
ITeBooksFree.com

Spring 2.5 Aspect-Oriented
Programming

Create dynamic, feature-rich, and robust enterprise
applications using the Spring framework

Massimiliano Dessì

 BIRMINGHAM - MUMBAI

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

ITeBooksFree.com

Spring 2.5 Aspect-Oriented Programming

Copyright © 2009 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged
to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2009

Production Reference: 1170209

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847194-02-2

www.packtpub.com

Cover Image by Parag Kadam (paragvkadam@gmail.com)

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

ITeBooksFree.com

Credits

Author

Massimiliano Dessì

Reviewer

Stefano Sanna

Acquisition Editor

Rashmi Phadnis

Development Editor

Dhiraj Chandiramani

Technical Editor

Abhinav Prasoon

Copy Editor

Sneha Kulkarni

Editorial Team Leader

Akshara Aware

Project Manager

Abhijeet Deobhakta

Project Coordinator

Neelkanth Mehta

Indexer

Rekha Nair

Proofreader

Chris Smith

Production Coordinator

Aparna Bhagat

Cover Designer

Aparna Bhagat

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

ITeBooksFree.com

About the Author

Massimiliano Dessì is an experienced �ava developer who started developing �EEis an experienced �ava developer who started developing �EE
applications in 2000. In 2004 he discovered the Spring Framework 1.0, and since then
he has been one of its most enthusiastic users.

Massimiliano is specialized in design and development of enterprise Web-based
applications, such as portals, content management systems and banking applications.
�EE technology and applied agile methodologies like eXtreme Programming are his
core skills. He currently works as a Software Architect and Engineer for Sourcesense
(www.sourcesense.com), one of the leading European Open Source System
Integrators. He have a strong background as a community supporter and open-
source software contributor. He's also an active technical writer, author of various
articles, publications, and reviews availables on http://www.jugsardegna.org/
vqwiki/jsp/Wiki?MassimilianoDessi and on http://wiki.java.net/bin/
view/People/MassimilianoDessi.

Massimiliano also speaks regurarly at Users Groups conferences (including �ava
Users Groups, Spring Framework User Group, �avaday, and Linux Users Groups).

He is one of the founders of �ava User Group Sardinia (http://www.jugsardegna.
org), as well as the founder of "Spring Framework Italian User Group", "�etspeed
Italian user Group" and "Groovy Italian User Group".

He maintains a personal weblog at: http://jroller.com/page/desmax.

Massimiliano lives in Cagliari, Sardinia with his family.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

ITeBooksFree.com

 About the Reviewer

Stefano Sanna is senior engineer and �ava ME Tech Lead at Beeweeb Technologies
(Rome), where his activities are focused on mobile multimedia applications (�ME,
iPhone, Android). His experience on �ava for mobile devices began in 1999 on a
Psion handheld computer. He is author of the Italian book "�ava Micro Edition",
targeted on developing network-oriented applications for mobile phones and
published by Hoepli (Nov 2007). He has written more than 50 technical articles on
�ava ME, mobile technologies, and Linux. He has presented more than 30 seminars
on the same topics, including Sun SPOTs and Arduino sensor networks. Stefano
supports some Italian communities: �UG Sardegna, �ava Mobile Developers Forum,
and �ava Italian Association. Before joining Beeweeb, he was a software engineer at
CRS4 (Sardinia) in the Network Distributed Applications group, where he worked
on multimodal applications and mobile cartography. He regularly writes about
mobile computing, �ava, embedded systems, and good Italian food on his blog:
http://www.gerdavax.it.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

This book is dedicated to my wife Monica and my children Michele, Mattia and Chiara

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Table of Contents
Preface 1
Chapter 1: Understanding AOP Concepts 7

Limits of object-oriented programming 8
Code scattering 13
Code tangling 14

The AOP solution 16
What Spring provides in terms of AOP 19

Programmatic way 20
Before advice 20
After returning advice 21
Around advice 23
After throwing advice 24

The old Spring XML way 26
AOP with IoC in Spring 2.5 28

AspectJ annotations 28
Before advice 29
After returning advice 30
Around advice 31
After (finally) advice 32
After throwing advice 33

Schema-based configuration 35
Before advice 35
After advice 36
After returning advice 37
After throwing advice 37
Around advice 39

Summary 40
Chapter 2: Spring AOP Components 41

Aspect 41
Pointcut 41

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Table of Contents

[ii]

Pointcut and its components 42
NameMatchMethodPointcut 43
RegexpMethodPointcut 46
StaticMethodMatcherPointcut 49
DynamicMethodMatcherPointcut 53

Operations on Pointcut 56
ComposablePointcut 57
ControlFlowPointcut 60
Pointcut constants 63

Joinpoint 63
Advice 63

Before advice 64
After returning advice 65
After throwing advice 66

Advisor 67
Introductions 69
Summary 75

Chapter 3: Spring AOP Proxies 77
Proxy 77
JDK proxy 78
CGLIB proxy 80
Creating proxies programmatically 80

ClassicProxy 80
AspectJProxy 82

ProxyFactoryBean 83
ProxyFactoryBean and proxies 85
ProxyFactoryBean in action 86
Advised objects 97

Autoproxy 100
Autoproxy with classic Spring 101

BeanNameAutoProxyCreator 101
DefaultAdvisorAutoProxyCreator 106
AbstractAdvisorAutoProxyCreator 108

AutoProxyCreator with metadata 108
Autoproxy with AspectJ 110
Autoproxy with annotation 111
Autoproxy with XML Schema 111

Target sources 112
Hot swappable target sources 113
Pooling target sources 115
Prototype target sources 116

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Table of Contents

[iii]

ThreadLocal target source 117
Summary 117

Chapter 4: AspectJ Support 119
AspectJ annotations 119

Aspect 120
Pointcut 121

execution 122
within 122
this 122
target 122
args 123
@target 123
@args 123
@ within 123
@ annotation 123
bean 123

Selection on methods' names 128
Selection on types of argument 129
Selection on type of return 130
Selection on declared exceptions 130
Selection on hierarchy 130
Selection on annotations 131
Binding advice arguments 132

JoinPoint 132
Binding arguments 132
Binding of return values 133
Exception binding 133
Annotation binding 134

Advice 134
@Before 136
@AfterReturning 137
@AfterThrowing 138
@After 138
@Around 139

Introduction 140
XML Schema-based configuration 143

Aspect 144
Pointcut 144
Advice 146

Before advice 146
After returning advice 147
After throwing advice 149
After (finally) advice 150
Around advice 150

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Table of Contents

[iv]

Introduction 151
Advisors 153

Recipes 153
Dependency injection in domain objects 153
Advice ordering 155
Configuration mixin 155
Aspect instantiation model 155

AspectJ weaving in Spring 157
Load-time weaving with Spring 158
Load-time weaving with AspectJ 158
AOP strategy considerations 159

Summary 159
Chapter 5: Design with AOP 161

Concurrency with AOP 162
Transparent caching with AOP 168
Security with AOP 176

Securing methods with security interceptors 179
Securing methods with pointcuts 180
Securing methods with annotations 181

Summary 181
Chapter 6: Three-tier Spring Application, Domain-Driven Design 183

Domain-Driven Design 183
Roles and responsibilities 184

Entities 184
Aggregates 184
Modules 185
Value objects 185
Factories 185
Repositories 185
Services 186

Architecture 186
User interface 186
Application layer 186
Domain layer 186
Infrastructure layer 187

Sample application 187
Design 189
Services 205
Factories 208
Repositories 209

Summary 219

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Table of Contents

[v]

Chapter 7: Three-tier Spring Application, Tests and AOP 221
Application layer and user interface 221
Test 226
AOP 251

Cache 255
Concurrent 257
TimeExecutionManagedAspect 258
Transactions 260
Security 263

Summary 271
Chapter 8: Develop with AOP Tools 273

Java Development Kit 273
Spring 274
Eclipse 274
Eclipse plug-ins (Linux, MacOSX, and Windows) 275

SpringIDE 275
AJDT 279

Apache Tomcat 281
Ubuntu Linux 281
MacOSX 286
Microsoft Windows 287
Common steps for Linux, MacOSX, and Windows 288

PostgreSQL 290
Ubuntu Linux 290
MacOSX 294
Microsoft Windows 296
Common steps for Linux, Apple MacOSX, and Microsoft Windows 302
JDBC Driver 304
Summary 306

Index 307

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Preface
In software engineering, mostly low-level languages were used for many years,
which were closer to the computer machine code than to human language. In the
70s, Brian Kernighan and Dennis Ritchie created the language C. It was quite similar
to human language, making it easier and faster to write code, while keeping a
high level of abstraction. This allowed the realization of concepts and ideas, which
was not possible for the previous languages as they were forced to focus on the
processor's language. Later, Smalltalk and C++ permitted the shaping of concepts
and ideas through objects‚ providing a new way to structure applications and write
programs. With the object-oriented languages, any system could be created with
increasing complexity in a more manageable way, thanks to the modeling of
entities in the form of types and the collaboration between them. In some cases,
object-oriented programming introduces or causes inefficiencies, and aspect-oriented
programming helps in filling these gaps. The aim of Aspect-Oriented Programming
(AOP) is not to replace Object-Oriented Programming (OOP), but to complement it,
allowing you to create clearer and better structured programs. Gregor Kiczales, one
of the founders of AOP, said (an extract from http://www.cs.ubc.ca/~gregor/
papers/kiczales-ECOOP1997-AOP.pdf) "We have found many programming
problems for which neither procedural nor object-oriented programming techniques
are sufficient to clearly capture some of the important design decisions the program
must implement. This forces the implementation of those design decisions to be
scattered throughout the code, resulting in tangled code that is excessively difficult
to develop and maintain." Neither aspect-oriented programming nor object-oriented
programming can make up for a bad design: The first assumption is that a software
system is well-designed. There is no solution for a badly designed system, and also
none for a badly implemented system. There is only one good strategy: to change
it. The difference between a good and a bad design is the capacity to evolve and
adapt to new requirements without being twisted. Object-oriented programming,
supported by aspect-oriented programming, helps designers and developers
in this direction.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Preface

[2]

What this book covers
Chapter 1 introduces the ideas that led to Aspect-Oriented Programming. An
overview of main concepts of AOP is used to describe components and features
provided by Spring AOP, while a set of concise yet
clear examples lets the reader discover what can actually be done with AOP.

Chapter 2 describes in detail the fundamentals of AOP in Spring, presenting
interfaces and classes introduced in early 1.x versions of the framework. This
chapter shows how to use AOP programmatically, to let the reader discover the
basis of Spring AOP and the components that implement Aspect-Oriented
Programming in Spring.

Chapter 3 explains how the weaving of AOP components is done using the proxy
pattern and �DK or CGLIB implementations. It describes the purpose of proxies
and how to use them effectively. Some practical examples show how to use the
proxies programmatically, with annotations and with XML; they explain the
ProxyFactoryBean and how to make the programmer's work easier with AutoProxy.
The chapter describes also some smart techniques on target sources.

Chapter 4 explains how Spring AOP is supported by AspectJ. Configuration activity
is made simpler, more flexible and more powerful, thanks to annotations and
the syntax of Aspect� on pointcuts (without which those costructs would not be
available). All examples show how to use Aspect� with both annotations and XML.
The chapter contains practical recipes for specific cases, such as the injection of
dependencies on domain objects, the management of aspects' priority, the use of
different life cycles for Aspects and how to use Load Time Weaving. The chapter
ends with some strategies on how to choose different AOP approaches to fulfil
specific requirements.

Chapter 5 describes the design alternatives that can be implemented using AOP.
These alternatives are solutions for common requirements: concurrency, caching,
and security. Using AOP, they can be achieved in a very elegant and easy way,
being at the same time totally transparent for the system where they are applied.

Chapter 6 introduces Domain-Driven Development as a alternative way to
design applications. The prototype example presented in this chapter is a typical
Three-Layer application, where DDD is used for design and AOP is used to inject
the dependencies on domain objects. iBatis is used for persistence to the database.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Preface

[3]

Chapter 7 completes the prototype application started in Chapter 6, showing the
application layer and the user interface. The latter is implemented with Spring
MVC using annotations. Integration and unit tests are used to verify the correctness
of the classes; DBUnit is used to test persistence classes, while some Mock classes
are used to test the UI. The chapter contains the configurations for the prototype
infrastructure, including autentication and authorization with Spring Security and
the �Unit 4.5 test suite.

