java installation. See http://java.sun.com/javase/6/
docs/technotes/guides/int1/fontconfig.html for information on this file.

Chapter 7. Graphics Programming

Chapter 7 B Graphics Programming

You can read font files in TrueType or PostScript Type 1 formats. You need an input
stream for the font—typically from a file or URL. (See Chapter 1 of Volume II for more
information on streams.) Then call the static Font.createFont method:

URL url = new URL("http://www.fonts.com/Wingbats.ttf");

InputStream in = url.openStream();

Font f1 = Font.createFont(Font.TRUETYPE_FONT, in);
The font is plain with a font size of 1 point. Use the deriveFont method to get a font of the
desired size:

Font f = fl.deriveFont(14.0F);

CAUTION: There are two overloaded versions of the deriveFont method. One of them (with a
n float parameter) sets the font size, the other (with an int parameter) sets the font style.

Thus, f1.deriveFont(14) sets the style and not the size! (The result is an italic font because it

happens that the binary representation of 14 sets the ITALIC bit but not the BOLD bit.)

The Java fonts contain the usual ASCII characters as well as symbols. For example, if
you print the character '\u2297' in the Dialog font, then you get a ® character. Only those
symbols that are defined in the Unicode character set are available.

Here’s the code that displays the string “Hello, World!” in the standard sans serif font
on your system, using 14-point bold type:

Font sansholdl4 = new Font("SansSerif", Font.BOLD, 14);

g2.setFont(sansholdl4);

String message = "Hello, World!";

g2.drawString(message, 75, 100);
Next, let’s center the string in its component rather than drawing it at an arbitrary posi-
tion. We need to know the width and height of the string in pixels. These dimensions
depend on three factors:

* The font used (in our case, sans serif, bold, 14 point);
e The string (in our case, “Hello, World!”); and
e The device on which the font is drawn (in our case, the user’s screen).

To obtain an object that represents the font characteristics of the screen device, you call
the getFontRenderContext method of the Graphics2D class. It returns an object of the Font-
RenderContext class. You simply pass that object to the getStringBounds method of the Font
class:

FontRenderContext context = g2.getFontRenderContext();

Rectangle2D hounds = f.getStringBounds(message, context);

The getStringBounds method returns a rectangle that encloses the string.

To interpret the dimensions of that rectangle, you should know some basic typesetting
terms (see Figure 7-12). The baseline is the imaginary line where, for example, the bottom
of a character like “e” rests. The ascent is the distance from the baseline to the top of an
ascender, which is the upper part of a letter like “b” or “k,” or an uppercase character. The
descent is the distance from the baseline to a descender, which is the lower portion of a letter
like “p” or “g.”

Chapter 7. Graphics Programming

Using Special Fonts for Text m

ebkpgil-
ine — 1>
baseline A - ~descent

height \leading

baseline —"—»

Figure 7-12 Typesetting terms illustrated

Leading is the space between the descent of one line and the ascent of the next line. (The
term has its origin from the strips of lead that typesetters used to separate lines.) The
height of a font is the distance between successive baselines, which is the same as
descent + leading + ascent.
The width of the rectangle that the getStringBounds method returns is the horizontal
extent of the string. The height of the rectangle is the sum of ascent, descent, and
leading. The rectangle has its origin at the baseline of the string. The top y-coordi-
nate of the rectangle is negative. Thus, you can obtain string width, height, and
ascent as follows:

doubTe stringWidth = bounds.getWidth();

double stringHeight = bounds.getHeight();

doubTe ascent = -bounds.getY();
If you need to know the descent or leading, you need to use thegetLineMetrics method of
the Font class. That method returns an object of the LineMetrics class, which has methods
to obtain the descent and leading:

LineMetrics metrics = f.getLineMetrics(message, context);

float descent = metrics.getDescent();

float leading = metrics.getLeading();
The following code uses all this information to center a string in its surrounding
component:

FontRenderContext context = g2.getFontRenderContext();
Rectangle2D bounds = f.getStringBounds(message, context);

// (x,y) = top left corner of text
doubTe x = (getWidth() - bounds.getWidth()) /
double y = (getHeight() - bounds.getHeight())

2
/2

// add ascent to y to reach the baseline

double ascent = -bounds.getY();

double baseY =y + ascent;

g2.drawString(message, (int) x, (int) baseY);
To understand the centering, consider that getWidth() returns the width of the compo-
nent. A portion of that width, namely, bounds.getWidth(), is occupied by the message
string. The remainder should be equally distributed on both sides. Therefore, the blank
space on each side is half the difference. The same reasoning applies to the height.

Chapter 7. Graphics Programming

m Chapter 7 B Graphics Programming

NOTE: When you need to compute layout dimensions outside the paintComponent method,
you can’t obtain the font render context from the Graphics2D object. Instead, call the getFont-
Metrics method of the JComponent class and then call getFontRenderContext.

FontRenderContext context = getFontMetrics(f).getFontRenderContext();

To show that the positioning is accurate, the sample program also draws the baseline
and the bounding rectangle. Figure 7-13 shows the screen display; Listing 7-5 is the
program listing.

Brontest _______|_lox

Hello, World!

Figure 7-13 Drawing the baseline and string bounds

Listing 7-5 RIIAESMEVZ!

1. import java.awt.x;

2. import java.awt.font.x;

3. import java.awt.geom.x;

4. import javax.swing.x;

5.

6. [xx

7. % @version 1.33 2007-04-14
8. + @author Cay Horstmann

9. '«»‘/

10. pubTic class FontTest

1. {

12. public static void main(String[] args)

13. {

14. EventQueue.invokeLater(new Runnable()

15. {

16. pubTic void run()

17. {

18. FontFrame frame = new FontFrame();
19. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
20. frame.setVisible(true);

21. }

22, b

23 }

Chapter 7. Graphics Programming

Using Special Fonts for Text m

IS T150 Tl 22l FontTest.java (continued)

26. [*%

27. « A frame with a text message component

28 #/

29. Class FontFrame extends JFrame

30. {

31. public FontFrame()

32. {

33. setTitle("FontTest");

34. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
35.

36. // add component to frame

37.

38. FontComponent component = new FontComponent();
39. add(component);

40. }

2. public static final int DEFAULT_WIDTH = 300;
43 public static final int DEFAULT_HEIGHT = 200;

4.}

45.

46. [xx

47. + A component that shows a centered message in a hox.
48 %/

49. Class FontComponent extends JComponent

s50. {

st public void paintComponent(Graphics g)

52. {

53. Graphics2D g2 = (Graphics2D) g;

54.

55. String message = "Hello, World!";

56.

57. Font f = new Font("Serif", Font.BOLD, 36);

58. g2.setFont(f);

59.

60. // measure the size of the message

61.

62. FontRenderContext context = g2.getFontRenderContext();
63. Rectangle2D bounds = f.getStringBounds(message, context);
64.

65. // set (x,y) = top-left corner of text

66.

67. doubTe x = (getWidth() - bounds.getWidth()) / 2;
68. double y = (getHeight() - bounds.getHeight()) / 2;
69.

70. // add ascent to y to reach the baseline

71.

72. doubTe ascent = -bounds.getY();

73. double baseY =y + ascent;
74.

Chapter 7. Graphics Programming

m Chapter 7 B Graphics Programming

JBTT50 Tl 22l FontTest.java (continued)

75.

76.

77.

78.

79.
80.

81.

82.
83.

84.
85.
86.

87.

88.
89.

9. }

// draw the message

g2.drawString(message, (int) x, (int) baseY);

g2.setPaint(Color.LIGHT_GRAY);

// draw the baseline

g2.draw(new Line2D.Double(x, baseY, x + bounds.getWidth(), baseY));

// draw the enclosing rectangle

Rectangle2D rect = new Rectangle2D.Double(x, y, bounds.getWidth(), bounds.getHeight());

g2.draw(rect);
}

java.awt.Font 1.0

Font(String name, int style, int size)
creates a new font object.

Parameters: name The font name. This is either a font face name (such
as “Helvetica Bold”) or a logical font name (such as
“Serif”, “SansSerif”)

style The style (Font.PLAIN, Font.BOLD, Font.ITALIC, or Font.BOLD +
Font. ITALIC)

size The point size (for example, 12)

String getFontName()

gets the font face name (such as “Helvetica Bold”).

String getFamily()

gets the font family name (such as “Helvetica”).

String getName()

gets the logical name (such as “SansSerif”) if the font was created with a logical
font name; otherwise, gets the font face name.

Rectangle2D getStringBounds(String s, FontRenderContext context) 1.2

returns a rectangle that encloses the string. The origin of the rectangle falls on the
baseline. The top y-coordinate of the rectangle equals the negative of the ascent.
The height of the rectangle equals the sum of ascent, descent, and leading. The
width equals the string width.

LineMetrics getLineMetrics(String s, FontRenderContext context) 1.2

returns a line metrics object to determine the extent of the string.

Chapter 7. Graphics Programming

Using Special Fonts for Text

]

Font deriveFont(int style) 1.2

Font deriveFont(float size) 1.2

Font deriveFont(int style, float size) 1.2

returns a new font that equals this font, except that it has the given size and style.

java.awt.font.LineMetrics 1.2

float getAscent()

gets the font ascent—the distance from the baseline to the tops of uppercase
characters.

float getDescent()

gets the font descent—the distance from the baseline to the bottoms of descenders.
float getLeading()

gets the font leading—the space between the bottom of one line of text and the top
of the next line.

float getHeight()

gets the total height of the font—the distance between the two baselines of text
(descent + leading + ascent).

java.awt.Graphics 1.0

Font getFont()

void setFont(Font font)

gets or sets the current font. That font will be used for subsequent text-drawing
operations.

Parameters: font A font

void drawString(String str, int x, int y)
draws a string in the current font and color.

Parameters: str The string to be drawn
X The x-coordinate of the start of the string
y The y-coordinate of the baseline of the string

java.awt.Graphics2D 1.2

FontRenderContext getFontRenderContext()
gets a font render context that specifies font characteristics in this graphics
context.
void drawString(String str, float x, float y)
draws a string in the current font and color.
Parameters: str The string to be drawn
X The x-coordinate of the start of the string
y The y-coordinate of the baseline of the string

317

Chapter 7. Graphics Programming

Chapter 7 B Graphics Programming

m javax.swing.JComponent 1.2

e FontMetrics getFontMetrics(Font f) 5.0
gets the font metrics for the given font. The FontMetrics class is a precursor to the
LineMetrics class.

m java.awt.FontMetrics 1.0

e FontRenderContext getFontRenderContext() 1.2
gets a font render context for the font.

Displaying Images

You have already seen how to build up simple drawings by painting lines and shapes.
Complex images, such as photographs, are usually generated externally, for example,
with a scanner or special image-manipulation software. (As you will see in Volume II, it
is also possible to produce an image, pixel by pixel, and store the result in an array. This
procedure is common for fractal images, for example.)

Once images are stored in local files or someplace on the Internet, you can read them
into a Java application and display them onGraphics objects. As of Java SE 1.4, reading an
image is very simple. If the image is stored in a local file, call

String filename = "...";
Image image = ImageI0.read(new File(filename));
Otherwise, you can supply a URL:

String urlname = "...";
Image image = ImageIO.read(new URL(urlname));
The read method throws an I0Exception if the image is not available. We discuss the gen-
eral topic of exception handling in Chapter 11. For now, our sample program just
catches that exception and prints a stack trace if it occurs.

Now the variable image contains a reference to an object that encapsulates the image data.
You can display the image with the drawImage method of the Graphics class.
public void paintComponent(Graphics g)

{

g.drawImage(image, x, y, null);

Listing 7-6 takes this a little bit further and tiles the window with the graphics image.
The result looks like the screen shown in Figure 7-14. We do the tiling in thepaintCompo-
nent method. We first draw one copy of the image in the top-left corner and then use the
copyArea call to copy it into the entire window:
for (int i =0; i « imageWidth <= getWidth(); i++)
for (int j = 0; j « imageHeight <= getHeight(); j++)
if(1+3>0)
g.copyArea(0, 0, imageWidth, imageHeight, i « imageWidth, j « imageHeight);
Listing 7-6 shows the full source code of the image display program.

Chapter 7. Graphics Programming

Displaying Images m

| =
@009000000000000000000
9000000000000000000000
00000000000 20000000
90000000000000000000000

IBET L T2 3 TmageTest. java

1. import java.awt.s;

2. import java.io.s;

3. import javax.imageio.x;
4. import javax.swing.x;

5.

6. [k

7.+ @version 1.33 2007-04-14

8.+ @author Cay Horstmann

9 x/

10. pubTic class ImageTest

1. {

12. public static void main(String[] args)
13. {

14. EventQueue.invokelLater(new Runnable()
15. {

16. pubTic void run()

17. {

18. ImageFrame frame = new ImageFrame();
19. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
20. frame.setVisible(true);

21 }

22. B

23. }

24. }

25.

2. [x%

27. A frame with an image component

28 %/

20. Class ImageFrame extends JFrame

30. {

31. public ImageFrame()

32. {

33. setTitle("ImageTest");

34. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

Chapter 7. Graphics Programming

m Chapter 7 B Graphics Programming

) BTTE 1T 20 TmageTest. java (continued)

36. // add component to frame

37.

38. ImageComponent component = new ImageComponent();
39. add(component);

40. }

41.
2. public static final int DEFAULT_WIDTH = 300;
43, public static final int DEFAULT_HEIGHT = 200;

4. }

45.

6. [ux

47. % A component that displays a tiled image
4 #/

49. class ImageComponent extends JComponent
50. {

st public ImageComponent()

52. {

53. // acquire the image

54. try

55. {

56. image = ImageI0.read(new File("blue-ball.gif"));
57. }

58. catch (IOException e)

59. {

60. e.printStackTrace();

61. }

62. }

64. public void paintComponent(Graphics g)

65. {

66. if (image == null) return;

67.

68. int imageWidth = image.getWidth(this);

69. int imageHeight = image.getHeight(this);

70.

71. // draw the image in the top-left corner

72.

73. g.drawImage(image, 0, 0, null);

74. // tile the image across the component

75.

76. for (int i =0; i « imageWidth <= getWidth(); i++)

7. for (int j = 0; j » imageHeight <= getHeight(); j++)
78. if (i + 3 > 0) g.copyArea(0, 0, imageWidth, imageHeight, i « imageWidth, j
79. + imageHeight);

80. }

s2. private Image image;

Chapter 7. Graphics Programming

Displaying Images m

m javax.imageio.ImageI0 1.4

e static BufferedImage read(File f)
e static BufferedImage read(URL u)
reads an image from the given file or URL.

java.awt.Graphics 1.0

e hboolean drawImage(Image img, int x, int y, ImageObserver observer)
draws an unscaled image. Note: This call may return before the image is drawn.

Parameters: img The image to be drawn
X The x-coordinate of the top-left corner
y The y-coordinate of the top-left corner
observer The object to notify of the progress of the rendering

process (may be null)

e hboolean drawImage(Image img, int x, int y, int width, int height, ImageObserver observer)
draws a scaled image. The system scales the image to fit into a region with the
given width and height. Note: This call may return before the image is drawn.

Parameters: ng The image to be drawn
X The x-coordinate of the top-left corner
y The y-coordinate of the top-left corner
width The desired width of image
height The desired height of image
observer The object to notify of the progress of the rendering

process (may be null)

e void copyArea(int x, int y, int width, int height, int dx, int dy)
copies an area of the screen.

Parameters: X The x-coordinate of the top-left corner of the source
area
y The y-coordinate of the top-left corner of the source
area
width The width of the source area
height The height of the source area
dx The horizontal distance from the source area to the

target area

dy The vertical distance from the source area to the
target area

Chapter 7. Graphics Programming

m Chapter 7 B Graphics Programming

This concludes our introduction to Java graphics programming. For more advanced
techniques, you can turn to the discussion about 2D graphics and image manipulation
in Volume II. In the next chapter, you will learn how your programs react to user input.

Chapter 8. Event Handling

EVENT HANDLING

BASICS OF EVENT HANDLING
ACTIONS

MOUSE EVENTS

THE AWT EVENT HIERARCHY

4 4 < <«

323

Chapter 8. Event Handling

Chapter 8 B Event Handling

E vent handling is of fundamental importance to programs with a graphical user
interface. To implement user interfaces, you must master the way in which Java handles
events. This chapter explains how the Java AWT event model works. You will see how
to capture events from user interface components and input devices. We also show you
how to work with actions, a more structured approach for processing action events.

Basics of Event Handling

Any operating environment that supports GUIs constantly monitors events such as
keystrokes or mouse clicks. The operating environment reports these events to the pro-
grams that are running. Each program then decides what, if anything, to do in response
to these events. In languages like Visual Basic, the correspondence between events and
code is obvious. One writes code for each specific event of interest and places the code
in what is usually called an event procedure. For example, a Visual Basic button named
“HelpButton” would have a HelpButton_(lick event procedure associated with it. The
code in this procedure executes whenever that button is clicked. Each Visual Basic GUI
component responds to a fixed set of events, and it is impossible to change the events
to which a Visual Basic component responds.

On the other hand, if you use a language like raw C to do event-driven programming,
you need to write the code that constantly checks the event queue for what the operat-
ing environment is reporting. (You usually do this by encasing your code in a loop with
a massive switch statement!) This technique is obviously rather ugly, and, in any case, it
is much more difficult to code. The advantage is that the events you can respond to are
not as limited as in languages, like Visual Basic, that go to great lengths to hide the event
queue from the programmer.

The Java programming environment takes an approach somewhat between the Visual
Basic approach and the raw C approach in terms of power and, therefore, in resulting
complexity. Within the limits of the events that the AWT knows about, you completely
control how events are transmitted from the event sources (such as buttons or scrollbars)
to event listeners. You can designate any object to be an event listener—in practice, you
pick an object that can conveniently carry out the desired response to the event. This
event delegation model gives you much more flexibility than is possible with Visual Basic,
in which the listener is predetermined.

Event sources have methods that allow you to register event listeners with them. When
an event happens to the source, the source sends a notification of that event to all the lis-
tener objects that were registered for that event.

As one would expect in an object-oriented language like Java, the information about the

event is encapsulated in an event object. In Java, all event objects ultimately derive from
the class java.util.EventObject. Of course, there are subclasses for each event type, such as

ActionEvent and WindowEvent.

Different event sources can produce different kinds of events. For example, a button can

send ActionEvent objects, whereas a window can send WindowEvent objects.

To sum up, here’s an overview of how event handling in the AWT works:

* A listener object is an instance of a class that implements a special interface called
(naturally enough) a listener interface.

* An event source is an object that can register listener objects and send them event
objects.

Chapter 8. Event Handling

Basics of Event Handling m

e The event source sends out event objects to all registered listeners when that event
occurs.

e The listener objects will then use the information in the event object to determine
their reaction to the event.

Figure 8-1 shows the relationship between the event handling classes and interfaces.

1 *
Event T Event

source <<set of one of MLIg2- listener

:\iiFFFIpI»;::-q TR

v

Listener
interface

Figure 8-1 Relationship between event sources and listeners

Here is an example for specifying a listener:

ActionListener listener = . . .;
JButton button = new JButton("0k");
button.addActionListener(Tistener);

Now the Tistener object is notified whenever an “action event” occurs in the button. For
buttons, as you might expect, an action event is a button click.
To implement the ActionListener interface, the listener class must have a method called
actionPerformed that receives an ActionEvent object as a parameter.

class MyListener implements ActionListener

{

public void actionPerformed(ActionEvent event)

{

// reaction to button click goes here

}
}

Whenever the user clicks the button, the JButton object creates an ActionEvent object and
calls Tistener.actionPerformed(event), passing that event object. An event source such as a
button can have multiple listeners. In that case, the button calls the actionPerformed meth-
ods of all listeners whenever the user clicks the button.

Figure 8-2 shows the interaction between the event source, event listener, and event
object.

Chapter 8. Event Handling

m Chapter 8 B Event Handling

new

addActionListener.
———————

actionPerformed

Figure 8-2 Event notification

Example: Handling a Button Click

As a way of getting comfortable with the event delegation model, let’s work through all
details needed for the simple example of responding to a button click. For this example,
we will show a panel populated with three buttons. Three listener objects are added as

action listeners to the buttons.

With this scenario, each time a user clicks on any of the buttons on the panel, the associ-
ated listener object then receives anActionEvent that indicates a button click. In our sam-
ple program, the listener object will then change the background color of the panel.

Before we can show you the program that listens to button clicks, we first need to
explain how to create buttons and how to add them to a panel. (For more on GUI ele-
ments, see Chapter 9.)

You create a button by specifying a label string, an icon, or both in the button construc-
tor. Here are two examples:

Chapter 8. Event Handling

Basics of Event Handling 327

JButton yellowButton = new JButton("Yellow");
JButton blueButton = new JButton(new ImageIcon("blue-ball.gif"));

Call the add method to add the buttons to a panel:

JButton yellowButton = new JButton("Yellow");
JButton blueButton = new JButton("Blue");
JButton redButton = new JButton("Red");

buttonPanel.add(yellowButton);
buttonPanel.add(bTueButton);
buttonPanel.add(redButton);

Figure 8-3 shows the result.

BButtonTest |_|o|x

| Yellow || Blue || Red ‘

Figure 8-3 A panel filled with buttons

Next, we need to add code that listens to these buttons. This requires classes that imple-
ment the ActionListener interface, which, as we just mentioned, has one method:actionPer-
formed, whose signature looks like this:

public void actionPerformed(ActionEvent event)

NOTE: The ActionListener interface we used in the button example is not restricted to button
clicks. It is used in many separate situations:

® When an item is selected from a list box with a double click

* When a menu item is selected

® When the ENTER key is clicked in a text field

e When a certain amount of time has elapsed for a Timer component

You will see more details in this chapter and the next.

The way to use the ActionListener interface is the same in all situations: the actionPerformed
method (which is the only method in ActionListener) takes an object of type ActionEvent as a
parameter. This event object gives you information about the event that happened.

When a button is clicked, we want the background color of the panel to change to a par-
ticular color. We store the desired color in our listener class.

class ColorAction implements ActionListener

pubTic ColorAction(Color c)
{

Chapter 8. Event Handling

m Chapter 8 B Event Handling

backgroundColor = c;

}

public void actionPerformed(ActionEvent event)

{

// set panel background color

}

private Color backgroundColor;
}
We then construct one object for each color and set the objects as the button listeners.
ColorAction yellowAction = new CoTorAction(CoTor.YELLOW);

ColorAction blueAction = new ColorAction(Color.BLUE);
CoTorAction redAction = new ColorAction(Color.RED);

yellowButton.addActionListener(yellowAction);

blueButton.addActionListener(blueAction);

redButton.addActionListener(redAction);
For example, if a user clicks on the button marked “Yellow,” then theactionPerformed
method of the yellowAction object is called. Its backgroundColor instance field is set to
Color.YELLOW, and it can now proceed to set the panel’s background color.
Just one issue remains. The ColorAction object doesn’t have access to the buttonPanel vari-
able. You can solve this problem in two ways. You can store the panel in the ColorAction
object and set it in the ColorAction constructor. Or, more conveniently, you can makeColor-
Action into an inner class of the ButtonFrame class. Its methods can then access the outer
panel automatically. (For more information on inner classes, see Chapter 6.)

We follow the latter approach. Here is how you place the ColorAction class inside the
ButtonFrarme class:
class ButtonPanel extends JFrame

{

private class ColorAction implements ActionListener

{

public void actionPerformed(ActionEvent event)

{

buttonPanel.setBackground(backgroundColor);

}

private Color backgroundColor;

private JPanel buttonPanel;
}
Look closely at the actionPerformed method. The ColorAction class doesn’t have a buttonPanel
field. But the outer ButtonFrame class does.

Chapter 8. Event Handling

Basics of Event Handling m

This situation is very common. Event listener objects usually need to carry out some
action that affects other objects. You can often strategically place the listener class inside
the class whose state the listener should modify.

Listing 8-1 contains the complete program. Whenever you click one of the buttons, the
appropriate action listener changes the background color of the panel.

IS LTS T2 B ButtonTest. java

1. import java.awt.s;
2. import java.awt.event.x;
3. import javax.swing.x;

5. [wx

6. * @version 1.33 2007-06-12

7.+ @author Cay Horstmann

8/

o. pubTic class ButtonTest

10. {

1. public static void main(String[] args)

12, {

13. EventQueue.invokelLater(new Runnable()

14. {

15. public void run()

16. {

17. ButtonFrame frame = new ButtonFrame();
18. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
19. frame.setVisible(true);

20. }

21. b;

22, }

23 }

24.

25, [

2. + A frame with a button panel

27. %/

28. Class ButtonFrame extends JFrame

20. {

30. pubTic ButtonFrame()

3t. {

32. setTitle("ButtonTest");

33. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
34.

35. // create buttons

36. JButton yellowButton = new JButton("Yellow");
37. JButton blueButton = new JButton("Blue");
38. JButton redButton = new JButton("Red");

39.
40. buttonPanel = new JPanel();
41.

Chapter 8. Event Handling

m Chapter 8 B Event Handling

B T150 T 320 Bl ButtonTest.java (continued)

42.
43,
44.
45.
46.
47.
48.
49.
50.
51,
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
7.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83. }

// add buttons to panel
buttonPanel.add(yellowButton);
buttonPanel.add(bTueButton);
buttonPanel.add(redButton);

// add panel to frame
add(buttonPanel);

// create button actions

ColorAction yellowAction = new ColorAction(Color.YELLOW);
CoTorAction hlueAction = new ColorAction(Color.BLUE);
CoTorAction redAction = new ColorAction(Color.RED);

// associate actions with buttons
yellowButton.addActionListener(yellowAction);
blueButton.addActionListener(blueAction);
redButton.addActionListener(redAction);

}
/

An action Tistener that sets the panel's background color

/

private class ColorAction implements ActionlListener

{

public ColorAction(Color c)

% 3F

backgroundCoTor = c;

}

public void actionPerformed(ActionEvent event)

{

buttonPanel.setBackground(backgroundColor);

}

private Color backgroundColor

}
private JPanel buttonPanel;

public static final int DEFAULT_WIDTH = 300;
public static final int DEFAULT_HEICHT = 200;

Chapter 8. Event Handling

Basics of Event Handling m

m javax.swing.JButton 1.2

e JButton(String label)

e JButton(Icon icon)

e JButton(String Tabel, Icon icon)
constructs a button. The label string can be plain text or, starting with Java SE 1.3,
HTML,; for example, "<html>0k</htm1>".

java.awt.Container 1.0

e (Component add(Component c)
adds the component ¢ to this container.

APII javax.swing.ImageIcon 1.2

e ImageIcon(String filename)
constructs an icon whose image is stored in a file.

Becoming Comfortable with Inner Classes

Some people dislike inner classes because they feel that a proliferation of classes and
objects makes their programs slower. Let’s have a look at that claim. You don’t need a
new class for every user interface component. In our example, all three buttons share
the same listener class. Of course, each of them has a separate listener object. But these
objects aren’t large. They each contain a color value and a reference to the panel. And
the traditional solution, with if . . . else statements, also references the same color
objects that the action listeners store, just as local variables and not as instance fields.

Here is a good example of how anonymous inner classes can actually simplify your
code. If you look at the code of Listing 8-1, you will note that each button requires the
same treatment:

1. Construct the button with a label string.

2. Add the button to the panel.

3. Construct an action listener with the appropriate color.

4. Add that action listener.

Let’s implement a helper method to simplify these tasks:
public void makeButton(String name, Color backgroundColor)

{
JButton button = new JButton(name);
buttonPanel.add(button);
ColorAction action = new ColorAction(backgroundColor);
button.addActionListener(action);

}
Then we simply call
makeButton("yellow", Color.YELLOW);

makeButton("blue", Color.BLUE);
makeButton("red", Color.RED);

Chapter 8. Event Handling

m Chapter 8 B Event Handling

Now you can make a further simplification. Note that theColorAction class is only needed
once: in the makeButton method. Therefore, you can make it into an anonymous class:

public void makeButton(String name, final Color backgroundColor)

{

JButton button = new JButton(name);
buttonPanel.add(button);
button.addActionListener(new ActionListener()

public void actionPerformed(ActionEvent event)

{

}
i

buttonPanel.setBackground(backgroundColor);

}
The action listener code has become quite a bit simpler. TheactionPerformed method sim-
ply refers to the parameter variable backgroundColor. (As with all local variables that are
accessed in the inner class, the parameter needs to be declared as final.)
No explicit constructor is needed. As you saw in Chapter 6, the inner class mechanism
automatically generates a constructor that stores all local final variables that are used in
one of the methods of the inner class.

TIP: Anonymous inner classes can look confusing. But you can get used to deciphering
them if you train your eyes to glaze over the routine code, like this:

button.addAction

buttonPanel.setBackground(backgroundColor);

That is, the button action sets the background color. As long as the event handler consists of
just a few statements, we think this can be quite readable, particularly if you don’t worry
about the inner class mechanics.

NOTE: You are completely free to designate any object of a class that implements the

ActionListener interface as a button listener. We prefer to use objects of a new class that was
expressly created for carrying out the desired button actions. However, some programmers
are not comfortable with inner classes and choose a different strategy. They make the con-
tainer of the event sources implement the ActionListener interface. Then, the container sets
itself as the listener, like this:

yellowButton.addActionListener(this);
bTueButton.addActionListener(this);
redButton.addActionListener(this);

Now the three buttons no longer have individual listeners. They share a single
listener object, namely, the button frame. Therefore, the actionPerformed method must figure
out which button was clicked.

Chapter 8. Event Handling

Basics of Event Handling m

class ButtonFrame extends JFrame implements ActionListener

{

public void actionPerformed(ActionEvent event)
{
Object source = event.getSource();
if (source == yellowButton) . . .
else if (source == blueButton) . . .
else if (source == redButton) . . .
else . . .
}
}

As you can see, this gets quite messy, and we do not recommend it.

java.util.EventObject 1.1

Object getSource()
returns a reference to the object where the event occurred.

java.awt.event.ActionEvent 1.1

String getActionCommand()

returns the command string associated with this action event. If the action event
originated from a button, the command string equals the button label, unless it
has been changed with the setActionCommand method.

java.beans.EventHandler 1.4

static Object create(Class listenerInterface, Object target, String action)

static Object create(Class listenerInterface, Object target, String action,

String eventProperty)

static Object create(Class listenerInterface, Object target, String action,

String eventProperty, String TistenerMethod)

constructs an object of a proxy class that implements the given interface. Either
the named method or all methods of the interface carry out the given action on the
target object.

The action can be a method name or a property of the target. If it is a property, its
setter method is executed. For example, an action "text" is turned into a call of the
setText method.

The event property consists of one or more dot-separated property names. The
first property is read from the parameter of the listener method. The second
property is read from the resulting object, and so on. The final result becomes the
parameter of the action. For example, the property "source.text" is turned into calls
to the getSource and getText methods.

Chapter 8. Event Handling

Chapter 8 B Event Handling

Creating Listeners Containing a Single Method Call
Java SE 1.4 introduces a mechanism that lets you specify simple event listeners without
programming inner classes. For example, suppose you have a button labeled “Load”
whose event handler contains a single method call:

frame.loadData();
Of course, you can use an anonymous inner class:

loadButton.addActionListener(new ActionListener()

pubTlic void actionPerformed(ActionEvent event)

{

frame.loadData();
}
b;

But the EventHandler class can create such a listener automatically, with the call
EventHandler.create(ActionListener.class, frame, "loadData")
Of course, you still need to install the handler:
ToadButton.addActionListener(
EventHandler.create(ActionListener.class, frame, "loadData"));
If the listener calls a method with a single parameter that can be obtained from the event
parameter, you can use another form of the create method. For example, the call
EventHandler.create(ActionListener.class, frame, "loadData", "source.text")
is equivalent to
new ActionListener()

{

public void actionPerformed(ActionEvent event)

{
frame.loadData(((JTextField) event.getSource()).getText());

}
}

The property names source and text turn into method calls getSource and getText.

Example: Changing the Look and Feel

By default, Swing programs use the Metal look and feel. There are two ways to change

to a different look and feel. The first way is to supply a fileswing.properties in the jre/Tib

subdirectory of your Java installation. In that file, set the property swing.defaultlaf to the

class name of the look and feel that you want. For example:
swing.defaultlaf=com.sun.java.swing.plaf.motif.MotifLookAndFeel

Note that the Metal look and feel is located in the javax.swing package. The other look-
and-feel packages are located in the com.sun.java package and need not be present in
every Java implementation. Currently, for copyright reasons, the Windows and Macin-
tosh look-and-feel packages are only shipped with the Windows and Macintosh ver-
sions of the Java runtime environment.

Chapter 8. Event Handling

Basics of Event Handling

TIP: Because lines starting with a # character are ignored in property files, you can supply
several look and feel selections in the swing.properties file and move around the # to select
one of them:
#swing.defaultlaf=javax.swing.plaf.metal.MetalLookAndFeel
swing.defaultlaf=com.sun.java.swing.plaf.motif.MotifLookAndFeel
#swing.defauTtlaf=com.sun.java.swing.plaf.windows.WindowsLookAndFeel

You must restart your program to switch the look and feel in this way. A Swing program
reads the swing.properties file only once, at startup.

The second way is to change the look and feel dynamically. Call the staticUIManager. setLook-
AndFeel method and give it the name of the look-and-feel class that you want. Then call
the static method SwingUtilities.updateComponentTreeUI to refresh the entire set of compo-
nents. You need to supply one component to that method; it will find all others. The
UIManager.setLookAndFeel method may throw a number of exceptions when it can’t find
the look and feel that you request, or when there is an error loading it. As always, we
ask you to gloss over the exception handling code and wait until Chapter 11 for a full
explanation.