Chapter 8 describes the development tools needed to include Spring AOP and
AspectJ in the Eclipse IDE. The reader can find here detailed istructions on how to
configure Eclipse with the plug-ins for Spring and for the AspectJ Development Tool,
and how to install the PostgreSQL database and the Apache Tomcat servlet engine.
All installation procedures are described for the three main operating systems:
Ubuntu Linux, Apple Mac OS X, and Microsoft Windows XP.

What you need for this book
The book requires a basic knowledge of Spring and it's configuration. It needs
software like �ava Development Kit (�DK) 1.5 or higher, Spring 2.5.6 (at the time
of writing on this book), Eclipse (3.4.1 or higher version), Eclipse plug-ins, Tomcat
Apache (Tomcat 6.x), and PostgreSQL (version 8.3).

Who this book is for
This book is written for software architects, engineers, and developers that want
be able to write applications in a more modular and concise way, without learning
Aspect� or using languages other than �ava and frameworks other than Spring.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through
the use of the include directive."

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Preface

[4]

A block of code will be set as follows:

package org.springaop.target;
public class ExceptionTarget {

 public void errorMethod() throws Exception {
 throw new Exception("Fake exception");
 }

 public void otherErrorMethod() throws IllegalArgumentException {
 throw new NullPointerException("Other Fake exception");
 }

}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

package java.lang.reflect;
public interface InvocationHandler {

public Object invoke(Object proxy, Method method, Object[] args)
throws Throwable;

}

Any command-line input and output is written as follows:

java -javaagent:<path_on_your_machine>/spring-framework-X.X/lib/aspectj/
aspectjweaver.jar

<package>.<yourclass>.Main

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"clicking the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/4022_Code.zip to directly
download the example code.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet,
please provide the location address or web site name immediately so we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Understanding AOP Concepts
This chapter presents an overview of Aspect-Oriented Programming concepts, and
explains their capabilities and features. Here is a brief outline of the topics covered
in this chapter:

Limits of Object-Oriented Programming
The AOP solutions
Spring AOP components
Spring AOP 2.5

In this chapter we will see what the designing and realization process of an
application or software system consists of.

We have to stop and think about the problems that we will see, beginning from the
designing phase: how to structure the application, what are the problems in the
implementation phase if we use only object-oriented programming, and in which
forms they show themselves. We will also see how aspect-oriented programming
can support object-oriented programming to solve problems in the implementation
phase. We will finally see what Spring provides to allow us to use aspect-oriented
programming with Inversion of Control (IoC).

If we use a method such as the Extreme Programming, we iteratively focus hard on
the functionalities and improve them following the clients' feedback.

Therefore, who does what is described so that the functionalities that the system
provides to the user are clear.

After having found these entities, we model them as classes that contain data and
have behavior.

To do this, we use some features of the object-oriented languages, such as
inheritance, polymorphism, encapsulation, and interfaces, to create a model
that helps us solve the domain problem in the simplest way possible.

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Understanding AOP concepts

[8]

Drawing, structuring, and building software systems in this way is now considered
a common practice. Nevertheless, there are some inefficiencies that emerge at the
moment of realizing the project. In fact, however accurately the design may have
been made with highly cohesive classes and low coupling, there are still some
situations where we have to make compromises.

Limits of object-oriented programming
The object-oriented paradigm provided the concepts and the right instruments for
the creation of complex programs and had a great impact on the development of
new disciplines in the domain of software design. In this sense, both engineering
and software design disciplines developed greatly. Particularly important has been
the development of the so-called Design Patterns that allow a certain degree of
systemization of the activity of software design and development.

The concept of a class that includes data and functions that change its values
allows for the realization of cohesive and independent entities (high cohesion, low
coupling). This in turn realizes the required business functionalities through the
exchange of messages.

Using design patterns and object-oriented programming, the development of an
application can be realized by dividing the activities into independent groups of
functionalities. In fact, as soon as the interfaces of every entity of the application
have been defined, their implementation can be realized independently by different
groups of developers.

Another advantage is the reliability offered by the object. If we consider that the
access to an object's data and its modification can happen only by means of the
methods that it exposes through its interface, no user can unpredictably corrupt
this data and make that object's state inconsistent.

Finally, the concept of inheritance allows the definition of new classes that extend
the functionality of the classes from which they derive. In this sense, we obtain the
extendibility and the reuse of software.

After the advantages of the new instruments given by the object-oriented
programming paradigm, we have to consider the limits that occurred in
practical application.

The main problem is to manage to control the complexity. To face it, we will have to
choose modularization: "divide et impera", according to the Latin maxim.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 1

[9]

If architects look at the previous projects on which they have worked, they will
notice that a common feature is the constant increase in the systems' complexity.

Separating the functionalities that have to be implemented into simpler and
more manageable modules helps to control the complexity. Software systems are
conceptually complex by their very nature, and increasing their complexity in the
implementation means increasing the expense and the probability of its failure.

The code needed to integrate a complex implementation is expensive. The cost
would be even higher if new features are required. In fact, those features imply
deep changes in several parts of the implementation.

If we didn't take the way of modularization and simplification, we would have a
monolithic system that would be unmanageable to modify.

First of all, we have to single out the modules that will implement the core
business that justifies the design and the implementation of the software. Once
we have completely understood how to implement the core business, we can think
about designing the rest of the application so that the core business supports the
system's users.

We are used to take the best practice of dividing the application into logical layers
(presentation layer, business layer, and data layer). But, there are some functionalities
that cross these layers transversally. They are named crosscutting concerns.

A crosscutting concern is, therefore, an independent entity that transversally crosses
other functionalities of software. Take a look at the following figure:

Presentation Layer

Business Layer

Resource Layer

R
esource pooling

Perform
ance m

onitoring

C
oncurrency control

C
aching

Exception H
andling

Logging

Transaction

S
ecurity

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Understanding AOP concepts

[10]

The most common crosscutting concerns are: security, logging, transactions
management, caching, performance checking, concurrency control, and
exception management.

These crosscutting concerns, if implemented only with object-oriented programming,
realize a bad matching between the core business and the modules that implement
its functionalities. We are forced to deal with the implementation of these transversal
functionalities into various modules, moreover, adding other transversal modules
or modifying the existing ones. We are also forced to modify the code in which these
modules are used. This is owing to the undesired, but necessary, matching that the
object-oriented implementation unavoidably brings with it.

The followings graphs (extracts from http://www.parc.com/research/projects/
aspectj/downloads/SDWest2002-BetterJavaWithAJ.ppt), show the code of
Servlet Engine Tomcat 4 divided in modules:

In the figure above, XML parsing fits in one module.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 1

[11]

In the figure above, the URL pattern matching fits in two modules.

In the figure above, logging is scattered in too many modules.

This figure shows the points where Tomcat classes' logging functionalities are called
(underlined in red). As we can see, they are scattered in the points of the modules
where the functionality is required.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Understanding AOP concepts

[12]

The problem of scattering code derived from the crosscutting concerns in
object-oriented programming arises due to its transversality to the crosscutting
concerns, which is implemented in the classes. More correctly, the crosscutting
concerns should be analysed as a third dimension of the design. Whereas in the
implementation there are two dimensions, as shown in the following figure:

Security

Business logic

Business logic

Security Transaction

Transaction

Concern space

Implementation space

In these situations, aspect-oriented programming provides support to object-oriented
programming for uncoupling modules that implement crosscutting concerns.

Its purpose is the separation of concerns.

In object-oriented programming the basic unit is the Class, whereas in
aspect-oriented programming it's the Aspect.

The aspect contains the implementation of a crosscutting concern, which in the
class should coexist with the objects that collaborate with it, for each class that
needs it.

In this way, we can write the object-oriented classes without involving the
crosscutting concerns in the implementation.

So, classes can freely evolve without taking into account this dependency.

The functionalities provided by the crosscutting concerns in the aspects will be
applied to the objects through an aspect weaver or through some proxy classes.
We will deal with this in the later chapters.

Now we will see how the problems we exposed, arise in the code.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 1

[13]

Code scattering
Code scattering appears when the functionality is scattered because it's implemented
in several modules.

There are two sorts of code scattering:

Blocks of duplicated code (that is, the same code appears in
different modules)
Blocks of complementary code, and different modules implementing
complementary parts of the concern (for example, in Access Control, one
module performs authentication and a second performs authorization)

Let's see the following code to illustrate the cases in which the code is duplicated in
different modules:

The Info interface is implemented in the same way by two different classes,
ScatteringA and ScatteringB. Therefore, this is a useless duplication of code.

public interface Info {

 public String getName();
 public Date getCreationDate();
}

public class ScatteringA implements Info{

 public ScatteringA(String name, String author){
 creation = new Date();
 this.name = name;
 this.autor = author;
 }

 public ScatteringA(Date creation, String name, String author){
 this.creation = creation;
 this.name = name;
 this.autor = author;
 }

 public Date getCreationDate() {
 return (Date)creation.clone();
 }

 public String getName() {
 return name;
 }

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Understanding AOP concepts

[14]

 public String getAutor() {
 return autor;
 }

 private Date creation;
 private String name;
 private String autor;
}

public class ScatteringB implements Info{

 public ScatteringB(String name, String address){
 creation = new Date();
 this.name = name;
 this.address = address;
 }

 public ScatteringB(Date creation, String name, String address){
 this.creation = creation;
 this.name = name;
 this.address = address;
 }

 public Date getCreationDate() {
 return (Date)creation.clone();
 }

 public String getName() {
 return name;
 }

 public String getAddress() {
 return address;
 }

 private Date creation;
 private String name;
 private String address;
}

Code tangling
Code tangling occurs when a module has to manage several concerns at the same
time such as logging, exception handling, security, caching, and more or when a
module has elements of the implementation of other concerns inside.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 1

[15]

In order to show what we mean by code tangling, let's look at the following code:

public class TanglingListUserController extends MultiActionController{

 public ModelAndView list(HttpServletRequest req,
 HttpServletResponse res) throws Exception {

 //logging
 log(req);

 // authorization
 if(req.isUserInRole("admin")){

 String username = req.getRemoteUser();

 List users ;

 //exception handling
 try {
 //cache with authorization
 users = cache.get(Integer.valueOf(
conf.getValue("numberOfUsers")), username);

 } catch (Exception e) {
 users = usersManager.getUsers();
 }

 return new ModelAndView("usersTemplate", "users",
users);
 }else{

 return new ModelAndView("notAllowed");
 }
 }

 private void log(HttpServletRequest req) {
 StringBuilder sb = new StringBuilder("remoteAddress:");
 sb.append(req.getRemoteAddr());
 sb.append("username:");
 sb.append(req.getRemoteUser());
 log.fine(sb.toString());
 }

 …
}

In this Spring MultiActionController, we can see how many features are
managed: logging, authorisation, exception management, and caching.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Understanding AOP concepts

[16]

In spite of dealing with just the presentation of a list of users, this controller has
to do many things, and the consequence is that other concerns are heavier in its
implementation. That is code tangling.

The AOP solution
We have seen that with an object-oriented system, code tangling and code scattering
can occur. This can cause the system to have duplicate code and functionalities
not being clear and plain. Evident problems with the implementation of further
requirements arise, with modules strongly coupled in the implementation.

In the previous situations, the object-oriented system can't be of any help because the
following effects occur:

Difficult evolution: A module's implementation is coupled to
other functionalities.
Poor quality: In the TanglingListUserController example, if a problem
arises, it's not even clear what the module's main functionality is.
Code not reusable: If the implementation involves several concerns, it won't
be suitable for other scenarios.
Productivity: Scattered implementations move the problem's main focus to
the periphery where the implementations are.
Traceability: Code scattering functionality is implemented at several
points. To have a hold on it, you need to check all the modules in which
the implementation is spread.

Aspect-oriented programming allows:

The modularization of crosscutting concerns by its constructs
The uncoupling of the modules
Using aspects, the removal of dependence of a crosscutting concern from the
modules that use it

Now let's see practically what AOP provides to overcome the gaps in object-oriented
programming highlighted so far in the book, and what are its main concepts.

Let's see who are the main actors that enable the aspect-oriented programming,
implement the crosscutting concerns in the aspects, and define with other actors
the points and the classes on which these crosscutting concerns are applied.