Here is an example showing how you can switch to the Motif look and feel in your
program:
String plaf = "com.sun.java.swing.plaf.motif.MotifLookAndFeel";

try
{
UIManager.setLookAndFeel(plaf);
SwingUtilities.updateComponentTreelI(panel);
}

catch(Exception e) { e.printStackTrace(); }
To enumerate all installed look and feel implementations, call

UIManager.LookAndFeelInfo[] infos = UIManager.getInstalledLookAndFeels();
Then you can get the name and class name for each look and feel as

String name = infos[i].getName();

String className = infos[i].getClassName();
Listing 8-2 is a complete program that demonstrates how to switch the look and feel
(see Figure 8—4). The program is similar to Listing 8-1. Following the advice of the pre-
ceding section, we use a helper method makeButton and an anonymous inner class to spec-
ify the button action, namely, to switch the look and feel.
There is one fine point to this program. The actionPerformed method of the inner action
listener class needs to pass the this reference of the outer PlafFrame class to the update-
ComponentTreeUI method. Recall from Chapter 6 that the outer object’sthis pointer must be
prefixed by the outer class name:

SwingUtiTities.updateComponentTreeUI(P1afPanel.this);

Chapter 8. Event Handling

m Chapter 8 B Event Handling

[Metall [CDEIMotif] fGTK+]

[BPlafTest ~ [_[O[X]
Metal GTK+
Blrlaflfest [_[Ofx
| Mew |[coE/motr || cTks |
f—(—

Figure 8-4 Switching the look and feel
Listing 8-2 RIEVIESMEZ!

1. import java.awt.EventQueue;

2. import java.awt.event.s;

3. import javax.swing.x;

4.

5. [k

6. * @version 1.32 2007-06-12

7. % @author Cay Horstmann

s %/

9. pubTic class PlafTest

10. {

1. public static void main(String[] args)

12, {

13, EventQueue.invokeLater(new Runnable()
14.

15. public void run()

16. {

17. PlafFrame frame = new PlafFrame();
18. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
19. frame.setVisible(true);

20. }

21, b;

22. }

23 }

24.

25. [ux

2. « A frame with a button panel for changing Tlook and feel

28. Class PlafFrame extends JFrame
29. {

Chapter 8. Event Handling

Basics of Event Handling

IS ET50 T 20 PlafTest.java (continued)

30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41,
42.
43.
44.

p
{

}
/

\

{

p

p!
p!

ublic PlafFrame()

setTitle("PlafTest");
setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

buttonPanel = new JPanel();

UIManager.LookAndFeelInfo[] infos = UIManager.getInstalledLookAndFeels();
for (UIManager.LookAndFeelInfo info : infos)
makeButton(info.getName(), info.getClassName());

add(buttonPanel);

+ Makes a button to change the pluggable Took and feel.
x @param name the button name

x @param plafName the name of the Tlook and feel class
%/

0id makeButton(String name, final String plafName)
// add button to panel

JButton button = new JButton(name);
buttonPanel.add(button);

// set button action
button.addActionListener(new ActionListener()

public void actionPerformed(ActionEvent event)
{
// button action: switch to the new Took and feel
try
{
UIManager.setLookAndFeel(plafName);
SwingUtilities.updateComponentTreeUI(Pl1afFrame.this);
}
catch (Exception e)

{
e.printStackTrace();

rivate JPanel buttonPanel;

ublic static final int DEFAULT_WIDTH = 300;
ublic static final int DEFAULT_HEICHT = 200;

337

Chapter 8. Event Handling

m Chapter 8 B Event Handling

javax.swing.UIManager 1.2

e static UIManager.LookAndFeelInfo[] getInstalledLookAndFeels()
gets an array of objects that describe the installed look-and-feel implementations.

e static setLookAndFeel(String className)
sets the current look and feel, using the given class name (such as
"javax.swing.plaf.metal.MetalLookAndFeel").

javax.swing.UIManager.LookAndFeelInfo 1.2

e String getName()
returns the display name for the look and feel.

e String getClassName()
returns the name of the implementation class for the look and feel.

Adapter Classes

Not all events are as simple to handle as button clicks. In a non-toy program, you will
want to monitor when the user tries to close the main frame because you don’t want your
users to lose unsaved work. When the user closes the frame, you want to put up a dialog
and exit the program only when the user agrees.

When the program user tries to close a frame window, theJFrame object is the source of a
WindowEvent. If you want to catch that event, you must have an appropriate listener object
and add it to the frame’s list of window listeners.

WindowListener listener = . . .;

frame.addWindowListener(listener);
The window listener must be an object of a class that implements theWindowListener
interface. There are actually seven methods in theWindowListener interface. The frame
calls them as the responses to seven distinct events that could happen to a window. The
names are self-explanatory, except that “iconified” is usually called “minimized”
under Windows. Here is the complete WindouListener interface:

public interface WindowListener

{

void windowOpened(WindowEvent e);

void windowClosing(WindowEvent e);
void windowClosed(WindowEvent e);

void windowIconified(WindowEvent e);
void windowDeiconified(WindowEvent e);
void windowActivated(WindowEvent e);
void windowDeactivated(WindowEvent e);

NOTE: To find out whether a window has been maximized, install a WindowStateListener. See
the API notes on page 341 for details.

As is always the case in Java, any class that implements an interface must implement all
its methods; in this case, that means implementing seven methods. Recall that we are
only interested in one of these seven methods, namely, thewindowClosing method.

Chapter 8. Event Handling

Basics of Event Handling

Of course, we can define a class that implements the interface, add a call to System.exit(0)
in the windowClosing method, and write do-nothing functions for the other six methods:

class Terminator implements WindowListener

public void windowClosing(WindowEvent e)

{

if (user agrees)
System.exit(0);

public void windowOpened(WindowEvent e) {}
public void windowClosed(WindowEvent e) {}
public void windowIconified(WindowEvent e) {}
public void windowDeiconified(WindowEvent e) {}
pubTic void windowActivated(WindowEvent e) {}
public void windowDeactivated(WindowEvent e) {}

}
Typing code for six methods that don’t do anything is the kind of tedious busywork that
nobody likes. To simplify this task, each of the AWT listener interfaces that has more
than one method comes with a companion adapter class that implements all the methods
in the interface but does nothing with them. For example, theWindowAdapter class has
seven do-nothing methods. This means the adapter class automatically satisfies the
technical requirements that Java imposes for implementing the associated listener inter-
face. You can extend the adapter class to specify the desired reactions to some, but not
all, of the event types in the interface. (An interface such as ActionlListener that has only a
single method does not need an adapter class.)

Let us make use of the window adapter. We can extend the WindowAdapter class, inherit six
of the do-nothing methods, and override the windowClosing method:

class Terminator extends WindowAdapter

public void windowClosing(WindowEvent e)

{
if (user agrees)
System.exit(0);
}

}
Now you can register an object of type Terminator as the event listener:

WindowListener listener = new Terminator();

frame.addWindowListener(1istener);
Whenever the frame generates a window event, it passes it to thelistener object by
calling one of its seven methods (see Figure 8-5). Six of those methods do nothing; the
windowClosing method calls System.exit(0), terminating the application.

the compiler won’t catch your error. For example, if you define a method windowIsClosing in
a WindowAdapter class, then you get a class with eight methods, and the windowClosing method
does nothing.

CAUTION: If you misspell the name of a method when extending an adapter class, then

Chapter 8. Event Handling

m Chapter 8 B Event Handling

addWindowListener

windowClosing

»

L
13
L
L
Il windowClosed 3
L
L
|
I

A

Figure 8-5 A window listener

Creating a listener class that extends the WindowAdapter is an improvement, but we can go

even further. There is no need to give a name to the Tistener object. Simply write
frame.addWindowListener(new Terminator());

But why stop there? We can make the listener class into an anonymous inner class of the

frame.

frame.addwindowListener(new
WindowAdapter()

public void windowClosing(WindowEvent e)

{
if (user agrees)
System.exit(0);

}
b;

Chapter 8. Event Handling

Basics of Event Handling m

This code does the following;:

e Defines a class without a name that extends the WindowAdapter class

e Adds a windowClosing method to that anonymous class (as before, this method exits
the program)

¢ Inherits the remaining six do-nothing methods from WindowAdapter

* Creates an object of this class; that object does not have a name, either

* Passes that object to the addWindowListener method

We say again that the syntax for using anonymous inner classes takes some getting used
to. The payoff is that the resulting code is as short as possible.

m java.awt.event.WindowListener 1.1

e void windowOpened(WindowEvent e)
is called after the window has been opened.

e void windowClosing(WindowEvent e)
is called when the user has issued a window manager command to close the
window. Note that the window will close only if itshide or dispose method is called.
e void windowClosed(WindowEvent e)
is called after the window has closed.

e void windowIconified(WindowEvent e)
is called after the window has been iconified.

e void windowDeiconified(WindowEvent e)
is called after the window has been deiconified.

e void windowActivated(WindowEvent e)
is called after the window has become active. Only a frame or dialog can be active.
Typically, the window manager decorates the active window, for example, by
highlighting the title bar.

e void windowDeactivated(WindowEvent e)
is called after the window has become deactivated.

java.awt.event.WindowStateListener 1.4

e void windowStateChanged(WindowEvent event)
is called after the window has been maximized, iconified, or restored to normal size.

java.awt.event.WindowEvent 1.1

e int getNenState() 1.4

e int getOldState() 1.4
returns the new and old state of a window in a window state change event. The
returned integer is one of the following values:

Frame.NORMAL
Frame.ICONIFIED

Frame .MAXIMIZED_HORIZ
Frame .MAXIMIZED_VERT
Frame .MAXIMIZED_BOTH

Chapter 8. Event Handling

Chapter 8 B Event Handling

Actions

It is common to have multiple ways to activate the same command. The user can choose
a certain function through a menu, a keystroke, or a button on a toolbar. This is easy to
achieve in the AWT event model: link all events to the same listener. For example, sup-
pose blueAction is an action listener whose actionPerformed method changes the background
color to blue. You can attach the same object as a listener to several event sources:

e A toolbar button labeled “Blue”
e A menu item labeled “Blue”
* Akeystroke CTRL+B

Then the color change command is handled in a uniform way, no matter whether it was
caused by a button click, a menu selection, or a key press.

The Swing package provides a very useful mechanism to encapsulate commands and to
attach them to multiple event sources: theAction interface. An action is an object that
encapsulates

¢ A description of the command (as a text string and an optional icon); and

* Parameters that are necessary to carry out the command (such as the requested
color in our example).
The Action interface has the following methods:
void actionPerformed(ActionEvent event)
void setEnabled(boolean b)
booTean isEnabled()
void putValue(String key, Object value)
Object getValue(String key)
void addPropertyChangelistener(PropertyChangelistener Tistener)
void removePropertyChangelListener(PropertyChangelistener listener)
The first method is the familiar method in theActionListener interface: in fact, the Action
interface extends the ActionListener interface. Therefore, you can use anAction object
whenever an ActionListener object is expected.

The next two methods let you enable or disable the action and check whether the action
is currently enabled. When an action is attached to a menu or toolbar and the action is
disabled, then the option is grayed out.

The putValue and getValue methods let you store and retrieve arbitrary name/value
pairs in the action object. A couple of important predefined strings, namely,
Action.NAME and Action.SMALL_ICON, store action names and icons into an action object:

action.putValue(Action.NAME, "Blue");
action.putValue(Action.SMALL_ICON, new ImageIcon("blue-ball.gif"));

Table 8-1 shows all predefined action table names.

If the action object is added to a menu or toolbar, then the name and icon are automati-
cally retrieved and displayed in the menu item or toolbar button. The SHORT_DESCRIPTION
value turns into a tooltip.

The final two methods of the Action interface allow other objects, in particular menus
or toolbars that trigger the action, to be notified when the properties of the action
object change. For example, if a menu is added as a property change listener of an
action object and the action object is subsequently disabled, then the menu is called

Chapter 8. Event Handling

Actions m

and can gray out the action name. Property change listeners are a general construct
that is a part of the “JavaBeans” component model. You can find out more about beans
and their properties in Volume II.

Table 8-1 Predefined Action Table Names

Name Value
NAME The name of the action; displayed on buttons and menu items.
SMALL_ICON A place to store a small icon; for display in a button, menu item, or toolbar.

SHORT_DESCRIPTION A short description of the icon; for display in a tooltip.

LONG_DESCRIPTION A long description of the icon; for potential use in on-line help. No Swing
component uses this value.

MNEMONIC_KEY A mnemonic abbreviation; for display in menu items (see Chapter 9).

ACCELERATOR_KEY A place to store an accelerator keystroke. No Swing component uses this
value.

ACTION_COMMAND_KEY Historically, used in the now obsolete registerKeyboardAction method.

DEFAULT Potentially useful catch-all property. No Swing component uses this value.

Note that Action is an interface, not a class. Any class implementing this interface must
implement the seven methods we just discussed. Fortunately, a friendly soul has pro-
vided a class AbstractAction that implements all methods except for actionPerformed. That
class takes care of storing all name/value pairs and managing the property change
listeners. You simply extend AbstractAction and supply an actionPerformed method.

Let’s build an action object that can execute color change commands. We store the name
of the command, an icon, and the desired color. We store the color in the table of name/
value pairs that the AbstractAction class provides. Here is the code for the ColorAction class.
The constructor sets the name/value pairs, and the actionPerformed method carries out the
color change action.

public class ColorAction extends AbstractAction

public ColorAction(String name, Icon icon, Color c)
{

putValue(Action.NAME, name);

putValue(Action.SMALL_ICON, icon);

putValue("color", c);

putValue(Action.SHORT_DESCRIPTION, "Set panel color to " + name.toLowerCase());
}

public void actionPerformed(ActionEvent event)
{
Color ¢ = (Color) getValue("color");
buttonPanel.setBackground(c);
}
}

Chapter 8. Event Handling

Chapter 8 B Event Handling

Our test program creates three objects of this class, such as
Action blueAction = new ColorAction("Blue", new ImageIcon("blue-ball.gif"), Color.BLUE);

Next, let’s associate this action with a button. That is easy because we can use aJButton
constructor that takes an Action object.

JButton blueButton = new JButton(blueAction);
That constructor reads the name and icon from the action, sets the short description as
the tooltip, and sets the action as the listener. You can see the icons and a tooltip in
Figure 8-6.
As we demonstrate in the next chapter, it is just as easy to add the same action to a
menu.

BActionTest |_|0|x

| @ velow || @ Elue || @ Red |

Set panel color to yellow

Figure 8-6 Buttons display the icons from the action objects

Finally, we want to add the action objects to keystrokes so that the actions are carried
out when the user types keyboard commands. To associate actions with keystrokes, you
first need to generate objects of theKeyStroke class. This is a convenience class that encap-
sulates the description of a key. To generate a KeyStroke object, you don’t call a constructor
but instead use the static getKeyStroke method of the KeyStroke class.

KeyStroke ctr1BKey = KeyStroke.getKeyStroke("ctrl B");

To understand the next step, you nee to know the concept of keyboard focus. A user inter-
face can have many buttons, menus, scrollbars, and other components. When you hit a
key, it is sent to the component that has focus. That component is usually (but not
always) visually distinguished. For example, in the Java Look and Feel, a button with
focus has a thin rectangular border around the button text. You can use theTAB key to
move the focus between components. When you press the SPACE key, the button with
focus is clicked. Other keys carry out different actions; for example, the arrow keys can
move a scrollbar.

However, in our case, we do not want to send the keystroke to the component that has
focus. Otherwise, each of the buttons would need to know how to handle the CTRL+Y,
CTRL+B, and CTRL+R keys.

This is a common problem, and the Swing designers came up with a convenient solu-
tion for solving it. Every JComponent has three input maps, each mappingKeyStroke objects to
associated actions. The three input maps correspond to three different conditions (see
Table 8-2).

Chapter 8. Event Handling

Actions m

Keystroke processing checks these maps in the following order:

1. Check the WHEN_FOCUSED map of the component with input focus. If the keystroke exists,
execute the corresponding action. If the action is enabled, stop processing.

2. Starting from the component with input focus, check the WHEN_ANCESTOR _OF_FOCUSED_
COMPONENT maps of its parent components. As soon as a map with the keystroke is
found, execute the corresponding action. If the action is enabled, stop processing.

3. Look at all visible and enabled components in the window with input focus that
have this keystroke registered in a WHEN_IN_FOCUSED_WINDOW map. Give these compo-
nents (in the order of their keystroke registration) a chance to execute the corre-
sponding action. As soon as the first enabled action is executed, stop processing.
This part of the process is somewhat fragile if a keystroke appears in more than
one WHEN_IN_FOCUSED_WINDOW map.

Table 8-2 Input Map Conditions

Flag Invoke Action

WHEN_FOCUSED When this component has keyboard focus

WHEN_ANCESTOR_OF _FOCUSED_COMPONENT When this component contains the component that has
keyboard focus

WHEN_IN_FOCUSED_WINDOW When this component is contained in the same window

as the component that has keyboard focus

You obtain an input map from the component with the getInputMap method. Here is an
example:

InputMap imap = panel.getInputMap(JComponent.WHEN_FOCUSED);
The WHEN_FOCUSED condition means that this map is consulted when the current component
has the keyboard focus. In our situation, that isn’t the map we want. One of the buttons,
not the panel, has the input focus. Either of the other two map choices works fine for
inserting the color change keystrokes. We use WHEN_ANCESTOR_OF_FOCUSED_COMPONENT in our exam-
ple program.
The InputMap doesn’t directly map KeyStroke objects to Action objects. Instead, it maps to
arbitrary objects, and a second map, implemented by the ActionMap class, maps objects to
actions. That makes it easier to share the same actions among keystrokes that come from
different input maps.
Thus, each component has three input maps and one action map. To tie them together, you
need to come up with names for the actions. Here is how you can tie a key to an action:

imap.put(KeyStroke.getKeyStroke("ctrl Y"), "panel.yellow");

ActionMap amap = panel.getActionMap();

amap.put("panel.yellow", yellowAction);
It is customary to use the string "none" for a do-nothing action. That makes it easy to
deactivate a key:

imap.put(KeyStroke.getKeyStroke("ctrl C"), "none");

Chapter 8. Event Handling

m Chapter 8 B Event Handling

CAUTION: The JDK documentation suggests using the action name as the action’s key. We

don’t think that is a good idea. The action name is displayed on buttons and menu items;
thus, it can change at the whim of the Ul designer and it may be translated into multiple lan-
guages. Such unstable strings are poor choices for lookup keys. Instead, we recommend
that you come up with action names that are independent of the displayed names.

To summarize, here is what you do to carry out the same action in response to a button,
a menu item, or a keystroke:

1. Implement a class that extends the AbstractAction class. You may be able to use the
same class for multiple related actions.

2. Construct an object of the action class.

3. Construct a button or menu item from the action object. The constructor will read
the label text and icon from the action object.

4. For actions that can be triggered by keystrokes, you have to carry out additional
steps. First locate the top-level component of the window, such as a panel that con-
tains all other components.

5. Then get the WHEN_ANCESTOR_OF_FOCUSED_COMPONENT input map of the top-level component.
Make a KeyStroke object for the desired keystroke. Make an action key object, such as
a string that describes your action. Add the pair (keystroke, action key) into the
input map.

6. Finally, get the action map of the top-level component. Add the pair (action key,
action object) into the map.

Listing 8-3 shows the complete code of the program that maps both buttons and key-
strokes to action objects. Try it out—clicking either the buttons or pressing CTRL+Y,
CTRL+B, or CTRL+R changes the panel color.

IBTTSE T2 ActionTest. java

1. import java.awt.:;
2. import java.awt.event.s;
3. import javax.swing.s;

5. [k

6. + @version 1.33 2007-06-12

7. % @author Cay Horstmann

8./

9. pubTic class ActionTest

10. {

1. public static void main(String[] args)
12. {

13. EventQueue.invokelater(new Runnable()
14, {

15. pubTic void run()

16. {

Chapter 8. Event Handling

Actions

IBTTR LTSI ActionTest. java (continued)

64.

ActionFrame frame = new ActionFrame();
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setVisible(true);

+ A frame with a panel that demonstrates color change actions.

#/

. class ActionFrame extends JFrame

-
{

}

{

pubTic ActionFrame()

setTitle("ActionTest");
setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

buttonPanel = new JPanel();

// define actions

Action yellowAction = new ColorAction("Yellow", new ImageIcon("yellow-ball.gif"),
Color.YELLOW);

Action blueAction = new ColorAction("Blue", new ImageIcon("blue-ball.gif"), Color.BLUE);

Action redAction = new ColorAction("Red", new ImageIcon("red-ball.gif"), Color.RED)

// add buttons for these actions
buttonPanel.add(new JButton(yellowAction));
buttonPanel.add(new JButton(blueAction));
buttonPanel.add(new JButton(redAction));

// add panel to frame
add(buttonPanel);

// associate the Y, B, and R keys with names

InputMap imap = buttonPanel.getInputMap(JComponent.WHEN_ANCESTOR_OF_FOCUSED_COMPONENT);
imap.put(KeyStroke.getKeyStroke("ctrl Y"), "panel.yellow");
imap.put(KeyStroke.getKeyStroke("ctrl B"), "panel.blue");
imap.put(KeyStroke.getKeyStroke("ctrl R"), "panel.red");

// associate the names with actions
ActionMap amap = buttonPanel.getActionMap();
amap.put(“panel.yellow", yellowAction);
amap.put("panel.blue", blueAction);
amap.put("panel.red", redAction);

public class ColorAction extends AbstractAction

347

Chapter 8. Event Handling

m Chapter 8 B Event Handling

JBTT50 T2 ActionTest. java (continued)

80.

82.
83.
84.
85.
86.
87.
88.
89.
90.

1. }

[

+ Constructs a color action.

x @param name the name to show on the button

* @param icon the icon to display on the button

x @param ¢ the background color

/

public CoTorAction(String name, Icon icon, Color c)

{
putValue(Action.NAME, name);
putValue(Action.SMALL_ICON, icon);
putValue(Action.SHORT_DESCRIPTION, "Set panel color to " + name.tolLowerCase());
putValue("color", c);

}

public void actionPerformed(ActionEvent event)
{
Color ¢ = (Color) getValue("color");
buttonPanel.setBackground(c);
}
}

private JPanel buttonPanel;

public static final int DEFAULT_WIDTH = 300;
public static final int DEFAULT_HEIGHT = 200;

javax.swing.Action 1.2

boolean isEnabled()

void setEnabled(boolean b)

gets or sets the enabled property of this action.

void putValue(String key, Object value)

places a name/value pair inside the action object.

Parameters: key The name of the feature to store with the action
object. This can be any string, but several names
have predefined meanings—see Table 8-1 on
page 343.

value The object associated with the name.

Object getValue(String key)
returns the value of a stored name/value pair.

Chapter 8. Event Handling

Mouse Events

javax.swing.KeyStroke 1.2

e static KeyStroke getKeyStroke(String description)
constructs a keystroke from a humanly readable description (a sequence of
whitespace-delimited strings). The description starts with zero or more modifiers
shift control ctrl meta alt altGraph and ends with either the string typed, followed by
a one-character string (for example, "typed a"), or an optional event specifier
(pressed—the default—or released), followed by a key code. The key code, when
prefixed with VK_, should correspond to a KeyEvent constant; for example, "INSERT"
corresponds to KeyEvent.VK_INSERT.

APII javax.swing.JComponent 1.2

e ActionMap getActionMap() 1.3
returns the map that associates action map keys (which can be arbitrary objects)
with Action objects.

e InputMap getInputMap(int flag) 1.3
gets the input map that maps key strokes to action map keys.

Parameters: ~ flag A condition on the keyboard focus to trigger the
action, one of the values in Table 8-2 on page 345

Mouse Events

You do not need to handle mouse events explicitly if you just want the user to be able to
click on a button or menu. These mouse operations are handled internally by the vari-
ous components in the user interface. However, if you want to enable the user to draw
with the mouse, you will need to trap mouse move, click, and drag events.

In this section, we show you a simple graphics editor application that allows the user to
place, move, and erase squares on a canvas (see Figure 8-7).

@ Mousetest |_|O/X

oo g

=
Dgﬂ% 5

O O

Figure 8-7 A mouse test program

When the user clicks a mouse button, three listener methods are called:mousePressed when
the mouse is first pressed, mouseReleased when the mouse is released, and, finally, mouse-
Clicked. If you are only interested in complete clicks, you can ignore the first two meth-
ods. By using the getX and getY methods on the MouseEvent argument, you can obtain the x-
and y-coordinates of the mouse pointer when the mouse was clicked. To distinguish
between single, double, and triple (!) clicks, use the get(lickCount method.

Chapter 8. Event Handling

Chapter 8 B Event Handling

Some user interface designers inflict mouse click and keyboard modifier combinations,
such as CONTROL + SHIFT + CLICK, on their users. We find this practice reprehensible, but
if you disagree, you will find that checking for mouse buttons and keyboard modifiers
is a mess.
You use bit masks to test which modifiers have been set. In the original API, two of the
button masks equal two keyboard modifier masks, namely

BUTTON2_MASK == ALT_MASK

BUTTON3_MASK == META_MASK
This was done so that users with a one-button mouse could simulate the other mouse
buttons by holding down modifier keys instead. However, as of Java SE 1.4, a different
approach is recommended. There are now masks

BUTTON1_DOWN_MASK

BUTTON2_DOWN_MASK

BUTTON3_DOWN_MASK

SHIFT_DOWN_MASK

CTRL_DOWN_MASK

ALT_DOWN_MASK

ALT_GRAPH_DOWN_MASK

META_DOWN_MASK
The getModifiersEx method accurately reports the mouse buttons and keyboard modifiers
of a mouse event.
Note that BUTTON3_DOWN_MASK tests for the right (nonprimary) mouse button under Win-
dows. For example, you can use code like this to detect whether the right mouse button
is down:

if ((event.getModifiersEx() & InputEvent.BUTTON3_DOWN_MASK) != 0)

. . . // code for right click
In our sample program, we supply both amousePressed and a mouseClicked method. When
you click onto a pixel that is not inside any of the squares that have been drawn, a new
square is added. We implemented this in the mousePressed method so that the user receives
immediate feedback and does not have to wait until the mouse button is released. When
a user double-clicks inside an existing square, it is erased. We implemented this in the
mouseClicked method because we need the click count.

public void mousePressed(MouseEvent event)
{
current = find(event.getPoint());
if (current == nu11) // not inside a square
add(event.getPoint());
}

pubTic void mouseClicked(MouseEvent event)
{
current = find(event.getPoint());
if (current != null & event.getClickCount() >= 2)
remove(current);

Chapter 8. Event Handling

Mouse Events

As the mouse moves over a window, the window receives a steady stream of mouse
movement events. Note that there are separate Mouselistener and MouseMotionListener inter-
faces. This is done for efficiency—there are a lot of mouse events as the user moves the
mouse around, and a listener that just cares about mouse clicks will not be bothered with
unwanted mouse moves.

Our test application traps mouse motion events to change the cursor to a different shape
(a cross hair) when it is over a square. This is done with the getPredefinedCursor method of
the Cursor class. Table 8-3 lists the constants to use with this method along with what the
cursors look like under Windows.

Table 8-3 Sample Cursor Shapes

Icon Constant Icon Constant

% DEFAULT_CURSOR NE_RESIZE_CURSOR

—I— CROSSHAIR_CURSOR
v\ﬂ_n) HAND_CURSOR

E_RESIZE_CURSOR

SE_RESIZE_CURSOR

Pl &) 1N

1—1—} MOVE_CURSOR S_RESIZE_CURSOR
:I: TEXT_CURSOR SW_RESIZE_CURSOR
E WAIT_CURSOR W_RESIZE_CURSOR
I N_RESIZE_CURSOR K\, NW_RESIZE_CURSOR

Here is the mouseMoved method of the MouseMotionListener in our example program:
pubTic void mouseMoved(MouseEvent event)

if (find(event.getPoint()) == null)
setCursor(Cursor.getDefaultCursor());

else
setCursor(Cursor.getPredefinedCursor(Cursor.CROSSHAIR_CURSOR));

Chapter 8. Event Handling

m Chapter 8 B Event Handling

NOTE: You can also define your own cursor types through the use of the createCustomCursor
method in the Toolkit class:

Toolkit tk = Toolkit.getDefaultToolkit();
Image img = tk.getImage("dynamite.gif");
Cursor dynamiteCursor = tk.createCustomCursor(img, new Point(10, 10), "dynamite stick");

The first parameter of the createCustomCursor points to the cursor image. The second param-
eter gives the offset of the “hot spot” of the cursor. The third parameter is a string that
describes the cursor. This string can be used for accessibility support. For example, a
screen reader program can read the cursor shape description to a user who is visually
impaired or who simply is not facing the screen.

If the user presses a mouse button while the mouse is in motion, mouseDragged calls are

generated instead of mouseMoved calls. Our test application lets a user drag the square

under the cursor. We simply update the currently dragged rectangle to be centered

under the mouse position. Then, we repaint the canvas to show the new mouse position.
public void mouseDragged(MouseEvent event)

{
if (current != null)
int x = event.getX();
int y = event.getY();
current.setFrame(x - SIDELENGTH / 2, y - SIDELENGTH / 2, SIDELENGTH, SIDELENGTH);
repaint();
}

NOTE: The mouseMoved method is only called as long as the mouse stays inside the component.
However, the mouseDragged method keeps getting called even when the mouse is being dragged
outside the component.

There are two other mouse event methods: mouseEntered and mouseExited. These methods
are called when the mouse enters or exits a component.

Finally, we explain how to listen to mouse events. Mouse clicks are reported through the
mouseClicked procedure, which is part of the MouseListener interface. Because many applica-
tions are interested only in mouse clicks and not in mouse moves and because mouse

move events occur so frequently, the mouse move and drag events are defined in a sep-
arate interface called MouseMotionListener.

In our program we are interested in both types of mouse events. We define two inner
classes: MouseHandler and MouseMotionHandler. The MouseHandler class extends the MouseAdapter
class because it defines only two of the fiveMouseListener methods. The MouseMotionHandler

implements the MouseMotionListener and defines both methods of that interface. Listing 8—4
is the program listing.

Chapter 8. Event Handling

Mouse Events m

B 151 T2V B MouseTest ., java

30.

A

. import java.awt.s;

. import java.awt.event.s;
. import java.util.s;

. import java.awt.geom.x;
. import javax.swing.x;

[ux
+ @version 1.32 2007-06-12
+ @author Cay Horstmann
x/
. pubTic class MouseTest
{
pubTic static void main(String[] args)
{
EventQueue.invokelLater(new Runnable()
{
pubTic void run()
{
MouseFrame frame = new MouseFrame();
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setVisible(true);
}
N
}
}
T

+ A frame containing a panel for testing mouse operations
x/

class MouseFrame extends JFrame

pubTic MouseFrame()

{
setTitle("MouseTest");
setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

// add component to frame

MouseComponent component = new MouseComponent();
add(component);

}

public static final int DEFAULT_WIDTH = 300;
public static final int DEFAULT_HEICHT = 200;

+ A component with mouse operations for adding and removing squares.

Chapter 8. Event Handling

m Chapter 8 B Event Handling

B TT50 T2 B MouseTest. java (continued)

s50. class MouseComponent extends JComponent

51. {

s2. public MouseComponent()

53. {

54. squares = new ArrayList<Rectangle2D>();
55. current = null;

56.

57. addMouseListener(new MouseHandler());
58. addMouseMotionListener(new MouseMotionHandler());
59. }

60.

6. public void paintComponent(Graphics g)

62. {

63. Graphics2D g2 = (Graphics2D) g;

64.

65. // draw all squares

66. for (Rectangle2D r : squares)

67. g2.draw(r);

68. }

69.

70. Fk

7. + Finds the first square containing a point.
72. + @param p a point

73. x @return the first square that contains p

~

74. %/

7. public Rectangle2D find(Point2D p)
76. {

77. for (Rectangle2D r : squares)
78. {

79. if (r.contains(p)) return r;
80. }

81. return null;

82. }

83.

84, [ux

85. + Adds a square to the collection.
86. + @param p the center of the square
87. %/

ss. public void add(Point2D p)

89. {

9. doubTe x = p.getX();

o1. doubTe y = p.getY();

92.

9. current = new Rectangle2D.Double(x - SIDELENGTH / 2, y - SIDELENGTH / 2, SIDELENGTH,
94. SIDELENGTH);

95. squares.add(current);

%. repaint();

97. }
9.

Chapter 8. Event Handling

Mouse Events m

B 150 T2V Bl MouseTest. java (continued)

9. [ux

100. + Removes a square from the collection.
101, + @param s the square to remove
102. /

103, public void remove(Rectangle2D s)
104, {

105. if (s == null) return;

106. if (s == current) current = null;
107. squares. remove(s);

108. repaint();

100. }

110.

111 private static final int SIDELENGTH = 10;
112, private Arraylist<Rectangle2D> squares;
113, private Rectangle2D current;

114,

115, // the square containing the mouse cursor

116.

117. private class MouseHandTer extends MouseAdapter

118. {

119. public void mousePressed(MouseEvent event)

120. {

121. // add a new square if the cursor isn't inside a square

122, current = find(event.getPoint());

123. if (current == nul1) add(event.getPoint());

124. }

125.

126. public void mouseClicked(MouseEvent event)

127. {

128. // remove the current square if double clicked

129. current = find(event.getPoint());

130. if (current != null && event.getClickCount() >= 2) remove(current);
131. }

132}

133.

134, private class MouseMotionHandler implements MouseMotionListener

135, {

136. public void mouseMoved(MouseEvent event)

137. {

138. // set the mouse cursor to cross hairs if it is inside

139, // a rectangle

140.

141, if (find(event.getPoint()) == null) setCursor(Cursor.getDefaultCursor());
142. else setCursor(Cursor.getPredefinedCursor(Cursor.CROSSHAIR_CURSOR));
143. }

144.

145, public void mouseDragged(MouseEvent event)

146. {

Chapter 8. Event Handling

m Chapter 8 B Event Handling

B TT50 T2 B MouseTest. java (continued)

147. if (current != null)

148. {

149, int x = event.getX();

150. int y = event.getY();

151.

152. // drag the current rectangle to center it at (x, y)
153, current.setFrame(x - SIDELENGTH / 2, y - SIDELENGTH / 2, SIDELENGTH, SIDELENGTH);
154, repaint();

155. }

156. }

157}

158. }

m java.awt.event.MouseEvent 1.1

o int getX()

e int getY()

® Point getPoint()
returns the x- (horizontal) and y- (vertical) coordinate, or point where the event
happened, measured from the top-left corner of the component that is the event
source.

e int getClickCount()
returns the number of consecutive mouse clicks associated with this event. (The
time interval for what constitutes “consecutive” is system dependent.)

java.awt.event.InputEvent 1.1

e int getModifiersEx() 1.4
returns the extended or “down” modifiers for this event. Use the following mask
values to test the returned value:

BUTTON1_DOWN_MASK
BUTTON2_DOWN_MASK
BUTTON3_DOWN_MASK
SHIFT_DOWN_MASK
CTRL_DOWN_MASK
ALT_DOWN_MASK
ALT_GRAPH_DOWN_MASK
META_DOWN_MASK

e static String getModifiersExText(int modifiers) 1.4
returns a string such as “Shift+Button1” describing the extended or “down”
modifiers in the given flag set.