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 1

[17]

In the following figure, we see the normal interactions between objects:

Object A Object B

Object C

method method

method

method method

method

method

In object-oriented programming, classes cooperate by calling mutually public
methods and exchanging messages.

Crosscutting concerns are placed in the implementations of the classes A, B, and
C, and this leads to the problems previously explained such as code tangling, code
scattering, and so on.

The following figure conceptually compares the execution flow of the invocation of a
method in the case of OOP and AOP:

Aspect-Oriented Programming

Object-Oriented Programming

joinpoint =method invocation

Object A Object Bmethod method

advice

poincut = methodB

Target Object = Object B

Aspect

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Understanding AOP concepts

[18]

In the case of object-oriented programming, where the crosscutting concerns are
included into the classes' implementations, Object A in its method A invokes method
B on Object B. This is, apart from exceptions, the normal flow of messages' exchange
between two objects that interact. The cross interactions are called back and used just
in these two methods because there isn't any other way to act.

In the flow with aspect-oriented programming, the crosscutting functionalities are
extracted from the object-oriented implementations and applied as advices where
they are actually useful. This is because they are applied on the flow where they
really have to be carried out, that is by the pointcuts and on the target object.

The whole of the advice, the pointcut, the target object, and the joinpoint, make
an aspect.

Now let's introduce the AOP terms denoting the components that take part in the
implementation, which are partially pictured in the previous figure.

Aspect: Corresponds to the class in object-oriented programming. It's the
crosscutting functionality.
Joinpoint: This is the application point of the aspect. It is a point of the
execution of a program such as the invocation of a constructor or the
execution of a method or the management of an exception (WHEN).
Advice: This is the action an aspect performs at a certain joinpoint.
Advices can be "around", "before", and "after".
Pointcut: This is the expression for the joinpoint's selection, for instance a
method's execution with a certain signature (WHERE).
Introduction: This is the declaration of methods or additional fields on the
object to which the aspect will be applied. It allows the introduction of new
interfaces and implementations on the objects.
Target object: This is the module (Object) to which the aspect will be applied.
Weaving: This is the linking action between the aspect and the objects to
which advices must be applied.
This action may be performed at the editing phase using an Aspect� compiler,
or at runtime.
If a runtime action is carried out, an AOP Proxy is used to implement the
contracts that the aspect has to respect.

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 1

[19]

Types of advice:

Before advice: This is an advice that executes before a joinpoint, but
which does not have the ability to prevent execution flow proceeding
to the joinpoint.
After returning advice: An advice to be executed after a joinpoint
completes normally.
Throws advice: This is an advice to be executed if a method exits by
throwing an exception.
After (finally) advice: This advice is to be executed regardless of the means
by which a joinpoint exits.
Around advice: This advice can perform custom behavior before and after
the method invocation. It is also responsible for choosing whether to proceed
to the joinpoint, or to cut short the advised method execution by returning its
own return value or throwing an exception.

In the case of Aspect-Oriented Programming in the earlier image, taking into account
that the joinpoint is the invocation of methods and that the joinpoint is the method
called methodB, the aspect executes the crosscutting concern included into the
advice when methodB is invoked on the target, Object B. This kind of interception
before methodB is that of a Before Advice.

What Spring provides in terms of AOP
The main aim of Spring AOP is to allow the realization of �EE functionalities in the
simplest manner and without being intrusive. With this aim, it allows the use of a
subset of AOP functionalities in a simple and intuitive way (introduced since
version 1.x, and in version 2.x with new integrations with Aspect�).

In order to achieve this aim, since version 1.x, Spring has implemented the
specifications of the AOP alliance. This is a joint effort between representatives
of many open-source AOP projects, including Rod Johnson of Spring, to define a
standard set of interfaces for AOP implementations.

In Spring AOP, an aspect is represented by an instance of a class that implements the
Advisor interface. There are two subinterfaces of Advisor: IntroductionAdvisor
and PointcutAdvisor. The PointcutAdvisor interface is implemented by all
Advisors that use pointcuts to control the applicability of advice to joinpoints.

In Spring, introductions are treated as special kinds of advice. Using the
IntroductionAdvisor interface, you can control those classes to which an
introduction applies.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Understanding AOP concepts

[20]

The core of Spring AOP is based around proxies. There are two ways of using
proxies: programmatic modality and declarative modality.

The former consists of using a ProxyFactory to create a proxy of the class on which
you want to apply an aspect. After creating the proxy, you use the ProxyFactory to
weave all the aspects you want to use on the object.

The ProxyFactory class controls the weaving and proxy creation process in Spring.

Using the ProxyFactory class, you control which aspects you want to weave into the
proxy. You can weave only an aspect, that is, advice combined with a pointcut.

However, in some cases you want an advice to apply to the invocation of all methods
in a class, not just a selection. For this reason, the ProxyFactory class provides
the addAdvice() method. Internally, addAdvice() wraps the advice you pass it
in an instance of DefaultPointcutAdvisor, and configures it with a pointcut that
includes all methods by default.

Programmatic way
This is an example of class that implements the MethodBeforeAdvice to perform a
crosscutting functionality before the method of the target class.

Before advice
Before advice is performed before the invocation of the method.

Let us see an example that shows the usage of before advice, with a class that
implements the MethodBeforeAdvice, and has a main method for testing.

package org.springaop.chapter.one;
import java.lang.reflect.Method;

import org.springaop.target.Hello;
import org.springframework.aop.MethodBeforeAdvice;
import org.springframework.aop.framework.ProxyFactory;

public class BeforeAdvice implements MethodBeforeAdvice{

 public static void main(String[] args) {

 //target class
 Hello target = new Hello();

 // create the proxy
 ProxyFactory pf = new ProxyFactory();

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 1

[21]

 // add advice
 pf.addAdvice(new BeforeAdvice());

 // setTarget
 pf.setTarget(target);

 Hello proxy = (Hello) pf.getProxy();
 proxy.greeting();
 }

 public void before(Method method, Object[] args, Object target)
 throws Throwable {

 System.out.println("Good morning");
 }
}

public class Hello {

 public void greeting(){
 System.out.println("reader");
 }
}

The result will be:

After returning advice
After returning advice is performed after the invocation of the method.

package org.springaop.chapter.one;
import java.lang.reflect.Method;

import org.springaop.target.Hello;
import org.springframework.aop.AfterReturningAdvice;
import org.springframework.aop.framework.ProxyFactory;

public class AfterRetuningAdvice implements AfterReturningAdvice {

 public static void main(String[] args) {

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Understanding AOP concepts

[22]

 // target class
 Hello target = new Hello();

 // create the proxy
 ProxyFactory pf = new ProxyFactory();

 // add advice
 pf.addAdvice(new AfterRetuningAdvice());

 // setTarget
 pf.setTarget(target);

 Hello proxy = (Hello) pf.getProxy();
 proxy.greeting();
 }

 public void afterReturning(Object returnValue, Method method,
 Object[] args, Object target) throws Throwable {

 System.out.println(",this is a afterReturningAdvice
message");
 }

}

public class Hello {

 public void greeting(){
 System.out.println("reader");
 }
}

The result will be:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 1

[23]

Around advice
This is the Hello target class on which we want to apply an around advice. It is
called before the method and controls its invocation.

public class Hello {

 public void greeting(){
 System.out.println("reader");
 }
}

This is the advice that must be applied around the performed method; as we can see
that the invocation of the method occurs with invocation.proceed.

package org.springaop.chapter.one;

import org.aopalliance.intercept.MethodInterceptor;
import org.aopalliance.intercept.MethodInvocation;

public class MethodDecorator implements MethodInterceptor{

 public Object invoke(MethodInvocation invocation) throws Throwable
{
 System.out.print("Hello ");
 Object retVal = invocation.proceed();
 System.out.println("this is aop !");
 return retVal;
 }
}

This is the class where, through the ProxyFactory, we give the advice to apply. But,
in the case of the MethodDecorator, it is an around advice.

package org.springaop.chapter.one;

import org.springaop.target.Hello;
import org.springframework.aop.framework.ProxyFactory;

public class AroundAdvice {

 public static void main(String[] args) {

 //target class
 Hello target = new Hello();

 // create the proxy
 ProxyFactory pf = new ProxyFactory();

 // add advice

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Understanding AOP concepts

[24]

 pf.addAdvice(new MethodDecorator());

 // setTarget
 pf.setTarget(target);

 Hello proxy = (Hello) pf.getProxy();
 proxy.greeting();
 }
}

The result will be:

After throwing advice
This advice is performed only if the method on which the advice is applied throws
an exception.

This is a class that intentionally throws an exception in every method; the exceptions
are of different types.

package org.springaop.target;

public class ExceptionTarget {

 public void errorMethod() throws Exception {
 throw new Exception("Fake exception");
 }

 public void otherErrorMethod() throws IllegalArgumentException {
 throw new NullPointerException("Other Fake exception");
 }

}

This is the code to try it:

package org.springaop.chapter.one;

import java.lang.reflect.Method;

import org.springaop.target.ExceptionTarget;
import org.springframework.aop.ThrowsAdvice;

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 1

[25]

import org.springframework.aop.framework.ProxyFactory;

public class ThrowsAdviceClass implements ThrowsAdvice {

 public static void main(String[] args) {

 //target class
 ExceptionTarget errorBean = new ExceptionTarget();

 // create the proxy
 ProxyFactory pf = new ProxyFactory();

 // add advice
 pf.addAdvice(new ThrowsAdviceClass());

 // setTarget
 pf.setTarget(errorBean);

 ExceptionTarget proxy = (ExceptionTarget) pf.getProxy();

 try {
 proxy.errorMethod();
 } catch (Exception ignored) {

 }

 try {
 proxy.otherErrorMethod();
 } catch (Exception ignored) {

 }
 }

 public void afterThrowing(Exception ex) throws Throwable {
 System.out.println("+++");
 System.out.println("Exception Capture:"+ex.getClass().
getName());
 System.out.println("+++\n");
 }

 public void afterThrowing(Method method, Object[] args,
Object target, NullPointerException ex) throws Throwable {
 System.out.println("+++");
 System.out.println("NullPointerException Capture: "+ex.
getClass().getName());
 System.out.println("Method: " + method.getName());
 System.out.println("+++\n");
 }

}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Understanding AOP concepts

[26]

The result will be:

The old Spring XML way
Here we will see how to use the examples described previously, configuring the
classes as Spring beans declared in XML file and using a ProxyFactoryBean.

 <bean id="helloMatch" class="org.springframework.aop.framework.
ProxyFactoryBean">
 <property name="target">
 <bean class="org.springaop.Hello"/>
 </property>
 <property name="interceptorNames">
 <list>
 <idref bean="helloBeforeAdvice"/>
 <idref bean="helloAfterRetuningAdvicee"/>
 </list>
 </property>
 </bean>

 <bean id="helloBeforeAdvice" class="org.springaop.advice.
BeforeAdvice"/>

 <bean id="helloAfterRetuningAdvice" class="org.springaop.advice.
AfterRetuningAdvice"/>

In the configuration of the example, we can see how a helloMatch is defined,
which is in fact a ProxyFactoryBean that puts together the target object on which
the crosscutting concern has to be applied, and the list of advice that contains
the crosscutting functionalities. In this case, two of the advices are used in the
programmatic modality and are applied at the target object as a reference in the
list of interceptors that can be applied on the object.

It is an implementation of Spring FactoryBean that allows you to specify a bean to
target and provides a set of advice and advisors for that bean that are eventually
merged into an AOP proxy. Because you can use both advisor and advice with the
ProxyFactoryBean, you can configure not only the advice declaratively, but the
pointcuts as well.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 1

[27]

In both modalities Spring uses internally two sorts of proxy: �DK proxy or
CGLIB proxy.

The concept of an Advisor principally concerns Spring 1.x. We will see later how it
can benefit by the syntax of the pointcuts of AspectJ.

From the 2.x version onwards, there is a closer integration or configuration based
on Aspect� and its syntax, either through annotations or through schema-based
configuration. In any case, it's always possible to use AOP in the classic way as in
the 1.x version.

Spring is first of all an IoC Container, and so it allows using the components that
implement the AOP as a simple bean, assembling them and obtaining the result of
the AOP weaver through Proxy classes, as we previously described.

Instead, Aspect� provides a static implementation of AOP that is produced
at compile time. Spring provides a dynamic implementation of AOP, as it is
implemented through the creation and the use of proxy classes that permit the
implementation of a chain of interceptors.

Obviously, a static implementation provides better performance, but requires greater
knowledge and a compiler, whereas the dynamic implementation is easier to use and
more accessible. It can be disabled from configuration and never requires anything
different from the usual �ava compiler.

Spring permits only method execution to be used as a joinpoint. So we can't use with
Spring AOP all the features of AOP, but we can do so with Aspect� called by Spring.
For example, we must use the support of Aspect� if we want to use as a joinpoint:

The invocations of constructors
Access to the domains of objects with the setter and getter
The initialization of an object
The initialization of an object with a calling super()
The execution inside a class with this()
The calling of a method

Therefore, the aspect can be normal �ava classes with the annotation @Aspect, or
configured using configuration XML.

The advices are seen as interceptors that maintain a chain of interceptors around
the joinpoint.

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Understanding AOP concepts

[28]

Pointcuts are performed according to the matching of the Aspect� pointcut
expression language, or according to regular expressions following the rules
present since Spring 1.x.

This introduction clearly shows that Spring has a simplified pattern of the whole set
of AOP features so that AOP can be used with no special editing and alterations to
the bytecode. This would be necessary together with the use of Aspect�, if we wanted
all the features of AOP as we will see in the rest of this book.

AOP with IoC in Spring 2.5
Now we will see what Spring 2.5 offers compared to the 1.x version.

AspectJ annotations
Now let's see some introductory examples of using the syntax of Aspect� with
annotations; the purpose is to have the same sorts of advice that we saw in the
programmatic examples.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

 <aop:aspectj-autoproxy/>
 ...
</beans>

In the configuration, if we use a tag <aop:aspectj-autoproxy/>, Spring prepares
autoproxy for the classic mode that uses AspectJ annotations and we define two
beans to check the annotations' behavior.

This is the body of the Target Class that we will use in the examples.

public class Hello {

 public void greeting(){
 System.out.println(label);
 }

 private String label = "reader";

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 1

[29]

 public void setLabel(String label) {
 this.label = label;
 }
}

Before advice
Now we see how to use before advice with the annotations.

package org.springaop.chapter.one.annotation.before;

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Before;

@Aspect
public class BeforeAspect {

 @Before("execution(* greeting(..))")
 public void beforeGreeting() {

 System.out.println("Good morning ");
 }
}

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

 <aop:aspectj-autoproxy/>

 <bean id="hello" class="org.springaop.target.Hello" p:
label="writer"/>

 <bean id="before" class="org.springaop.chapter.one.annotation.
before.BeforeAspect"/>

</beans>

Result:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Understanding AOP concepts

[30]

After returning advice
The following code explains how to use after returning advice with
the annotations:

package org.springaop.chapter.one.annotation.after.returning;

import org.aspectj.lang.annotation.AfterReturning;
import org.aspectj.lang.annotation.Aspect;

@Aspect
public class AfterReturningAspect {

 @AfterReturning("execution(* greeting(..))")
 public void afterGreeting() {

 System.out.println("this is a aop !");
 }

}

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

 <aop:aspectj-autoproxy/>

 <bean id="hello" class="org.springaop.target.Hello" p:
label="writer"/>

 <bean id="afterReturning" class="org.springaop.chapter.one.
annotation.after.returning.AfterReturningAspect"/>

</beans>

Result:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 1

[31]

Around advice
Now we see how to use around advice with the annotations.

package org.springaop.chapter.one.annotation.around;

import org.aspectj.lang.ProceedingJoinPoint;
import org.aspectj.lang.annotation.Around;
import org.aspectj.lang.annotation.Aspect;

@Aspect
public class AroundAspect {

 @Around("execution(* greeting(..))")
 public Object aroundGreeting(ProceedingJoinPoint pjp) throws
Throwable {

 System.out.print("Hello ");
 try {
 return pjp.proceed();
 } finally {
 System.out.println("this is around aop !");
 }

 }
}

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

 <aop:aspectj-autoproxy/>

 <bean id="hello" class="org.springaop.target.Hello" p:
label="writer"/>

 <bean id="around" class="org.springaop.chapter.one.annotation.
around.AroundAspect"/>

</beans>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Understanding AOP concepts

[32]

Result:

After (finally) advice
The following code explains how to use after (finally) advice with
the annotations:

package org.springaop.chapter.one.annotation.afterfinally;

import org.aspectj.lang.annotation.After;
import org.aspectj.lang.annotation.Aspect;

@Aspect
public class AfterFinallyAspect {

 @After("execution(* greeting(..))")
 public void afterGreeting() {

 System.out.println("this is afterAspect !");
 }
}

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

 <aop:aspectj-autoproxy/>

 <bean id="hello" class="org.springaop.target.Hello" p:
label="writer"/>

 <bean id="afterFinally" class="org.springaop.chapter.one.
annotation.afterfinally.AfterFinallyAspect"/>

</beans>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 1

[33]

Result:

After throwing advice
For the after throwing advice example, we're going to use a target class different
from Hello, in order to be able to trigger exceptions deliberately.

This is the body of the exception target:

package org.springaop.target;

public class ExceptionTarget {

 public void errorMethod() throws Exception {
 throw new Exception("Fake exception");
 }

 public void otherErrorMethod() throws IllegalArgumentException {
 throw new NullPointerException("Other Fake exception");
 }
}

Example after throwing:

package org.springaop.chapter.one.annotation.throwsadvice;

import org.aspectj.lang.annotation.AfterThrowing;
import org.aspectj.lang.annotation.Aspect;

@Aspect
public class AfterThrowingAspect {

 @AfterThrowing("execution(* errorMethod(..))")
 public void afterGreeting() {

 System.out.println("+++");
 System.out.println("Exception !");
 System.out.println("+++");
 }
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Understanding AOP concepts

[34]

This is the body of the ExceptionTest class:

package org.springaop.chapter.one.annotation.throwsadvice;

import org.springaop.target.ExceptionTarget;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.
ClassPathXmlApplicationContext;

public class ExceptionTest {

 public static void main(String[] args) {

 String[] paths = {"org/springaop/conf/applicationContext.
xml"};
 ApplicationContext ctx = new ClassPathXmlApplicationContext(
paths);

 ExceptionTarget exceptiontarget = (ExceptionTarget)ctx.getBe
an("exceptionTarget");
 try {
 exceptiontarget.errorMethod();
 } catch (Exception ignored) {

 }
 }
}

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

 <aop:aspectj-autoproxy/>

 <bean id="exceptionTarget" class="org.springaop.target.
ExceptionTarget"/>

 <bean id="throws" class="org.springaop.chapter.one.annotation.
throwsadvice.AfterThrowingAspect"/>

</beans>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 1

[35]

The result will be:

Schema-based configuration
Now let's see some introductory examples for schema-based configuration, using
the code of the classes of the examples used with the annotations, and with the same
output results.

Before advice
The following before advice example example explains how to use the before advice
with XML Schema configuration:

package org.springaop.aspects.schema;

public class SpringAopAspectBeforeExample {

 public void beforeGreeting() {

 System.out.println("Good morning ");
 }
}

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:
p="http://www.springframework.org/schema/p"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop.xsd">

 <aop:config>
 <aop:aspect ref="before">

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Understanding AOP concepts

[36]

 <aop:before method="beforeGreeting" pointcut="execution(*
greeting(..))" />
 </aop:aspect>
 </aop:config>

 <bean id="hello" class="org.springaop.target.Hello" p:
label="writer" />

 <bean id="before" class="org.springaop.aspects.schema.
SpringAopAspectBeforeExample" />

</beans>

After advice
The following after advice example explains how to use the after advice with XML
Schema configuration:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xmlns:aop="http://www.springframework.org/schema/aop"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop.xsd">

 <bean id="hello" class="org.springaop.target.Hello" p:
label="writer" />

 <aop:config>
 <aop:aspect ref="after">
 <aop:after method="afterGreeting" pointcut="execution(*
greeting(..))" />
 </aop:aspect>
 </aop:config>

 <bean id="after" class="org.springaop.aspects.schema.
SpringAopAspectAfterExample" />

</beans>

package org.springaop.aspects.schema;

public class SpringAopAspectAfterExample {

 public void afterGreeting() {

 System.out.println("this is afterAspect !");
 }
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 1

[37]

After returning advice
The following after returning advice example explains how to use the after returning
advice with XML Schema configuration:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xmlns:aop="http://www.springframework.org/schema/aop"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop.xsd">

 <bean id="hello" class="org.springaop.target.Hello" p:
label="writer"/>

 <aop:config>
 <aop:aspect ref="afterReturning">
 <aop:after-returning method="afterGreeting"
pointcut="execution(* greeting(..))" />
 </aop:aspect>
 </aop:config>

 <bean id="afterReturning" class="org.springaop.aspects.schema.
SpringAopAspectAfterReturningExample"/>

</beans>

package org.springaop.aspects.schema;

public class SpringAopAspectAfterReturningExample {

 public void afterGreeting() {

 System.out.println("this is a aop !");
 }
}

After throwing advice
The following after throwing advice example explains how to use the after throwing
advice with XML Schema configuration:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop.xsd">

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Understanding AOP concepts

[38]

 <bean id="exceptionTarget" class="org.springaop.chapter.one.
schema.throwsadvice.ExceptionTarget" />

 <aop:config>
 <aop:aspect ref="afterThrowing">
 <aop:after-throwing method="afterErrorMethod"
 pointcut="execution(* errorMethod(..)) throws
Exception" />
 </aop:aspect>
 </aop:config>

 <bean id="afterThrowing"
 class="org.springaop.aspects.schema.
SpringAopAspectAfterThrowingExample" />

</beans>

Target Class:

package org.springaop.target;

public class ExceptionTarget {

 public void errorMethod() throws Exception {
 throw new Exception("Fake exception");
 }

 public void otherErrorMethod() throws NullPointerException {
 throw new NullPointerException("Other Fake exception");
 }

}

Aspect:
package org.springaop.aspects.schema;

public class SpringAopAspectAfterThrowingExample {

 public void afterErrorMethod() {

 System.out.println("+++");
 System.out.println("Exception !");
 System.out.println("+++\n");
 }
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 1

[39]

Around advice
The following around advice example explains how to use the around advice with
XML Schema configuration:

 <beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xmlns:aop="http://www.springframework.org/schema/aop"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop.xsd">

 <bean id="hello" class="org.springaop.target.Hello" p:
label="writer" />

 <aop:config>
 <aop:aspect ref="around">
 <aop:around method="aroundGreeting" pointcut="execution(*
greeting(..))" />
 </aop:aspect>
 </aop:config>

 <bean id="around"
 class="org.springaop.aspects.schema.
SpringAopExampleAroundExample" />

</beans>

package org.springaop.aspects.schema;

public class SpringAopExampleAroundExample {
 public Object aroundGreeting(ProceedingJoinPoint pjp) throws
Throwable {

 System.out.print("Hello ");
 try {
 return pjp.proceed();
 } finally {
 System.out.println("this is around aop !");
 }
 }
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Understanding AOP concepts

[40]

Summary
This chapter has explained the gaps in object-oriented programming and the
support offered by aspect-oriented programming to fill these gaps, especially in
the implementation phase.

The AOP concepts and terms have been introduced, showing conceptually how and
where they act, which of them Spring supports, and how it does so.

These concepts have then been used in short and simple introductory practical
examples in order to show Spring AOP functionalities both in a programmatic
and declarative manner in version 1.x, and in version 2.5, with annotations and
in a declarative manner with schema-based configuration.

In the next chapters we will look into these topics in detail.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Spring AOP Components
This chapter gives an overview of Spring AOP and its components.

A brief outline of the topics covered in this chapter is as follows:

Spring AOP foundations
Spring AOP components
Spring AOP classic XML configuration, inherited from 1.x versions

Aspect
An Aspect represents the functional unit of aspect-oriented programming.

From version 1.x, an aspect was realized as a class that implemented the advisor
interface. An advisor is a class that combines advice and pointcuts, as we will see
in Chapter 3.

Since version 2.x, with the annotations of Aspect�, an aspect is a �ava class with the
@Aspect annotation.