Chapter 8. Event Handling

The AWT Event Hierarchy 357

java.awt.Toolkit 1.0

e public Cursor createCustomCursor(Image image, Point hotSpot, String name) 1.2
creates a new custom cursor object.

Parameters: image The image to display when the cursor is active

hotSpot The cursor’s hot spot (such as the tip of an arrow or
the center of cross hairs)

name A description of the cursor, to support special
accessibility environments

m java.awt.Component 1.0

e public void setCursor(Cursor cursor) 1.1
sets the cursor image to the specified cursor.

The AWT Event Hierarchy

Having given you a taste of how event handling works, we finish this chapter with an over-
view of the AWT event handling architecture.

As we briefly mentioned earlier, event handling in Java is object oriented, with all
events descending from the EventObject class in the java.util package. (The common
superclass is not called Event because that is the name of the event class in the old event
model. Although the old model is now deprecated, its classes are still a part of the Java
library.)

The EventObject class has a subclass AWTEvent, which is the parent of all AWT event classes.
Figure 8-8 shows the inheritance diagram of the AWT events.

Some of the Swing components generate event objects of yet more event types; these
directly extend EventObject, not AwTEvent.

The event objects encapsulate information about the event that the event source com-
municates to its listeners. When necessary, you can then analyze the event objects that
were passed to the listener object, as we did in the button example with the getSource and
getActionCommand methods.

Some of the AWT event classes are of no practical use for the Java programmer. For
example, the AWT inserts PaintEvent objects into the event queue, but these objects are
not delivered to listeners. Java programmers don'’t listen to paint events; they over-
ride the paintComponent method to control repainting. The AWT also generates a number
of events that are needed only by system programmers, to provide input systems for
ideographic languages, automated testing robots, and so on. We do not discuss these
specialized event types.

Chapter 8. Event Handling

m Chapter 8 B Event Handling

Event
Object
e
AWT Event
[| | |
's A
Action Adjustment Component Item
Event Event Event Event
S ——— MI-TI-f T
I [[I
Focus Input Paint Window
Event Event Event Event

‘et et wmwmeETe

Key Mouse
Event i Event

MouseWheel

Event

Figure 8-8 Inheritance diagram of AWT event classes

Semantic and Low-Level Events

The AWT makes a useful distinction between low-level and semantic events. A semantic event
is one that expresses what the user is doing, such as “clicking that button”; hence, anAction-
Event is a semantic event. Low-level events are those events that make this possible. In the case
of a button click, this is a mouse down, a series of mouse moves, and a mouse up (but only if
the mouse up is inside the button area). Or it might be a keystroke, which happens if the user
selects the button with the TAB key and then activates it with the space bar. Similarly, adjusting
a scrollbar is a semantic event, but dragging the mouse is a low-level event.

Chapter 8. Event Handling

The AWT Event Hierarchy

Here are the most commonly used semantic event classes in the java.awt.event package:
e ActionEvent (for a button click, a menu selection, selecting a list item, orENTER typed
in a text field)

e AdjustmentEvent (the user adjusted a scrollbar)

e Itemkvent (the user made a selection from a set of checkbox or list items)
Five low-level event classes are commonly used:

® KeyEvent (a key was pressed or released)

® MouseEvent (the mouse button was pressed, released, moved, or dragged)
e MouseWheelEvent (the mouse wheel was rotated)

* FocusEvent (a component got focus or lost focus)

® WindowEvent (the window state changed)

The following interfaces listen to these events:

ActionListener MouseMotionListener
AdjustmentListener MouseWheelListener
FocusListener WindowListener
TtemListener WindowFocusListener
KeyListener WindowStateListener
MouseListener

Several of the AWT listener interfaces, namely, those that have more than one
method, come with a companion adapter class that implements all the methods in
the interface to do nothing. (The other interfaces have only a single method each,
so there is no benefit in having adapter classes for these interfaces.) Here are the
commonly used adapter classes:

FocusAdapter MouseMotionAdapter
KeyAdapter WindowAdapter
MouseAdapter

Table 8—4 shows the most important AWT listener interfaces, events, and event sources.

The javax.swing.event package contains additional events that are specific to Swing com-
ponents. We cover some of them in the next chapter.

Table 8-4 Event Handling Summary

Parameter/ Events
Interface Methods Accessors Generated By
ActionListener actionPerformed ActionEvent AbstractButton
« getActionCommand JComboBox
« getModifiers JTextField
Timer
AdjustmentListener adjustmentValueChanged AdjustmentEvent JScrollbar

« getAdjustable
« getAdjustmentType
« getValue

Chapter 8. Event Handling

m Chapter 8 B Event Handling

Table 8-4 Event Handling Summary (continued)

Parameter/ Events
Interface Methods Accessors Generated By
TtemListener itemStateChanged TtemEvent AbstractButton
o getItem JComboBox
«+ getItemSelectable
« getStateChange
FocusListener focusGained FocusEvent Component
focusLost « isTemporary
KeyListener keyPressed KeyEvent Component
keyReleased « getKeyChar
keyTyped « getKeyCode
+ getKeyModifiersText
» getKeyText
« isActionKey
MouseListener mousePressed MouseEvent Component
mouseReTeased « getClickCount
mouseEntered o getX
mouseExited o getY
mouseClicked « getPoint
« translatePoint
MouseMotionListener mouseDragged MouseEvent Component
mouseMoved
MouseWheelListener mouseWheeIMoved MouseWhee1Event Component
« getWheeTRotation
« getScrolTAmount
WindowListener windowClosing WindowEvent Window
windowOpened « getWindow
windowIconified
windowDeiconified
windowClosed
windowActivated
windowDeactivated
WindowFocusListener windowGainedFocus WindowEvent Window
windowLostFocus « getOppositeWindow
WindowStateListener windowStateChanged WindowEvent Window

« getOldState
« getNewState

This concludes our discussion of AWT event handling. The next chapter shows you how
to put together the most common of the components that Swing offers, along with a
detailed coverage of the events they generate.

Chapter 9. User Interface Components with Swing

Chapter

USER INTERFACE
COMPONENTS
WITH SWING

SWING AND THE MODEL-VIEW-CONTROLLER DESIGN PATTERN
INTRODUCTION TO LAYOUT MANAGEMENT

TEXT INPUT

CHOICE COMPONENTS

MENUS

SOPHISTICATED LAYOUT MANAGEMENT

DIALOG BOXES

4d 4444 daada

The last chapter was primarily designed to show you how to use the event model
in Java. In the process you took the first steps toward learning how to build a graphical
user interface. This chapter shows you the most important tools you'll need to build
more full-featured GUIs.

We start out with a tour of the architectural underpinnings of Swing. Knowing what
goes on “under the hood” is important in understanding how to use some of the more
advanced components effectively. We then show you how to use the most common user
interface components in Swing such as text fields, radio buttons, and menus. Next, you

361

Chapter 9. User Interface Components with Swing

Chapter 9 B User Interface Components with Swing

will learn how to use the nifty layout manager features of Java to arrange these compo-
nents in a window, regardless of the look and feel of a particular user interface. Finally,
you'll see how to implement dialog boxes in Swing.

This chapter covers basic Swing components such as text components, buttons, and
sliders. These are the essential user interface components that you will need most fre-
quently. We cover advanced Swing components in Volume II.

Swing and the Model-View-Controller Design Pattern

As promised, we start this chapter with a section describing the architecture of Swing
components. We first discuss the concept of design patterns and then look at the “model-
view-controller” pattern that has greatly influenced the design of the Swing framework.

Design Patterns

When solving a problem, you don’t usually figure out a solution from first principles.
Instead, you are likely to be guided by past experience, or you may ask other experts for
advice on what has worked for them. Design patterns are a method for presenting this
expertise in a structured way.

In recent years, software engineers have begun to assemble catalogs of such patterns.
The pioneers in this area were inspired by the architectural design patterns of the archi-
tect Christopher Alexander. In his book, The Timeless Way of Building (Oxford University
Press, 1979), Alexander gives a catalog of patterns for designing public and private liv-
ing spaces. Here is a typical example:

Window Place

Everybody loves window seats, bay windows, and big windows with low sills and comfortable
chairs drawn up to them . .. A room which does not have a place like this seldom allows you to feel
comfortable or perfectly at ease . . .

If the room contains no window which is a “place,” a person in the room will be torn between two
forces: (1) He wants to sit down and be comfortable, and (2) he is drawn toward the light.

Obviously, if the comfortable places—those places in the room where you most want to sit—are
away from the windows, there is no way of overcoming this conflict . ..

Therefore: In every room where you spend any length of time during the day, make at least one
window into a “window place.”

low
sill
place

R

Figure 9-1 A window place

Chapter 9. User Interface Components with Swing

Swing and the Model-View-Controller Design Pattern

Each pattern in Alexander’s catalog, as well as those in the catalogs of software patterns,
follows a particular format. The pattern first describes a context, a situation that gives
rise to a design problem. Then, the problem is explained, usually as a set of conflicting
forces. Finally, the solution shows a configuration that balances these forces.

In the “window place” pattern, the context is a room in which you spend any length of
time during the day. The conflicting forces are that you want to sit down and be com-
fortable and that you are drawn to the light. The solution is to make a “window place.”

In the “model-view-controller” pattern, which we will describe in the next section, the
context is a user interface system that presents information and receives user input.
There are several forces. There may be multiple visual representations of the same data
that need to be updated together. The visual representation may change, for example, to
accommodate various look-and-feel standards. The interaction mechanisms may
change, for example, to support voice commands. The solution is to distribute responsi-
bilities into three separate interacting components: the model, view, and controller.

The model-view-controller pattern is not the only pattern used in the design of AWT
and Swing. Here are several additonal examples:

¢ Containers and components are examples of the “composite” pattern.
® The scroll pane is a “decorator.”
¢ Layout managers follow the “strategy” pattern.

One important aspect of design patterns is that they become part of the culture. Pro-
grammers all over the world know what you mean when you talk about the model-
view-controller pattern or the “decorator” pattern. Thus, patterns become an efficient
way of talking about design problems.

You will find a formal description of numerous useful software patterns in the seminal
book of the pattern movement, Design Patterns—Elements of Reusable Object-Oriented
Software, by Erich Gamma et al. (Addison-Wesley, 1995). We also highly recommend the
excellent book A System of Patterns by Frank Buschmann et al. (John Wiley & Sons, 1996),
which we find less seminal and more approachable.

The Model-View-Controller Pattern

Let’s step back for a minute and think about the pieces that make up a user interface
component such as a button, a checkbox, a text field, or a sophisticated tree control.
Every component has three characteristics:

e Its content, such as the state of a button (pushed in or not), or the text in a text field
» Its visual appearance (color, size, and so on)
e [ts behavior (reaction to events)

Even a seemingly simple component such as a button exhibits some moderately com-
plex interaction among these characteristics. Obviously, the visual appearance of a but-
ton depends on the look and feel. A Metal button looks different from a Windows
button or a Motif button. In addition, the appearance depends on the button state:
When a button is pushed in, it needs to be redrawn to look different. The state depends
on the events that the button receives. When the user depresses the mouse inside the
button, the button is pushed in.

Chapter 9. User Interface Components with Swing

Chapter 9 B User Interface Components with Swing

Of course, when you use a button in your programs, you simply consider it as a button,
and you don’t think too much about the inner workings and characteristics. That, after
all, is the job of the programmer who implemented the button. However, those pro-
grammers who implement buttons are motivated to think a little harder about them.
After all, they have to implement buttons, and all other user interface components, so
that they work well no matter what look and feel is installed.

To do this, the Swing designers turned to a well-known design pattern: the model-view-
controller pattern. This pattern, like many other design patterns, goes back to one of the
principles of object-oriented design that we mentioned way back in Chapter 5: Don’t
make one object responsible for too much. Don’t have a single button class do every-
thing. Instead, have the look and feel of the component associated with one object and
store the content in another object. The model-view-controller (MVC) design pattern
teaches how to accomplish this. Implement three separate classes:

e The model, which stores the content
® The view, which displays the content
e The controller, which handles user input

The pattern specifies precisely how these three objects interact. The model stores the con-
tent and has no user interface. For a button, the content is pretty trivial—just a small set of
flags that tells whether the button is currently pushed in or out, whether it is active or
inactive, and so on. For a text field, the content is a bit more interesting. It is a string object
that holds the current text. This is not the same as the view of the content—if the content is
larger than the text field, the user sees only a portion of the text displayed (see Figure 9-2).

model "The quick brown fox jumps over the lazy dog"

view |brown [for jump

Figure 9-2 Model and view of a text field

The model must implement methods to change the content and to discover what the con-
tent is. For example, a text model has methods to add or remove characters in the current
text and to return the current text as a string. Again, keep in mind that the model is com-

pletely nonvisual. It is the job of a view to draw the data that is stored in the model.

NOTE: The term “model” is perhaps unfortunate because we often think of a model as a

representation of an abstract concept. Car and airplane designers build models to simulate
real cars and planes. But that analogy really leads you astray when thinking about the
model-view-controller pattern. In the design pattern, the model stores the complete content,
and the view gives a (complete or incomplete) visual representation of the content. A better
analogy might be the model who poses for an artist. It is up to the artist to look at the model
and create a view. Depending on the artist, that view might be a formal portrait, an impres-
sionist painting, or a cubist drawing that shows the limbs in strange contortions.

Chapter 9. User Interface Components with Swing

Swing and the Model-View-Controller Design Pattern m

One of the advantages of the model-view-controller pattern is that a model can have mul-
tiple views, each showing a different part or aspect of the full content. For example, an
HTML editor can offer two simultaneous views of the same content: a WYSIWYG view and
a “raw tag” view (see Figure 9-3). When the model is updated through the controller of
one of the views, it tells both attached views about the change. When the views are noti-
fied, they refresh themselves automatically. Of course, for a simple user interface compo-
nent such as a button, you won’t have multiple views of the same model.

[T 71 [Ty |<P>m LT TRRTTTERTRTS
{
WYSIWG | 1. inluliasl e ital tag | T [T] [ESTTOT

view il iaalile s

\
|
1‘ mhnln sl
|

2 lnluliaatiiiaatia
3 ol 0 aatlitiantta

Figure 9-3 Two separate views of the same model

The controller handles the user-input events such as mouse clicks and keystrokes. It
then decides whether to translate these events into changes in the model or the view.
For example, if the user presses a character key in a text box, the controller calls the
“insert character” command of the model. The model then tells the view to update itself.
The view never knows why the text changed. But if the user presses a cursor key, then
the controller may tell the view to scroll. Scrolling the view has no effect on the underly-
ing text, so the model never knows that this event happened.

Figure 9—4 shows the interactions among model, view, and controller objects.

As a programmer using Swing components, you generally don’t need to think about the
model-view-controller architecture. Each user interface component has a wrapper class
(such as JButton or JTextField) that stores the model and the view. When you want to inquire
about the content (for example, the text in a text field), the wrapper class asks the model

Chapter 9. User Interface Components with Swing

m Chapter 9 B User Interface Components with Swing

and returns the answer to you. When you want to change the view (for example, move the
caret position in a text field), the wrapper class forwards that request to the view. How-
ever, occasionally the wrapper class doesn’t work hard enough on forwarding commands.
Then, you have to ask it to retrieve the model and work directly with the model. (You
don’t have to work directly with the view—that is the job of the look-and-feel code.)

-

paint view

read content

»
>

[|

.------------.C.__________

update content

\

content changed

]
]
]
]
]
]
]
]
]
'
H
]
1 <
D
]
]
]
]
]
]
1
]
]
]
]
1

-
1
]
ey

update view

Figure 9-4 Interactions among model, view, and controller objects

Besides being “the right thing to do,” the model-view-controller pattern was attractive
for the Swing designers because it allowed them to implement pluggable look and feel.
The model of a button or text field is independent of the look and feel. But of course the
visual representation is completely dependent on the user interface design of a particu-
lar look and feel. The controller can vary as well. For example, in a voice-controlled
device, the controller must cope with an entirely different set of events than in a stan-
dard computer with a keyboard and a mouse. By separating out the underlying model

Chapter 9. User Interface Components with Swing

Swing and the Model-View-Controller Design Pattern 367

from the user interface, the Swing designers can reuse the code for the models and can
even switch the look and feel in a running program.

Of course, patterns are only intended as guidance, not as religion. No pattern is applica-
ble in all situations. For example, you may find it difficult to follow the “window
places” pattern to rearrange your cubicle. Similarly, the Swing designers found that the
harsh reality of pluggable look-and-feel implementation does not always allow for a
neat realization of the model-view-controller pattern. Models are easy to separate, and
each user interface component has a model class. But the responsibilities of the view
and controller are not always clearly separated and are distributed over a number of dif-
ferent classes. Of course, as a user of these classes, you won't be concerned about this. In
fact, as we pointed out before, you often won’t have to worry about the models either—
you can just use the component wrapper classes.

A Model-View-Controller Analysis of Swing Buttons

You already learned how to use buttons in the previous chapter, without having to
worry about the controller, model, or view for them. Still, buttons are about the simplest
user interface elements, so they are a good place to become comfortable with the model-
view-controller pattern. You will encounter similar kinds of classes and interfaces for
the more sophisticated Swing components.

For most components, the model class implements an interface whose name ends in
Model; thus the interface called ButtonModel. Classes implementing that interface can define
the state of the various kinds of buttons. Actually, buttons aren’t all that complicated,
and the Swing library contains a single class, called DefaultButtonModel, that implements
this interface.

You can get a sense of what sort of data are maintained by a button model by looking at
the properties of the ButtonModel interface—see Table 9-1.

Table 9-1 Properties of the ButtonMode]l Interface

Property Name Value

actionCommand The action command string associated with this button

mnemonic The keyboard mnemonic for this button

armed true if the button was pressed and the mouse is still over the button

enabTed true if the button is selectable

pressed true if the button was pressed but the mouse button hasn’t yet been
released

rollover true if the mouse is over the button

selected true if the button has been toggled on (used for checkboxes and

radio buttons)

Chapter 9. User Interface Components with Swing

Chapter 9 B User Interface Components with Swing

Each JButton object stores a button model object, which you can retrieve.

JButton button = new JButton("Blue");

ButtonModel model = button.getModel();
In practice, you won’t care—the minutiae of the button state are only of interest to
the view that draws it. And the important information—such as whether a button is
enabled—is available from the JButton class. (The JButton then asks its model, of course, to
retrieve that information.)

Have another look at the ButtonModel interface to see what isn’t there. The model does not
store the button label or icon. There is no way to find out what’s on the face of a button
just by looking at its model. (Actually, as you will see in “Radio Buttons” on page 388,
purity of design is the source of some grief for the programmer.)

It is also worth noting that the same model (namely, DefaultButtonModel) is used for push
buttons, radio buttons, checkboxes, and even menu items. Of course, each of these but-
ton types has different views and controllers. When using the Metal look and feel, the
JButton uses a class called BasicButtonUI for the view and a class called ButtonUIListener as
controller. In general, each Swing component has an associated view object that ends in
UL But not all Swing components have dedicated controller objects.

So, having read this short introduction to what is going on under the hood in aJButton,
you may be wondering: Just what is a JButton really? It is simply a wrapper class inherit-
ing from JComponent that holds the DefaultButtonModel object, some view data (such as the
button label and icons), and a BasicButtonUI object that is responsible for the button view.

Introduction to Layout Management

Before we go on to discussing individual Swing components, such as text fields and
radio buttons, we briefly cover how to arrange these components inside a frame. Unlike
Visual Basic, the JDK has no form designer. You need to write code to position (lay out)
the user interface components where you want them to be.

Of course, if you have a Java-enabled development environment, it will probably have a
layout tool that automates some or all of these tasks. Nevertheless, it is important to
know exactly what goes on “under the hood” because even the best of these tools will
usually require hand-tweaking.

Let’s start by reviewing the program from Chapter 8 that used buttons to change the
background color of a frame (see Figure 9-5).

B |ButtonTest ’:’Em

| Yellow || Elue || Red |

Figure 9-5 A panel with three buttons

Chapter 9. User Interface Components with Swing

Introduction to Layout Management m

The buttons are contained in a JPanel object and are managed by the flow layout man-
ager, the default layout manager for a panel. Figure 9-6 shows what happens when
you add more buttons to the panel. As you can see, a new row is started when there
is no more room.

B ButtonTest ’:EE

| Yellow || Blue H Red || Green |

| Orange H Fuchsia |

Figure 9-6 A panel with six buttons managed by a flow layout

Moreover, the buttons stay centered in the panel, even when the user resizes the frame
(see Figure 9-7).

B |[Button E’EW

| Orange || Fuchsia |

Figure 9-7 Changing the panel size rearranges the buttons automatically

In general, components are placed inside containers, and a layout manager determines the
positions and sizes of the components in the container.

Buttons, text fields, and other user interface elements extend the classComponent. Compo-
nents can be placed inside containers such as panels. Because containers can themselves
be put inside other containers, the class Container extends Component. Figure 9-8 shows the
inheritance hierarchy for Component.

NOTE: Unfortunately, the inheritance hierarchy is somewhat unclean in two respects. First,
top-level windows such as JFrame are subclasses of Container and hence Component, but they
cannot be placed inside other containers. Moreover, JComponent is a subclass of Container not
Component, and therefore one can add other components into a JButton. (However, those com-
ponents would not be displayed.)

Chapter 9. User Interface Components with Swing

370

Chapter 9 B User Interface Components with Swing

Object

Component

H

Container

A\

A

JText
Component

-
i
JLabel JScrollPane JComboBox | Abstract [JMenuBar
F Button

e e e b

‘ JButton i JToggle JMenultem
Button
T ———— T L]

Figure 9-8 Inheritance hierarchy for the Component class

Each container has a default layout manager, but you can always set your own. For
example, the statement

panel.setlLayout(new GridLayout(4, 4));
uses the GridLayout class to lay out the components in the panel. You add components to
the container. The add method of the container passes the component and any placement
directions to the layout manager.

java.awt.Container 1.0

e void setlLayout(LayoutManager m)
sets the layout manager for this container.

e (Component add(Component c)
e Component add(Component ¢, Object constraints) 1.1

adds a component to this container and returns the component reference.
Parameters: 4 The component to add

constraints An identifier understood by the layout manager

Chapter 9. User Interface Components with Swing

Introduction to Layout Management 371
java.awt.FlowLayout 1.0

e FlowLayout()
e FlowLayout(int align)
e FlowLayout(int align, int hgap, int vgap)

constructs a new FlowLayout.

Parameters: align One of LEFT, CENTER, or RIGHT

hgap The horizontal gap to use in pixels (negative values

force an overlap)

vgap The vertical gap to use in pixels (negative values
force an overlap)

Border Layout

The border layout manager is the default layout manager of the content pane of every
JFrame. Unlike the flow layout manager, which completely controls the position of each
component, the border layout manager lets you choose where you want to place each
component. You can choose to place the component in the center, north, south, east, or
west of the content pane (see Figure 9-9).

North

West Center East

South

Figure 9-9 Border layout

For example:

frame.add(component, BorderLayout.SOUTH);
The edge components are laid out first, and the remaining available space is occupied
by the center. When the container is resized, the dimensions of the edge components are
unchanged, but the center component changes its size. You add components by specify-
ing a constant CENTER, NORTH, SOUTH, EAST, or WEST of the BorderLayout class. Not all of the posi-
tions need to be occupied. If you don’t supply any value, CENTER is assumed.

NOTE: The BorderLayout constants are defined as strings. For example, BorderLayout.SOUTH is

u defined as the string "South". Many programmers prefer to use the strings directly because
they are shorter, for example, frame.add(component, "South"). However, if you accidentally
misspell a string, the compiler won’t catch that error.

Chapter 9. User Interface Components with Swing

372

Chapter 9 B User Interface Components with Swing

Unlike the flow layout, the border layout grows all components to fill the available
space. (The flow layout leaves each component at its preferred size.) This is a problem
when you add a button:

frame.add(yellowButton, BorderLayout.SOUTH); // don't
Figure 9-10 shows what happens when you use the preceding code fragment. The but-
ton has grown to fill the entire southern region of the frame. And, if you were to add
another button to the southern region, it would just displace the first button.

B ButtonTest ’:’Eﬁ

Yellow
I I

Figure 9-10 A single button managed by a border layout

You solve this problem by using additional panels. For example, look at Figure 9-11. The
three buttons at the bottom of the screen are all contained in a panel. The panel is put into
the southern region of the content pane.

B [ButtonTest EEK

‘ Yellow || Elue || Red |

Figure 9-11 Panel placed at the southern region of the frame

To achieve this configuration, first create a new JPanel object, then add the individual but-
tons to the panel. The default layout manager for a panel is a FlouLayout, which is a good
choice for this situation. You add the individual buttons to the panel, using the add method
you have seen before.The position and size of the buttons is under the control of the FlowLay-
out manager. This means the buttons stay centered within the panel, and they do not expand
to fill the entire panel area. Finally, you add the panel to the content pane of the frame.

JPanel panel = new JPanel();

panel.add(yelTlowButton);

panel.add(blueButton);

panel.add(redButton);

frame.add(panel, BorderLayout.SOUTH);

The border layout expands the size of the panel to fill the entire southern region.

Chapter 9. User Interface Components with Swing

Introduction to Layout Management

m java.awt.Borderlayout 1.0

e BorderLayout()
e BorderlLayout(int hgap, int vgap)
constructs a new BorderLayout.
Parameters: hgap The horizontal gap to use in pixels (negative values
force an overlap)

vgap The vertical gap to use in pixels (negative values
force an overlap)

Grid Layout

The grid layout arranges all components in rows and columns like a spreadsheet. All
components are given the same size. The calculator program in Figure 9-12 uses a grid
layout to arrange the calculator buttons. When you resize the window, the buttons grow
and shrink, but all buttons have identical sizes.

B Calculator |_|O[X

7 8 9 "
4 3 6 =

1 2 3 =

0 = =
I I

Figure 9-12 A calculator

In the constructor of the grid layout object, you specify how many rows and columns you
need.

panel.setlLayout(new GridLayout(5, 4));

You add the components, starting with the first entry in the first row, then the second
entry in the first row, and so on.

panel.add(new JButton("1"));

panel.add(new JButton("2"));
Listing 9-1 is the source listing for the calculator program. This is a regular calculator,
not the “reverse Polish” variety that is so oddly popular in Java tutorials. In this pro-
gram, we call the pack method after adding the component to the frame. This method
uses the preferred sizes of all components to compute the width and height of the frame.

Of course, few applications have as rigid a layout as the face of a calculator. In prac-
tice, small grids (usually with just one row or one column) can be useful to organize
partial areas of a window. For example, if you want to have a row of buttons with
identical size, then you can put the buttons inside a panel that is governed by a grid
layout with a single row.

373

Chapter 9. User Interface Components with Swing

374 Chapter 9 B User Interface Components with Swing

Listing 9-1 [JEUNEEE

. import java.awt.x;
. import java.awt.event.s;
. import javax.swing.x;

*

@version 1.33 2007-06-12
« @author Cay Horstmann

1
2
3
4.
5./
6
7
8
o

. public class Calculator
10. {
1. public static void main(String[] args)
12, {
13. EventQueue.invokeLater(new Runnable()
14.
15. public void run()
16.
17. CalculatorFrame frame = new CalculatorFrame();
18. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
19. frame.setVisible(true);
20. }
21. b
22. }
23. }
24.
25. [ux
2. + A frame with a calculator panel.
27,/
28. class CalculatorFrame extends JFrame
20. {
30. public CalculatorFrame()
31. {
32. setTitle("Calculator");
33. CalculatorPanel panel = new CalculatorPanel();
34. add(panel);
35. pack();
36. }
37. }
38.
3. [#%
4. + A panel with calculator buttons and a result display.
. %/
42. class CalculatorPanel extends JPanel
43 {
44. public CalculatorPanel()
5. {
46. setLayout(new BorderLayout());
47.
48. result = 0;
49. TastCommand = "=";

50. start = true;

Chapter 9. User Interface Components with Swing

Introduction to Layout Management

Calculator.java (continued)

51.
52.

53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.

}

[

o
%*

o

%/

// add the display

display = new JButton("0");
display.setEnabled(false);
add(display, BorderLayout.NORTH);

ActionListener insert = new InsertAction();
ActionListener command = new CommandAction();

// add the buttons in a 4 x 4 grid

panel = new JPanel();
panel.setLayout(new GridLayout(4, 4));

addButton("7", insert);
addButton("8", insert);
addButton("9", insert);
addButton("/", command);
addButton("4", insert);
addButton("S", insert);
addButton("B" insert);
addButton("+", command);
addButton("1", insert);
addButton("2", insert);
addButton("3", insert);
addButton("-", command);
addButton("0", insert);
addButton(".", insert);
addButton("=", command);
addButton("+", command);

add(panel, BorderlLayout.CENTER)

¢ Adds a button to the center panel.

@param Tabel the button Tabel
@param Tistener the button Tistener

private void addButton(String label, ActionListener Tistener)

{

}

JButton button = new JButton(Tabel);
button.addActionListener(Tistener);
panel.add(button);

375

Chapter 9. User Interface Components with Swing

376 Chapter 9 B User Interface Components with Swing

Calculator.java (continued)

101, [k

102. + This action inserts the button action string to the end of the display text.
103, %/

104, private class InsertAction implements ActionlListener
105. |

106. public void actionPerformed(ActionEvent event)

107. {

108. String input = event.getActionCommand();

109. if (start)

110. {

111, display.setText("");

112, start = false;

113. }

114, display.setText(display.getText() + input);

115. }

116. }

117.

118, [x

119, + This action executes the command that the button action string denotes.
120. #/

121, private class CommandAction implements ActionListener
122, |

123. public void actionPerformed(ActionEvent event)

124. {

125. String command = event.getActionCommand();

126.

127. if (start)

128.

129. if (command.equals("-"))

130.

131. display.setText(command);

132, start = false;

133. }

134, else TastCommand = command;

135. }

136. else

137. {

138. calculate(Double.parseDouble(display.getText()));
139. TastCommand = command;

140. start = true;

141. }

142. }

143}

144.

145, [xx

146. « Carries out the pending calculation.

147, + @param x the value to be accumulated with the prior result.

148. 5/
149. public void calculate(double x)
150. |

Chapter 9. User Interface Components with Swing

Text Input 377

Calculator.java (continued)

151, if (TastCommand.equals("+")) result += x;

152, else if (TastCommand.equals("-")) result -= x;
153, else if (TastCommand.equals("+")) result = x;
154, else if (TastCommand.equals("/")) result /= x;
155. else if (TastCommand.equals("=")) result = x;
156. display.setText("" + result);

157. }

158.

1s9. private JButton display;
160. private JPanel panel;

161, private double result;

162, private String TastCommand;
163, private boolean start;

164. }

java.awt.GridLayout 1.0

e GridLayout(int rows, int columns)

® (GridLayout(int rows, int columns, int hgap, int vgap)
constructs a new GridLayout. One of rows and columns (but not both) may be zero,
denoting an arbitrary number of components per row or column.

Parameters: rows The number of rows in the grid
colurmns The number of columns in the grid
hgap The horizontal gap to use in pixels (negative values

force an overlap)
vgap The vertical gap to use in pixels (negative values
force an overlap)

m java.awt.Window 1.0

e void pack()
resizes this window, taking into account the preferred sizes of its components.

Text Input

We are finally ready to start introducing the Swing user interface components. We start
with components that let a user input and edit text. You can use theJTextField and JText-
Area components for gathering text input. A text field can accept only one line of text; a

text area can accept multiple lines of text. A JPasswordField accepts one line of text without
showing the contents.

All three of these classes inherit from a class called JTextComponent. You will not be able to
construct a JTextComponent yourself because it is an abstract class. On the other hand, as is
s0 often the case in Java, when you go searching through the API documentation, you
may find that the methods you are looking for are actually in the parent class JTextCompo-
nent rather than in the derived class. For example, the methods that get or set the text in
a text field or text area are actually methods in JTextComponent.

Chapter 9. User Interface Components with Swing

378

Chapter 9 B User Interface Components with Swing

m javax.swing. text.JTextComponent 1.2

e String getText()

e void setText(String text)
gets or sets the text of this text component.

e hoolean isEditable()

e void setEditable(boolean b)
gets or sets the editable property that determines whether the user can edit the
content of this text component.

Text Fields
The usual way to add a text field to a window is to add it to a panel or other container—
just as you would a button:

JPanel panel = new JPanel();

JTextField textField = new JTextField("Default input", 20);

panel.add(textField);
This code adds a text field and initializes the text field by placing the string"Default input"
inside it. The second parameter of this constructor sets the width. In this case, the width
is 20 “columns.” Unfortunately, a column is a rather imprecise measurement. One col-
umn is the expected width of one character in the font you are using for the text. The idea
is that if you expect the inputs to be n characters or less, you are supposed to specify 1 as
the column width. In practice, this measurement doesn’t work out too well, and you
should add 1 or 2 to the maximum input length to be on the safe side. Also, keep in mind
that the number of columns is only a hint to the AWT that gives the preferred size. If the
layout manager needs to grow or shrink the text field, it can adjust its size. The column
width that you set in the JTextField constructor is not an upper limit on the number of
characters the user can enter. The user can still type in longer strings, but the input scrolls
when the text exceeds the length of the field. Users tend to find scrolling text fields irritat-
ing, so you should size the fields generously. If you need to reset the number of columns
at runtime, you can do that with the setColums method.

TIP: After changing the size of a text box with the setColumns method, call the revalidate
method of the surrounding container.

textField.setColumns(10);
panel.revalidate();

The revalidate method recomputes the size and layout of all components in a container.
After you use the revalidate method, the layout manager resizes the container, and the
changed size of the text field will be visible.

The revalidate method belongs to the JComponent class. It doesn’t immediately resize the
component but merely marks it for resizing. This approach avoids repetitive calculations
if multiple components request to be resized. However, if you want to recompute all
components inside a JFrame, you have to call the validate method—1IFrame doesn’t extend
JComponent.