Pointcut
A pointcut is an expression for the selection of joinpoints. It can be a collection of
joinpoints used to define an advice that has to be executed. By defining pointcuts
you can have control of the objects composing the application, at the points where
the advices are applied.

As Spring defines method invocation joinpoints, all the methods that can be invoked
on a class will be joinpoints.

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Spring AOP Components

[42]

These are some examples of pointcuts:

Methods starting with a certain prefix (such as, getter and setter)
Methods with a particular package (such as org.springaop.domain.*)
Methods that return a certain kind of output (such as public MyClass
get*(...))
Any combination of the previous three examples

Pointcut and its components
A pointcut is the composition of a ClassFilter and a MethodMatcher. A
ClassFilter narrows the matching of a pointcut or introduction to a given set of
target classes, while a MethodMatcher checks whether the target method is eligible
for advice.

public interface Pointcut {

 public ClassFilter getClassFilter ();

 public MethodMatcher getMethodMatcher();
}

The getClassFilter method is called first, to check if it can be applied to the
class used.

The ClassFilter interface that filters the classes is composed in this way:

public interface ClassFilter {

 public boolean matches(Class clazz);

 public static final ClassFilter TRUE = TrueClassFilter.INSTANCE;

}

Using the constant ClassFilter TRUE, we obtain a match for all classes.

In its implementation, it will return a Boolean value according to whether or not the
input parameter belongs to the wanted type.

Then, the getMethodMatcher method of the Pointcut interface is called. The
MethodMatcher interface is composed in this way:

public interface MethodMatcher {

 boolean matches(Method m, Class targetClass);

 boolean isRuntime();

 boolean matches(Method m, Class targetClass, Object[] args);

}

•
•
•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 2

[43]

The first method that's called is isRuntime(). It tells Spring whether the
MethodMatcher is static or dynamic:

1 If the result is false, it's a static MethodMatcher and Spring calls the method
matches(Method, Class) once for every method on the target class, caching
the return value for subsequent invocations.

2 If the result is true, it's a dynamic MethodMatcher. Spring does a static
check calling matches(Method m, Class targetClass) the first time
to check the applicability. If the result is true, for every invocation the
matches(Method m, Class targetClass, Object[] args) is called.

In this way, the checkup is done only the first time, and the subsequent times
the cached value is recovered. From this, we understand that unless we need the
flexibility of having a dynamic MethodMatcher, it's better to use the static one.

Spring provides pointcuts that are ready to use, so normally, there's no need to
implement your pointcut. Pointcuts that are ready to use provided by Spring are:

1. NameMatchMethodPointcut

2. RegexpMethodPointcut

3. StaticMethodMatcherPointcut

4. DynamicMethodMatcherPointcut

NameMatchMethodPointcut
Using the NameMatchMethodPointcut method, you can create a pointcut that
performs simple matching against a list of method names. This class is used for
the programmatic creation of proxies, and for configurations in the Spring factory
with Setter Injection.

The full qualified name of the NameMAtchMethodPointcut class is:

org.springframework.aop.support.NameMatchMethodPointcut

The following methods are available:

1. NameMatchMethodPointcut addMethodName(String methodName)
2. void setMappedName(String methodName)

3. void setMappedNames(String methodName)

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Spring AOP Components

[44]

The two setter methods are used for Setter Injection. The addMethodName method
is used for the addition in a simple way of the names of the necessary methods. To
allow calling addMethodName several times to add all the required method names,
this is returned.

Pointcut pc = new
NameMatchMethodPointcut().addMethodName("setStartDate").addMethodName(
"setEndDate");

Let us see an example that explains the usage of NameMatchMethodPointcut.

The target class on which the advice is applied is shown as follows:

package org.springaop.chapter.two.pointcut;

public class NameMethodTargetExample {

 public void printName(){
 System.out.println("Max");
 }

 public void printAction(){
 System.out.println("runs");
 }

 public void printSpot(){
 System.out.println("in Poetto beach");
 }
}

The advice that contains the logic to be executed:

package org.springaop.chapter.two.pointcut;

import org.aopalliance.intercept.MethodInterceptor;
import org.aopalliance.intercept.MethodInvocation;

public class AdviceExample implements MethodInterceptor {

 public Object invoke(MethodInvocation invocation) throws Throwable
{

 System.out.println("Invoking " + invocation.getMethod().
getName());
 Object retVal = invocation.proceed();
 System.out.println("Job Done");
 return retVal;
 }
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 2

[45]

The test class:

package org.springaop.chapter.two.pointcut;

import org.springframework.aop.Advisor;
import org.springframework.aop.framework.ProxyFactory;
import org.springframework.aop.support.DefaultPointcutAdvisor;
import org.springframework.aop.support.NameMatchMethodPointcut;

public class NameMethodMatcherExample {

 public static void main(String[] args) {

 NameMethodTargetExample target = new
NameMethodTargetExample();
 NameMatchMethodPointcut pc = new NameMatchMethodPointcut();
 pc.addMethodName("printSpot");
 pc.addMethodName("printAction");
 Advisor advisor = new DefaultPointcutAdvisor(pc, new
AdviceExample());
 ProxyFactory pf = new ProxyFactory();
 pf.setTarget(target);
 pf.addAdvisor(advisor);
 NameMethodTargetExample proxy = (NameMethodTargetExample)pf.
getProxy();
 proxy.printName();
 proxy.printAction();
 proxy.printSpot();
 }
}

The result will be:

Let's try to see what happened. We defined a target class, an around advice that prints,
before the invocation, the name of the invoked method. Subsequently, the method
invokes on the target class, and after the invocation it prints Job Done.

To test NameMethodMatcher, we'll write the NameMethodMatcherExample class
with a main method, then add to NameMatchMethodPointcut only two of the
three methods that could be matched by the pointcut.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Spring AOP Components

[46]

Then we'll create an advisor that binds pointcut and advice, create a new
ProxyFactory to which we will set advisor and target object, and then
invoke methods.

The result is that only the two added methods (printAction() and printSpot())
are intercepted by the pointcut, whereas printName() is not intercepted.

RegexpMethodPointcut
To allow pointcuts in a more generic modality than the mere declaration of names,
it's possible to use regular expressions.

For this purpose in Spring 1.x, �akarta ORO (Perl5 regexp) is being used. If we
want to use �DK 1.3; otherwise, we can use the regular expression provided by
java.util.regex if running on �DK 1.4

The full qualified name is:

org.springframework.aop.support.JdkRegexpMethodPointcut

The JdkRexepMethodPointcut allows you to define pointcuts using JDK 1.4 regular
expression support.

org.springframework.aop.support.Perl5RegexpMethodPointcut

The Perl5RegexpMethodPointcut allows you to define pointcuts using Perl 5
regular expression syntax.

For their configuration, we use a single pattern or a list of patterns:

1 patterns: Array of regular expressions for methods that the pointcut
will match

2 pattern: Convenient String property when you have just a single pattern
and don't need an array

In Spring 2.5, we have only the JdkRegexpMethodPointcut, for �DK 1.4 or higher.

<bean id="settersAndHumorousPointcut"
 class="org.springframework.aop.support.JdkRegexpMethodPointcut">
 <property name="patterns">
 <list>
 <value>.*get.*</value>
 <value>.*humorous</value>
 </list>
 </property>
</bean>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 2

[47]

If we use Spring 2.5 or 3.x and a �DK previous to 1.4, �akarta ORO is used in the
background, configuring an advisor in this way:

<bean id="settersAndHumorousAdvisor"
class="org.springframework.aop.support.

RegexpMethodPointcutAdvisor">
<property name="advice">

<ref local="beanNameOfAopAllianceInterceptor"/>
</property>
<property name="patterns">

<list>
<value>.*set.*</value>
<value>.*humorous</value>

</list>
</property>

</bean>

An example of RegexpMethodPointcut use follows:

The target class on which to apply the advice:

package org.springaop.chapter.two.pointcut;

public class RegExpTargetExample {

 public void printName(){
 System.out.println("Max");
 }

 public void printAction(){
 System.out.println("swims");
 }

 public void printSpot(){
 System.out.println("in Poetto beach");
 }
}

The advice that contains the logic to be executed:

package org.springaop.chapter.two.pointcut;

import org.aopalliance.intercept.MethodInterceptor;
import org.aopalliance.intercept.MethodInvocation;

public class AdviceExample implements MethodInterceptor {

 public Object invoke(MethodInvocation invocation) throws Throwable
{

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Spring AOP Components

[48]

 System.out.println("Invoking " + invocation.getMethod().
getName());
 Object retVal = invocation.proceed();
 System.out.println("Job Done");
 return retVal;
 }
}

The test class:

package org.springaop.chapter.two.pointcut;

import org.springframework.aop.Advisor;
import org.springframework.aop.framework.ProxyFactory;
import org.springframework.aop.support.DefaultPointcutAdvisor;
import org.springframework.aop.support.JdkRegexpMethodPointcut;

public class RegExpMethodMatcherExample {

 public static void main(String[] args) {

 RegExpTargetExample target = new RegExpTargetExample();

 JdkRegexpMethodPointcut pc = new JdkRegexpMethodPointcut();
 String[] patterns = {".*Spot.*",".*Action.*"};
 pc.setPatterns(patterns);pc.setPatterns(patterns);
 Advisor advisor = new DefaultPointcutAdvisor(pc, new
AdviceExample());

 ProxyFactory pf = new ProxyFactory();
 pf.setTarget(target);
 pf.addAdvisor(advisor);
 RegExpTargetExample proxy = (RegExpTargetExample)pf.
getProxy();

 proxy.printName();
 proxy.printAction();
 proxy.printSpot();
 }

}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 2

[49]

The result will be:

Let's see what we have done. We defined a target class and an around advice that
prints, before the invocation, the name of the invoked method. Subsequently, the
method invokes on the target class, and after the invocation it prints Job Done. To
test JdkRegexpMethodPointcut we wrote the RegExpMethodMatcherExample class
with a main method. We set a string array with the patterns of regular expressions
to JdkRegexpMethodPointcut.

We created an advisor that bound pointcut and advice, created a new ProxyFactory
to which we set the advisor and target object. Then, we invoked methods.

The result was that only methods that contain the regular expressions in their name
were intercepted by the pointcut.

StaticMethodMatcherPointcut
The StaticMethodMatcherPointcut abstract class is intended as a base for building
static pointcuts.

The full qualified name of the class is:

org.springframework.aop.StaticMethodMatcherPointcut

We can use it as an anonymous inner class implementing the body of the
method matches:

public static Pointcut exampleStaticPointcut = new
StaticMethodMatcherPointcut() {
 public boolean matches(Method m, Class targetClass) {
 // implement custom check
 }
};

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Spring AOP Components

[50]

Or extending it and implementing its methods:

public class StaticPointcutFooExample extends
StaticMethodMatcherPointcut {

 public boolean matches(Method method, Class clazz) {
 return ("example".equals(method.getName()));
 }

 public ClassFilter getClassFilter() {
 return new ClassFilter() {
 public boolean matches(Class clazz) {
 return (clazz == MyTarget.class);
 }
 };
 }
}

This is an of example class to which apply advices:

package org.springaop.chapter.two.pointcut;

public class PointcutTargetExample {

 public void printName(){
 System.out.println("Max");
 }

 public void printSpot(){
 System.out.println("in Poetto beach");
 }
}

This is a second class of example to which apply advices:

package org.springaop.chapter.two.pointcut;

public class PointcutTargetExampleTwo {

 public void printAction(){
 System.out.println("swim");
 }

 public void printSpot (){
 System.out.println("on Mediterranean Sea");
 }
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 2

[51]

This is the StaticPointcutMatcher method. It represents the class in which we set
out the matching rules on the type of class and on the method.

package org.springaop.chapter.two.pointcut;

import java.lang.reflect.Method;
import org.springframework.aop.ClassFilter;
import org.springframework.aop.support.StaticMethodMatcherPointcut;

public class StaticPointcutMatcher extends StaticMethodMatcherPointcut
{

 public boolean matches(Method method, Class cls) {
 return ("printSpot".equals(method.getName()));
 }

 public ClassFilter getClassFilter() {
 return new ClassFilter() {
 public boolean matches(Class cls) {
 return (cls == PointcutTargetExample.class);
 }
 };

 }
}

This is the advice. It represents the advice applied according to the
StaticMethodMatcher.