Chapter 9. User Interface Components with Swing

Text Input 379

In general, you want to let the user add text (or edit the existing text) in a text field.
Quite often these text fields start out blank. To make a blank text field, just leave out the
string as a parameter for the JTextField constructor:
JTextField textField = new JTextField(20);
You can change the content of the text field at any time by using thesetText method from
the JTextComponent parent class mentioned in the previous section. For example:
textField.setText("Hello!");
And, as was also mentioned in the previous section, you can find out what the user
typed by calling the getText method. This method returns the exact text that the user
typed. To trim any extraneous leading and trailing spaces from the data in a text field,
apply the trim method to the return value of getText:
String text = textField.getText().trim();
To change the font in which the user text appears, use the setFont method.

APII javax.swing.JTextField 1.2

e JTextField(int cols)
constructs an empty JTextField with a specified number of columns.
e JTextField(String text, int cols)
constructs a new JTextField with an initial string and the specified number
of columns.
e int getColumns()
e void setColumns(int cols)
gets or sets the number of columns that this text field should use.

API I javax.swing.JComponent 1.2

e void revalidate()

causes the position and size of a component to be recomputed.
e void setFont(Font f)

sets the font of this component.

java.awt.Component 1.0

e void validate()
recomputes the position and size of a component. If the component is a container,
the positions and sizes of its components are recomputed.

e Font getFont()
gets the font of this component.

Labels and Labeling Components

Labels are components that hold text. They have no decorations (for example, no
boundaries). They also do not react to user input. You can use a label to identify compo-
nents. For example, unlike buttons, text fields have no label to identify them. To label a
component that does not itself come with an identifier:

Chapter 9. User Interface Components with Swing

m Chapter 9 B User Interface Components with Swing

1. Construct a JLabel component with the correct text.
2. Place it close enough to the component you want to identify so that the user can see
that the label identifies the correct component.

The constructor for a JLabel lets you specify the initial text or icon, and optionally,
the alignment of the content. You use constants from the SwingConstants interface to
specify alignment. That interface defines a number of useful constants such as LEFT,
RICHT, CENTER, NORTH, EAST, and so on. The JLabel class is one of several Swing classes that
implement this interface. Therefore, you can specify a right-aligned label either as
JLabel Tabel = new JLabel("User name: ", SwingConstants.RIGHT);
or
JLabel Tabel = new JLabel("User name: ", JLabel.RIGHT);

The setText and setIcon methods let you set the text and icon of the label at runtime.

menu items. We don’t recommend HTML in buttons—it interferes with the look and feel. But
HTML in labels can be very effective. Simply surround the label string with <htm1>. . .</html>,
like this:

Tabel = new JLabel("<html>Required entry:</html>");

m TIP: Beginning with Java SE 1.3, you can use both plain and HTML text in buttons, labels, and

Fair warning—the first component with an HTML label takes some time to be displayed
because the rather complex HTML rendering code must be loaded.

Labels can be positioned inside a container like any other component. This means you
can use the techniques you have seen before to place labels where you need them.

m javax.swing.JLabel 1.2

JLabel(String text)

JLabel(Icon icon)

JLabel(String text, int align)
JLabel(String text, Icon icon, int align)
constructs a label.

Parameters: text The text in the label
icon The icon in the label
align One of the SwingConstants constants LEFT (default),
CENTER, or RICHT

e String getText()
e void setText(String text)
gets or sets the text of this label.
e Tcon getIcon()
e void setIcon(Icon icon)
gets or sets the icon of this label.

Chapter 9. User Interface Components with Swing

Text Input m

Password Fields

Password fields are a special kind of text field. To avoid nosy bystanders being able to
glance at a password, the characters that the user entered are not actually displayed.
Instead, each typed character is represented by an echo character, typically an asterisk ().
Swing supplies a JPasswordField class that implements such a text field.

The password field is another example of the power of the model-view-controller archi-
tecture pattern. The password field uses the same model to store the data as a regular
text field, but its view has been changed to display all characters as echo characters.

m javax.swing.JPasswordField 1.2

e JPasswordField(String text, int columns)
constructs a new password field.

e void setEchoChar(char echo)
sets the echo character for this password field. This is advisory; a particular look
and feel may insist on its own choice of echo character. A value of 0 resets the echo
character to the default.

e char[] getPassword()
returns the text contained in this password field. For stronger security, you should
overwrite the content of the returned array after use. (The password is not
returned as a String because a string would stay in the virtual machine until it is
garbage-collected.)

Text Areas

Sometimes, you need to collect user input that is more than one line long. As mentioned
earlier, you use the JTextArea component for this collection. When you place a text area
component in your program, a user can enter any number of lines of text, using the
ENTER key to separate them. Each line ends with a '\n'. Figure 9-13 shows a text area at
work.

B|TextComponentTest |[_[0[x

User name: |troo

Password: (eeese ..
lUser name: troosevelt Password: jabberwock

4] it] D

Insert

Figure 9-13 Text components

Chapter 9. User Interface Components with Swing

Chapter 9 B User Interface Components with Swing

In the constructor for the JTextArea component, you specify the number of rows and
columns for the text area. For example,

textArea = new JTextArea(8, 40); // 8 Tines of 40 columns each

where the colums parameter works as before—and you still need to add a few more
columns for safety’s sake. Also, as before, the user is not restricted to the number of
rows and columns; the text simply scrolls when the user inputs too much. You can
also use the setColums method to change the number of columns, and the setRows
method to change the number of rows. These numbers only indicate the preferred
size—the layout manager can still grow or shrink the text area.

If there is more text than the text area can display, then the remaining text is simply
clipped. You can avoid clipping long lines by turning on line wrapping:
textArea.setLineWrap(true); // Tong Tines are wrapped

This wrapping is a visual effect only; the text in the document is not changed—no'\n'
characters are inserted into the text.

Scroll Panes
In Swing, a text area does not have scrollbars. If you want scrollbars, you have to insert
the text area inside a scroll pane.

textArea = new JTextArea(8, 40);

JScrol1Pane scrollPane = new JScrollPane(textArea);
The scroll pane now manages the view of the text area. Scrollbars automatically appear
if there is more text than the text area can display, and they vanish again if text is deleted
and the remaining text fits inside the area. The scrolling is handled internally in the
scroll pane— your program does not need to process scroll events.
This is a general mechanism that works for any component, not just text areas. To add
scrollbars to a component, put them inside a scroll pane.
Listing 9-2 demonstrates the various text components. This program simply shows a
text field, a password field, and a text area with scrollbars. The text field and password
field are labeled. Click on “Insert” to insert the field contents into the text area.

To display formatted text (such as HTML), you can use the JEditorPane class that is dis-
cussed in Volume 1.

u NOTE: The JTextArea component displays plain text only, without special fonts or formatting.

TR R R0 I TextComponentTest. java

1. import java.awt.s;
. import java.awt.event.s;
. import javax.swing.s;

+ @version 1.40 2007-04-27
x @author Cay Horstmann

%/

2
3
4.
5. [x%
6
7
8

Chapter 9. User Interface Components with Swing

Text Input m

B T151 T 2 TextComponentTest.java (continued)

9. pubTic class TextComponentTest

10. {

1. public static void main(String[] args)

12. {

13. EventQueue.invokeLater(new Runnable()

14. {

15. pubTic void run()

16. {

17. TextComponentFrame frame = new TextComponentFrame();
18. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
19. frame.setVisible(true);

25 [wx
2. + A frame with sample text components.
27. %/
28. Class TextComponentFrame extends JFrame

30. public TextComponentFrame()

31. {

32. setTitle("TextComponentTest");

33. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

34.

35. final JTextField textField = new JTextField();

36. final JPasswordField passwordField = new JPasswordField();
37.

38. JPanel northPanel = new JPanel();

39. northPanel.setlLayout(new GridLayout(2, 2));

40. northPanel.add(new JLabel("User name: ", SwingConstants.RICHT));
. northPanel.add(textField);

42. northPanel.add(new JLabel("Password: ", SwingConstants.RIGHT));
43. northPanel.add(passwordField);

44,

45. add(northPanel, BorderlLayout.NORTH);

46.

47. final JTextArea textArea = new JTextArea(8, 40);

48. JScrol1Pane scrollPane = new]ScrollPane(textArea);

49.

50. add(scrol1Pane, BorderLayout.CENTER);

51.

52. // add button to append text into the text area

53.

54. JPanel southPanel = new JPanel();

55.

56. JButton insertButton = new JButton("Insert");

57. southPanel.add(insertButton);

Chapter 9. User Interface Components with Swing

m Chapter 9 B User Interface Components with Swing

IR TT50 Tl 2V TextComponentTest.java (continued)

58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75}

insertButton.addActionListener(new ActionListener()

{
public void actionPerformed(ActionEvent event)
{
textArea.append("User name: " + textField.getText() + " Password: "
+ new String(passwordField.getPassword()) + "\n");
}
b;

add(southPanel, BorderLayout.SOUTH);
// add a text area with scrollbars

}

public static final int DEFAULT_WIDTH = 300;
public static final int DEFAULT_HEIGHT = 300;

javax.swing.JTextArea 1.2

JTextArea()

JTextArea(int rows, int cols)

JTextArea(String text, int rows, int cols)

constructs a new text area.

void setColumns(int cols)

tells the text area the preferred number of columns it should use.

void setRows(int rows)

tells the text area the preferred number of rows it should use.

void append(String newText)

appends the given text to the end of the text already in the text area.

void setLineWrap(boolean wrap)

turns line wrapping on or off.

void setWrapStyleWord(boolean word)

If word is true, then long lines are wrapped at word boundaries. If it isfalse, then
long lines are broken without taking word boundaries into account.

void setTabSize(int c)

sets tab stops every ¢ columns. Note that the tabs aren’t converted to spaces but
cause alignment with the next tab stop.

javax.swing.JScrol1Pane 1.2

JScro11Pane(Component c)
creates a scroll pane that displays the content of the specified component.
Scrollbars are supplied when the component is larger than the view.

Chapter 9. User Interface Components with Swing

Choice Components

Choice Components

You now know how to collect text input from users, but there are many occasions for
which you would rather give users a finite set of choices than have them enter the data
in a text component. Using a set of buttons or a list of items tells your users what choices
they have. (It also saves you the trouble of error checking.) In this section, you learn
how to program checkboxes, radio buttons, lists of choices, and sliders.

Checkboxes

If you want to collect just a “yes” or “no” input, use a checkbox component. Checkboxes
automatically come with labels that identify them. The user usually checks the box by
clicking inside it and turns off the check mark by clicking inside the box again. To toggle
the check mark, the user can also press the space bar when the focus is in the checkbox.
Figure 9-14 shows a simple program with two checkboxes, one to turn on or off the
italic attribute of a font, and the other for boldface. Note that the second checkbox has
focus, as indicated by the rectangle around the label. Each time the user clicks one of the
checkboxes, the screen is refreshed, using the new font attributes.

BCheckBoxtest |[_[O[X

The quick brown fox jumps over the lazy dog.

[] Bold halic

Figure 9-14 Checkboxes

Checkboxes need a label next to them to identify their purpose. You give the label text in
the constructor.
bold = new JCheckBox("Bold");
You use the setSelected method to turn a checkbox on or off. For example:
bold.setSelected(true);
The isSelected method then retrieves the current state of each checkbox. It isfalse if
unchecked; true if checked.
When the user clicks on a checkbox, this triggers an action event. As always, you attach

an action listener to the checkbox. In our program, the two checkboxes share the same
action listener.

ActionListener listener = . . .

bold.addActionListener(listener);

italic.addActionListener(Tistener);
The actionPerformed method queries the state of the bold and italic checkboxes and sets the
font of the panel to plain, bold, italic, or both bold and italic.

Chapter 9. User Interface Components with Swing

m Chapter 9 B User Interface Components with Swing

public void actionPerformed(ActionEvent event)
{
int mode = 0;
if (bold.isSelected()) mode += Font.BOLD;
if (italic.isSelected()) mode += Font.ITALIC;
Tabel.setFont(new Font("Serif", mode, FONTSIZE));
}

Listing 9-3 is the complete program listing for the checkbox example.

IRTT50 T e 2 I CheckBoxTest. java

1. import java.awt.s;
2. import java.awt.event.:;
3. import javax.swing.x;

4.

6. + @version 1.33 2007-06-12

7. @author Cay Horstmann

8. #/

9. pubTic class CheckBoxTest

10. {

11, public static void main(String[] args)
12. {

13. EventQueue.invokelater(new Runnable()
14.

15. pubTic void run()

16. {

17. CheckBoxFrame frame = new CheckBoxFrame();
18. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
19. frame.setVisible(true);

20. }

21, b;

22. }

23. }

24.

25 [k

2. + A frame with a sample text label and check boxes for selecting font attributes.
28. class CheckBoxFrame extends JFrame

30. pubTic CheckBoxFrame()

31. {

32. setTitle("CheckBoxTest");

33. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

34.

35. // add the sample text Tabel

36.

37. Tabel = new JLabel("The quick brown fox jumps over the lazy dog.");
38. Tabel.setFont(new Font("Serif", Font.PLAIN, FONTSIZE));

39. add(Tabel, BorderLayout.CENTER);

Chapter 9. User Interface Components with Swing

Choice Components

CheckBoxTest.java (continued)

41,
42.

// this Tistener sets the font attribute of
// the Tabel to the check box state

ActionListener Tistener = new ActionListener()
{
public void actionPerformed(ActionEvent event)
{
int mode = 0;
if (bold.isSelected()) mode += Font.BOLD;
if (italic.isSelected()) mode += Font.ITALIC;
Tabel.setFont(new Font("Serif", mode, FONTSIZE));
}
b

// add the check boxes

JPanel buttonPanel = new JPanel();
bold = new JCheckBox("Bold");
bold.addActionListener(listener);
buttonPanel.add(bold);

italic = new JCheckBox("Italic");
italic.addActionListener(1istener);

buttonPanel.add(italic);

add(buttonPanel, BorderLayout.SOUTH);
}

public static final int DEFAULT_WIDTH = 300;
public static final int DEFAULT_HEICHT = 200;

private JLabel Tabel;
private JCheckBox bold;
private JCheckBox italic;

private static final int FONTSIZE = 12;

javax.swing.JCheckBox 1.2

JCheckBox(String Tabel)

JCheckBox(String Tabel, Icon icon)

constructs a checkbox that is initially unselected.
JCheckBox(String Tabel, hoolean state)

constructs a checkbox with the given label and initial state.
boolean isSelected ()

void setSelected(boolean state)

gets or sets the selection state of the checkbox.

1.7 4

Chapter 9. User Interface Components with Swing

388

Chapter 9 B User Interface Components with Swing

Radio Buttons

In the previous example, the user could check either, both, or neither of the two check-
boxes. In many cases, we want to require the user to check only one of several boxes.
When another box is checked, the previous box is automatically unchecked. Such a
group of boxes is often called a radio button group because the buttons work like the sta-
tion selector buttons on a radio. When you push in one button, the previously depressed
button pops out. Figure 9-15 shows a typical example. We allow the user to select a font
size from among the choices—Small, Medium, Large, and Extra large—but, of course,
we will allow the user to select only one size at a time.

B RadioButtonTest |:|E|7

The quick brown fox...

Small) Medium () Large ® [Extra large

Figure 9-15 A radio button group

Implementing radio button groups is easy in Swing. You construct one object of type
ButtonGroup for every group of buttons. Then, you add objects of type JRadioButton to the
button group. The button group object is responsible for turning off the previously set

button when a new button is clicked.

ButtonGroup group = new ButtonGroup();

JRadioButton smallButton = new JRadioButton("Small", false);
group.add(smallButton);

JRadioButton mediumButton = new JRadioButton("Medium", true);
group.add(mediumButton);

The second argument of the constructor is true for the button that should be checked ini-
tially and false for all others. Note that the button group controls only the behavior of the
buttons; if you want to group the buttons for layout purposes, you also need to add
them to a container such as a JPanel.

If you look again at Figures 9-14 and 9-15, you will note that the appearance of the
radio buttons is different from that of checkboxes. Checkboxes are square and contain a
check mark when selected. Radio buttons are round and contain a dot when selected.

The event notification mechanism for radio buttons is the same as for any other buttons.
When the user checks a radio button, the radio button generates an action event. In our
example program, we define an action listener that sets the font size to a particular value:
ActionListener Tistener = new
ActionlListener()

{

Chapter 9. User Interface Components with Swing

Choice Components m

public void actionPerformed(ActionEvent event)
{
// size refers to the final parameter of the addRadioButton method
Tabel.setFont(new Font("Serif", Font.PLAIN, size));
}
b
Compare this listener setup with that of the checkbox example. Each radio button gets a
different listener object. Each listener object knows exactly what it needs to do—set
the font size to a particular value. In the case of the checkboxes, we used a different
approach. Both checkboxes have the same action listener. It called a method that looked
at the current state of both checkboxes.
Could we follow the same approach here? We could have a single listener that computes
the size as follows:

if (smallButton.isSelected()) size = 8;
else if (mediumButton.isSelected()) size = 12;

However, we prefer to use separate action listener objects because they tie the size val-
ues more closely to the buttons.

NOTE: If you have a group of radio buttons, you know that only one of them is selected. It
would be nice to be able to quickly find out which one without having to query all the but-
tons in the group. Because the ButtonGroup object controls all buttons, it would be conve-
nient if this object could give us a reference to the selected button. Indeed, the ButtonGroup
class has a getSelection method, but that method doesn’t return the radio button that is
selected. Instead, it returns a ButtonModel reference to the model attached to the button.
Unfortunately, none of the ButtonModel methods are very helpful. The ButtonModel interface
inherits a method getSelectedObjects from the ItemSelectable interface that, rather uselessly,
returns null. The getActionCommand method looks promising because the “action command”
of a radio button is its text label. But the action command of its model is null. Only if you
explicitly set the action commands of all radio buttons with the setActionCommand method do
the models’ action command values also get set. Then you can retrieve the action com-
mand of the currently selected button with buttonGroup.getSeTection().getActionCommand().

Listing 94 is the complete program for font size selection that puts a set of radio but-
tons to work.

IS ETS0 Tl BV B RadioButtonTest. java

1. import java.awt.s;

2. import java.awt.event.x;

3. import javax.swing.s;

4.

5. [xx

6. + @version 1.33 2007-06-12
7.+ @author Cay Horstmann
8/

9. pubTic class RadioButtonTest

10. {

Chapter 9. User Interface Components with Swing

m Chapter 9 B User Interface Components with Swing

JBTT50 T3 2 S RadioButtonTest.java (continued)

11, public static void main(String[] args)

12, {

13. EventQueue.invokelater(new Runnable()

14.

15. public void run()

16. {

17. RadioButtonFrame frame = new RadioButtonFrame();

18. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
19. frame.setVisible(true);

20. }

21, b
22. }
23 }

25 /%

2. + A frame with a sample text label and radio buttons for selecting font sizes.
27,/

28. Class RadioButtonFrame extends JFrame

30. public RadioButtonFrame()

31. {

32. setTitle("RadioButtonTest");

33. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

34.

35. // add the sample text Tabel

36.

37. Tabel = new JLabel("The quick brown fox jumps over the lazy dog.");
38. Tabel.setFont(new Font("Serif", Font.PLAIN, DEFAULT_SIZE));
39. add(Tabel, BorderLayout.CENTER);

40.

41. // add the radio buttons

42.

43. buttonPanel = new JPanel();

44 group = new ButtonGroup();

45.

46. addRadioButton("Small", 8);

47. addRadioButton("Medium", 12);

48. addRadioButton("Large", 18);

49. addRadioButton("Extra Targe", 36);

50.

51. add(buttonPanel, BorderLayout.SOUTH);

52. }

53.

54. [xx

55. » Adds a radio button that sets the font size of the sample text.
56. « @param name the string to appear on the button

57. » @param size the font size that this button sets

58. *

/

Chapter 9. User Interface Components with Swing

Choice Components m

RadioButtonTest.java (continued)

59. public void addRadioButton(String name, final int size)

60. {

61. boolean selected = size == DEFAULT_SIZE;

62. JRadioButton button = new JRadioButton(name, selected);

63. group.add(button);

64. buttonPanel.add(button);

65.

66. // this Tistener sets the label font size

67.

68. ActionListener Tistener = new ActionlListener()

69. {

70. public void actionPerformed(ActionEvent event)

7. {

72. // size refers to the final parameter of the addRadioButton
73. // method

74. Tabel.setFont(new Font("Serif", Font.PLAIN, size));
75. }

76. };

77.

78. button.addActionListener(Tistener);

79. }

st. public static final int DEFAULT_WIDTH = 400;
s2. public static final int DEFAULT_HEIGHT = 200;

8. private JPanel buttonPanel;
s5. private ButtonGroup group;
se. private JlLabel label;

88. private static final int DEFAULT_SIZE = 12;

javax.swing.JRadioButton 1.2

e JRadioButton(String Tabel, Icon icon)
constructs a radio button that is initially unselected.

e JRadioButton(String Tabel, boolean state)
constructs a radio button with the given label and initial state.

javax.swing.ButtonGroup 1.2

e void add(AbstractButton b)
adds the button to the group.

e ButtonModel getSelection()
returns the button model of the selected button.

Chapter 9. User Interface Components with Swing

m Chapter 9 B User Interface Components with Swing

m javax.swing.ButtonModel 1.2

e String getActionCommand()
returns the action command for this button model.

m javax.swing.AbstractButton 1.2

e void setActionCommand(String s)
sets the action command for this button and its model.

Borders
If you have multiple groups of radio buttons in a window, you will want to visually
indicate which buttons are grouped. Swing provides a set of useful borders for this pur-
pose. You can apply a border to any component that extends JComponent. The most com-
mon usage is to place a border around a panel and fill that panel with other user
interface elements such as radio buttons.
You can choose from quite a few borders, but you follow the same steps for all of them.
1. Call a static method of the BorderFactory to create a border. You can choose among the
following styles (see Figure 9-16):
¢ Lowered bevel
* Raised bevel
e Etched
¢ Line
¢ Matte
e Empty (just to create some blank space around the component)
2. If youlike, add a title to your border by passing your border to
BorderFactory.createTitledBorder.
3. If you really want to go all out, combine several borders with a call to
BorderFactory.createCompoundBorder.
4. Add the resulting border to your component by calling the setBorder method of the
JComponent class.
For example, here is how you add an etched border with a title to a panel:

Border etched = BorderFactory.createEtchedBorder()
Border titled = BorderFactory.createTitledBorder(etched, "A Title");
panel.setBorder(titled);

Run the program in Listing 9-5 to get an idea what the various borders look like.

The various borders have different options for setting border widths and colors. See
the API notes for details. True border enthusiasts will appreciate that there is also a
SoftBevelBorder class for beveled borders with softened corners and that alineBorder can
have rounded corners as well. You can construct these borders only by using one of
the class constructors—there is no BorderFactory method for them.

Chapter 9. User Interface Components with Swing

Choice Components m

@oorderfest |_|Ox

Border types

) Lowered bevel) Raised bevel () Etched ' Line ® Matte) Empty

Figure 9-16 Testing border types

ISR Tl M BorderTest. java

. import java.awt.#;

1

2. import java.awt.event.x;

3. import javax.swing.s;

4. import javax.swing.border.x;

5.

6. [k

7.+ @version 1.33 2007-06-12

s. + @author Cay Horstmann

9 x/

10. public class BorderTest

1. {

12 public static void main(String[] args)

13. {

14. EventQueue.invokelLater(new Runnable()
15. {

16. pubTic void run()

17. {

18. BorderFrame frame = new BorderFrame();
19. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
20. frame.setVisible(true);

21 }

22. 1);

23, }

24. }

25.

26. /¥

27. « A frame with radio buttons to pick a border style.
28 %/

29. lass BorderFrame extends JFrame

30. {

31, public BorderFrame()

32. {

33, setTitle("BorderTest");

34, setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

35.

Chapter 9. User Interface Components with Swing

m Chapter 9 B User Interface Components with Swing

)R T150 T3 2l BorderTest.java (continued)

36. demoPanel = new JPanel();

37. buttonPanel = new JPanel();

38. group = new ButtonGroup();

39.

40. addRadioButton("Lowered bevel", BorderFactory.createlLoweredBevelBorder());
41. addRadioButton("Raised bevel”, BorderFactory.createRaisedBevelBorder());
42. addRadioButton("Etched", BorderFactory.createEtchedBorder());

43. addRadioButton("Line", BorderFactory.createlLineBorder(Color.BLUE));

4a, addRadioButton("Matte", BorderFactory.createMatteBorder(10, 10, 10, 10, Color.BLUE));
45. addRadioButton("Empty", BorderFactory.createEmptyBorder());

46.

47. Border etched = BorderFactory.createEtchedBorder();

48. Border titled = BorderFactory.createTitledBorder(etched, "Border types");
49, buttonPanel.setBorder(titled);

50.

51. setLayout(new GridLayout(2, 1));

52. add(buttonPanel);

53. add(demoPanel);

54. }

se. public void addRadioButton(String buttonName, final Border b)

57. {

58. JRadioButton button = new JRadioButton(buttonName);
59. button.addActionListener(new ActionListener()

60.

61. public void actionPerformed(ActionEvent event)
62. {

63. demoPanel.setBorder(b);

64. }

65. b;

66. group.add(button);

67. buttonPanel.add(button);

68. }

70. public static final int DEFAULT_WIDTH = 600;
71, public static final int DEFAULT_HEICHT = 200;

73, private JPanel demoPanel;
74, private JPanel buttonPanel;
75, private ButtonGroup group;

javax.swing.BorderFactory 1.2

static Border createLineBorder(Color color)
e static Border createlLineBorder(Color color, int thickness)
creates a simple line border.

Chapter 9. User Interface Components with Swing

Choice Components

static MatteBorder createMatteBorder(int top, int left, int bottom, int right, Color color)
static MatteBorder createMatteBorder(int top, int Tleft, int bottom, int right, Icon tileIcon)
creates a thick border that is filled with a color or a repeating icon.

static Border createEmptyBorder()
static Border createEmptyBorder(int top, int Teft, int bottom, int right)
creates an empty border.

static Border createEtchedBorder()

static Border createEtchedBorder(Color highlight, Color shadow)
static Border createEtchedBorder(int type)

static Border createEtchedBorder(int type, Color highlight, Color shadow)
creates a line border with a 3D effect.

Parameters: highlight, shadow Colors for 3D effect
type One of EtchedBorder.RAISED, EtchedBorder. LOWERED

static Border createBevelBorder(int type)

static Border createBevelBorder(int type, Color highlight, Color shadow)

static Border createLoweredBevelBorder()

static Border createRaisedBevelBorder()

creates a border that gives the effect of a lowered or raised surface.

Parameters: highlight, shadow Colors for 3D effect
type One of EtchedBorder.RAISED, EtchedBorder. LOWERED

static TitledBorder createTitledBorder(String title)

static TitledBorder createTitledBorder(Border border)

static TitledBorder createTitledBorder(Border horder, String title)

static TitledBorder createTitledBorder(Border border, String title, int justification,
int position)

static TitledBorder createTitledBorder(Border border, String title, int justification,
int position, Font font)

static TitledBorder createTitledBorder(Border horder, String title, int justification,
int position, Font font, Color color)

creates a titled border with the specified properties.

Parameters: title The title string
border The border to decorate with the title
justification One of the TitledBorder constants LEFT, CENTER,
RIGHT, LEADING, TRAILING, or DEFAULT_JUSTIFICATION (left)
position One of theTitledBorder constants ABOVE_TOP, TOP,

BELOW_TOP, ABOVE_BOTTOM, BOTTOM, BELOW_BOTTOM, or
DEFAULT_POSITION (top)

font The font for the title
color The color of the title

static CompoundBorder createCompoundBorder(Border outsideBorder, Border insideBorder)
combines two borders to a new border.

Chapter 9. User Interface Components with Swing

m Chapter 9 B User Interface Components with Swing

javax.swing.border.SoftBevelBorder 1.2

o SoftBevelBorder(int type)
e SoftBevelBorder(int type, Color highlight, Color shadow)
creates a bevel border with softened corners.

Parameters: highlight, shadow Colors for 3D effect
type One of EtchedBorder.RAISED, EtchedBorder. LOWERED

javax.swing.border.LineBorder 1.2

e public LineBorder(Color color, int thickness, boolean roundedCorners)
creates a line border with the given color and thickness. If roundedCorners is true, the
border has rounded corners.

javax.swing.JComponent 1.2

e void setBorder(Border border)
sets the border of this component.

Combo Boxes

If you have more than a handful of alternatives, radio buttons are not a good choice
because they take up too much screen space. Instead, you can use a combo box. When
the user clicks on the component, a list of choices drops down, and the user can then
select one of them (see Figure 9-17).

BcomboBoxTest [_[O[x

[The quick brown fox jumps over the lazy dog.

SansSerif -

L Serif i

SansSerif
Monospaced
Dialog
Dialoginput

Figure 9-17 A combo box

If the drop-down list box is set to be editable, then you can edit the current selection as if
it were a text field. For that reason, this component is called a combo box—it combines
the flexibility of a text field with a set of predefined choices. TheJComboBox class provides
a combo box component.

You call the setEditable method to make the combo box editable. Note that editing affects
only the current item. It does not change the content of the list.

Chapter 9. User Interface Components with Swing

Choice Components 397

You can obtain the current selection or edited text by calling the getSelectedItem method.
In the example program, the user can choose a font style from a list of styles (Serif, Sans-
Serif, Monospaced, etc.). The user can also type in another font.

You add the choice items with the addIten method. In our program, addItem is called only
in the constructor, but you can call it any time.

faceCombo = new JComboBox();
faceCombo.setEditable(true);
faceCombo.addItem("Serif");
faceCombo.addItem("SansSerif");

This method adds the string at the end of the list. You can add new items anywhere in
the list with the insertItemAt method:

faceCombo.insertItemAt("Monospaced”, 0); // add at the beginning
You can add items of any type—the combo box invokes each item’stoString method to
display it.
If you need to remove items at runtime, you use the removeItem or removeItemAt method,
depending on whether you supply the item to be removed or its position.

faceCombo. removeItem("Monospaced");

faceCombo. removeItemAt(0); // remove first item

The removeAllItems method removes all items at once.

TIP: If you need to add a large number of items to a combo box, the addItem method will per-
form poorly. Instead, construct a DefaultComboBoxModel, populate it by calling addETement, and
then call the setModel method of the JComboBox class.

When the user selects an item from a combo box, the combo box generates an action
event. To find out which item was selected, call getSource on the event parameter to get a
reference to the combo box that sent the event. Then call the getSelectedItem method to
retrieve the currently selected item. You need to cast the returned value to the appropri-
ate type, usually String.

public void actionPerformed(ActionEvent event)

{
Tabel.setFont(new Font(
(String) faceCombo.getSelectedIten(),
Font.PLAIN,
DEFAULT_SIZE));
}

Listing 9-6 shows the complete program.

NOTE: If you want to show a permanently displayed list instead of a dropdown list, use the
m JList component. We cover JList in Chapter 6 of Volume II.

Chapter 9. User Interface Components with Swing

m Chapter 9 B User Interface Components with Swing

ComboBoxTest.java

1. import java.awt.s;
2. import java.awt.event.:;
3. import javax.swing.s;

4.

5. [ux

6. * @version 1.33 2007-06-12

7. % @author Cay Horstmann

Y

9. pubTic class ComboBoxTest

10. {

1. public static void main(String[] args)

12, {

13. EventQueue.invokelater(new Runnable()

14.

15. public void run()

16. {

17.

18. ComboBoxFrame frame = new ComboBoxFrame();
19. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
20. frame.setVisible(true);

21. }

22. B

23. }

2. }

25.

26. [#k

27. « A frame with a sample text label and a combo box for selecting font faces.
28 %/

20. class ComboBoxFrame extends JFrame

31. public ComboBoxFrame()

32. {

33. setTitTe("ComboBoxTest");

34. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

35.

36. // add the sample text Tlabel

37.

38. Tabel = new JLabel("The quick brown fox jumps over the lazy dog.");
39. Tabel.setFont(new Font("Serif", Font.PLAIN, DEFAULT_SIZE));
40. add(Tabel, BorderLayout.CENTER);

41.

42. // make a combo box and add face names

43.

44. faceCombo = new JComboBox();

45. faceCombo.setEditable(true);

46. faceCombo.addItem("Serif");

47. faceCombo.addItem("SansSerif");

48. faceCombo.addItem("Monospaced");

49. faceCombo.addItem("Dialog");

50. faceCombo.addItem("DialogInput");

Chapter 9. User Interface Components with Swing

Choice Components m

ComboBoxTest.java (continued)

51.

52. // the combo box Tistener changes the Tlabel font to the selected face name
53.

54. faceCombo.addActionListener(new ActionListener()

55. {

56. public void actionPerformed(ActionEvent event)

57. {

58. Tabel.setFont(new Font((String) faceCombo.getSelectedItem(), Font.PLAIN,
59. DEFAULT_SIZE));

60. }

61. b;

62.

63. // add combo box to a panel at the frame's southern border

64.

65. JPanel comboPanel = new JPanel();

66. comboPanel.add(faceCombo);

67. add(comboPanel, BorderlLayout.SOUTH);

68. }

70. public static final int DEFAULT_WIDTH = 300;
71, public static final int DEFAULT_HEIGHT = 200;

73. private JComboBox faceCombo;
74, private JLabel Tabel;
7. private static final int DEFAULT_SIZE = 12;

javax.swing.JComboBox 1.2

e Dboolean isEditable()
e void setEditable(boolean b)
gets or sets the editable property of this combo box.
e void addItem(Object item)
adds an item to the item list.
e void insertItemAt(Object item, int index)
inserts an item into the item list at a given index.
e void removeItem(Object item)
removes an item from the item list.
e void removeltemAt(int index)
removes the item at an index.
e void removeAllItems()
removes all items from the item list.
e Object getSelectedItem()
returns the currently selected item.

Chapter 9. User Interface Components with Swing

Chapter 9 B User Interface Components with Swing

Sliders
Combo boxes let users choose from a discrete set of values. Sliders offer a choice from a
continuum of values, for example, any number between 1 and 100.

The most common way of constructing a slider is as follows:
JSTider slider = new JSTider(min, max, initialValue);

If you omit the minimum, maximum, and initial values, they are initialized with 0, 100,
and 50, respectively.

Or if you want the slider to be vertical, then use the following constructor call:
JSTider slider = new JSTlider(SwingConstants.VERTICAL, min, max, initialValue);

These constructors create a plain slider, such as the top slider in Figure 9-18. You will
see presently how to add decorations to a slider.