package org.springaop.chapter.two.pointcut;

import org.aopalliance.intercept.MethodInterceptor;
import org.aopalliance.intercept.MethodInvocation;

public class AdviceExample implements MethodInterceptor {

 public Object invoke(MethodInvocation invocation) throws Throwable
{

 System.out.println("Invoking " + invocation.getMethod().
getName());
 Object retVal = invocation.proceed();
 System.out.println("Job Done");
 return retVal;
 }
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Spring AOP Components

[52]

This is the test class:

package org.springaop.chapter.two.pointcut;

import org.aopalliance.aop.Advice;

import org.springframework.aop.Advisor;
import org.springframework.aop.Pointcut;
import org.springframework.aop.framework.ProxyFactory;
import org.springframework.aop.support.DefaultPointcutAdvisor;

public class StaticPointcutExample {

 public static void main(String[] args) {

 PointcutTargetExample one = new PointcutTargetExample();
 PointcutTargetExampleTwo two = new
PointcutTargetExampleTwo();

 PointcutTargetExample proxyOne;
 PointcutTargetExampleTwo proxyTwo;
 Pointcut pc = new StaticPointcutMatcher();
 Advice advice = new AdviceExample();
 Advisor advisor = new DefaultPointcutAdvisor(pc, advice);

 ProxyFactory pf = new ProxyFactory();
 pf.addAdvisor(advisor);
 pf.setTarget(one);
 proxyOne = (PointcutTargetExample)pf.getProxy();

 pf = new ProxyFactory();
 pf.addAdvisor(advisor);
 pf.setTarget(two);
 proxyTwo = (PointcutTargetExampleTwo)pf.getProxy();

 proxyOne.printName();
 proxyTwo.printAction();

 proxyOne.printSpot();
 proxyTwo.printSpot();
 }
}

The result will be:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 2

[53]

Let's try to see what has been done. We defined two target classes,
PointcutTargetExample and PointcutTargetExampleTwo (they print some text),
and a StaticPointcutMatcher, which is an around advice that prints, before the
invocation, the name of the invoked method. Subsequently, the method invokes on
the target class, and after the invocation it prints Job Done.

To test StaticPointcutMatcher, we wrote the StaticPointcutExample class with
a main method.

Then we create an advisor that bound pointcut and advice, and created a
new ProxyFactory to which we set advisor and target objects. Then, we
invoked methods.

The result was that only the methods of the class that satisfied
StaticPointcutMatcher were intercepted.

DynamicMethodMatcherPointcut
DynamicMethodMatcherPointcut is intended as a base class to build
dynamic pointcuts.

The full qualified name is:

org.springframework.aop.support .DynamicMethodMatcherPointcut

The utilization is not so different from that of StaticMethodMatcherPointcut as the
anonymous inner class:

public static Pointcut DynamicPointcutExample = new
DynamicMethodMatcherPointcut() {

 public boolean matches(Method m, Class targetClass) {
 // implement custom check
 }

 public boolean matches(Method m, Class targetClass, Object[] args) {
 // implement custom check
 }

}

As explained at the beginning of this chapter, the method matches with two
arguments. It is called like staticMethodMatcher, and if it returns true, the
matches are recalled at every invocation with three arguments.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Spring AOP Components

[54]

Here is an example of its use:

This is the class to which advices are applied:

package org.springaop.chapter.two.pointcut;

public class DynamicPointcutTargetExample {
 public void setSpot(String spot){
 this.spot = spot;
 }

 public void printSpot(){
 System.out.println(spot);
 }

 private String spot;
}

As DynamicMethodMatcher, we use a class that executes the static match
(matches(Method method, Class cls)) on the SetSpot method, and the dynamic
one (matches(Method method, Class cls, Object[] args)) on parameters ending
with "Ocean".

package org.springaop.chapter.two.pointcut;

import org.springframework.aop.ClassFilter;
import org.springframework.aop.support.DynamicMethodMatcherPointcut;

public class DynamicMethodMatcher extends DynamicMethodMatcherPointcut
{

 public boolean matches(Method method, Class cls) {
 System.out.println("Static check for " + method.getName());
 return ("setSpot".equals(method.getName()));
 }

 public boolean matches(Method method, Class cls, Object[] args) {
 System.out.println("Dynamic check for " + method.getName());
 String spot = ((String) args[0]);
 return spot.endsWith("Ocean");
 }

 public ClassFilter getClassFilter() {
 return new ClassFilter() {

 public boolean matches(Class cls) {
 return (cls == DynamicPointcutTargetExample.class);
 }
 };
 }

}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 2

[55]

As advice we use the same class used in the StaticMethodMatcher's example:

package org.springaop.chapter.two.pointcut;

import org.aopalliance.intercept.MethodInterceptor;
import org.aopalliance.intercept.MethodInvocation;

public class AdviceExample implements MethodInterceptor {

 public Object invoke(MethodInvocation invocation) throws Throwable
{
 System.out.println("Invoking " + invocation.getMethod().
getName());
 Object retVal = invocation.proceed();
 System.out.println("Job Done");
 return retVal;
 }
}

This is the test class:

package org.springaop.chapter.two.pointcut;

import org.springframework.aop.Advisor;
import org.springframework.aop.framework.ProxyFactory;
import org.springframework.aop.support.DefaultPointcutAdvisor;

public class DynamicPointcutExample {

 public static void main(String[] args) {
 DynamicPointcutTargetExample target = new
DynamicPointcutTargetExample();

 Advisor advisor = new DefaultPointcutAdvisor(
 new DynamicMethodMatcher(), new AdviceExample());

 ProxyFactory pf = new ProxyFactory();
 pf.setTarget(target);
 pf.addAdvisor(advisor);
 DyinamicPointcutTargetExample proxy = (
DynamicPointcutTargetExample)pf.getProxy();

 proxy.setSpot("Pacific Ocean");
 proxy.setSpot("Mediterranean Sea");
 proxy.setSpot("Atlantic Ocean");

 proxy.printSpot();
 proxy.printSpot();
 proxy.printSpot();
 }

}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Spring AOP Components

[56]

The result will be:

Let's see what has been done. We defined a target class
(DynamicPointcutTargetExample), a DynamicPointcutMatcher with the definition
of the class and of the method valid for the match, an around advice that prints the
name of the invoked method before the invocation. Subsequently, the method is
invoked on the target class, and after the invocation, it prints Job Done.

To test DynamicPointcutMatcher, we wrote the DynamicPointcutExample class
with a main method.

Then we created an advisor that bound pointcuts and advices. We also created a new
ProxyFactory to which we set advisors and target objects. Then, we invoked methods.

The result was that at the first invocation, a static check was done on methods called
from the proxy (the first four static checks). Then only when the static check was
satisfied, the dynamic check was called to verify if we should apply advice.

Operations on Pointcut
The Pointcut class exposes two methods for the union and intersection of pointcuts.

public static Pointcut union (Pointcut a, Pointcut b)
public static Pointcut intersection (Pointcut a, Pointcut b)

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 2

[57]

The union of two pointcuts is the pointcut matching any method matched by either
pointcut (Boolean OR). The intersection matches only methods matched by both
pointcuts (Boolean AND).

Pointcuts can be composed using the static methods in the org.springframework.
aop.support.Pointcuts (union and intersection) class, or using the
ComposablePointcut class in the same package.

ComposablePointcut
The ComposablePointcut class is used to compose two or more pointcuts together
with operations such as union() and intersection().

The full qualified name of the class is:

org.springframework.aop.support.ComposablePointcut

By default, ComposablePointcut is created with a ClassFilter that matches all the
classes and a MethodMatcher that matches all the methods.

We can supply our own initial ClassFilter and MethodMatcher if we like:
ComposablePointcut(ClassFilter classFilter,
MethodMatcher methodMatcher)

The union() and intersection() methods are both overloaded to accept
ClassFilter and MethodMatcher arguments.

Invoking the union() method, the MethodMatcher of ComposablePointcut
is replaced with a UnionMethodMatcher that uses the current MethodMatcher of
the ComposablePointcut and the MethodMatcher passed to the union() method
as arguments.

The UnionMethodMatcher method then returns true for a match if either of its
wrapped MethodMatchers returns true.

This way it is possible to invoke the union() method as many times as we want,
with each call creating a new UnionMethodMatcher that wraps the current
MethodMatcher with the MethodMatcher passed to union().

Internally, the intersection() method works in a similar way to the union ().

Here is the target class:
package org.springaop.chapter.two.pointcut;

import java.util.Date;

public class ComposableTargetExample {

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Spring AOP Components

[58]

 public ComposableTargetExample() {
 startDate = new Date();
 }
 public ComposableTargetExample(String description) {
 startDate = new Date();
 this.description = description;
 }
 public void setDescription(String description) {
 this.description = description;
 }
 public String getDescription() {
 return description;
 }
 public Date getStartDate() {
 return (Date) startDate.clone();
 }
 private Date startDate;
 private String description;
}

Here is the example class:

package org.springaop.chapter.two.pointcut;

import java.lang.reflect.Method;

import org.springframework.aop.Advisor;
import org.springframework.aop.ClassFilter;
import org.springframework.aop.framework.ProxyFactory;
import org.springframework.aop.support.ComposablePointcut;
import org.springframework.aop.support.DefaultPointcutAdvisor;
import org.springframework.aop.support.StaticMethodMatcher;

public class ComposablePointcutExample {

 public static void main(String[] args) {

 ComposableTargetExample target = new
ComposableTargetExample();

 ComposablePointcut pc = new ComposablePointcut(
ClassFilter.TRUE,
 new GetterMethodMatcher());

 System.out.println("Test GetterMetodMatcher :");
 ComposableTargetExample proxy = getProxy(pc, target);
 testInvoke(proxy);

 System.out.println("Test GetterMetodMatcher UNION
SetterMethodMatcher :");
 pc.union(new SetterMethodMatcher());

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 2

[59]

 proxy = getProxy(pc, target);
 testInvoke(proxy);

 System.out.println("Test (GetterMetodMatcher UNION
 SetterMethodMatcher) INTERSECT GetStartDateMethodMatcher :");
 pc.intersection(new GetStartDateMethodMatcher());
 proxy = getProxy(pc, target);
 testInvoke(proxy);
 }

 private static ComposableTargetExample getProxy(
 ComposablePointcut pc, ComposableTargetExample target) {

 Advisor advisor = new DefaultPointcutAdvisor(pc,
 new ComposableBeforeAdvice());
 ProxyFactory pf = new ProxyFactory();
 pf.setTarget(target);
 pf.addAdvisor(advisor);
 return (ComposableTargetExample) pf.getProxy();
 }

 private static void testInvoke(ComposableTargetExample proxy) {
 proxy.getStartDate();
 proxy.getDescription();
 proxy.setDescription("New Description");
 }

 private static class GetterMethodMatcher extends
StaticMethodMatcher {

 public boolean matches(Method method, Class cls) {
 return (method.getName().startsWith("get"));
 }
 }

 private static class GetStartDateMethodMatcher extends
StaticMethodMatcher {
 public boolean matches(Method method, Class cls) {
 return "getStartDate".equals(method.getName());
 }
 }

 private static class SetterMethodMatcher extends
StaticMethodMatcher {

 public boolean matches(Method method, Class cls) {
 return (method.getName().startsWith("set"));
 }

 }
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Spring AOP Components

[60]

The result will be:

Let's try to see what has been done. We defined a target class
(ComposableTargetExample), a ComposableBeforeAdvice that prints
 "ComposableBeforeAdvice".

To test ComposablePointcut we wrote the ComposableTargetExample class with a
main method.

In a getProxy method, we created an advisor that bound pointcuts and advices,
created a new ProxyFactory to which we set advisors and target objects, and
returned the target object.

In the testInvoke method, we invoked two Get methods and one Set method.

In the Main method, we created the pointcut declaring we wanted to use a
GetterMethodMatcher, and we called testInvoke. The result was the application
of the advice to two Get methods. Then we made a union of pointcuts that at the
beginning contained the GetterMethodMatcher with a SetterMethodMatcher,
and then we called the testInvoke method. The result was the application of the
advice three times.

Then we make the intersection with a GetStartDateMethodMatcher, and call the
testInvoke method. The result is the application of advice only on the method that
satisfies the intersection.

ControlFlowPointcut
The ControlFlowPointcut is a pointcut that matches all methods within the control
flow of another method—that is, any method that is invoked either directly or
indirectly as the result of another method being invoked.