Bfsiderest |_|Ox

{ ¥ 1 Plain
) .
Ticks
; —
Snap to ticks
L No track
[:) 1
Inverted
I)
Labels

0 20 40 60 B0 100

Custom labels
A B iz D E

I)]
7 T = - Icon labels

50

Figure 9-18 Sliders

As the user slides the slider bar, the value of the slider moves between the minimum and
the maximum values. When the value changes, a ChangeEvent is sent to all change listen-
ers. To be notified of the change, you call the addChangeListener method and install an
object that implements the Changelistener interface. That interface has a single method,
stateChanged. In that method, you should retrieve the slider value:

public void stateChanged(ChangeEvent event)

{
JSTider slider = (JS1ider) event.getSource();
int value = sTider.getValue();

Chapter 9. User Interface Components with Swing

Choice Components

You can embellish the slider by showing ticks. For example, in the sample program, the
second slider uses the following settings:

sTider.setMajorTickSpacing(20);

sTider.setMinorTickSpacing(5);
The slider is decorated with large tick marks every 20 units and small tick marks every
5 units. The units refer to slider values, not pixels.
These instructions only set the units for the tick marks. To actually have the tick marks
appear, you also call

slider.setPaintTicks(true);
The major and minor tick marks are independent. For example, you can set major tick
marks every 20 units and minor tick marks every 7 units, but you’'ll get a very messy
scale.
You can force the slider to snap to ticks. Whenever the user has finished dragging a slider
in snap mode, it is immediately moved to the closest tick. You activate this mode with
the call

sTider.setSnapToTicks(true);

CAUTION: The “snap to ticks” behavior doesn’t work as well as you might imagine. Until the
slider has actually snapped, the change listener still reports slider values that don’t corre-

spond to ticks. And if you click next to the slider—an action that normally advances the slider

a bit in the direction of the click—a slider with “snap to ticks” does not move to the next tick.

You can ask for tick mark labels for the major tick marks by calling
slider.setPaintLabels(true);

For example, with a slider ranging from 0 to 100 and major tick spacing of 20, the ticks
are labeled 0, 20, 40, 60, 80, and 100.

You can also supply other tick marks, such as strings or icons (see Figure 9-18). The
process is a bit convoluted. You need to fill a hash table with keys of typelInteger and
values of type Component. (Autoboxing makes this simple in Java SE 5.0 and beyond.) You
then call the setlabelTable method. The components are placed under the tick marks.
Usually, you use JLabel objects. Here is how you can label ticks as A, B, C, D, E, and F:
Hashtable<Integer, Component> labelTable = new Hashtable<Integer, Component>();
labelTable.put(0, new JLabel("A"));
TabelTable.put(20, new JLabel("B"));

TabelTable.put(100, new JLabel("F"));
slider.setLabelTable(labelTable);
See Chapter 2 of Volume II for more information about hash tables.

Listing 9-7 also shows a slider with icons as tick labels.

TIP: If your tick marks or labels don’t show, double-check that you called setPaintTicks(true)
m and setPaintLabels(true).

Chapter 9. User Interface Components with Swing

m Chapter 9 B User Interface Components with Swing

The fourth slider in Figure 9-18 has no track. To suppress the “track” in which the slider
moves, call

slider.setPaintTrack(false);
The fifth slider has its direction reversed by a call to
slider.setInverted(true);

The example program shows all these visual effects with a collection of sliders. Each
slider has a change event listener installed that places the current slider value into the
text field at the bottom of the frame.

SliderTest. java

_import java.awt.x;

- import java.util.s;

. import javax.swing.s;

. import javax.swing.event.«;

x @version 1.13 2007-06-12
+ @author Cay Horstmann
%/

10. pubTic class STiderTest

1. {

12. public static void main(String[] args)

13. {

14. EventQueue.invokelLater(new Runnable()

15. {

16. public void run()

17. {

18. SliderTestFrame frame = new SliderTestFrame();

19. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
20. frame.setVisible(true);

21. }

22, b;

23. }

2. }

26. [+

27. % A frame with many sliders and a text field to show slider values.

20. class SliderTestFrame extends JFrame

30. {

31. public SliderTestFrame()

32. {

33. setTitle("STiderTest");

34. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
35.

36. sTiderPanel = new JPanel();

37. sliderPanel.setLayout(new FlowLayout(FlowLayout.LEFT));
38.

Chapter 9. User Interface Components with Swing

Choice Components m

STiderTest.java (continued)

30, // common Tistener for all sliders

40. Tistener = new Changelistener()

. {

2. public void stateChanged(ChangeEvent event)
43. {

4. // update text field when the slider value changes
45. JSTider source = (JSTider) event.getSource();
46. textField.setText("" + source.getValue());
47. }

48. };

49.

50. // add a plain sTider

51.

52, JSTider slider = new JSTider();

53. addSTider(slider, "Plain");

54.

55. // add a slider with major and minor ticks
56.

57. sTider = new JSTider();

58. slider.setPaintTicks(true);

59. slider.setMajorTickSpacing(20);

60. sTider.setMinorTickSpacing(5);

61. addSlider(sTider, "Ticks");

62.

63. // add a slider that snaps to ticks

64.

65. sTider = new JSTider();

66. slider.setPaintTicks(true);

67. slider.setSnapToTicks(true);

68. slider.setMajorTickSpacing(20);

69. slider.setMinorTickSpacing(5);

70. addSTider(sTider, "Snap to ticks");

71.

72. // add a slider with no track

73.

74. sTider = new JSTider();

75. slider.setPaintTicks(true);

76. slider.setMajorTickSpacing(20);

77. sTider.setMinorTickSpacing(5);

78. slider.setPaintTrack(false);

79. addSTider(slider, "No track");

80.

81. // add an inverted slider

82.

83. sTider = new JSTider();

84. slider.setPaintTicks(true);

85. slider.setMajorTickSpacing(20);

86. slider.setMinorTickSpacing(5);

87. slider.setInverted(true);

88. addSTider(slider, "Inverted");

Chapter 9. User Interface Components with Swing

m Chapter 9 B User Interface Components with Swing

SliderTest.java (continued)

89.

90. // add a sTider with numeric labels

91.

%2. slider = new JSTider();

93. slider.setPaintTicks(true);

4. slider.setPaintLabels(true);

95. slider.setMajorTickSpacing(20);

9%. slider.setMinorTickSpacing(5);

97. addS1ider(sTider, "Labels");

98.

99. // add a slider with alphabetic Tabels

100.

101. sTider = new JSTider();

102. slider.setPaintLabels(true);

103. slider.setPaintTicks(true);

104, slider.setMajorTickSpacing(20);

105. slider.setMinorTickSpacing(5);

106.

107. Dictionary<Integer, Component> TabelTable = new Hashtable<Integer, Component>();
108. TabelTable.put(0, new JLabel("A"));

109. TabelTable.put(20, new JLabel("B"));

110. TabelTable.put(40, new JLabel("C"));

111, TabelTable.put(60, new JLabel("D"));

112, TabelTable.put(80, new JLabel("E"));

118. TabelTable.put(100, new JLabel("F"));

114.

115. slider.setLabelTable(TabelTable);

116. addSTider(slider, "Custom Tabels");

117.

118. // add a sTider with icon Tabels

119.

120. slider = new JSTider();

121. slider.setPaintTicks(true);

122. slider.setPaintLabels(true);

123. slider.setSnapToTicks(true);

124, slider.setMajorTickSpacing(20);

125. slider.setMinorTickSpacing(20);

126.

127. TabelTable = new Hashtable<Integer, Component>();

128.

129, // add card images

130.

131. TabelTable.put(@, new JLabel(new ImageIcon("nine.gif")));
132. TabelTable.put(20, new JLabel(new ImageIcon("ten.gif")));
133, TabelTable.put(40, new JLabel(new ImageIcon("jack.gif")));
134. TabelTable.put(60, new JLabel(new ImageIcon("queen.gif")));
135. TabelTable.put(80, new JLabel(new ImageIcon("king.gif")));
136. TabelTable.put(100, new JLabel(new ImageIcon("ace.qgif")));

137.

Chapter 9. User Interface Components with Swing

Choice Components m

STiderTest.java (continued)

138. slider.setlLabelTable(TabelTable);

139. addSTider(slider, "Icon Tlabels");

140.

141. // add the text field that displays the slider value
142.

143. textField = new JTextField();

144. add(sTiderPanel, BorderLayout.CENTER);

145. add(textField, BorderLayout.SOUTH);

146}

147.

148. [

149, + Adds a sTider to the slider panel and hooks up the Tistener
150. « @param s the slider

151. » @param description the slider description

152. %*
153, public void addSlider(JSTider s, String description)

154, {

155. s.addChangeListener(Tlistener);

156. JPanel panel = new JPanel();

157. panel.add(s);

158. panel.add(new JLabel(description));
159. sTiderPanel.add(panel);

160. }

161.

162, public static final int DEFAULT_WIDTH = 350;
163, public static final int DEFAULT_HEICHT = 450;
164.

165. private JPanel sliderPanel;

1e6. private JTextField textField;

167. private ChangelListener Tistener;

168. }

m javax.swing.JSlider 1.2

o JSTider()

e JSTider(int direction)

e JSTider(int min, int max)

e JSTider(int min, int max, int initialValue)

e JSTlider(int direction, int min, int max, int initialvalue)

constructs a horizontal slider with the given direction and minimum, maximum,

and initial values.

Parameters: direction One of SwingConstants.HORIZONTAL or
SwingConstants.VERTICAL. The default is horizontal.

min, max The minimum and maximum for the slider
values. Defaults are 0 and 100.

initialValue The initial value for the slider. The default is 50.

Chapter 9. User Interface Components with Swing

m Chapter 9 B User Interface Components with Swing

o void setPaintTicks(boolean b)
displays ticks if b is true.
e void setMajorTickSpacing(int units)
® void setMinorTickSpacing(int units)
sets major or minor ticks at multiples of the given slider units.
e void setPaintLabels(boolean b)
displays tick labels if b is true.
e void setlabelTable(Dictionary table)
sets the components to use for the tick labels. Each key/value pair in the table has
the form new Integer(value)/component.
e void setSnapToTicks(bhoolean b)
if b is true, then the slider snaps to the closest tick after each adjustment.

e void setPaintTrack(boolean b)
if b is true, then a track is displayed in which the slider runs.

Menus

We started this chapter by introducing the most common components that you might
want to place into a window, such as various kinds of buttons, text fields, and combo
boxes. Swing also supports another type of user interface element, the pull-down
menus that are familiar from GUI applications.

A menu bar on top of the window contains the names of the pull-down menus. Clicking
on a name opens the menu containing menu items and submenus. When the user clicks on
a menu item, all menus are closed and a message is sent to the program. Figure 9-19
shows a typical menu with a submenu.

Bvenutest oD

File | Edit| Help

4 cut
Copy
B Paste
Options ¥ ¥ Read- only
® Insert
' Overtype

Figure 9-19 A menu with a submenu

Menu Building
Building menus is straightforward. You first create a menu bar:
IMenuBar menuBar = new JMenuBar();

A menu bar is just a component that you can add anywhere you like. Normally, you
want it to appear at the top of a frame. You can add it there with thesetIMenuBar method:

frame.setIMenuBar(menuBar);
For each menu, you create a menu object:
IMenu editMenu = new JMenu("Edit");

Chapter 9. User Interface Components with Swing

Menus 407

You add the top-level menus to the menu bar:
menuBar.add(editMenu);
You add menu items, separators, and submenus to the menu object:
IMenuItem pasteItem = new IMenuItem("Paste");
editMenu.add(pasteItem);
editMenu.addSeparator();

IMenu optionsMenu = . . .; // a submenu
editMenu.add(optionsMenu);

You can see separators in Figure 9-19 below the “Paste” and “Read-only” menu items.

When the user selects a menu, an action event is triggered. You need to install an action
listener for each menu item:

ActionListener listener = . . .;

pasteItem.addActionListener(Tistener);
The method IMenu.add(String s) conveniently adds a menu item to the end of a menu. For
example:

editMenu.add("Paste");
The add method returns the created menu item, so you can capture it and then add the
listener, as follows:

IMenuItem pasteItem = editMenu.add("Paste");

pasteItem.addActionListener(Tistener);
It often happens that menu items trigger commands that can also be activated through
other user interface elements such as toolbar buttons. In Chapter 8, you saw how to
specify commands through Action objects. You define a class that implements theAction
interface, usually by extending the AbstractAction convenience class. You specify the
menu item label in the constructor of the AbstractAction object, and you override the
actionPerformed method to hold the menu action handler. For example:

Action exitAction = new AbstractAction("Exit") // menu item text goes here

{

public void actionPerformed(ActionEvent event)

{
// action code goes here
System.exit(0);
}
b
You can then add the action to the menu:
IMenuItem exitItem = fileMenu.add(exitAction);

This command adds a menu item to the menu, using the action name. The action object
becomes its listener. This is just a convenient shortcut for

IMenuItem exitItem = new JMenuItem(exitAction);
fileMenu.add(exitItem);

NOTE: In Windows and Macintosh programs, menus are generally defined in an exter-
nal resource file and tied to the application with resource identifiers. In Java, menus are
still usually built inside the program because the mechanism for dealing with external
resources is far more limited than it is in Windows or Mac OS.

Chapter 9. User Interface Components with Swing

408 Chapter 9 B User Interface Components with Swing

javax.swing.JMenu 1.2

IMenu(String Tabel)
constructs a menu with the given label.

IMenuItem add(IMenuItem item)
adds a menu item (or a menu).

IMenuItem add(String Tabel)
adds a menu item with the given label to this menu and returns the item.

IMenuItem add(Action a)
adds a menu item with the given action to this menu and returns the item.

void addSeparator()
adds a separator line to the menu.

IMenultem insert(IMenultem menu, int index)
adds a new menu item (or submenu) to the menu at a specific index.

IMenuItem insert(Action a, int index)
adds a new menu item with the given action at a specific index.

void insertSeparator(int index)
adds a separator to the menu.

Parameters: index Where to add the separator

void remove(int index)
void remove(JMenuItem item)
removes a specific item from the menu.

javax.swing.JMenuItem 1.2

IMenuItem(String Tabel)
constructs a menu item with a given label.

IMenuItem(Action a) 1.3
constructs a menu item for the given action.

javax.swing.AbstractButton 1.2

void setAction(Action a) 1.3
sets the action for this button or menu item.

javax.swing.JFrame 1.2

void setJMenuBar(JIMenuBar menubar)
sets the menu bar for this frame.

Icons in Menu Items

Menu items are very similar to buttons. In fact, the MenuIten class extends the AbstractBut-
ton class. Just like buttons, menus can have just a text label, just an icon, or both. You can
specify the icon with the JMenuItem(String, Icon) or JMenuItem(Icon) constructor, or you can

Chapter 9. User Interface Components with Swing

Menus

set it with the setIcon method that the MenuItem class inherits from the AbstractButton class.
Here is an example:

IMenuItem cutItem = new IMenuItem("Cut", new ImageIcon("cut.gif"));
In Figure 9-19 on page 406, you can see icons next to several menu items. By default, the
menu item text is placed to the right of the icon. If you prefer the text to be placed on the

left, call the setHorizontalTextPosition method that the MenuItem class inherits from the
AbstractButton class. For example, the call

cutItem.setHorizontalTextPosition(SwingConstants.LEFT);
moves the menu item text to the left of the icon.
You can also add an icon to an action:
cutAction.putValue(Action.SMALL_ICON, new ImageIcon("cut.gif"));
Whenever you construct a menu item out of an action, theAction.NANE value becomes the
text of the menu item and the Action.SMALL_ICON value becomes the icon.
Alternatively, you can set the icon in the AbstractAction constructor:

cutAction = new
AbstractAction("Cut", new ImageIcon("cut.gif"))
{
public void actionPerformed(ActionEvent event)
{
// action code goes here
}
b

javax.swing.JMenuItem 1.2

® JMenuItem(String label, Icon icon)
constructs a menu item with the given label and icon.

javax.swing.AbstractButton 1.2

e void setHorizontalTextPosition(int pos)
sets the horizontal position of the text relative to the icon.

Parameters: pos SwingConstants.RIGHT (text is to the right of icon) or
SwingConstants.LEFT

APII javax.swing.AbstractAction 1.2

e AbstractAction(String name, Icon smalllcon)
constructs an abstract action with the given name and icon.

Checkbox and Radio Button Menu Items

Checkbox and radio button menu items display a checkbox or radio button next to the
name (see Figure 9-19 on page 406). When the user selects the menu item, the item auto-
matically toggles between checked and unchecked.

Chapter 9. User Interface Components with Swing

m Chapter 9 B User Interface Components with Swing

Apart from the button decoration, you treat these menu items just as you would any
others. For example, here is how you create a checkbox menu item:

JCheckBoxMenuItem readonlyItem = new JCheckBoxMenuItem("Read-only");

optionsMenu.add(readonlyItem);
The radio button menu items work just like regular radio buttons. You must add them
to a button group. When one of the buttons in a group is selected, all others are automat-
ically deselected.

ButtonGroup group = new ButtonGroup();

JRadioButtonMenuItem insertItem = new JRadioButtonMenuItem("Insert");

insertItem.setSelected(true);

JRadioButtonMenuItem overtypeltem = new JRadioButtonMenuItem("Overtype");

group.add(insertItem);

group.add(overtypeItem);

optionsMenu.add(insertItem);

optionsMenu.add(overtypeltem);
With these menu items, you don’t necessarily want to be notified at the exact moment
the user selects the item. Instead, you can simply use theisSelected method to test the
current state of the menu item. (Of course, that means that you should keep a reference
to the menu item stored in an instance field.) Use the setSelected method to set the state.

javax.swing.JCheckBoxMenuItem 1.2

e JCheckBoxMenuItem(String Tabel)
constructs the checkbox menu item with the given label.

e JCheckBoxMenuItem(String label, boolean state)
constructs the checkbox menu item with the given label and the given initial state
(true is checked).

javax.swing.JRadioButtonMenuItem 1.2

e JRadioButtonMenuItem(String Tabel)
constructs the radio button menu item with the given label.

e JRadioButtonMenuItem(String Tabel, boolean state)
constructs the radio button menu item with the given label and the given initial
state (true is checked).

APII javax.swing.AbstractButton 1.2

e hoolean isSelected()
e void setSelected(boolean state)
gets or sets the selection state of this item (true is checked).

Pop-Up Menus
A pop-up menu is a menu that is not attached to a menu bar but that floats somewhere
(see Figure 9-20).

Chapter 9. User Interface Components with Swing

L

File Edit Help

4 Ccut
Copy
B Paste

Figure 9-20 A pop-up menu

You create a pop-up menu similarly to the way you create a regular menu, but a pop-up
menu has no title.

JPopupMenu popup = new JPopupMenu();
You then add menu items in the usual way:

IMenuItem item = new JMenuItem("Cut");

item.addActionListener(listener);

popup.add(item);
Unlike the regular menu bar that is always shown at the top of the frame, you must
explicitly display a pop-up menu by using the show method. You specify the parent com-
ponent and the location of the pop-up, using the coordinate system of the parent. For
example:

popup.show(panel, x, y);
Usually you write code to pop up a menu when the user clicks a particular mouse but-
ton, the so-called pop-up trigger. In Windows and Linux, the pop-up trigger is the non-
primary (usually, the right) mouse button. To pop up a menu when the user clicks on a
component, using the pop-up trigger, simply call the method

component. setComponentPopupMenu (popup) ;

Very occasionally, you may place a component inside another component that has a
pop-up menu. The child component can inherit the parent component’s pop-up menu
by calling

child.setInheritsPopupMenu(true);

These methods were added in Java SE 5.0 to insulate programmers from system
dependencies with pop-up menus. Before Java SE 5.0, you had to install a mouse
listener and add the following code to both themousePressed and the mouseReleased lis-
tener methods:

if (popup.isPopupTrigger(event))

popup. show(event.getComponent(), event.getX(), event.getY());

Some systems trigger pop-ups when the mouse button goes down, others when the
mouse button goes up.

Chapter 9. User Interface Components with Swing

m Chapter 9 B User Interface Components with Swing

javax.swing.JPopupMenu 1.2

e void show(Component ¢, int x, int y)
shows the pop-up menu.

Parameters: c The component over which the pop-up menu is
to appear
X,y The coordinates (in the coordinate space of ¢) of the

top-left corner of the pop-up menu

e hoolean isPopupTrigger(MouseEvent event) 1.3
returns true if the mouse event is the pop-up menu trigger.

java.awt.event.MouseEvent 1.1

e hoolean isPopupTrigger()
returns true if this mouse event is the pop-up menu trigger.

javax.swing.JComponent 1.2

JPopupMenu getComponentPopupMenu() 5.0
void setComponentPopupMenu(JPopupMenu popup) 5.0
gets or sets the pop-up menu for this component.
e hoolean getInheritsPopupMenu() 5.0
e void setInheritsPopupMenu(boolean b) 5.0
gets or sets the inheritsPopupMenu property. If the property is set and this
component’s pop-up menu is null, it uses its parent’s pop-up menu.

Keyboard Mnemonics and Accelerators
It is a real convenience for the experienced user to select menu items by keyboard
mnemonics. You can specify keyboard mnemonics for menu items by specifying a
mnemonic letter in the menu item constructor:

IMenuItem aboutItem = new IJMenuItem("About", 'A');
The keyboard mnemonic is displayed automatically in the menu, with the mnemonic
letter underlined (see Figure 9-21). For example, in the item defined in the last exam-
ple, the label will be displayed as “About” with an underlined letter “A”. When the
menu is displayed, the user just needs to press the A key, and the menu item is
selected. (If the mnemonic letter is not part of the menu string, then typing it still
selects the item, but the mnemonic is not displayed in the menu. Naturally, such
invisible mnemonics are of dubious utility.)
Sometimes, you don’t want to underline the first letter of the menu item that matches the
mnemonic. For example, if you have a mnemonic “A” for the menu item “Save As,” then it
makes more sense to underline the second “A” (Save As). As of Java SE 1.4, you can specify
which character you want to have underlined; call the setDisplayed¥nemonicIndex method.
If you have an Action object, you can add the mnemonic as the value of the
Action.MNEMONIC_KEY key, as follows:

cutAction.putValue(Action.MNEMONIC_KEY, new Integer('A'));

Chapter 9. User Interface Components with Swing

Menus

BMenutest | |OX)

File Edit [Help |
Index
About

Figure 9-21 Keyboard mnemonics

You can supply a mnemonic letter only in the constructor of a menu item, not in
the constructor for a menu. Instead, to attach a mnemonic to a menu, you call the
setMnemonic method:

IMenu helpMenu = new IMenu("Help");

helpMenu.setMnemonic('H');
To select a top-level menu from the menu bar, you press the ALT key together with the

mnemonic letter. For example, you press ALT+H to select the Help menu from the menu
bar.

Keyboard mnemonics let you select a submenu or menu item from the currently open
menu. In contrast, accelerators are keyboard shortcuts that let you select menu items
without ever opening a menu. For example, many programs attach the accelerators
CTRL+0 and CTRL+S to the Open and Save items in the File menu. You use thesetAcceler-
ator method to attach an accelerator key to a menu item. The setAccelerator method takes
an object of type Keystroke. For example, the following call attaches the accelerator
CTRL+O to the openItem menu item:

openItem.setAccelerator(KeyStroke.getKeyStroke("ctrl 0"));

When the user presses the accelerator key combination, this automatically selects the
menu option and fires an action event, as if the user had selected the menu option
manually.

You can attach accelerators only to menu items, not to menus. Accelerator keys
don’t actually open the menu. Instead, they directly fire the action event that is asso-
ciated with a menu.

Conceptually, adding an accelerator to a menu item is similar to the technique of
adding an accelerator to a Swing component. (We discussed that technique in Chap-
ter 8.) However, when the accelerator is added to a menu item, the key combination
is automatically displayed in the menu (see Figure 9-22).

NOTE: Under Windows, ALT+F4 closes a window. But this is not an accelerator that was

u programmed in Java. It is a shortcut defined by the operating system. This key combina-
tion will always trigger the WindowClosing event for the active window regardless of
whether there is a Close item on the menu.

Chapter 9. User Interface Components with Swing

Chapter 9 B User Interface Components with Swing

BMenutest o OIX

File | Edit Help
New
Open ctrl-0

Exit

Figure 9-22 Accelerators

m javax.swing.JMenuItem 1.2

e JMenuItem(String label, int mnemonic)
constructs a menu item with a given label and mnemonic.

Parameters: Tabel The label for this menu item

mnemonic The mnemonic character for the item; this character
will be underlined in the label

e void setAccelerator(KeyStroke k)
sets the keystroke k as accelerator for this menu item. The accelerator key is
displayed next to the label.

javax.swing.AbstractButton 1.2

e void setMnemonic(int mnemonic)
sets the mnemonic character for the button. This character will be underlined in
the label.

e void setDisplayedMnemonicIndex(int index) 1.4
sets the index of the character to be underlined in the button text. Use this method
if you don’t want the first occurrence of the mnemonic character to be underlined.

Enabling and Disabling Menu Items

Occasionally, a particular menu item should be selected only in certain contexts. For exam-
ple, when a document is opened for reading only, then the Save menu item is not meaning-
ful. Of course, we could remove the item from the menu with theIMenu. remove method, but
users would react with some surprise to menus whose content keeps changing. Instead, it is
better to deactivate the menu items that lead to temporarily inappropriate commands. A
deactivated menu item is shown in gray, and it cannot be selected (see Figure 9-23).

To enable or disable a menu item, use the setEnabled method:
saveltem,setEnabled(false);

There are two strategies for enabling and disabling menu items. Each time circum-
stances change, you can call setEnabled on the relevant menu items or actions. For exam-
ple, as soon as a document has been set to read-only mode, you can locate the Save and
Save As menu items and disable them. Alternatively, you can disable items just before

Chapter 9. User Interface Components with Swing

Menus

displaying the menu. To do this, you must register a listener for the “menu selected”
event. The javax.swing.event package defines a MenuListener interface with three methods:
void menuSelected(MenuEvent event)
void menuDeselected(MenuEvent event)
void menuCanceled(MenuEvent event)

The menuSelected method is called before the menu is displayed. It can therefore be used to
disable or enable menu items. The following code shows how to disable the Save and
Save As actions whenever the Read Only checkbox menu item is selected:
public void menuSelected(MenuEvent event)
{
saveAction.setEnabTed(!readonTyItem.isSelected());
saveAsAction.setEnabled(!readonlyItem.isSelected());
}

Bvenurest —_____lOiX

File | Edit Help

New

Open Ctrl-0

Exit

Figure 9-23 Disabled menu items

CAUTION: Disabling menu items just before displaying the menu is a clever idea, but it does

not work for menu items that also have accelerator keys. Because the menu is never opened
when the accelerator key is pressed, the action is never disabled, and it is still triggered by
the accelerator key.

javax.swing.JMenuItem 1.2

e void setEnabled(boolean b)
enables or disables the menu item.

APII javax.swing.event.MenuListener 1.2

e void menuSelected(MenuEvent e)

is called when the menu has been selected, before it is opened.
e void menuDeselected(MenuEvent e)

is called when the menu has been deselected, after it has been closed.
e void menuCanceled(MenuEvent e)

is called when the menu has been canceled, for example, by a user clicking
outside the menu.

Chapter 9. User Interface Components with Swing

m Chapter 9 B User Interface Components with Swing

Listing 9-8 is a sample program that generates a set of menus. It shows all the features
that you saw in this section: nested menus, disabled menu items, checkbox and radio
button menu items, a pop-up menu, and keyboard mnemonics and accelerators.

Listing 9-8 LEIEMEZ!

1. import java.awt.EventQueue;
2. import java.awt.event.s;
3. import javax.swing.x;

5. [ux

6. * @version 1.23 2007-05-30

7. % @author Cay Horstmann

8. %/

9. public class MenuTest

10. {

1. public static void main(String[] args)

12. {

13, EventQueue.invokelLater(new Runnable()

14. {

15. public void run()

16. {

17. MenuFrame frame = new MenuFrame();
18. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
19. frame.setVisible(true);

20. }

21, b

22. }

23 }

24.

25. [

2. + A frame with a sample menu bar.

27, %/

28. Class MenuFrame extends JFrame

29. {

30. public MenuFrame()

31. {

32. setTitle("MenuTest");

33. setSize(DEFAULT_WIDTH, DEFAULT_HEICHT);

34.

35. IMenu fileMenu = new JMenu("File");

36. fileMenu.add(new TestAction("New"));

37.

38. // demonstrate accelerators

39.

40. IMenuItem openItem = fileMenu.add(new TestAction("Open"));
41. openItem.setAccelerator(KeyStroke.getKeyStroke("ctrl 0"));

43. fileMenu.addSeparator();

Chapter 9. User Interface Components with Swing

Menus

B TT50 T S MenuTest. java (continued)

45,
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
7.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.

saveAction = new TestAction("Save");
IMenuItem saveItem = fileMenu.add(saveAction);
saveltem.setAccelerator(KeyStroke.getKeyStroke("ctrl S"));

saveAsAction = new TestAction("Save As");
fileMenu.add(saveAsAction);
fileMenu.addSeparator();

fileMenu.add(new AbstractAction("Exit")
{
public void actionPerformed(ActionEvent event)
{
System.exit(0);
}
I H

// demonstrate check box and radio button menus

readonTyItem = new JCheckBoxMenuItem("Read-only");
readonlyItem.addActionListener(new ActionListener()
{
public void actionPerformed(ActionEvent event)
{
boolean saveOk = !readonlyItem.isSelected();
saveAction.setEnabled(saveOk);
saveAsAction.setEnabled(saveOk);
}
N

ButtonGroup group = new ButtonGroup();

JRadioButtonMenuItem insertItem = new JRadioButtonMenuItem("Insert");
insertItem.setSelected(true);
JRadioButtonMenuItem overtypeltem = new JRadioButtonMenuItem("Overtype");

group.add(insertItem);
group.add(overtypeItem)

// demonstrate icons

Action cutAction = new TestAction("Cut");
cutAction.putValue(Action.SMALL_ICON, new ImageIcon("cut.gif"));
Action copyAction = new TestAction("Copy");
copyAction.putValue(Action.SMALL_ICON, new ImageIcon("copy.gif"));
Action pasteAction = new TestAction("Paste");
pasteAction.putValue(Action.SMALL_ICON, new ImageIcon("paste.gif"));

IMenu editMenu = new JMenu("Edit");
editMenu.add(cutAction);

417

Chapter 9. User Interface Components with Swing

m Chapter 9 B User Interface Components with Swing

B TT50 T3 2 MenuTest. java (continued)

94. editMenu.add(copyAction);

95. editMenu.add(pasteAction);

96.

97. // demonstrate nested menus

98.

9. IMenu optionMenu = new JMenu("Options");
100.

101. optionMenu.add(readonlyItem);

102. optionMenu.addSeparator();

103. optionMenu.add(insertItem);

104. optionMenu.add(overtypeltem);

105.

106. editMenu.addSeparator();

107. editMenu.add(optionMenu);

108.

109. // demonstrate mnemonics

110.

11, IMenu helpMenu = new IMenu("Help");

112, heTpMenu.setMnemonic('H');

113.

114, IMenuItem indexItem = new IMenuItem("Index");
115. indexItem.setMnemonic('I");

116. helpMenu.add(indexItem);

117.

118. // you can also add the mnemonic key to an action
119, Action aboutAction = new TestAction("About");
120. aboutAction.putValue(Action.MNEMONIC_KEY, new Integer('A'));
121, helpMenu.add(aboutAction);

122.

123. // add a1l top-Tevel menus to menu bar
124.

125, IMenuBar menuBar = new JMenuBar();

126. setIMenuBar(menuBar);

127.

128. menuBar.add(fileMenu);

129. menuBar.add(editMenu);

130. menuBar.add(helpMenu);

131.

132. // demonstrate pop-ups

133.

134. popup = new JPopupMenu();

135. popup.add(cutAction);

136. popup.add(copyAction);

137. popup.add(pasteAction);

138.

139. JPanel panel = new JPanel();

140. panel. setComponentPopupMenu(popup) ;

141. add(panel);

Chapter 9. User Interface Components with Swing

B TT50 T S MenuTest. java (continued)

143, // the following Tine is a workaround for bug 4966109
144. panel.addMouseListener(new MouseAdapter()

145. {

146. s

147. }

148.

149, pubTlic static final int DEFAULT_WIDTH = 300;
150. public static final int DEFAULT_HEIGHT = 200;
151,

152, private Action saveAction;

153, private Action saveAsAction;

154, private JCheckBoxMenuItem readonlyItem;

1s5. private JPopupMenu popup;

156. }

157.

158, [

159. * A sample action that prints the action name to System.out
160. #/

161. class TestAction extends AbstractAction
162. {

163, public TestAction(String name)

164. |

165. super(name);

166. }

167.

1e8. public void actionPerformed(ActionEvent event)
160. |

170. System.out.printin(getValue(Action.NAME) +
7.}

172. }

"

selected.");

Toolbars

A toolbar is a button bar that gives quick access to the most commonly used commands
in a program (see Figure 9-24).

Bfoobartest ~ |_|0|X)

Color
9 9| @ X

Figure 9-24 A toolbar

Chapter 9. User Interface Components with Swing

Chapter 9 B User Interface Components with Swing

What makes toolbars special is that you can move them elsewhere. You can drag the
toolbar to one of the four borders of the frame (see Figure 9-25). When you release the
mouse button, the toolbar is dropped into the new location (see Figure 9-26).

NOTE: Toolbar dragging works if the toolbar is inside a container with a border layout, or
any other layout manager that supports the North, East, South, and West constraints.

B (ToolBarTest ’:’Em

Color
el e|e (X

N

Figure 9-25 Dragging the toolbar

BTooBarfest —|_|O[X]

Color

X ono'

Figure 9-26 The toolbar has been dragged to another border

The toolbar can even be completely detached from the frame. A detached toolbar is con-
tained in its own frame (see Figure 9-27). When you close the frame containing a
detached toolbar, the toolbar jumps back into the original frame.

l;,|T|::||::|IB:=|rT|:-3st |_‘I:||X
Color

Figure 9-27 Detaching the toolbar

Chapter 9. User Interface Components with Swing

Toolbars are straightforward to program. You add components into the toolbar:

JToolBar bar = new JToolBar();
bar.add(bTueButton);

The JToo1Bar class also has a method to add an Action object. Simply populate the toolbar
with Action objects, like this:

bar.add(bTueAction);
The small icon of the action is displayed in the toolbar.
You can separate groups of buttons with a separator:
bar.addSeparator();

For example, the toolbar in Figure 9-24 has a separator between the third and fourth
button.