Control flow pointcuts allow us to apply advices to an object in a selective manner
depending on the context in which it is executed.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 2

[61]

The full qualified name of the class is:

org.springframework.aop.support.ControlFlowPointcut

However, we have to pay attention to the performance we get when using it. The
Spring documentation indicates that a control flow pointcut is typically five times
slower than other pointcuts on a 1.4 �VM, and ten times slower on a 1.3 �VM.

Here is the target class:

package org.springaop.chapter.two.pointcut;

public class ControlFlowTargetExample {

 public void greeting(){
 System.out.println("Cheers");
 }
}

This is the before advice:

package org.springaop.chapter.two.pointcut;

import java.lang.reflect.Method;
import org.springframework.aop.MethodBeforeAdvice;

public class ControlFlowBeforeAdvice implements MethodBeforeAdvice {

 public void before(Method method, Object[] args, Object target)
 throws Throwable {

 System.out.println("ControlFlow beforeAdvice ");
 }
}

Here is the example class:

package org.springaop.chapter.two.pointcut;

import org.springframework.aop.Advisor;
import org.springframework.aop.Pointcut;
import org.springframework.aop.framework.ProxyFactory;
import org.springframework.aop.support.ControlFlowPointcut;
import org.springframework.aop.support.DefaultPointcutAdvisor;

public class ControlFlowPointcutExample {

 public static void main(String[] args) {
 ControlFlowPointcutExample ex = new
ControlFlowPointcutExample();
 ex.run();
 }

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Spring AOP Components

[62]

 public void run() {

 ControlFlowTargetExample target = new
ControlFlowTargetExample();

 Pointcut pc = new ControlFlowPointcut(ControlFlowPointcutE
xample.class, "test");
 Advisor advisor = new DefaultPointcutAdvisor(pc,
 new ControlFlowBeforeAdvice());

 ProxyFactory pf = new ProxyFactory();
 pf.setTarget(target);
 pf.addAdvisor(advisor);

 ControlFlowTargetExample proxy =
(ControlFlowTargetExample) pf.getProxy();

 System.out.println("Trying normal invoke");
 proxy.greeting();
 System.out.println("Trying under
ControlFlowPointcutExample.test()");
 test(proxy);
 }

 private void test(ControlFlowTargetExample bean) {
 bean.greeting();
 }

}

The result will be:

Let's see what has been done. We defined a target class
(ControlFlowTargetExample), a ControlFlowBeforeAdvice that
prints ControlFlow beforeAdvice.

To test ControlFlowPointcut, we wrote thewe wrote the ControlFlowPointcutExample class
with a main method that only calls a run method, where we put the real test body.
We did this to show the effects of the flow of a calling of a method from a given class.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 2

[63]

The result was that when the method was called directly by the proxy, the
advice was not applied, whereas when the call came from within another object
(ControlFlowPointcutExample in this case), the advice was applied.

Pointcut constants
For the common operations, pointcut constants are available in this package:

org.springframework.aop.support.Pointcuts

The constants are:

GETTERS is a constant Pointcut object, matching all bean property getters, in
any class.

SETTERS is a constant Pointcut object matching all bean property setter in any class.

Joinpoint
A joinpoint is a well-defined point during the execution of your application. Typical
examples of joinpoints include a method call, method execution, class initialization,
and object instantiation. Joinpoints are a core concept of AOP and define the points
in your application at which you can insert additional logic using AOP.

Spring AOP only supports one joinpoint type—method invocation. This makes
Spring more accessible. But if we need to advise some code at a joinpoint other
than a method invocation, we can always use Spring and Aspect� together.

Advice
An advice specifies what must be done at a joinpoint.

Spring uses a chain of interceptors to wrap the invocation of the method and
apply to it the advices contained into this chain. As said before, Spring is consistent
with the specifications of the AOP Alliance, but provides a slightly different
programming model.

The AOP Alliance defines the MethodInterceptor interface:

public interface org.aopalliance.intercept.MethodInterceptor extends
Interceptor {
 Object invoke(MethodInvocation invocation) throws Throwable;
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Spring AOP Components

[64]

By implementing this interface and using the invocation.proceed() method, it is
possible to build a chain of interceptors with the same behavior as filter servlets. In
the following figure, we can see this behavior:

Caller object
AOP
Proxy

Advisor/
Interceptor

Advisor/
Interceptor

Target Method

Spring, on the other hand, provides prepared advices that extend the
org.aopalliance.aop.Advice interface.

In the following figure, we can see a diagram of the hierarchy of advices:

Advice
(from prg::aopalliance::aop)

<< interface >>
After Advice

<< interface >>
BeforeAdvice

<< interface >>
AfterRetumingAdvice

<< interface >>
ThrowsAdvice

<< interface >>
MethodBeforeAdvice

<< interface >>
IntroductionInterceptor

<< interface >>
DynamicIntroductionAdvice

Advices have been presented with some examples in Chapter 1, but now we will see
them in greater detail.

Let's say that as good practice you have to choose the advice that best meets
your requirements.

Before advice
Before advice interposes actions before the joinpoint. Spring provides the
org.springframework.aop.BeforeAdvice interface, and in order to use it we
have to implement an interface that extends it and has the following signature:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 2

[65]

public interface MethodBeforeAdvice extends BeforeAdvice {

 void before(Method m, Object[] args, Object target) throws
Throwable;
}

Our implementation will then be called before the jointpoint. We will put the logic
we want to execute into the body of the before method. This type of advice is
particularly appropriate for pre-test (before) operations.

package org.springaop.chapter.two.advice;

import java.lang.reflect.Method;
import java.util.logging.Logger;

import org.springframework.aop.MethodBeforeAdvice;

public class BeforeAdvice implements MethodBeforeAdvice {

 public void before(Method m, Object[] args, Object target) {
 logger.fine(traceInvocation(m, args, target));
 //do something
 }
 private String traceInvocation(Method m, Object[] args, Object
target) {
 StringBuilder sb = new StringBuilder("Invoked method :").append(m.
getName());
 sb.append("with args :").append(args);
 sb.append("on object :").append(target);
 return sb.toString();
 }

After returning advice
This executes logic after the method executed at the joinpoint gives back control to
the calling method in a normal way, that is, without throwing any exception.

Spring provides the org.springframework.aop.AfterAdvice interface, whose
extension must be implemented. Its signature is:

public interface org.springframework.aop.AfterReturningAdvice extends
Advice {

 void afterReturning(Object returnValue, Method m,
 Object[] args, Object target)
 throws Throwable;
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Spring AOP Components

[66]

This advice can't modify the value returned to the target caller.

Example:

package org.springaop.chapter.two.advice;

import java.lang.reflect.Method;
import java.util.logging.Logger;

import org.springframework.aop.AfterReturningAdvice;

public class AfterAdvice implements AfterReturningAdvice {

 public void afterReturning(Object returnValue, Method m, Object[]
args,
 Object target) {

 logger.fine(traceResultInvocation(m, args,
target,returnValue));
 }

 private String traceResultInvocation(Method m, Object[] args,
Object target,Object returnValue) {
 StringBuilder sb = new StringBuilder("Invoked method :").
append(m.getName());
 sb.append("with args :").append(args);
 sb.append("on object :").append(target);
 sb.append("return value :").append(returnValue);
 return sb.toString();
 }

After throwing advice
This advice is called after an exception has been thrown. It's therefore suitable
for tracing and possibly correcting or signalling actions after an exception of a
particular kind.

The org.springframework.aop.ThrowsAdvice interface is a Tag Interface.

There are no methods, as methods are invoked by reflection. Implementing classes
must implement methods of the form:

void afterThrowing([Method, args, target], ThrowableSubclass);

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 2

[67]

This means, as explained in the reference documentation, it can be a method in one
of the following forms:

public void afterThrowing(Exception ex);
public void afterThrowing(RemoteException);
public void afterThrowing(Method method, Object[] args, Object target,
Exception ex);
public void afterThrowing(Method method, Object[] args, Object target,
ServletException ex);

All the parameters (excluding the exception) are used to have further information,
but in fact are optional.

Example:

package org.springaop.chapter.two.advice;

import java.lang.reflect.Method;
import java.util.logging.Logger;

import org.springframework.aop.ThrowsAdvice;

public class RuntimeExceptionAdvice implements ThrowsAdvice {
 public void afterThrowing(Method m, Object[] args, Object target,
 RuntimeException ex) {RuntimeException ex) {

 logger.fine(traceExceptionContext(m, args, target, ex));
 }}

 private String traceExceptionContext(Method m, Object[] args,
Object target, RuntimeException ex) {
 StringBuilder sb = new StringBuilder(«Exception on method
:»).append(m.getName());
 sb.append(«with args :»).append(args);
 sb.append(«on object :»).append(target);
 sb.append(«exception msg :»).append(ex.getMessage());
 return sb.toString();
 }

Advisor
The advisor isn't a concept from AOP in general, but is specific to Spring AOP.

The advisor links together pointcuts and advice. So it contains both the action to be
executed (defined in the advice) and the point where it is to be executed (defined in
the pointcut). The advisor's role is to decouple pointcuts and advice, in order to reuse
them independently from each other.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Spring AOP Components

[68]

The Advisor interface allows support for different types of advice, such as before and
after advice, which need not be implemented using interception.

public interface Advisor {
 Advice getAdvice ();
 boolean perInstance();
}

In the following figure, we can see the diagram of the hierarchy of advisors:

<< interface >>
Advisor

<< interface >>
IntroductionInfo

<< interface >>
PointcutAdvisor

<< interface >>
IntroductionAdvisor

When we call addAdvice() on a ProxyFactory:

pf.addAdvice(new AfterAdviceExample());

the addAdvice delegates to addAdvisor() behind the scenes, creating an instance
of DefaultPointcutAdvisor and configuring it with a pointcut that points to
all methods.

The addAdvisor creates a DefaultPointcutAdvisor, and it applies a pointcut that
targets all the methods. This is the default behavior when Spring uses the canonical
instance Pointcut.TRUE.

The most common implementation to use is provided by Spring:

org.springframework.aop.support.DefaultPointcutAdvisor

It can be used in a programmatic way:

Advisor advisorExample = new DefaultPointcutAdvisor(pointcutExample,
adviceExample);

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 2

[69]

or in a declarative way:

<bean name ="advisorExample"
class="org.springframework.aop.support.DefaultPointcutAdvisor">
 <property name="pointcut"><ref local="pointcutExample" />
</property>
 <property name="advice"><ref local="adviceExample" /></property>
</bean>

In the earlier section (with various MethodMatchers), we have seen the use of
advisors in programmatic way.

Introductions
Introductions are a very strong component of the Spring AOP. They permit us
to dynamically introduce new one-object functionalities as the implementation
of interfaces on existing objects:

To create a mixin, adding to the state held in the object. This is probably the
most important use.
To expose additional states associated with a special TargetSource. This is
used within Spring, for example, with scripting support.
To expose an object or object graph in a different way—for example, making
an object graph implement the XML DOM interfaces.

Introductions are often mixins that allow one to obtain the effects of multiple
inheritance in �ava.

To allow the implementation of interfaces at runtime rather than more simply at
compile time makes sense in cases where the crosscutting functionalities don't
allow us to easily choose the way at compile time.

In the documentation of Spring 1.x, we had introductions, object locking, and
modification detection as examples of use.

In the case of object locking, to lock an object's internal state we should implement
the Lockable interface. All the objects that we want to have the functionalities
should implement it, duplicating in this way the implementation in all the objects.
Otherwise, we should create a base class that contains the implementation, but the
classes that would modify its state should anyway do a state check.

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Spring AOP Components

[70]

In this situation, we can centralize the implementation on introductions, and have
classes at runtime that implement the Lockable interface. This interface becomes an
instance of Lockable.

The implementation can be controlled by the introduction. In Spring AOP it extends
MethodInterceptor, and thus can intercept the calls before the exception is thrown
if the object is "locked".

This example shows how introductions are suitable to be used in
declarative services.

As we have mentioned, for Spring an introduction is a special type of AroundAdvice.
But we have to be careful because it is applied at the level of Class, and pointcuts
can't be used: This is because an introduction adds the implementation of an
interface, whereas pointcuts choose which method to apply to the advice.