Then, you add the toolbar to the frame.
add(bar, BorderLayout.NORTH);

You can also specify a title for the toolbar that appears when the toolbar is undocked:
bar = new JToolBar(titleString);

By default, toolbars are initially horizontal. To have a toolbar start out as vertical, use
bar = new JToolBar(SwingConstants.VERTICAL)

or
bar = new JToolBar(titleString, SwingConstants.VERTICAL)

Buttons are the most common components inside toolbars. But there is no restriction
on the components that you can add to a toolbar. For example, you can add a combo
box to a toolbar.

Tooltips

A disadvantage of toolbars is that users are often mystified by the meanings of the tiny
icons in toolbars. To solve this problem, user interface designers invented tooltips. A
tooltip is activated when the cursor rests for a moment over a button. The tooltip text is
displayed inside a colored rectangle. When the user moves the mouse away, the tooltip
is removed. (See Figure 9-28.)

BrooBartest ___|_|0|X)

How background

Figure 9-28 A tooltip

In Swing, you can add tooltips to any JComponent simply by calling the setToo1TipText method:
exitButton.setToolTipText("Exit");

Chapter 9. User Interface Components with Swing

m Chapter 9 B User Interface Components with Swing

Alternatively, if you useAction objects, you associate the tooltip with the SHORT_DESCRIPTION
key:

exitAction.putValue(Action.SHORT_DESCRIPTION, "Exit");
Listing 9-9 shows how the same Action objects can be added to a menu and a toolbar.
Note that the action names show up as the menu item names in the menu, and the short
descriptions as the tooltips in the toolbar.

Listing 9-9 RIVIEFUENEE

1. import java.awt.s;

2. import java.awt.event.s;
3. import javax.swing.s;

4.

6. + @version 1.13 2007-06-12

7. @author Cay Horstmann

8/

9. pubTic class ToolBarTest

10. {

11, public static void main(String[] args)

12, {

13. EventQueue.invokelLater(new Runnable()
14.

15. pubTic void run()

16.

17. ToolBarFrame frame = new ToolBarFrame();
18. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
19. frame.setVisible(true);

20. }

21, b;

22. }

23. }

24.

25. [

2. + A frame with a toolbar and menu for color changes.
27,/

28. Class ToolBarFrame extends JFrame

29. {

30. public ToolBarFrame()

31. {

32. setTitle("ToolBarTest");

33. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
34.

35. // add a panel for color change

36.

37. panel = new JPanel();

38. add(panel, BorderLayout.CENTER);

39.
40. // set up actions
41.

Chapter 9. User Interface Components with Swing

IS T151, T S Bl ToolBarTest.java (continued)

2. Action blueAction = new ColorAction("Blue", new ImageIcon("blue-ball.gif"), Color.BLUE);
43, Action yellowAction = new ColorAction("Yellow", new ImageIcon("yellow-ball.gif"),
44, Color.YELLOW);

45. Action redAction = new ColorAction("Red", new ImageIcon("red-ball.gif"), Color.RED);
46.

47. Action exitAction = new AbstractAction("Exit", new ImageIcon("exit.gif"))
48. {

49. public void actionPerformed(ActionEvent event)

50. {

51, System.exit(0);

52. }

53. 1

54, exitAction.putValue(Action.SHORT_DESCRIPTION, "Exit");

55.

56. // populate tool bar

57.

58. JToolBar bar = new JToolBar();

59. bar.add(bTueAction);

60. bar.add(yeTlowAction);

61. bar.add(redAction);

62. bar.addSeparator();

63. bar.add(exitAction);

64. add(bar, BorderLayout.NORTH);

65.

66. // populate menu

67.

68. IMenu menu = new JMenu("Color");

69. menu.add(yellowAction);

70. menu.add(bTueAction);

7. menu.add(redAction);

72. menu.add(exitAction);

73. IMenuBar menuBar = new JMenuBar();

74. menuBar.add(menu);

75. setIMenuBar(menuBar);

76. }

77.

78. public static final int DEFAULT_WIDTH = 300;
79. public static final int DEFAULT_HEICHT = 200;
80.

st. private JPanel panel;

82.

83 [ux

84. x The color action sets the background of the frame to a given color.
85. %/

ss. class ColorAction extends AbstractAction

87. {

88. public ColorAction(String name, Icon icon, Color c)

89. {

Chapter 9. User Interface Components with Swing

m Chapter 9 B User Interface Components with Swing

)R E150 Tl S Il ToolBarTest.java (continued)

90. putValue(Action.NAME, name);

o1. putValue(Action.SMALL_ICON, icon);

92. putValue(Action.SHORT_DESCRIPTION, name + " background");
93. putValue("CoTor", c);

9. }

95.

9%. public void actionPerformed(ActionEvent event)
97. {

98. Color ¢ = (Color) getValue("Color");

99. panel.setBackground(c);

100. }

101, }

102. }

m javax.swing.JToolBar 1.2

JToolBar()

JToolBar(String titleString)

JToolBar(int orientation)

JToolBar(String titleString, int orientation)

constructs a toolbar with the given title string and orientation. orientation is one of
SwingConstants.HORIZONTAL (the default) and SwingConstants.VERTICAL.

e JButton add(Action a)
constructs a new button inside the toolbar with name, icon, short description, and
action callback from the given action, and adds the button to the end of the toolbar.

e void addSeparator()
adds a separator to the end of the toolbar.

m javax.swing.JComponent 1.2

e void setToolTipText(String text)
sets the text that should be displayed as a tooltip when the mouse hovers over the
component.

Sophisticated Layout Management

We have managed to lay out the user interface components of our sample applications so
far by using only the border layout, flow layout, and grid layout. For more complex
tasks, this is not going to be enough. In this section, we discuss advanced layout manage-
ment in detail.

Windows programmers may well wonder why Java makes so much fuss about layout
managers. After all, in Windows, layout management is not a big deal: First, you use a
dialog editor to drag and drop your components onto the surface of a dialog, and then
you use editor tools to line up components, to space them equally, to center them, and
so on. If you are working on a big project, you probably don’t have to worry about com-
ponent layout at all—a skilled user interface designer does all this for you.

Chapter 9. User Interface Components with Swing

Sophisticated Layout Management

The problem with this approach is that the resulting layout must be manually updated
if the size of the components changes. Why would the component size change? There
are two common cases. First, a user may choose a larger font for button labels and other
dialog text. If you try this out for yourself in Windows, you will find that many applica-
tions deal with this exceedingly poorly. The buttons do not grow, and the larger font is
simply crammed into the same space as before. The same problem can occur when the
strings in an application are translated to a foreign language. For example, the German
word for “Cancel” is “ Abbrechen.” If a button has been designed with just enough room
for the string “Cancel”, then the German version will look broken, with a clipped com-
mand string.

Why don’t Windows buttons simply grow to accommodate the labels? Because the
designer of the user interface gave no instructions in which direction they should grow.
After the dragging and dropping and arranging, the dialog editor merely remembers
the pixel position and size of each component. It does not remember why the compo-
nents were arranged in this fashion.

The Java layout managers are a much better approach to component layout. With a lay-
out manager, the layout comes with instructions about the relationships among the
components. This was particularly important in the original AWT, which used native
user interface elements. The size of a button or list box in Motif, Windows, and the Mac-
intosh could vary widely, and an application or applet would not know a priori on
which platform it would display its user interface. To some extent, that degree of vari-
ability has gone away with Swing. If your application forces a particular look and feel,
such as the Metal look and feel, then it looks identical on all platforms. However, if you
let users of your application choose their favorite look and feel, then you again need to
rely on the flexibility of layout managers to arrange the components.

Since Java 1.0, the AWT includes the grid bag layout that lays out components in rows
and columns. The row and column sizes are flexible and components can span multiple
rows and columns. This layout manager is very flexible, but it is also very complex. The
mere mention of the words “grid bag layout” has been known to strike fear in the hearts
of Java programmers.

In an unsuccessful attempt to design a layout manager that would free programmers
from the tyranny of the grid bag layout, the Swing designers came up with the box lay-

out. According to the JDK documentation of the BoxLayout class: “Nesting multiple panels
with different combinations of horizontal and vertical [sic] gives an effect similar to Grid-

BagLayout, without the complexity.” However, because each box is laid out independently,
you cannot use box layouts to arrange neighboring components both horizontally and
vertically.

Java SE 1.4 saw yet another attempt to design a replacement for the grid bag layout—the
spring layout. You use imaginary springs to connect the components in a container. As
the container is resized, the springs stretch or shrink, thereby adjusting the positions of
the components. This sounds tedious and confusing, and it is. The spring layout
quickly sank into obscurity.

In 2005, the NetBeans team invented the Matisse technology, which combines a layout
tool and a layout manager. A user interface designer uses the tool to drop components
into a container and to indicate which components should line up. The tool translates

Chapter 9. User Interface Components with Swing

Chapter 9 B User Interface Components with Swing

the designer’s intentions into instructions for the group layout manager. This is much
more convenient than writing layout management code by hand. The group layout
manager is now a part of Java SE 6. Even if you don’t use NetBeans as your IDE, we
think you should consider using its GUI builder tool. You can design your GUI in Net-
Beans and paste the resulting code into your IDE of choice.

In the coming sections, we cover the grid bag layout because it is commonly used and is
still the easiest mechanism for producing layout code for older Java versions. We will
tell you a strategy that makes grid bag layouts relatively painless in common situations.
Next, we cover the Matisse tool and the group layout manager. You will want to know
how the group layout manager works so that you can check whether Matisse recorded
the correct instructions when you visually positioned your components.

We end the discussion of layout managers by showing you how you can bypass layout
management altogether and place components manually, and how you can write your
own layout manager.

The Grid Bag Layout

The grid bag layout is the mother of all layout managers. You can think of a grid bag
layout as a grid layout without the limitations. In a grid bag layout, the rows and col-
umns can have variable sizes. You can join adjacent cells to make room for larger com-
ponents. (Many word processors, as well as HTML, have the same capability when
tables are edited: you start out with a grid and then merge adjacent cells if need be.) The
components need not fill the entire cell area, and you can specify their alignment within
cells.

Consider the font selector of Figure 9-29. It consists of the following components:

e Two combo boxes to specify the font face and size

e Labels for these two combo boxes

* Two checkboxes to select bold and italic

* A text area for the sample string

B|GridBagLayoutTest | _[0[X]

Face: (Serif | The quick brown fox jum
ps over the lazy dog
Size: 8 -
[]Bold
[] talic
L T

Figure 9-29 A font selector

Now, chop up the container into a grid of cells, as shown in Figure 9-30. (The rows and
columns need not have equal size.) Each checkbox spans two columns, and the text area
spans four rows.

Chapter 9. User Interface Components with Swing

Sophisticated Layout Management 427

""""""""" bl e b B Sl i
:Face: Serif « [iThe guick brown fox jum §
FrTtimmme=eennee =S DSt I AAS T T T T,
Slels L. -4 R :
L v '
: , ' :
: ! [Bold ! .
b\ condhooonnononood e eeemmenenaaad .
o ; :
' 3 4 '
: v [malic) :
' ' ' :

Figure 9-30 Dialog box grid used in design

To describe the layout to the grid bag manager, use the following procedure:

1. Create an object of type GridBagLayout. You don’t tell it how many rows and columns the
underlying grid has. Instead, the layout manager will try to guess it from the informa-
tion you give it later.

2. Set this GridBagLayout object to be the layout manager for the component.

3. For each component, create an object of type GridBagConstraints. Set field values of the
GridBagConstraints object to specify how the components are laid out within the grid bag.

4. Finally, add each component with its constraints by using the call
add(component, constraints);

Here’s an example of the code needed. (We go over the various constraints in more
detail in the sections that follow—so don’t worry if you don’t know what some of the
constraints do.)

GridBagLayout Tlayout = new GridBaglLayout();

panel.setlayout(Tlayout);

GridBagConstraints constraints = new GridBagConstraints();

constraints.weightx = 100;

constraints.weighty = 100;

constraints.gridx = 0;

constraints.gridy = 2;

constraints.gridwidth = 2;

constraints.gridheight = 1;

panel.add(component, constraints);
The trick is knowing how to set the state of the GridBagConstraints object. We go over the
most important constraints for using this object in the sections that follow.

The gridx, gridy, gridwidth, and gridheight Parameters

The gridx, gridy, gridwidth, and gridheight constraints define where the component is located
in the grid. The gridx and gridy values specify the column and row positions of the upper-
left corner of the component to be added. The gridwidth and gridheight values determine
how many columns and rows the component occupies.

The grid coordinates start with 0. In particular, grids = 0 and gridy = 0 denotes the top-left
corner. For example, the text area in our example has gridx = 2, gridy = 0 because it starts

Chapter 9. User Interface Components with Swing

m Chapter 9 B User Interface Components with Swing

in column 2 (that is, the third column) of row 0. It hasgridwidth = 1 and gridheight = 4
because it spans one column and four rows.

Weight Fields

You always need to set the weight fields (weightx and weighty) for each area in a grid bag
layout. If you set the weight to 0, then the area never grows or shrinks beyond its initial
size in that direction. In the grid bag layout for Figure 9-29 on page 426, we set the
weightx field of the labels to be 0. This allows the labels to remain a constant width when
you resize the window. On the other hand, if you set the weights for all areas to 0, the
container will huddle in the center of its allotted area rather than stretching to fill it.

Conceptually, the problem with the weight parameters is that weights are properties
of rows and columns, not individual cells. But you need to specify them in terms of
cells because the grid bag layout does not expose the rows and columns. The row
and column weights are computed as the maxima of the cell weights in each row or
column. Thus, if you want a row or column to stay at a fixed size, you need to set the
weights of all components in it to zero.

Note that the weights don’t actually give the relative sizes of the columns. They tell
what proportion of the “slack” space should be allocated to each area if the container
exceeds its preferred size. This isn’t particularly intuitive. We recommend that you set
all weights at 100. Then, run the program and see how the layout looks. Resize the dia-
log to see how the rows and columns adjust. If you find that a particular row or column
should not grow, set the weights of all components in it to zero. You can tinker with
other weight values, but it is usually not worth the effort.

The fill and anchor Parameters

If you don’t want a component to stretch out and fill the entire area, you set thefill
constraint. You have four possibilities for this parameter: the valid values are used in
the forms GridBagConstraints.NONE, GridBagConstraints.HORIZONTAL, GridBagConstraints.VERTICAL,
and GridBagConstraints.BOTH.

If the component does not fill the entire area, you can specify where in the area you want
it by setting the anchor field. The valid values are GridBagConstraints.CENTER (the default),
GridBagConstraints.NORTH, GridBagConstraints.NORTHEAST, GridBagConstraints.EAST, and so on.

Padding

You can surround a component with additional blank space by setting the insets field of
GridBagConstraints. Set the left, top, right and bottom values of the Insets object to the amount
of space that you want to have around the component. This is called the external padding.

The ipadx and ipady values set the internal padding. These values are added to the mini-
mum width and height of the component. This ensures that the component does not
shrink down to its minimum size.

Alternative Method to Specify the gridx, gridy, gridwidth,
and gridheight Parameters

The AWT documentation recommends that instead of setting thegridx and gridy values
to absolute positions, you set them to the constant GridBagConstraints.RELATIVE. Then, add
the components to the grid bag layout in a standardized order, going from left to right in
the first row, then moving along the next row, and so on.

Chapter 9. User Interface Components with Swing

Sophisticated Layout Management m

You still specify the number of rows and columns spanned, by giving the appropriate grid-
height and gridwidth fields. Except, if the component extends to the last row or column, you
aren’t supposed to specify the actual number, but the constantGridBagConstraints. REMAINDER.
This tells the layout manager that the component is the last one in its row.

This scheme does seem to work. But it sounds really goofy to hide the actual placement
information from the layout manager and hope that it will rediscover it.

All this sounds like a lot of trouble and complexity. But in practice, the strategy in the

following recipe makes grid bag layouts relatively trouble-free:

1. Sketch out the component layout on a piece of paper.

2. Find a grid such that the small components are each contained in a cell and the
larger components span multiple cells.

3. Label the rows and columns of your grid with 0, 1,2, 3, You can now read off
the gridx, gridy, gridwidth, and gridheight values.

4. For each component, ask yourself whether it needs to fill its cell horizontally or verti-
cally. If not, how do you want it aligned? This tells you the fi11 and anchor parameters.

5. Set all weights to 100. However, if you want a particular row or column to always
stay at its default size, set the weightx or weighty to 0 in all components that belong to
that row or column.

6. Write the code. Carefully double-check your settings for the GridBagConstraints. One
wrong constraint can ruin your whole layout.

7. Compile, run, and enjoy.

Some GUI builders even have tools for specifying the constraints visually—see Figure

9-31 for the configuration dialog in NetBeans.

[Fl|GridBagLayout Customizer

% Layout -
Grid X o =S
Grid Y 3 - jLabell |/ jCoamboBo...
Grid Width 2 hd :
Grid Height 1 - jLabelz [jcombogo F—
Fill Harizantal - JCheckBoxl
Internal Padding X 0 = =
Internal Padding 7] L IEiEtes
Anchor Center hd
== = 4

jCheckBox2 [JCheckBox]

Anchar- Insets

nlela

PR

a
Eﬂ G
@ =]

I-Padding Grid Size
1l ||t [lels S

Figure 9-31 Specifying grid bag constraints in NetBeans

Fill

Chapter 9. User Interface Components with Swing

Chapter 9 B User Interface Components with Swing

A Helper Class to Tame the Grid Bag Constraints
The most tedious aspect of the grid bag layout is writing the code that sets the con-
straints. Most programmers write helper functions or a small helper class for this pur-
pose. We present such a class after the complete code for the font dialog example. This
class has the following features:
e [ts name is short: GBC instead of GridBagConstraints.
e Itextends GridBagConstraints, so you can use shorter names such as GBC.EAST for the
constants.
e Usea GBC object when adding a component, such as
add(component, new GBC(1, 2));
e There are two constructors to set the most common parameters:gridx and gridy,
or gridx, gridy, gridwidth, and gridheight.
add(component, new GBC(1, 2, 1, 4));
® There are convenient setters for the fields that come inx/y pairs:
add(component, new GBC(1, 2).setWeight(100, 100));
¢ The setter methods return this, so you can chain them:
add(component, new GBC(1, 2).setAnchor(GBC.EAST).setWeight(100, 100));
® The setInsets methods construct the Insets object for you. To get one-pixel insets,
simply call
add(component, new GBC(1, 2).setAnchor(GBC.EAST).setInsets(1));
Listing 9-10 shows the complete code for the font dialog example. Here is the code that
adds the components to the grid bag:
add(faceLabel, new GBC(@, 0).setAnchor(GBC.EAST));
add(face, new GBC(1, 0).setFil1(CBC.HORIZONTAL).setWeight(100, 0).setInsets(1));
add(sizeLabel, new GBC(@, 1).setAnchor(GBC.EAST));
add(size, new GBC(1, 1).setFil1(GBC.HORIZONTAL).setWeight(100, 0).setInsets(1));
add(bold, new GBC(@, 2, 2, 1).setAnchor(GBC.CENTER).setWeight(100, 100));
add(italic, new GBC(@, 3, 2, 1).setAnchor(CGBC.CENTER).setWeight(100, 100));
add(sampTe, new GBC(2, 0, 1, 4).setFi11(GBC.BOTH).setWeight(100, 100));
Once you understand the grid bag constraints, this kind of code is fairly easy to read
and debug.

bag.html suggests that you reuse the same GridBagConstraints object for all components. We
find the resulting code hard to read and error prone. For example, look at the demo at
http://java.sun.com/docs/books/tutorial/uiswing/events/containerlistener.html. Was it really
intended that the buttons are stretched horizontally, or did the programmer just forget to turn
off the fil1l constraint?

NOTE: The Sun tutorial at http://java.sun.com/docs/books/tutorial/uiswing/layout/grid-

Chapter 9. User Interface Components with Swing

Sophisticated Layout Management m

ISR T M S L0l GridBaglayoutTest. java

1. import java.awt.s;

2. import java.awt.event.x;
3. import javax.swing.s;

4.

5. [#x

6. * @version 1.33 2007-06-12

7.+ @author Cay Horstmann

s */

o. pubTic class GridBagLayoutTest

10. {

1. public static void main(String[] args)

12. {

13. EventQueue.invokeLater(new Runnable()

14. {

15. public void run()

16. {

17. FontFrame frame = new FontFrame();
18. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
19. frame.setVisible(true);

20. }

21, B

22. }

23 }

24.

25 [wx

2. + A frame that uses a grid bag Tayout to arrange font selection components.
27. %/

28. class FontFrame extends JFrame

20. {

30. pubTlic FontFrame()

31. {

32, setTitle("GridBaglLayoutTest");

33. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

34.

35. GridBagLayout layout = new GridBagLayout();
36. setlayout(Tayout);

37.

38. ActionListener Tistener = new FontAction();
39.

40. // construct components

41.

2. JLabel facelabel = new JLabel("Face: ");
43.

44. face = new JComboBox(new String[] { "Serif", "SansSerif", "Monospaced", "Dialog",
45. "DialogInput" });

46.

47. face.addActionListener(listener);

48.

49. JLabel sizelabel = new JLabel("Size: ");
50.

51. size = new JComboBox(new String[] { "8", "10", "12", "15", "18", "24", "36", "48" });

Chapter 9. User Interface Components with Swing

m Chapter 9 B User Interface Components with Swing

ISR T MR VN GridBaglayoutTest.java (continued)

52.
53,
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
9.
97.
9.
9.

100.

101,

102.

103. }

}

p
p

p
p
p

size.addActionListener(listener);

bold = new JCheckBox("Bold");
bold.addActionListener(Tistener)

italic = new JCheckBox("Italic");
italic.addActionListener(Tistener)

sample = new JTextArea();

sample.setText("The quick brown fox jumps over the Tlazy dog");
sample.setEditable(false);

sample.setLineWrap(true);
sample.setBorder(BorderFactory.createEtchedBorder());

// add components to grid, using GBC convenience class

add(faceLabel, new GBC(0, 0).setAnchor(GBC.EAST));

add(face, new GBC(1, 0).setFil1(GBC.HORIZONTAL).setWeight(100, 0).setInsets(1));
add(sizeLabel, new GBC(@, 1).setAnchor(GBC.EAST));

add(size, new CBC(1, 1).setFil1(GBC.HORIZONTAL).setWeight(100, 0).setInsets(1));
add(bold, new GBC(@, 2, 2, 1).setAnchor(GBC.CENTER).setWeight(100, 100));
add(italic, new GBC(@, 3, 2, 1).setAnchor(GBC.CENTER).setWeight(100, 100));
add(sample, new GBC(2, @, 1, 4).setFiT1(GBC.BOTH).setWeight(100, 100));

ublic static final int DEFAULT_WIDTH = 300;
ublic static final int DEFAULT_HEIGHT = 200;

rivate JComboBox face;
rivate JComboBox size;
rivate JCheckBox bold;

private JCheckBox italic;
private JTextArea sample;

[k

+ An action listener that changes the font of the sample text.

*/

private class FontAction implements ActionListener

{

public void actionPerformed(ActionEvent event)
{
String fontFace = (String) face.getSelectedItem();
int fontStyle = (bold.isSelected() ? Font.BOLD : @)
+ (italic.isSelected() ? Font.ITALIC : 0);
int fontSize = Integer.parseInt((String) size.getSelectedItem());
Font font = new Font(fontFace, fontStyle, fontSize);
sample.setFont(font);
sample.repaint();

Chapter 9. User Interface Components with Swing

Sophisticated Layout Management m

Listing 9-11 shows the code of the GBC helper class.

Listing 9-11 [GEREIE

import java.awt.:;

1.

2.

3. [xx

4.« This class simplifies the use of the GridBagConstraints class.
5. @version 1.01 2004-05-06

6. + @author Cay Horstmann

7. %/

8. public class GBC extends GridBagConstraints

9 {

10. [

1. x Constructs a GBC with a given gridx and gridy position and all other grid
12. + bag constraint values set to the default.

1. * @param gridx the gridx position

14, + @param gridy the gridy position

15. %/

6. public GBC(int gridx, int gridy)

17. {

18. this.gridx = gridx;

19. this.gridy = gridy;

20. }

21.

2. [#x

23, + Constructs a GBC with given gridx, gridy, gridwidth, gridheight and all
24, + other grid bag constraint values set to the default.
25. + @param gridx the gridx position

26. + @param gridy the gridy position

27. + @param gridwidth the cell span in x-direction

28. » @param gridheight the cell span in y-direction

29. /

30. public GBC(int gridx, int gridy, int gridwidth, int gridheight)
31. {

32, this.gridx = gridx;

33. this.gridy = gridy;

34. this.gridwidth = gridwidth;

35. this.gridheight = gridheight;

36. }

37.

38 [

39. x Sets the anchor.

40. « @aram anchor the anchor value

a1, + @return this object for further modification

42. %/

43. public GBC setAnchor(int anchor)

44, {

45. this.anchor = anchor;

46. return this;

47. }

Chapter 9. User Interface Components with Swing

m Chapter 9 B User Interface Components with Swing

GBC.java (continued)

48.

49, [ux

50. « Sets the fi11 direction.

51 + @param fi11 the i1l direction

52. + @return this object for further modification
53. %/

54. public GBC setFill(int fill)

55, {

56. this.fill = fill;

57. return this;

58. }

59.

60. [xx

61. + Sets the cell weights.

62. + @param weightx the cell weight in x-direction

63. + @param weighty the cell weight in y-direction
+ @return this object for further modification

65. x/

e6. public GBC setWeight(double weightx, double weighty)
67. {

68. this.weightx = weightx;

69. this.weighty = weighty;

70. return this;

71. }

72.

8 [u

Sets the insets of this cell.
@param distance the spacing to use in all directions
@return this object for further modification

*
%*
*
%*

77. 5/

78. public GBC setInsets(int distance)

79 {

80. this.insets = new Insets(distance, distance, distance, distance);
81. return this;

82. }

83.

84, [u

+ Sets the insets of this cell.
86. + @param top the spacing to use on top

+ @param Teft the spacing to use to the Teft

+ @param bottom the spacing to use on the bottom
89. + @param right the spacing to use to the right

9. x @return this object for further modification

91. %/

9. public GBC setInsets(int top, int left, int bottom, int right)
9. {

9. this.insets = new Insets(top, left, bottom, right);

95. return this;

9%. }

Chapter 9. User Interface Components with Swing

Sophisticated Layout Management m

GBC.java (continued)

98. [ux

9. + Sets the internal padding

100. x @param ipadx the internal padding in x-direction
101. + @param ipady the internal padding in y-direction
102. x @return this object for further modification

103. /

104, public GBC setIpad(int ipadx, int ipady)

105. {

106. this.ipadx = ipadx;

107. this.ipady = ipady;

108, return this;

109. }

110. }

m java.awt.GridBagConstraints 1.0

e int gridx, gridy
specifies the starting column and row of the cell. The default is 0.
e int gridwidth, gridheight
specifies the column and row extent of the cell. The default is 1.
e double weightx, weighty
specifies the capacity of the cell to grow. The default is 0.
® int anchor
indicates the alignment of the component inside the cell. You can choose between
absolute positions:

NORTHWEST NORTH NORTHEAST
WEST CENTER EAST
SOUTHWEST SOUTH SOUTHEAST

or their orientation-independent counterparts:

FIRST_LINE_START LINE_START FIRST_LINE_END
PAGE_START CENTER PAGE_END
LAST_LINE_START LINE_END LAST_LINE_END

Use the latter if your application may be localized for right-to-left or top-to-
bottom text. The default is CENTER.

e int fill
specifies the fill behavior of the component inside the cell, one of NONE, BOTH,
HORIZONTAL, or VERTICAL. The default is NONE.

e int ipadx, ipady
specifies the “internal” padding around the component. The default is 0.

Chapter 9. User Interface Components with Swing

m Chapter 9 B User Interface Components with Swing

e Insets insets
specifies the “external” padding along the cell boundaries. The default is no
padding.

e (GridBagConstraints(int gridx, int gridy, int gridwidth, int gridheight, double weightx,
doubTe weighty, int anchor, int fill, Insets insets, int ipadx, int ipady) 1.2
constructs a GridBagConstraints with all its fields specified in the arguments. Sun
recommends that this constructor be used only by automatic code generators
because it makes your source code very hard to read.

Group Layout

Before discussing the API of the GroupLayout class, let us have a quick look at the Matisse GUI
builder in NetBeans. We won't give you a full Matisse tutorial—see http: //ww.netbeans.org/kb/
articles/matisse.html for more information.

Here is the workflow for laying out the top of the dialog in Figure 9-13. Start a new
project and add a new JFrame form. Drag a label until two guidelines appear that sepa-
rate it from the container borders:

Labell|

Place another label below the first row:

Labell

“jLabel?]

Drag a text field so that its baseline lines up with the baseline of the first label. Again,
note the guidelines:

ilabei|TexFizial]

jLabel? '

Finally, line up a password field with the label to the left and the text field above.

Chapter 9. User Interface Components with Swing

Sophisticated Layout Management

jLabell |[jTextFieldl

Jlabel2|

Matisse translates these actions into the following Java code:

Tayout. setHorizontalGroup(
Tlayout.createParallelGroup(GroupLayout.Alignment.LEADING)
.addGroup(Tayout.createSequentialGroup()

.addContainerGap()
.addGroup(Tayout.createParallelGroup(GroupLayout.Alignment.LEADING)

.addGroup(Tayout.createSequentialGroup()

.addComponent(jLabell)
.addPreferredGap(LayoutStyle.ComponentPlacement.RELATED)
.addComponent (jTextFieldl))

.addGroup(Tayout.createSequentialGroup()

.addComponent(jLabe12)
.addPreferredGap(LayoutStyle.ComponentPlacement.RELATED)
.addComponent(jPasswordFieldl)))

.addContainerGap(222, Short.MAX_VALUE)));

Tayout.setVerticalGroup(
Tayout.createParallelGroup(GroupLayout.ATignment.LEADING)
.addGroup(Tayout.createSequentialGroup()

.addContainerGap()
.addGroup(Tayout.createParallelGroup(GroupLayout.Alignment.BASELINE)

.addComponent(jLabe11)

.addComponent (jTextFieldl))
.addPreferredGap(LayoutStyle.ComponentPlacement.RELATED)
.addGroup(Tayout.createParallelGroup(GroupLayout.Alignment.BASELINE)

.addComponent(jLabe12)

.addComponent (jPasswordFieldl))

.addContainerGap(244, Short.MAX_VALUE)));

That looks a bit scary, but fortunately you don’t have to write the code. However, it is
helpful to have a basic understanding of the layout actions so that you can spot errors.
We will analyze the basic structure of the code. The API notes at the end of this section
explain each of the classes and methods in detail.
Components are organized by placing them into objects of typeGroupLayout.SequentialGroup
or GroupLayout.ParallelGroup. These classes are subclasses of GroupLayout.Group. Groups can
contain components, gaps, and nested groups. The various add methods of the group
classes return the group object so that method calls can be chained, like this:

group.addComponent(...).addPreferredGap(...).addComponent(...);
As you can see from the sample code, the group layout separates the horizontal and ver-
tical layout computations.

To visualize the horizontal computations, imagine that the components are flattened so
they have zero height, like this:

437

Chapter 9. User Interface Components with Swing

m Chapter 9 B User Interface Components with Swing

Container
border
jlabel jTextFieldl
....... Gap
Gap |, . .
jlabel2 jPasswordFieldl
Gap

There are two parallel sequences of components, corresponding to the (slightly simpli-
fied) code:
.addContainerGap()
.addGroup(Tayout.createParallelGroup()
.addGroup(layout.createSequentialGroup()
.addComponent(jlLabell)
.addPreferredGap(LayoutStyle.ComponentPlacement.RELATED)
.addComponent (jTextFieldl))
.addGroup(layout.createSequentialGroup()
.addComponent(jlLabe12)
.addPreferredGap(LayoutStyle.ComponentPlacement.RELATED)
.addComponent(jPasswordFieldl)))

But wait, that can’t be right. If the labels have different lengths, the text field and the
password field won't line up.

We have to tell Matisse that we want the fields to line up. Select both fields, right-
click, and select Align -> Left to Column from the menu. Also line up the labels (see
Figure 9-32).

This dramatically changes the layout code:

.addGroup(Tayout.createSequentialGroup()
.addContainerGap()
.addGroup(Tayout.createParallelGroup(GroupLayout.Alignment.LEADING)
.addComponent(jLabell, GroupLayout.Alignment.TRAILING)
.addComponent(jLabel2, GroupLayout.ATignment.TRAILING))
.addPreferredGap(LayoutStyle.ComponentPlacement.RELATED)
.addGroup(Tayout.createParallelGroup(GroupLayout.Alignment.LEADING)
.addComponent (jTextFieldl)
.addComponent(jPasswordFieldl))

Chapter 9. User Interface Components with Swing

Sophisticated Layout Management m

Labell) .

aFisld1]
£ Edit Text
Label2+ S
Change Variable Name
Events]
Align ¥ Leftto Column
Anchor ¥ Rightto Column
Auto Resizing ¥ ToptoRow
Same Size b Bottom to Row
Set Default Size Left
Space Around Component... Right
e lUp Tap
Mo Bottom
Cut Ctrl-X
Copy Ctrl-C
Delete Delete

-

Align Left to Column

Anchor Right to Column

- v v |w

Auto Resizing Top to Row
Same Size Bottom to Row
Set Default Size Left

Space Around Component... Right

Maove Up Top

Move Down Eottom

Cut Ctri-X
Copy Ctrl-C

Figure 9-32 Aligning the labels and text fields in Matisse

Now the labels and fields are each placed in a parallel group. The first group has an align-

ment of TRAILING (which means alignment to the right when the text direction is left-to-right):
Container

border

jLabell jTextFieldl

Gap

Gap . . .
jLabel2 jPasswordFieldl

Chapter 9. User Interface Components with Swing

Chapter 9 B User Interface Components with Swing

It seems like magic that Matisse can translate the designer’s instructions into nested
groups, but as Arthur C. Clarke said, any sufficiently advanced technology is indistin-
guishable from magic.

For completeness, let’s look at the vertical computation. Now you should think of the
components as having no width. We have a sequential group that contains two parallel
groups, separated by gaps:

Container
border

Gap

jlLabell jTextFieldl

: Gap

jLabel2 jPasswordFieldl

The corresponding code is
Tayout.createSequentialGroup()
.addContainerGap()
.addGroup(Tayout.createParallelGroup(GroupLayout.Alignment.BASELINE)

.addComponent(jLabell)

.addComponent (jTextFieldl))
.addPreferredGap(LayoutStyle.ComponentPlacement.RELATED)
.addGroup(Tayout.createParallelGroup(GroupLayout.Alignment.BASELINE)

.addComponent(jLabe12)

.addComponent (jPasswordFieldl))

As you can see from the code, the components are aligned by their baselines. (The base-
line is the line on which the component text is aligned.)

NOTE: Accurate baseline alignment was not possible in earlier versions of Java. Finally,
Java SE 6 added a getBaseline method to the Component class for determining the exact base-
line of a component containing text.

You can force a set of components to have equal size. For example, we may want to
make sure that the text field and password field width match exactly. In Matisse, select
both, right-click, and select Same Size -> Same Width from the menu (see Figure 9-33).

Chapter 9. User Interface Components with Swing

Sophisticated Layout Management m

—_— e
iLabell |jTexiFieldl
—

iLabel2 I

Align
Anchaor
Auto Resizing

v v v v |-

Same Size ¥ Same Width
Set Default Size [0 same Heigh

Cut CHrl-X

Copy Ctri-C

Figure 9-33 Forcing two components to have the same width

Matisse adds the following statement to the layout code:

Tayout. linkSize(SwingConstants.HORIZONTAL, new Component[] {jPasswordFieldl, jTextFieldl});
The code in Listing 9-12 shows how to lay out the font selector of the preceding section,
using the GroupLayout instead of the GridBagLayout. The code may not look any simpler than
that of Listing 9-10 on page 431, but we didn’t have to write it. We used Matisse to do
the layout and then cleaned up the code a bit.

ISET Tl B8 P GrouplayoutTest. java

1. import java.awt.s;
2. import java.awt.event.x;
3. import javax.swing.x;

5. [ak

6. * @version 1.0 2007-04-27

7.+ @author Cay Horstmann

s %/

o. pubTic class GroupLayoutTest

10. {

1. public static void main(String[] args)

12, {

13. EventQueue.invokelLater(new Runnable()

14. {

15. public void run()

16. {

17. FontFrame frame = new FontFrame();
18. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
19. frame.setVisible(true);

20. }

21, B

22. }

Chapter 9. User Interface Components with Swing

m Chapter 9 B User Interface Components with Swing

B TTR 1T S B GrouplayoutTest.java (continued)

24.

25 [

26. « A frame that uses a group layout to arrange font selection components.
27, #/

28. Class FontFrame extends JFrame

20. {

30. public FontFrame()

3. {

32. setTitTe("GroupLayoutTest");

33. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

34.

35. ActionListener Tistener = new FontAction();

36.

37. // construct components

38.

39. JLabel facelabel = new JLabel("Face: ");

40.

1. face = new JComboBox(new String[] { "Serif", "SansSerif", "Monospaced", "Dialog",
42. "DialogInput” });

43.

4a. face.addActionListener(listener)

45.

46. JLabel sizelabel = new JLabel("Size: ");

47.

48. size = new JComboBox(new String[] { "8", "10", "12", "15", "18", "24", "36", "48" });
49.

50. size.addActionListener(listener);

51.

52. bold = new JCheckBox("Bold");

53. bold.addActionListener(Tistener);

54.

55. italic = new JCheckBox("Italic");

56. italic.addActionListener(Tistener);

57.

58. sample = new JTextArea();

59. sample.setText("The quick brown fox jumps over the lazy dog");

60. sample.setEditable(false);

61. sample.setLineWrap(true);

62. sample.setBorder(BorderFactory.createEtchedBorder());

63.

64. pane = new JScrol1Pane(sample);

65.

66. GroupLayout Tayout = new GroupLayout(getContentPane());

67. setLayout(Tayout);

68. Tayout.setHorizontalGroup(layout.createParallelGroup(GroupLayout.Alignment.LEADING)
69. .addGroup(

70. Tayout.createSequentialGroup().addContainerGap().addGroup(

71. Tayout.createParallelGroup(GroupLayout.ATignment.LEADING) .addGroup(

Chapter 9. User Interface Components with Swing

Sophisticated Layout Management m

IBETR T 2 B GrouplayoutTest.java (continued)

72, GroupLayout.ATignment. TRAILING,

7. Tayout. createSequentialGroup() .addGroup(

74. layout.createParallelGroup(GroupLayout.Alignment. TRAILING)
75. .addComponent (facelLabel).addComponent(sizelLabel))

76. .addPreferredGap(LayoutStyle.ComponentPlacement.RELATED)
77. .addGroup(

78. Tayout.createParallelGroup(

79. GroupLayout.Alignment.LEADING, false)

80. .addComponent (size).addComponent(face)))

8t. .addComponent(italic).addComponent(bold)).addPreferredGap(

82. LayoutStyTe.ComponentPlacement.RELATED) .addComponent(pane)

83. .addContainerGap()));

84.

85. Tayout. 1inkSize(SwingConstants.HORIZONTAL, new java.awt.Component[] { face, size });

86.

87. Tayout.setVerticalGroup(layout.createParallelGroup(GroupLayout.ATignment.LEADING)

88. .addGroup(

89. Tlayout.createSequentialGroup().addContainerGap().addGroup(

9. Tayout.createParallelGroup(GroupLayout.ATignment.LEADING) .addComponent(
91. pane, GroupLayout.Alignment.TRAILING).addGroup(

92. Tayout.createSequentialGroup().addGroup(

9. Tlayout.createParallelGroup(GroupLayout.ATignment.BASELINE)
94. .addComponent (face) .addComponent(facelLabel))

95. .addPreferredCap(LayoutStyle.ComponentPlacement.RELATED)
9. .addGroup(

97. Tayout.createParallelGroup(

9. GroupLayout.Alignment.BASELINE).addComponent(size)
9. .addComponent(sizeLabel)).addPreferredGap(
100. LayoutStyTe.ComponentPTacement.RELATED) .addComponent (
101. italic, Grouplayout.DEFAULT_SIZE,

102. GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)

103. .addPreferredCap(LayoutStyle.ComponentPlacement.RELATED)
104. .addComponent(bold, GroupLayout.DEFAULT_SIZE,

105. GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)))

106. .addContainerGap()));

107. }

108.

100. public static final int DEFAULT_WIDTH = 300;
110. public static final int DEFAULT_HEICHT = 200;
111,

112. private JComboBox face;

113, private JComboBox size;

114, private JCheckBox bold;

115, private JCheckBox italic;

116, private JScrol1Pane pane;

117. private JTextArea sample;

118.

119, [fux

120, + An action Tistener that changes the font of the sample text.

121, /

Chapter 9. User Interface Components with Swing

m Chapter 9 B User Interface Components with Swing

B TTR 1T S B GrouplayoutTest.java (continued)

122,
123,
124,
125.
126.
127.
128,
129.
130.
131,
132.
133,
134.
135. }

private class FontAction implements ActionListener
{
public void actionPerformed(ActionEvent event)
{
String fontFace = (String) face.getSelectedItem();
int fontStyle = (bold.isSelected() ? Font.BOLD : @)
+ (italic.isSelected() ? Font.ITALIC : 0);
int fontSize = Integer.parseInt((String) size.getSelectedItem());
Font font = new Font(fontFace, fontStyle, fontSize);
sample.setFont(font);
sample.repaint();
}
}

javax.swing.GroupLayout 6

GroupLayout(Container host)

constructs a GroupLayout for laying out the components in the host container. (Note
that you still need to call setLayout on the host object.)

void setHorizontalGroup(GroupLayout.Group g)

void setVerticalGroup(GroupLayout.Group g)

sets the group that controls horizontal or vertical layout.

void TinkSize(Component... components)

void TinkSize(int axis, Component... component)

forces the given components to have the same size, or the same size along the
given axis (one of SwingConstants.HORIZONTAL or SwingConstants.VERTICAL).
GroupLayout.SequentialGroup createSequentialGroup()

creates a group that lays out its children sequentially.
GroupLayout.ParallelGroup createParallelGroup()

GroupLayout.ParallelGroup createParallelGroup(GroupLayout.ATignment align)
GroupLayout.ParallelGroup createParallelGroup(GroupLayout.ATignment align,
boolean resizable)

creates a group that lays out its children in parallel.

Parameters: align One of BASELINE, LEADING (default), TRAILING, or CENTER

resizable true (default) when the group can be resized; false if
the preferred size is also the minimum and
maximum size

boolean getHonorsVisibility()

void setHonorsVisibility(boolean b)

gets or sets the honorsVisibility property. When true (the default), non-visible
components are not laid out. When false, they are laid out as if they were visible.
This is useful when you temporarily hide some components and don’t want the
layout to change.

Chapter 9. User Interface Components with Swing

Sophisticated Layout Management m

e hoolean getAutoCreateGaps()

® void setAutoCreateGaps(boolean b)

e hoolean getAutoCreateContainerGaps()

e void setAutoCreateContainerGaps(boolean b)
gets and sets the autoCreateGaps and autoCreateContainerGaps properties. When true,
gaps are automatically added between components or the at the container
boundaries. The default is false. A true value is useful when you manually
produce a GrouplLayout.

API I javax.swing.GroupLayout.Group

e GroupLayout.Group addComponent(Component c)

e GroupLayout.Group addComponent(Component c, int minimumSize, int preferredSize,
int maximumSize)
adds a component to this group. The size parameters can be actual (nonnegative)
values, or the special constants GroupLayout.DEFAULT_SIZE or GroupLayout.PREFERRED_SIZE.
When DEFAULT_SIZE is used, the component’s getMinimumSize, getPreferredSize, or
getMaximumSize is called. When PREFERRED_SIZE is used, the component’s getPreferredSize
method is called.

e GroupLayout.Group addCap(int size)

e GroupLayout.Group addGap(int minimumSize, int preferredSize, int maximumSize)
adds a gap of the given rigid or flexible size.

e GroupLayout.Group addGroup(GroupLayout.Group g)
adds the given group to this group.

APl I javax.swing.GroupLayout.ParallelGroup

e Grouplayout.ParallelGroup addComponent(Component c, GroupLayout.Alignment align)

e GroupLayout.ParallelGroup addComponent(Component c, GroupLayout.Alignment align,
int minimumSize, int preferredSize, int maximumSize)

e Grouplayout.ParallelGroup addGroup(GroupLayout.Group g, GroupLayout.Alignment align)
adds a component or group to this group, using the given alignment (one of
BASELINE, LEADING, TRAILING, or CENTER).

javax.swing.GroupLayout.SequentialGroup

e Grouplayout.SequentialGroup addContainerGap()

e Grouplayout.SequentialGroup addContainerGap(int preferredSize, int maximumSize)
adds a gap for separating a component and the edge of the container.

e Grouplayout.SequentialGroup addPreferredGap(LayoutStyle.ComponentPTacement type)
adds a gap for separating components. The type isLayoutStyle.ComponentPlacement . RELATED
or LayoutStyle.ComponentPTacement . UNRELATED.

Using No Layout Manager

There will be times when you don’t want to bother with layout managers but just want
to drop a component at a fixed location (sometimes called absolute positioning). This is
not a great idea for platform-independent applications, but there is nothing wrong with
using it for a quick prototype.

Chapter 9. User Interface Components with Swing

m Chapter 9 B User Interface Components with Swing

Here is what you do to place a component at a fixed location:
1. Set the layout manager tonull.

2. Add the component you want to the container.

3. Then specify the position and size that you want:

frame.setLayout(null);

JButton ok = new JButton("0k");
frame.add(ok);

ok.setBounds(10, 10, 30, 15);

m java.awt.Component 1.0
e void setBounds(int x, int y, int width, int height)
moves and resizes a component.
Parameters: X, y The new top-left corner of the component

width, height The new size of the component

Custom Layout Managers

You can design your own LayoutManager class that manages components in a special
way. As a fun example, we show you how to arrange all components in a container
to form a circle (see Figure 9-34).

B |CircleLayoutTest EER

Figure 9-34 Circle layout

Your own layout manager must implement the LayoutManager interface. You need to over-
ride the following five methods:

void addLayoutComponent(String s, Component c);

void removelayoutComponent(Component c);

Dimension preferredLayoutSize(Container parent);

Dimension minimumLayoutSize(Container parent);

void TayoutContainer(Container parent);
The first two methods are called when a component is added or removed. If you don’t
keep any additional information about the components, you can make them do nothing.
The next two methods compute the space required for the minimum and the preferred
layout of the components. These are usually the same quantity. The fifth method does
the actual work and invokes setBounds on all components.

Chapter 9. User Interface Components with Swing

Sophisticated Layout Management

NOTE: The AWT has a second interface, called LayoutManager2, with 10 methods to imple-
ment rather than 5. The main point of the LayoutManager?2 interface is to allow the user to use

the add method with constraints. For example, the BorderLayout and GridBagLayout implement
the LayoutManager? interface.

Listing 9-13 shows the code for the Circlelayout manager, which, amazingly and use-
lessly enough, lays out the components along a circle inside the parent.

ISR T B M CirclelayoutTest. java

1.
2.
3.
4.
5.
6.
7.
8.
9.

import java.awt.x;

import javax.swing.x;

[k

» @version 1.32 2007-06-12

+ @author Cay Horstmann

o

public class CirclelLayoutTest

{

public static void main(String[] args)

{

25. [¥%

*/

. class CirclelLayoutFrame extends JFrame

{

EventQueue.invokeLater(new Runnable()

{

pubTic void run()

{

CirclelLayoutFrame frame = new CircleLayoutFrame();
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

frame.setVisible(true);

public CircleLayoutFrame()

setTitle("CirclelLayoutTest");

setLayout(new CirclelLayout());
add(new JButton("Yellow"));
add(new JButton("Blue"));
add(new JButton("Red"));
add(new JButton("Green"));
add(new JButton("Orange"));

+ A frame that shows buttons arranged along a circle.

447

Chapter 9. User Interface Components with Swing

448 Chapter 9 B User Interface Components with Swing

JRETSE e S Rl CirclelayoutTest.java (continued)

40. add(new JButton("Fuchsia"));

41. add(new JButton("Indigo"));

2. pack();

3.}

4.}

45.

4. [ux

47. % A Tayout manager that lays out components along a circle.
4 #/

49. class CircleLayout implements LayoutManager

50. {

st public void addLayoutComponent(String name, Component comp)
52. {

53}

54.

s5. public void removelLayoutComponent(Component comp)

s6. |

57}

s9. public void setSizes(Container parent)

61. if (sizesSet) return;

62. int n = parent.getComponentCount();

63.

64. preferredWidth = 0;

65. preferreddeight = 0;

66. minWidth = 0;

67. minHeight = 0;

68. maxComponentWidth = 0;

69. maxComponentHeight = 0;

70.

71. // compute the maximum component widths and heights

72. // and set the preferred size to the sum of the component sizes.
73. for (int i =0; i <n; i++)

74. {

75. Component ¢ = parent.getComponent(i);

76. if (c.isVisible())

77. {

78. Dimension d = c.getPreferredSize();

79. maxComponentWidth = Math.max(maxComponentWidth, d.width);
80. maxComponentHeight = Math.max(maxComponentHeight, d.height);
81. preferredidth += d.width;

82. preferreddeight += d.height;

83. }

84. }

85. minWidth = preferredwidth / 2;

86. minHeight = preferredHeight / 2;

87. sizesSet = true;

Chapter 9. User Interface Components with Swing

Sophisticated Layout Management m

IR ETSL TS Rl CirclelayoutTest.java (continued)

9. public Dimension preferredLayoutSize(Container parent)

o1. {

92. setSizes(parent);

93. Insets insets = parent.getInsets();

94. int width = preferredWidth + insets.left + insets.right;
95. int height = preferredHeight + insets.top + insets.bottom;
9. return new Dimension(width, height);

97. }

98.
99. public Dimension minimumLayoutSize(Container parent)

100, {

101. setSizes(parent);

102. Insets insets = parent.getInsets();

103, int width = minWidth + insets.left + insets.right;

104, int height = minHeight + insets.top + insets.bottom;

105. return new Dimension(width, height);

106. }

107.

108. public void TayoutContainer(Container parent)

100. |

110. setSizes(parent);

111,

112 // compute center of the circle

113.

114, Insets insets = parent.getInsets();

115, int containerWidth = parent.getSize().width - insets.left - insets.right;
116. int containerHeight = parent.getSize().height - insets.top - insets.bottom;
117.

118, int xcenter = insets.left + containerWidth / 2;

119, int ycenter = insets.top + containerHeight / 2;

120.

121, // compute radius of the circle

122.

123. int xradius = (containerWidth - maxComponentWidth) / 2;
124, int yradius = (containerHeight - maxComponentHeight) / 2;
125. int radius = Math.min(xradius, yradius);

126.

127. // lay out components along the circle

128.

129, int n = parent.getComponentCount();

130. for (int i =0; i <n; i++)

131. {

132, Component ¢ = parent.getComponent(i);

133, if (c.isVisible())

134, {

135. double angle = 2 « Math.PI « i / n;

136.

137. // center point of component

138. int x = xcenter + (int) (Math.cos(angle) radius);

139. int y = ycenter + (int) (Math.sin(angle) = radius);

Chapter 9. User Interface Components with Swing

m Chapter 9 B User Interface Components with Swing

JRETSE T S Rl CirclelayoutTest.java (continued)

140.

141. // move component so that its center is (x, y)

142, // and its size is its preferred size

143. Dimension d = c.getPreferredSize();

144. c.setBounds(x - d.width / 2, y - d.height / 2, d.width, d.height);
145. }

146. }

147. }

148.

149, private int minWidth = 0;

150. private int minHeight = 0;

151, private int preferredwidth = 0;

152, private int preferredHeight = 0;
153, private boolean sizesSet = false;
154, private int maxComponentWidth = 0;
155, private int maxComponentHeight = 0;
156. }

java.awt.LayoutManager 1.0

e void addLayoutComponent(String name, Component comp)
adds a component to the layout.

Parameters: name An identifier for the component placement
comp The component to be added

e void removelLayoutComponent(Component comp)

removes a component from the layout.
e Dimension preferredLayoutSize(Container cont)

returns the preferred size dimensions for the container under this layout.
e Dimension minimumLayoutSize(Container cont)

returns the minimum size dimensions for the container under this layout.
e void TayoutContainer(Container cont)

lays out the components in a container.

Traversal Order

When you add many components into a window, you need to give some thought to the
traversal order. When a window is first displayed, the first component in the traversal
order has the keyboard focus. Each time the user presses theTAB key, the next component
gains focus. (Recall that a component that has the keyboard focus can be manipulated
with the keyboard. For example, a button can be “clicked” with the space bar when it has
focus.) You may not personally care about using the TAB key to navigate through a set of
controls, but plenty of users do. Among them are the mouse haters and those who cannot
use a mouse, perhaps because of a handicap or because they are navigating the user inter-
face by voice. For that reason, you need to know how Swing handles traversal order.

Chapter 9. User Interface Components with Swing

Sophisticated Layout Management m

The traversal order is straightforward, first left to right and then top to bottom. For
example, in the font dialog example, the components are traversed in the following
order (see Figure 9-35):

© Face combo box

@ Sample text area (press CTRL+TAB to move to the next field; the TAB character is
considered text input)

© Size combo box
O Bold checkbox
O Ttalic checkbox

NOTE: In the old AWT, the traversal order was determined by the order in which you
m inserted components into a container. In Swing, the insertion order does not matter—only
the layout of the components is considered.

Face: [serir@) « |[The quick brown fox jum
ps over the lazy dog
Size: |8 0 -
QD Bold
O naiic
L L

Figure 9-35 Geometric traversal order

The situation is more complex if your container contains other containers. When the
focus is given to another container, it automatically ends up within the top-left compo-
nent in that container and then it traverses all other components in that container.
Finally, the focus is given to the component following the container.

You can use this to your advantage by grouping related elements in another container
such as a panel.

NOTE: As of Java SE 1.4, you call
component. setFocusable(false);
to remove a component from the focus traversal. Previously, you had to override the isFocus-
Traversable method, but that method is now deprecated.

In summary, there are two standard traversal policies in Java SE 1.4:

e Pure AWT applications use the DefaultFocusTraversalPolicy. Components are included
in the focus traversal if they are visible, displayable, enabled, and focusable, and if
their native peers are focusable. The components are traversed in the order in which
they were inserted in the container.

Chapter 9. User Interface Components with Swing

Chapter 9 B User Interface Components with Swing

¢ Swing applications use the LayoutFocusTraversalPolicy. Components are included in the
focus traversal if they are visible, displayable, enabled, and focusable. The compo-
nents are traversed in geometric order: left to right, then top to bottom. However, a
container introduces a new “cycle”—its components are traversed first before the
successor of the container gains focus.

NOTE: The “cycle” notion is a bit confusing. After reaching the last element in a child con-

tainer, the focus does not go back to its first element, but instead to the container’s succes-
sor. The API supports true cycles, including keystrokes that move up and down in a cycle
hierarchy. However, the standard traversal policy does not use hierarchical cycles. It flattens
the cycle hierarchy into a linear (depth-first) traversal.

NOTE: In Java SE 1.3, you could change the default traversal order by calling the setNext-

FocusableComponent method of the JComponent class. That method is now deprecated. To
change the traversal order, try grouping related components into panels so that they form
cycles. If that doesn’t work, you have to either install a comparator that sorts the compo-
nents differently or completely replace the traversal policy. Neither operation seems
intended for the faint of heart—see the Sun API documentation for details.

Dialog Boxes

So far, all our user interface components have appeared inside a frame window that was
created in the application. This is the most common situation if you write applets that
run inside a web browser. But if you write applications, you usually want separate dia-
log boxes to pop up to give information to or get information from the user.

Just as with most windowing systems, AWT distinguishes between modal and modeless
dialog boxes. A modal dialog box won't let users interact with the remaining windows
of the application until he or she deals with it. You use a modal dialog box when you
need information from the user before you can proceed with execution. For example,
when the user wants to read a file, a modal file dialog box is the one to pop up. The user
must specify a file name before the program can begin the read operation. Only when
the user closes the (modal) dialog box can the application proceed.

A modeless dialog box lets the user enter information in both the dialog box and the
remainder of the application. One example of a modeless dialog is a toolbar. The toolbar
can stay in place as long as needed, and the user can interact with both the application
window and the toolbar as needed.

We start this section with the simplest dialogs—modal dialogs with just a single mes-
sage. Swing has a convenient JOptionPane class that lets you put up a simple dialog with-
out writing any special dialog box code. Next, you see how to write more complex
dialogs by implementing your own dialog windows. Finally, you see how to transfer
data from your application into a dialog and back.

We conclude this section by looking at two standard dialogs: file dialogs and color dialogs.
File dialogs are complex, and you definitely want to be familiar with the Swing JFiTeChooser
for this purpose—it would be a real challenge to write your own. The]ColorChooser dialog is
useful when you want users to pick colors.

Chapter 9. User Interface Components with Swing

Dialog Boxes m

Option Dialogs

Swing has a set of ready-made simple dialogs that suffice when you need to ask the user
for a single piece of information. The JOptionPane has four static methods to show these
simple dialogs:

showMessageDialog Show a message and wait for the user to click OK
showConfirmDialog Show a message and get a confirmation (like OK/Cancel)
showOptionDialog Show a message and get a user option from a set of options
showInputDialog Show a message and get one line of user input

Figure 9-36 shows a typical dialog. As you can see, the dialog has the following
components:

¢ Anicon
* A message
¢ One or more option buttons

B[Title X
IE Message

Figure 9-36 An option dialog

The input dialog has an additional component for user input. This can be a text field into
which the user can type an arbitrary string, or a combo box from which the user can select
one item.

The exact layout of these dialogs, and the choice of icons for standard message types,
depend on the pluggable look and feel.

The icon on the left side depends on one of five message types:

ERROR_MESSAGE
INFORMATION_MESSAGE
WARNING_MESSAGE
QUESTION_MESSAGE
PLAIN_MESSAGE
The PLAIN_MESSAGE type has no icon. Each dialog type also has a method that lets you sup-

ply your own icon instead.

For each dialog type, you can specify a message. This message can be a string, an
icon, a user interface component, or any other object. Here is how the message object

is displayed:
String Draw the string
Icon Show the icon
Component Show the component
Object([] Show all objects in the array, stacked on top of each other
Any other object Apply toString and show the resulting string

You can see these options by running the program in Listing 9-14 on page 455.

Chapter 9. User Interface Components with Swing

Chapter 9 B User Interface Components with Swing

Of course, supplying a message string is by far the most common case. Supplying a
Component gives you ultimate flexibility because you can make the paintComponent method
draw anything you want.

The buttons on the bottom depend on the dialog type and the option type. When calling
showMessageDialog and showInputDialog, you get only a standard set of buttons (OK and OK/
Cancel, respectively). When calling showConfirmDialog, you can choose among four option
types:

DEFAULT_OPTION

YES_NO_OPTION

YES_NO_CANCEL_OPTION

OK_CANCEL_OPTION
With the showOptionDialog you can specify an arbitrary set of options. You supply an array
of objects for the options. Each array element is rendered as follows:

String Make a button with the string as label

Icon Make a button with the icon as label

Component Show the component

Any other object Apply toString and make a button with the resulting string
as label

The return values of these functions are as follows:

showMessageDialog None

showConfirmDialog An integer representing the chosen option
showOptionDialog An integer representing the chosen option
showInputDialog The string that the user supplied or selected

The showConfirmDialog and showOptionDialog return integers to indicate which button the user
chose. For the option dialog, this is simply the index of the chosen option or the value
CLOSED_OPTION if the user closed the dialog instead of choosing an option. For the confirma-
tion dialog, the return value can be one of the following:
OK_OPTION
CANCEL_OPTION
YES_OPTION
NO_OPTION
CLOSED_OPTION
This all sounds like a bewildering set of choices, but in practice it is simple. Follow these
steps:
1. Choose the dialog type (message, confirmation, option, or input).
2. Choose the icon (error, information, warning, question, none, or custom).
3. Choose the message (string, icon, custom component, or a stack of them).
4. For a confirmation dialog, choose the option type (default, Yes/No, Yes/No/
Cancel, or OK/Cancel).
5. For an option dialog, choose the options (strings, icons, or custom components) and
the default option.

6. For an input dialog, choose between a text field and a combo box.
7. Locate the appropriate method to call in the J0ptionPane APL

Chapter 9. User Interface Components with Swing

Dialog Boxes m

For example, suppose you want to show the dialog in Figure 9-36. The dialog shows a
message and asks the user to confirm or cancel. Thus, it is a confirmation dialog. The
icon is a question icon. The message is a string. The option type is OK_CANCEL_OPTION. Here is
the call you would make:

int selection = JOptionPane.showConfirmDialog(parent,
"Message", "Title",
JOptionPane.OK_CANCEL_OPTION,
JOptionPane.QUESTION_MESSAGE);

if (selection == JOptionPane.0K_OPTION) . . .

TIP: The message string can contain newline ('\n') characters. Such a string is displayed in
multiple lines.

B |optionDialogTest

Type Message Type Message
) Message) ERROR_MESSAGE @ String
® Confirm) INFORMATION_MESSAGE 2 lcon
) Option) WARNING_MESSAGE) Component
) Input ® QUESTION_MESSAGE) Other

ZJ PLAIN_MESSAGE 1 Ohject[]
Confirm Option Input
) DEFAULT_OPTION ® String[] @ Text field
) YES_NO_OPTION J Icon(]) Combo box
2 YES_NO_CANCEL_OPTION ||) Object]]
@ OK_CANCEL_OPTION
T T

Figure 9-37 The OptionDialogTest program

The program in Listing 9-14 lets you make the selections shown in Figure 9-37. It then
shows you the resulting dialog.

OptionDialogTest. java

1. import java.awt.s;

2. import java.awt.event.:;
3. import java.awt.geom.«;
4. import java.util.x;

5. import javax.swing.s;

6.

Chapter 9. User Interface Components with Swing

m Chapter 9 B User Interface Components with Swing

OptionDialogTest.java (continued)

7. [*%
s. * @version 1.33 2007-04-28
o. @author Cay Horstmann

10. %/

11. public class OptionDialogTest

12, {

13, public static void main(String[] args)

14. {

15. EventQueue.invokeLater(new Runnable()

16.

17. public void run()

18. {

19, OptionDialogFrame frame = new OptionDialogFrame();
20. frame. setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
21. frame.setVisible(true);

22. }

23, b;

24. }

25. }

A panel with radio buttons inside a titled border

2. #/

30. class ButtonPanel extends JPanel
31, {

32 [

33. + Constructs a button panel.

34. * @param title the title shown in the border
35. + @param options an array of radio button labels

36. x/

37. pubTic ButtonPanel(String title, String... options)
38. {

30. setBorder (BorderFactory.createTitledBorder(BorderFactory.createEtchedBorder(), title));
40. setLayout(new BoxLayout(this, BoxLayout.Y_AXIS));
a1, group = new ButtonGroup();

42,

43, // make one radio button for each option

44, for (String option : options)

45. {

46. JRadioButton b = new JRadioButton(option);

7. b.setActionCommand(option);

48. add(b);

49, group.add(b);

50. b.setSelected(option == options[0]);

51 }

Chapter 9. User Interface Components with Swing

Dialog Boxes

OptionDialogTest.java (continued)

o
@

o

9.

/

p
{

}

p

-}

e
A frame that contains settings for selecting various option dialogs.
./

clas

-

P
{

wk

+ Gets the currently selected option.

+ @return the label of the currently selected radio button.
o/
ublic String getSelection()

return group.getSelection().getActionCommand();

rivate ButtonGroup group;

s OptionDialogFrame extends JFrame
ublic OptionDialogFrame()

setTitle("OptionDialogTest");
setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

JPanel gridPanel = new JPanel();
gridPanel.setLayout(new GridLayout(2, 3));

typePanel = new ButtonPanel("Type", "Message", "Confirm", "Option", "Input");

messageTypePanel = new ButtonPanel("Message Type", "ERROR_MESSACE", "INFORMATION_MESSAGE",
"WARNING_MESSAGE", "QUESTION_MESSAGE", "PLAIN_MESSAGE");

messagePanel = new ButtonPanel("Message", "String", "Icon", "Component", "Other", "Object[]");

optionTypePanel = new ButtonPanel("Confirm", "DEFAULT_OPTION", "YES_NO_OPTION",
"YES_NO_CANCEL_OPTION", "OK_CANCEL_OPTION");

optionsPanel = new ButtonPanel("Option", "String[]", "Icon[]", "Object[]");

inputPanel = new ButtonPanel("Input", "Text field", "Combo box");

gridPanel.add(typePanel);
gridPanel.add(messageTypePanel);
gridPanel.add(messagePanel);
gridPanel.add(optionTypePanel);
gridPanel.add(optionsPanel);
gridPanel.add(inputPanel);

// add a panel with a Show button

JPanel showPanel = new JPanel();

JButton showButton = new JButton("Show");
showButton.addActionListener(new ShowAction());
showPanel.add(showButton);

457

Chapter 9. User Interface Components with Swing

m Chapter 9 B User Interface Components with Swing

OptionDialogTest.java (continued)

102. add(gridPanel, BorderLayout.CENTER);
103. add(showPanel, BorderLayout.SOUTH);
104}

105.

106, [w%

107. + Gets the currently selected message.
108. + @return a string, icon, component or object array, depending on the Message panel selection

109. %/

10. public Object getMessage()

11, {

112, String s = messagePanel.getSelection();

113, if (s.equals("String")) return messageString;

114, else if (s.equals("Icon")) return messagelcon;

115. else if (s.equals("Component")) return messageComponent;
116. else if (s.equals("Object[]")) return new Object[] { messageString, messageIcon,
17, messageComponent, messageObject };

118, else if (s.equals("Other")) return messageObject;

119, else return null;

120, }

121.

122, [ax

123, Gets the currently selected options.
124, + @return an array of strings, icons or objects, depending on the Option panel selection

125. %/

126, public Object[] getOptions()

127. {

128, String s = optionsPanel.getSelection();

129. if (s.equals("String[]")) return new String[] { "Yellow", "Blue", "Red" };

130. else if (s.equals("Icon[]")) return new Icon[] { new ImageIcon("yellow-ball.gif"),
131. new ImageIcon("blue-ball.gif"), new ImageIcon("red-hall.gif") };

132. else if (s.equals("Object[]")) return new Object[] { messageString, messageIcon,
133, messageComponent, messageObject }

134. else return null;

135}

136.

137, [ax

138. » Gets the selected message or option type
139, * @param panel the Message Type or Confirm panel
140. « @return the selected XXX_MESSAGE or XXX_OPTION constant from the JOptionPane class

141. x/

142, public int getType(ButtonPanel panel)

143 |

144, String s = panel.getSelection();

145. try

146. {

147. return JOptionPane.class.getField(s).getInt(null);
148. }

149. catch (Exception e)

150. {

Chapter 9. User Interface Components with Swing

Dialog Boxes m

OptionDialogTest.java (continued)

151,
152.
153,
154.
155.
156.
157.
158.
159,
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171,
172.
173.
174,
175.
176.
177.
178.
179,
180.
181.
182.
183.
184.
185.
186.
187.
188.
189.
190.
191,
192.
193,
194,
195.
196. }
197.
198, [#x

return -1;
}
}

[
+ The action 1istener for the Show button shows a Confirm, Input, Message or Option dialog
+ depending on the Type panel selection.

o
private class ShowAction implements ActionListener
{
pubTic void actionPerformed(ActionEvent event)
{
if (typePanel.getSelection().equals("Confirm")) JOptionPane.showConfirmDialog(
OptionDialogFrame.this, getMessage(), "Title", getType(optionTypePanel),
getType(messageTypePanel));
else if (typePanel.getSelection().equals("Input"))
{
if (inputPanel.getSelection().equals("Text field")) JOptionPane.showInputDialog(
OptionDialogFrame.this, getMessage(), "Title", getType(messageTypePanel));
else JOptionPane.showInputDialog(OptionDialogFrame.this, getMessage(), "Title",
getType(messageTypePanel), null, new String[] { "Yellow", "Blue", "Red" },
"Blue");
}
else if (typePanel.getSelection().equals("Message")) JOptionPane.showMessageDialog(
OptionDialogFrame.this, getMessage(), "Title", getType(messageTypePanel));
else if (typePanel.getSelection().equals("Option")) JOptionPane.showOptionDialog(
OptionDialogFrame.this, getMessage(), "Title", getType(optionTypePanel),
getType(messageTypePanel), null, getOptions(), getOptions()[0]);
}
}

public static final int DEFAULT_WIDTH = 600;
public static final int DEFAULT_HEIGHT = 400;

private ButtonPanel typePanel;
private ButtonPanel messagePanel;
private ButtonPanel messageTypePanel;
private ButtonPanel optionTypePanel;
private ButtonPanel optionsPanel;
private ButtonPanel inputPanel;

private String messageString = "Message";
private Icon messagelcon = new ImageIcon("blue-ball.gif");
private Object messageObject = new Date();
private Component messageComponent = new SampleComponent();

199. * A component with a painted surface

200. %/

Chapter 9. User Interface Components with Swing

Chapter 9 B User Interface Components with Swing

OptionDialogTest.java (continued)

201.

202. Class SampleComponent extends JComponent

203. {
204.
205.
206.
207,
208.
209.
210.

212,
213,
214.
215.
216.
217.
218. }

pubTic void paintComponent(Graphics g)
{
Graphics2D g2 = (Graphics2D) g;
Rectangle2D rect = new Rectangle2D.Double(0, 0, getWidth() - 1, getHeight() - 1);
g2.setPaint(Color.YELLOW);
g2.fi11(rect);
g2.setPaint(Color.BLUE);
g2.draw(rect);
}

pubTic Dimension getPreferredSize()

{

return new Dimension(10, 10);

}

javax.swing.JOptionPane 1.2

static void showMessageDialog(Component parent, Object message, String title, int messageType,
Icon icon)

static void showMessageDialog(Component parent, Object message, String title, int messageType)
static void showMessageDialog(Component parent, Object message)

static void showInternalMessageDialog(Component parent, Object message, String title,

int messageType, Icon icon)

static void showInternalMessageDialog(Component parent, Object message, String title,

int messageType)

static void showInternalMessageDialog(Component parent, Object message)

shows a message dialog or an internal message dialog. (An internal dialog is
rendered entirely within its owner frame.)

Parameters: parent The parent component (can be nu11)
message The message to show on the dialog (can be a
string, icon, component, or an array of them)
title The string in the title bar of the dialog

messageType One of ERROR_MESSAGE, INFORMATION_MESSAGE,
WARNING_MESSAGE, QUESTION_MESSAGE, PLAIN_MESSAGE

icon An icon to show instead of one of the standard
icons

static int showConfirmDialog(Component parent, Object message, String title, int optionType,
int messageType, Icon icon)

static int showConfirmDialog(Component parent, Object message, String title, int optionType,
int messageType)

Chapter 9. User Interface Components with Swing

Dialog Boxes

e static int showConfirmDialog(Component parent, Object message, String title, int optionType)
e static int showConfirmDialog(Component parent, Object message)
e static int showInternalConfirmDialog(Component parent, Object message, String title,
int optionType, int messageType, Icon icon)
e static int showInternalConfirmDialog(Component parent, Object message, String title,
int optionType, int messageType)
e static int showInternalConfirmDialog(Component parent, Object message, String title,
int optionType)
e static int showInternalConfirmDialog(Component parent, Object message)
shows a confirmation dialog or an internal confirmation dialog. (An internal
dialog is rendered entirely within its owner frame.) Returns the option selected by
the user (one of OK_OPTION, CANCEL_OPTION, YES_OPTION, NO_OPTION), or CLOSED_OPTION if the
user closed the dialog.

Parameters: parent The parent component (can be nu1l)
message The message to show on the dialog (can be a string,
icon, component, or an array of them)
title The string in the title bar of the dialog

messageType One of ERROR_MESSAGE, INFORMATION_MESSAGE, WARNING_MESSAGE,
QUESTION_MESSAGE, PLAIN_MESSAGE

optionType Omne of DEFAULT_OPTION, YES_NO_OPTION, YES_NO_CANCEL_OPTION,
OK_CANCEL_OPTION

icon An icon to show instead of one of the standard icons

e static int showOptionDialog(Component parent, Object message, String title, int optionType,
int messageType, Icon icon, Object[] options, Object default)

e static int showInternalOptionDialog(Component parent, Object message, String title,
int optionType, int messageType, Icon icon, Object[] options, Object default)
shows an option dialog or an internal option dialog. (An internal dialog is
rendered entirely within its owner frame.) Returns the index of the option
selected by the user, or CLOSED_OPTION if the user canceled the dialog.

Parameters: parent The parent component (can be null)
message The message to show on the dialog (can be a string,
icon, component, or an array of them)
title The string in the title bar of the dialog

messageType One of ERROR_MESSAGE, INFORMATION_MESSAGE, WARNING_MESSAGE,
QUESTION_MESSAGE, PLAIN_MESSAGE

optionType One of DEFAULT_OPTION, YES_NO_OPTION, YES_NO_CANCEL_OPTION,
OK_CANCEL_OPTION

icon An icon to show instead of one of the standard icons
options An array of options (can be strings, icons, or
components)

default The default option to present to the user

Chapter 9. User Interface Components with Swing

m Chapter 9 B User Interface Components with Swing

e static Object showInputDialog(Component parent, Object message, String title, int message-
Type, Icon icon, Object[] values, Object default)

e static String showInputDialog(Component parent, Object message, String title, int message-

Type)

static String showInputDialog(Component parent, Object message)

static String showInputDialog(Object message)

static String showInputDialog(Component parent, Object message, Object default) 1.4

static String showInputDialog(Object message, Object default) 1.4

static Object showInternalInputDialog(Component parent, Object message, String title,

int messageType, Icon icon, Object[] values, Object default)

e static String showInternalInputDialog(Component parent, Object message, String title,
int messageType)

e static String showInternalInputDialog(Component parent, Object message)
shows an input dialog or an internal input dialog. (An internal dialog is rendered
entirely within its owner frame.) Returns the input string typed by the user, ornu11
if the user canceled the dialog.

Parameters: parent The parent component (can be nu11)

message The message to show on the dialog (can be a string,
icon, component, or an array of them)

title The string in the title bar of the dialog

messageType One of ERROR_MESSAGE, INFORMATION_MESSAGE,
WARNING_MESSAGE, QUESTION_MESSAGE, PLAIN_MESSAGE

icon An icon to show instead of one of the standard
icons

values An array of values to show in a combo box

default The default value to present to the user

Creating Dialogs
In the last section, you saw how to use the JOptionPane class to show a simple dialog. In
this section, you see how to create such a dialog by hand.

Figure 9-38 shows a typical modal dialog box, a program information box that is dis-
played when the user clicks the About button.

To implement a dialog box, you extend the JDialog class. This is essentially the same pro-
cess as extending JFrame for the main window for an application. More precisely:

1. In the constructor of your dialog box, call the constructor of the superclassDialog.

2. Add the user interface components of the dialog box.

3. Add the event handlers.

4. Set the size for the dialog box.

When you call the superclass constructor, you will need to supply the owner frame, the title
of the dialog, and the modality.

The owner frame controls where the dialog is displayed. You can supply null as the owner;
then, the dialog is owned by a hidden frame.

Chapter 9. User Interface Components with Swing

Dialog Boxes m

The modality specifies which other windows of your application are blocked while the
dialog is displayed. A modeless dialog does not block other windows. A modal dialog
blocks all other windows of the application (except children of the dialog). You would use
a modeless dialog for a toolbox that the user can always access. On the other hand, you
would use a modal dialog if you want to force the user to supply required information
before continuing.

NOTE: As of Java SE 6, there are two additional modality types. A document-modal dialog
blocks all windows belonging to the same “document,” or more precisely, all windows with
the same parentless root window as the dialog. This solves a problem with help systems. In
older versions, users were unable to interact with the help windows when a modal dialog
was popped up. A toolkit-modal dialog blocks all windows from the same “toolkit.” A toolkit is
a Java program that launches multiple applications, such as the applet engine in a browser.
For more information on these advanced issues, please see http://java.sun.com/developer/
technicalArticles/J2SE/Desktop/javase6/modality.

B About DialogTest |Y

Core Java

By Cay Horstmann and Gary Cornell

Figure 9-38 An About dialog box

Here’s the code for a dialog box:
public AboutDialog extends JDialog

public AboutDialog(JFrame owner)

{

super(owner, "About DialogTest", true);

add(new JLabel(
"<html><h1><i>Core Java</i></h1><hr>By Cay Horstmann and Gary Cornell</html>"),

BorderLayout.CENTER);

JPanel panel = new JPanel();
JButton ok = new JButton("0k");

ok.addActionListener(new
ActionListener()

public void actionPerformed(ActionEvent event)

setVisible(false);
}
b

Chapter 9. User Interface Components with Swing

m Chapter 9 B User Interface Components with Swing

panel.add(ok);
add(panel, BorderLayout.SOUTH);

setSize(250, 150);
}
}
As you can see, the constructor adds user interface elements: in this case, labels and a
button. It adds a handler to the button and sets the size of the dialog.

To display the dialog box, you create a new dialog object and make it visible:

IDialog dialog = new AboutDialog(this);
dialog.setVisible(true);

Actually, in the sample code below, we create the dialog box only once, and we can
reuse it whenever the user clicks the About button.
if (dialog == null) // first time
dialog = new AboutDialog(this);
dialog.setVisible(true);

When the user clicks the Ok button, the dialog box should close. This is handled in the
event handler of the Ok button:

ok.addActionListener(new
ActionListener()

public void actionPerformed(ActionEvent event)
{
setVisible(false);
}
N

When the user closes the dialog by clicking on the Close box, then the dialog is also hid-
den. Just as with a JFrame, you can override this behavior with the setDefaultCloseOperation
method.

Listing 9-15 is the code for the About dialog box test program.

IBTIR 1T M S Sl DialogTest. java

1. import java.awt.:;

2. import java.awt.event.;
3. import javax.swing.x;

4.

6. + @version 1.33 2007-06-12

7.+ @author Cay Horstmann

8/

9. public class DialogTest

10. {

1. public static void main(String[] args)
12, {

13, EventQueue.invokelLater(new Runnable()

14. {

Chapter 9. User Interface Components with Swing

Dialog Boxes m

DialogTest.java (continued)

+ A frame with a menu whose File->About action shows a dialog.

pubTic void run()

{
DialogFrame frame = new DialogFrame();
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setVisible(true);

. class DialogFrame extends JFrame

public DialogFrame()

setTitle("DialogTest");
setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

// construct a File menu

IMenuBar menuBar = new JMenuBar();
setJMenuBar(menuBar);
IMenu fileMenu = new JMenu("File");
menuBar.add(fileMenu);

// add About and Exit menu items
// The About item shows the About dialog

IMenuItem aboutItem = new IMenuItem("About");
aboutItem.addActionListener(new ActionListener()

{

public void actionPerformed(ActionEvent event)
{

if (dialog == null) // first time

dialog = new AboutDialog(DialogFrame.this);

dialog.setVisible(true); // pop up dialog
}

H
fileMenu.add(aboutItem);
// The Exit item exits the program
IMenuItem exitItem = new JMenuItem("Exit");

exitItem.addActionListener(new ActionListener()

{

Chapter 9. User Interface Components with Swing

m Chapter 9 B User Interface Components with Swing

ISR T M S Sl DialogTest. java (continued)

63. public void actionPerformed(ActionEvent event)
64. {

65. System.exit(0);

66. }

67. b;

68. fileMenu.add(exitItem);

69. }

7. public static final int DEFAULT_WIDTH = 300;
72. public static final int DEFAULT_HEIGHT = 200;

74. private AboutDialog dialog;
7. }

77. [#x
78. + A sample modal dialog that displays a message and waits for the user to click the Ok button.

/

so. class AboutDialog extends JDialog

public AboutDialog(JFrame owner)

)
~

83. {

84. super(owner, "About DialogTest", true);
85.

86. // add HTML Tabel to center

87.

88. add(

89. new JlLabel(

90. "<html><h1><i>Core Java</i></h1><hr>By Cay Horstmann and Gary Cornell</html>"),
9. BorderLayout.CENTER);

92.

9. // Ok button closes the dialog

94.

95. JButton ok = new JButton("0k");

9. ok.addActionListener(new ActionListener()
97.

98. public void actionPerformed(ActionEvent event)
9. {

100. setVisible(false);

101. }

102. b;

103.

104. // add Ok button to southern border

105.

106. JPanel panel = new JPanel();

107. panel.add(ok);

108. add(panel, BorderLayout.SOUTH);

109.

110. setSize(250, 150);

11 }

Chapter 9. User Interface Components with Swing

Dialog Boxes 467

m javax.swing.JDialog 1.2

e public JDialog(Frame parent, String title, boolean modal)
constructs a dialog. The dialog is not visible until it is explicitly shown.

Parameters: parent The frame that is the owner of the dialog
title The title of the dialog
modal True for modal dialogs (a modal dialog blocks input

to other windows)

Data Exchange

The most common reason to put up a dialog box is to get information from the user. You
have already seen how easy it is to make a dialog box object: Give it initial data and then
call setVisible(true) to display the dialog box on the screen. Now let us see how to trans-
fer data in and out of a dialog box.

Consider the dialog box in Figure 9-39 that could be used to obtain a user name and a
password to connect to some on-line service.

i:,|DataExchangeTe5t ‘_|E||X
File

User name: |yourname
Password: |ssesss

I I

Figure 9-39 Password dialog box

Your dialog box should provide methods to set default data. For example, thePassword-
Chooser class of the example program has a method, setUser, to place default values into
the next fields:

pubTic void setUser(User u)

{

username.setText(u.getName());

}
Once you set the defaults (if desired), you show the dialog by callingsetVisible(true). The
dialog is now displayed.
The user then fills in the information and clicks the Ok or Cancel button. The event han-
dlers for both buttons call setVisible(false), which terminates the call to setVisible(true).
Alternatively, the user may close the dialog. If you did not install a window listener for
the dialog, then the default window closing operation applies: The dialog becomes
invisible, which also terminates the call to setVisible(true).
The important issue is that the call to setVisible(true) blocks until the user has dismissed
the dialog. This makes it easy to implement modal dialogs.

Chapter 9. User Interface Components with Swing

468

Chapter 9 B User Interface Components with Swing

You want to know whether the user has accepted or canceled the dialog. Our sample
code sets the ok flag to false before showing the dialog. Only the event handler for the
Ok button sets the ok flag to true. In that case, you can retrieve the user input from the
dialog.

NOTE: Transferring data out of a modeless dialog is not as simple. When a modeless dialog

is displayed, the call to setVisible(true) does not block and the program continues running
while the dialog is displayed. If the user selects items on a modeless dialog and then clicks
“Ok,” the dialog needs to send an event to some listener in the program.

The example program contains another useful improvement. When you construct aJbi-
alog object, you need to specify the owner frame. However, quite often you want to show
the same dialog with different owner frames. It is better to pick the owner frame when
you are ready to show the dialog, not when you construct thePasswordChooser object.
The trick is to have the PasswordChooser extend JPanel instead of JDialog. Build a JDialog object
on the fly in the showDialog method:

public boolean showDialog(Frame owner, String title)

{

ok = false;
if (dialog == nu11 || dialog.getOwner() != owner)

dialog = new JDialog(owner, true);
dialog.add(this);
dialog.pack();

}

dialog.setTitle(title);
dialog.setVisible(true);
return ok;
}
Note that it is safe to have owner equal to nu11.
You can do even better. Sometimes, the owner frame isn’t readily available. It is easy
enough to compute it from any parent component, like this:
Frame owner;
if (parent instanceof Frame)
owner = (Frame) parent;
else
owner = (Frame) SwingUtilities.getAncestorOfClass(Frame.class, parent);
We use this enhancement in our sample program. The J0ptionPane class also uses this
mechanism.
Many dialogs have a default button, which is automatically selected if the user presses a
trigger key (ENTER in most “look and feel” implementations). The default button is spe-
cially marked, often with a thick outline.
You set the default button in the root pane of the dialog:
dialog.getRootPane().setDefaultButton(okButton);

Chapter 9. User Interface Components with Swing

Dialog Boxes m

If you follow our suggestion of laying out the dialog in a panel, then you must be care-
ful to set the default button only after you wrapped the panel into a dialog. The panel
itself has no root pane.

Listing 9-16 is the complete code that illustrates the data flow into and out of a dialog box.

IS TR T S el DataExchangeTest. java

1. import java.awt.s;

2. import java.awt.event.x;
3. import javax.swing.x;

4.

5. [xk

6. * @version 1.33 2007-06-12

7.« @author Cay Horstmann

8 */

o. pubTic class DataExchangeTest

10. {

1. public static void main(String[] args)

12. {

13. EventQueue.invokeLater(new Runnable()
14. {

15. public void run()

16. {

17. DataExchangeFrame frame = new DataExchangeFrame();
18. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
19. frame.setVisible(true);

20. }

21. b;

22. }

23, }

24.

25 [k

2. + A frame with a menu whose File->Connect action shows a password dialog.
27. %/

28. Class DataExchangeFrame extends JFrame

20. {

30. public DataExchangeFrame()

31. {

32, setTitle("DataExchangeTest");

33. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
34.

35. // construct a File menu

36.

a7. IMenuBar mbar = new JMenuBar();

38. setIMenuBar(mbar);

39. IMenu fileMenu = new IMenu("File");

40. mbar.add(fileMenu);

41.
2. // add Connect and Exit menu items
43.

Chapter 9. User Interface Components with Swing

470 Chapter 9 B User Interface Components with Swing

ISR T e S Gl DataExchangeTest.java (continued)

44,
45.
46.
47.
48.
49.
50.
51.
52,
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.

78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.

}

IMenuItem connectItem = new IMenuItem("Connect");
connectItem.addActionListener(new ConnectAction());
fileMenu.add(connectItem);

// The Exit item exits the program

IMenuItem exitItem = new JMenuItem("Exit");
exitItem.addActionListener(new ActionListener()

public void actionPerformed(ActionEvent event)
{
System.exit(0);
}
b;
fileMenu.add(exitItem)

textArea = new JTextArea();
add(new JScrollPane(textArea), BorderLayout.CENTER);

public static final int DEFAULT_WIDTH = 300;
public static final int DEFAULT_HEIGHT = 200;

private PasswordChooser dialog = null;
private JTextArea textArea;

/

S

The Connect action pops up the password dialog.

private class ConnectAction implements ActionlListener

{

public void actionPerformed(ActionEvent event)

{

// if first time, construct dialog
if (dialog == nu11) dialog = new PasswordChooser();

// set default values
dialog.setUser(new User("yourname", null));

// pop up dialog
if (dialog.showDialog(DataExchangeFrame.this, "Connect"))
{
// if accepted, retrieve user input
User u = dialog.getUser();
textArea.append("user name = " + u.getName() +
+ (new String(u.getPassword())) + "\n");

, password = "

Chapter 9. User Interface Components with Swing

Dialog Boxes

IBCTR 1 T B sl DataExchangeTest.java (continued)

94.
95.

100.

102.
103.
104.
105.
106.
107.
108.
109.
110.
111,
112,
113.
114.
115,
116.
117.
118.
119.
120.
121.
122,
123.
124.
125.
126.
127.
128.
129.
130.
131,
132.
133.
134.
135.
136.
137.
138.
139.
140.
141,
142.
143.

+ A password chooser that is shown inside a dialog

. class PasswordChooser extends JPanel
101.
pubTic PasswordChooser()

setLayout(new BorderLayout());
// construct a panel with user name and password fields

JPanel panel = new JPanel();
panel.setlLayout(new GridLayout(2, 2));
panel.add(new JLabel("User name:"));
panel.add(username = new JTextField(""));
panel.add(new JLabel("Password:"));
panel.add(password = new JPasswordField(""));
add(panel, BorderLayout.CENTER)

// create Ok and Cancel buttons that terminate the dialog

okButton = new JButton("0k");
okButton.addActionListener(new ActionListener()
{
public void actionPerformed(ActionEvent event)
{
ok = true;
dialog.setVisible(false);
}
N

JButton cancelButton = new JButton("Cancel");
cancelButton.addActionListener(new ActionListener()
{
public void actionPerformed(ActionEvent event)
{
dialog.setVisible(false);
}
Y

// add buttons to southern border

JPanel buttonPanel = new JPanel();
buttonPanel.add(okButton);
buttonPanel.add(cancelButton);
add(buttonPanel, BorderlLayout.SOUTH);

471

Chapter 9. User Interface Components with Swing

472 Chapter 9 B User Interface Components with Swing

ISR T e S Gl DataExchangeTest.java (continued)

144,
145, [ex

146. » Sets the dialog defaults.

147. + @param u the default user information

148. %/

149, public void setUser(User u)

150. |

151. username.setText(u.getName());

152, }

153.

154 [wx

155. + Gets the dialog entries.

156. + @return a User object whose state represents the dialog entries
157. x/

158, public User getUser()

159, {

160. return new User(username.getText(), password.getPassword());
161. }

162.

163. /

164. Show the chooser panel in a dialog
165. @param parent a component in the owner frame or null
166. + @param title the dialog window title

EEE

167. x/

168. public boolean showDialog(Component parent, String title)
169, |

170. ok = false;

171.

172. // locate the owner frame

173.

174, Frame owner = null;

175. if (parent instanceof Frame) owner = (Frame) parent;
176. else owner = (Frame) SwingUtilities.getAncestor0fClass(Frame.class, parent);
177.

178. // if first time, or if owner has changed, make new dialog
179.

180. if (dialog == null || dialog.getOwner() != owner)

181. {

182. dialog = new JDialog(owner, true);

183. dialog.add(this);

184. dialog.getRootPane().setDefaultButton(okButton);
185. dialog.pack();

186. }

187.

188. // set title and show dialog

189.

190. dialog.setTitle(title);

191. dialog.setVisible(true);

192, return ok;

193}

Chapter 9. User Interface Components with Swing

Dialog Boxes 473

IBCTR 1 T B sl DataExchangeTest.java (continued)

194,

195, private JTextField username;

196. private JPasswordField password;

197. private JButton okButton;

108. private boolean ok;

199, private JDialog dialog;

200. }

201.

202, [#%

203. * A user has a name and password. For security reasons, the password is stored as a char[],
204, * not a String.

205. %/

206. Class User

207. {

208. public User(String aName, char[] aPassword)
200. {

210, name = aName;

211, password = aPassword;

212, }

213.
214, public String getName()

215, {
216. return name;
217. }

218.
219. public char[] getPassword()

22. |
201, return password;
220, }

228.
204, public void setName(String aName)

205, {
226. name = aName;
207, }

228.
200, public void setPassword(char[] aPassword)

230. {
231. password = aPassword;
232, }

2833.

234, private String name;

235, private char[] password;
236. }

API|| javax.swing.SwingUtilities 1.2

o Container getAncestorOfClass(Class c, Component comp)
returns the innermost parent container of the given component that belongs to the
given class or one of its subclasses.

Chapter 9. User Interface Components with Swing

474 Chapter 9 B User Interface Components with Swing

m javax.swing.JComponent 1.2

e JRootPane getRootPane()
gets the root pane enclosing this component, ornull if this component does not
have an ancestor with a root pane.

m javax.swing.JRootPane 1.2

e void setDefaultButton(JButton button)
sets the default button for this root pane. To deactivate the default button, call this
method with a null parameter.

javax.swing.JButton 1.2

e hoolean isDefaultButton()
returns true if this button is the default button of its root pane.

File Dialogs

When you write an application, you often want to be able to open and save files. A
good file dialog box that shows files and directories and lets the user navigate the file
system is hard to write, and you definitely don’t want to reinvent that wheel. Fortu-
nately, Swing provides a JFileChooser class that allows you to display a file dialog box
similar to the one that most native applications use. JFileChooser dialogs are always
modal. Note that the JFileChooser class is not a subclass of IDialog. Instead of calling set-
Visible(true), you call showOpenDialog to display a dialog for opening a file or you call
showSaveDialog to display a dialog for saving a file. The button for accepting a file is then
automatically labeled Open or Save. You can also supply your own button label with
the showDialog method. Figure 9-40 shows an example of the file chooser dialog box.

T [open File E
= EEEEL &
code

3 frame

D todo.txt

File Name: [~/books/cjg |
Files of Type: |All Files [~

I I

Figure 9-40 File chooser dialog box

Chapter 9. User Interface Components with Swing

Dialog Boxes

Here are the steps needed to put up a file dialog box and recover what the user chooses
from the box:

1.

Make a JFileChooser object. Unlike the constructor for the JDialog class, you do not sup-
ply the parent component. This allows you to reuse a file chooser dialog with multiple
frames.

For example:
JFileChooser chooser = new JFileChooser();

TIP: Reusing a file chooser object is a good idea because the JFileChooser constructor can
be quite slow, especially on Windows if the user has many mapped network drives.

Set the directory by calling the setCurrentDirectory method.
For example, to use the current working directory
chooser.setCurrentDirectory(new File("."));
you need to supply a File object. File objects are explained in detail in Chapter 12.
All you need to know for now is that the constructor File(String filename) turns a file
or directory name into a File object.
If you have a default file name that you expect the user to choose, supply it with the
setSelectedFile method:
chooser.setSelectedFile(new File(filename));
To enable the user to select multiple files in the dialog, call thesetMultiSelectionEnabled
method. This is, of course, entirely optional and not all that common.
chooser.setMuTtiSelectionEnabled(true);
If you want to restrict the display of files in the dialog to those of a particular type
(for example, all files with extension .gif), then you need to set a file filter. We discuss
file filters later in this section.

By default, a user can select only files with a file chooser. If you want the user to select
directories, use the setFileSelectionMode method. Call it with JFileChooser.FILES_ONLY (the
default), JFileChooser.DIRECTORIES_ONLY, or JFileChooser.FILES_AND_DIRECTORIES.

Show the dialog box by calling the showOpenDialog or showSaveDialog method. You must
supply the parent component in these calls:

int result = chooser.showOpenDialog(parent);
or
int result = chooser.showSaveDialog(parent);

The only difference between these calls is the label of the “approve button,” the but-
ton that the user clicks to finish the file selection. You can also call theshowDialog
method and pass an explicit text for the approve button:

int result = chooser.showDialog(parent, "Select");

These calls return only when the user has approved, canceled, or dismissed the
file dialog. The return value is JFileChooser.APPROVE_OPTION, JFileChooser.CANCEL_OPTION, or
JFiTleChooser.ERROR_OPTION

475

Chapter 9. User Interface Components with Swing

476

Chapter 9 B User Interface Components with Swing

8. You get the selected file or files with thegetSelectedFile() or getSelectedFiles() method.
These methods return either a single File object or an array of File objects. If you just
need the name of the file object, call its getPath method. For example:

String filename = chooser.getSelectedFile().getPath();

For the most part, these steps are simple. The major difficulty with using a file dialog is to
specify a subset of files from which the user should choose. For example, suppose the user
should choose a GIF image file. Then, the file chooser should only display files with exten-
sion .gif. It should also give the user some kind of feedback that the displayed files are of
a particular category, such as “GIF Images.” But the situation can be more complex. If the
user should choose a JPEG image file, then the extension can be either . jpg or .jpeg. Rather
than coming up with a mechanism to codify these complexities, the designers of the file
chooser supply a more elegant mechanism: to restrict the displayed files, you supply an
object that extends the abstract class javax.swing.filechooser.FileFilter. The file chooser
passes each file to the file filter and displays only the files that the file filter accepts.

At the time of this writing, two such subclasses are supplied: the default filter that
accepts all files, and a filter that accepts all files with a given extension. Moreover, it is
easy to write ad hoc file filters. You simply implement the two abstract methods of the
FileFilter superclass:

public boolean accept(File f);

public String getDescription();
The first method tests whether a file should be accepted. The second method returns a
description of the file type that can be displayed in the file chooser dialog.

NOTE: An unrelated FileFilter interface in the java.io package has a single method, booTean

accept(FiTe f). It is used in the TistFiles method of the File class to list files in a directory.
We do not know why the designers of Swing didn’t extend this interface—perhaps the Java
class library has now become so complex that even the programmers at Sun are no longer
aware of all the standard classes and interfaces.

You will need to resolve the name conflict between these two identically named types if you
import both the java.io and the javax.swing.filechooser package. The simplest remedy is to
import javax.swing.filechooser.FileFilter, not javax.swing.filechooser.x.

Once you have a file filter object, you use the setFileFilter method of the JFileChooser class
to install it into the file chooser object:

chooser.setFileFilter(new FileNameExtensionFilter("Image files", "gif", "jpg");
You can install multiple filters to the file chooser by calling

chooser.addChoosableFileFilter(filterl);
chooser.addChoosableFileFilter(filter2);

The user selects a filter from the combo box at the bottom of the file dialog. By default,
the “All files” filter is always present in the combo box. This is a good idea, just in case a
user of your program needs to select a file with a nonstandard extension. However, if
you want to suppress the “All files” filter, call

chooser.setAcceptAl1FileFilterUsed(false)

Chapter 9. User Interface Components with Swing

Dialog Boxes 477

CAUTION: If you reuse a single file chooser for loading and saving different file types, call
chooser. resetChoosableFiTlters()
to clear any old file filters before adding new ones.

Finally, you can customize the file chooser by providing special icons and file descrip-
tions for each file that the file chooser displays. You do this by supplying an object of a
class extending the FileView class in the javax.swing.filechooser package. This is definitely
an advanced technique. Normally, you don't need to supply a file view—the pluggable
look and feel supplies one for you. But if you want to show different icons for special
file types, you can install your own file view. You need to extend the FileView class and
implement five methods:

Icon getIcon(File f);

String getName(File f);

String getDescription(File f);

String getTypeDescription(File f);

Boolean isTraversable(File f);
Then you use the setFileView method to install your file view into the file chooser.

The file chooser calls your methods for each file or directory that it wants to display. If
your method returns null for the icon, name, or description, the file chooser then con-
sults the default file view of the look and feel. That is good, because it means you need
to deal only with the file types for which you want to do something different.

The file chooser calls the isTraversable method to decide whether to open a directory
when a user clicks on it. Note that this method returns a Boolean object, not a boolean
value! This seems weird, but it is actually convenient—if you aren't interested in deviat-
ing from the default file view, just returnnull. The file chooser will then consult the
default file view. In other words, the method returns a Boolean to let you choose among
three options: true (Boolean.TRUE), false (Boolean.FALSE), and don't care (hw11).

The example program contains a simple file view class. That class shows a particular
icon whenever a file matches a file filter. We use it to display a palette icon for all image
files.

class FileIconView extends FileView

public FileIconView(FileFilter aFilter, Icon anIcon)

{
filter = aFilter;
icon = anlcon;

}

public Icon getIcon(File f)
{
if (If.isDirectory() && filter.accept(f))
return icon;
else return null;

}

Chapter 9. User Interface Components with Swing

478

Chapter 9 B User Interface Components with Swing

private FileFilter filter;
private Icon icon;
}
You install this file view into your file chooser with the setFileView method:
chooser.setFileView(new FileIconView(filter,
new ImageIcon("palette.gif")));
The file chooser will then show the palette icon next to all files that pass thefilter and
use the default file view to show all other files. Naturally, we use the same filter that we
set in the file chooser.

TIP: You can find a more useful ExampleFileView class in the demo/jfc/FileChooserDemo directory
of the JDK. That class lets you associate icons and descriptions with arbitrary extensions.

Finally, you can customize a file dialog by adding an accessory component. For example,
Figure 9-41 shows a preview accessory next to the file list. This accessory displays a
thumbnail view of the currently selected file.

B [Open |§
Look In: ||j ImageViewer |'| E
Cay.gif

File Name: [Tower. aif |

Files of Type: ‘Image files |v|

Figure 9-41 A file dialog with a preview accessory

An accessory can be any Swing component. In our case, we extend theJLabel class and
set its icon to a scaled copy of the graphics image:
class ImagePreviewer extends JLabel

{

public ImagePreviewer(JFileChooser chooser)

{
setPreferredSize(new Dimension(100, 100));
setBorder(BorderFactory.createEtchedBorder());

}

public void ToadImage(File f)

Chapter 9. User Interface Components with Swing

Dialog Boxes 479

ImageIcon icon = new ImageIcon(f.getPath());
if(icon.getIconWidth() > getWidth())
icon = new ImageIcon(icon.getImage().getScaledInstance(
getWidth(), -1, Image.SCALE_DEFAULT));
setIcon(icon);
repaint();
}
}
There is just one challenge. We want to update the preview image whenever the user
selects a different file. The file chooser uses the “JavaBeans” mechanism of notifying
interested listeners whenever one of its properties changes. The selected file is a prop-
erty that you can monitor by installing a PropertyChangeListener. We discuss this mecha-
nism in greater detail in Chapter 8 of Volume II. Here is the code that you need to trap
the notifications:
chooser.addPropertyChangeListener(new
PropertyChangelistener()

public void propertyChange(PropertyChangeEvent event)

{
if (event.getPropertyName() == JFileChooser.SELECTED_FILE_CHANGED_PROPERTY)

File newFile = (File) event.getNewValue()
// update the accessory

}
b;

In our example program, we add this code to the ImagePreviewer constructor.

Listing 9-17 contains a modification of the InageViewer program from Chapter 2, in which
the file chooser has been enhanced by a custom file view and a preview accessory.

FileChooserTest. java

1. import java.awt.s;

2. import java.awt.event.x;

3. import java.beans.:;

4. import java.util.x;

5. import java.io.s;

6. import javax.swing.x;

7. import javax.swing.filechooser.x;

s. import javax.swing.filechooser.FileFilter;
9,

10. [k
1. % @version 1.23 2007-06-12
+ @uthor Cay Horstmann

13. %/

Chapter 9. User Interface Components with Swing

480 Chapter 9 B User Interface Components with Swing

FileChooserTest.java (continued)

14. pubTic class FileChooserTest

15. {

6. public static void main(String[] args)

17. {

18. EventQueue.invokelLater(new Runnable()

19. {

20. public void run()

21. {

22. ImageViewe