Spring simplifies the use by providing DelegatingIntroductionInterceptor,
an implementation of the IntroductionInterceptor interface, which has to be
extended where we have to implement the interfaces that we want to introduce.
Then, to add the introduction, we use a special Advisor—the IntroductionAdvisor,
of which the implementation DefaultIntroductionAdvisor is used.

We have to pay attention to the fact that whereas a normal advice can be applied
to any object since it has a per-class lifecycle, an introduction has a per-instance
lifecycle. So we must have a different instance for each advised object, and the
ProxyFactory.addAdvice() method mustn't be called because it would throw
an exception.

The interface of introductionAdvisor is as follows:

public interface IntroductionAdvisor extends Advisor, IntroductionInfo
{

ClassFilter getClassFilter();
void validateInterfaces() throws IllegalArgumentException;

}

ClassFilter is useful to show the classes on which it must be used.

The ValidateInterfaces method is used internally to determine whether one of
introduced interface can be implemented or not.

The implementation of IntroductionAdvisor has to implement this as well:

public interface IntroductionInfo {
Class[] getInterfaces();

}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 2

[71]

Here is an example:

We want to manage to call sets on Object domains just once, and just if the variables
are null, because they haven't been valorised through the default constructor
DomainObjectTarget():

package org.springaop.chapter.two.introduction;

public class DomainObjectTarget {

 public DomainObjectTarget(){}

 public DomainObjectTarget(String description, Integer id){
 this.description = description;
 this.id = id;
 }
 public String getDescription() {
 return description;
 }
 public void setDescription(String description) {
 this.description = description;
 }
 public Integer getId() {
 return id;
 }
 public void setId(Integer id) {
 this.id = id;
 }
 public boolean isNew(){
 return null == description && null == id;
 }
 private String description;
 private Integer id = null;
}

This is the interface to be applied:

package org.springaop.chapter.two.introduction;

public interface IsModifiable {

 public boolean isModifiable();
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Spring AOP Components

[72]

Here is the advisor:

package org.springaop.chapter.two.introduction;

public class IsModifiableAdvisor extends DefaultIntroductionAdvisor {

 public IsModifiableAdvisor(){
 super(new IsModifiableMixin());
 }
}

Here is the mixin class:

package org.springaop.chapter.two.introduction;

import java.lang.reflect.Method;
import java.util.HashMap;
import java.util.Map;

import org.aopalliance.intercept.MethodInvocation;
import org.springframework.aop.support.
DelegatingIntroductionInterceptor;

public class IsModifiableMixin extends
DelegatingIntroductionInterceptor
 implements IsModifiable {

 public boolean isModifiable() {
 return isModifiable;
 }

 public Object invoke(MethodInvocation invocation) throws Throwable
{

 Authentication auth = SecurityContextHolder.getContext().
getAuthentication();

 if (isModifiable) {
 StringBuilder sb = new StringBuilder();
 if ((invocation.getMethod().getName().startsWith(«set»))
&& (invocation.getArguments().length == 1)) {

 Method getter = getGetter(invocation.getMethod());
 sb.append(auth == null ? «Anonymous» : auth.getName())
 .append(« has try to modify the object state,
method:»)
 .append(getter.getName()).append(« and
arguments:»).append(invocation.getArguments()[0]);

 if (getter != null) {
 Object value = getter.invoke(invocation.getThis(),
null);

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 2

[73]

 if (value == null) {
 isModifiable = false;
 }
 }
 }
 logger.debug(sb.toString());
 }

 return super.invoke(invocation);
 }

 private Method getGetter(Method setter) {
 Method getter = (Method) setterMethodCache.get(setter);

 if (getter != null) {
 return getter;
 }

 String getterName = setter.getName().replaceFirst(«set»,
«get»);
 try {
 getter = setter.getDeclaringClass().getMethod(getterName,
null);

 synchronized (setterMethodCache) {
 setterMethodCache.put(setter, getter);
 }

 return getter;
 } catch (NoSuchMethodException ex) {
 return null;
 }
 }

 private boolean isModifiable = true;
 private Map setterMethodCache = new HashMap();
 private Logger logger = Logger.getLogger(IsModifiableMixin.class);private Logger logger = Logger.getLogger(IsModifiableMixin.class);
}

Here is the test class:

package org.springaop.chapter.two.introduction;

import org.springframework.aop.IntroductionAdvisor;
import org.springframework.aop.framework.ProxyFactory;

public class IntroductionTest {

 public static void main(String[] args) {

 DomainObjectTarget target = new DomainObjectTarget();

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Spring AOP Components

[74]

 IntroductionAdvisor advisor = new IsModifiableAdvisor();
 ProxyFactory pf = new ProxyFactory();
 pf.setTarget(target);
 pf.addAdvisor(advisor);
 pf.setOptimize(true);
 DomainObjectTarget proxy = (DomainObjectTarget)pf.getProxy();
 IsModifiable proxyInterface = (IsModifiable)proxy;
 System.out.println("Is TargetBean?: " + (proxy instanceof
DomainObjectTarget));
 System.out.println("Is IsModifiable?: " + (proxy instanceof
IsModifiable));
 System.out.println("Has been modified?: " + proxyInterface.
isModifiable());
 proxy.setDescription("One for the money");
 System.out.println("Has been modified?: " + proxyInterface.
isModifiable());
 proxy.setDescription("Two for the show");
 System.out.println("Has been modified?: " + proxyInterface.
isModifiable());
 }
}

The result will be:

In this example of introductions, we test how they allow us to apply the
IsModifiable interface on the DomainObjectTarget object, providing an
implementation contained in the IsModifiableMixin class.

The example follows the usual steps to bind target and advisor, which in this
case has the main role because it instantiates IsModifiableMixin, which
implements introduction.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 2

[75]

Summary
The aim of this chapter was to show the basic components of Spring AOP, pointcut,
joinpoint, advice, advisor, and introduction.

Each one realizes a component of the AOP functions, using joinpoints that are the
invocations of methods and advisors, specific to Spring.

This chapter describes advices: the results obtained and the most appropriate
application scenarios, and introductions, which are one of the most powerful
components because they allow the application the implementation of interfaces
to any object. In this chapter we saw one example for each of the advices. We will
look at the same components in Chapter 4, but using Aspect� to allow a much easier
and shorter configuration both through annotations and using XML Schema.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Spring AOP Proxies
In this chapter, we will discuss how to get started with Spring AOP proxies.

Some of the topics discussed in this chapter are:
�DK and CGLIB proxy
Creating proxy programmatically
ProxyFactoryBean
Autoproxies
Target sources

Proxy
It is proxies that realize AOP in Spring and allow the application of crosscutting
functionalities. We will see the application of proxies both in the classic version of
Spring, and with the support of Aspect� with annotations and XML Schema. We will
also see the possible matching of configuration to adapt proxies to our demands, and
use their advanced features.

Proxy is a structural design pattern that is a part of the 23 design patterns of the
GoF (Gang of Four) composed by Erich Gamma, Richard Helm, Ralph �ohnson,
and �ohn Vlissides.

The idea put into practice by Proxy is to wrap an object and intercept all the calls
made to it and take its place, so that the calling object has the feeling of interacting
with the object rather than the proxy.

caller

proxy

object

•
•
•
•
•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Spring AOP Proxies

[78]

Since a proxy intercepts all the calls to the object, it can also decide to call some other
application logic before making a call to the object, or to execute some application
logic before giving back the object's answer, or it can even not send the call to the
object. Given these features, the proxy is the ideal point to introduce and execute
chains of actions to be performed before or after the calls to the object.

In our case, the chains of actions are the crosscutting concerns to be applied to
specific joinpoints. To realize this structural behavior pattern of Proxy, we have
two choices: implementing it or using appropriate classes provided by �DK 1.3
and upwards.

The only constraint is that the object must implement one or more interface, and that
only the methods present in the interface(s) must be intercepted.

Another way is to use the CGLIB library (CGLIB is a powerful high-performance
code generation library), which doesn't require implementation of an interface.

JDK proxy
To realize a dynamic proxy with �DK, we need to implement the interface that
manages invocations.

package java.lang.reflect;

public interface InvocationHandler {

public Object invoke(Object proxy, Method method, Object[] args)
throws Throwable;
}

The method to implement receives the proxy object, the invoked method, and
the input parameters of the target method. An implementation would be made
like this:

package org.springaop.chapter.three.handler;

import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
import java.lang.reflect.Proxy;

public class FooInvocationHandler implements InvocationHandler {

 public FooInvocationHandler(Object target) {
 this.target = target;
 }

 public Object invoke(Object proxy, Method method, Object[] args)
 throws Throwable {

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[79]

 System.out.println("remove before fly :-)");

 Object result = method.invoke(target, args);

 System.out.println(result+", mmh it's not rocket science ");
 return result;
}

 public static Object createProxy(Object target) {
 return Proxy.newProxyInstance(
 target.getClass().getClassLoader(),
 target.getClass().getInterfaces(),
 new FooInvocationHandler(target));
 }

 private Object target;

}

The constructor receives the target object on which the invocation will be made.

The invoke method performs the invocation of the method on the target object
(second argument) using an array of parameters (third argument). The proxy
(first argument) is not needed in this case. The createProxy method creates a
new proxy, initializing it with the classloader and interfaces of the target class.

The handler would be used in this way:

package org.springaop.chapter.three.handler;

public static void main(String[] args) {
 Info info = new DefaultInfo();

 Info information = (Info) FooInvocationHandler.
createProxy(info);
 information.isJmxEnabled();
}

The result will be:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Spring AOP Proxies

[80]

CGLIB proxy
In the beginning, the use of the CGLIB library was introduced in Spring 1.1 because
JDK 1.3 proxies weren't really efficient. With versions 1.4 and following, they
have been improved. However, even with �DK 1.5, CGLIB proxies are still three
times faster.

Despite all this, we have to notice that �DK proxies need an interface to do their job,
and only the methods declared in the interface can be used by the proxy. But this is
not always possible, particularly when the code we deal with is written by others.

In this case, it's better to use CGLIB proxies that don't require the presence of
interfaces to implement. CGLIB proxies generate the bytecode for the new class on
the fly for each proxy, reusing in those cases that were already created. This allows
some optimizations.

But we have to be clear that to use CGLIB proxies, we need to have the CGLIB �AR.
Whereas with JDK, any JAR is required. Moreover, if we deal with final methods,
we cannot do the override, and so we can apply any advice.

The creation of CGLIB proxies is completely transparent for Spring users, since
it's provided as one of the two implementations of the class used with Spring—the
ProxyFactory and �DK proxy.

Creating proxies programmatically
In some situations it could be necessary to create proxies programmatically
(for example in test classes), in the classic manner or with classes annotated
with "@Aspect".

ClassicProxy
To see a proxy in action, we will use as example class a class that implements a
Command Pattern. A Command Pattern is used when a client class doesn't know
the details about an implementation of the called class that executes some logic.

package org.springaop.chapter.three.proxy;

public interface Command {

 public void execute();
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[81]

We define an interface that implements the Command Pattern
(http://en.wikipedia.org/wiki/Command_pattern).

package org.springaop.chapter.three.proxy;

public class CommandImpl implements Command{

 public void execute(){
 System.out.println(label);
 }

 private final String label = "Goooo !";
}

We create a class that implements the interface.

package org.springaop.chapter.three.proxy;

public class BeforeAdviceProxyExample implements MethodBeforeAdvice{

 public void before(Method arg0, Object[] arg1, Object arg2)
 throws Throwable {

 System.out.println("I'm a proxied invocation");

 }

}

We create a MethodBeforeAdvice to execute before the execute method.

package org.springaop.chapter.three.proxy;

public class ProxyFactoryExample {

 public static void main(String[] args) {

 //target class
 Command target = new CommandImpl();

 // create the proxy
 ProxyFactory pf = new ProxyFactory();

 //add interface
 pf.addInterface(Command.class);

 // add pointcut
 NameMatchMethodPointcut pc = new NameMatchMethodPointcut();

 pc.addMethodName("execute");

 // add advisor
 Advisor advisor = new DefaultPointcutAdvisor(pc, new
BeforeAdviceProxyExample());

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Spring AOP Proxies

[82]

 pf.addAdvisor(advisor);

 // setTarget
 pf.setTarget(target);

 Command proxy = (Command) pf.getProxy();
 proxy.execute();
 }
}

In the test class we instantiate the target class CommandImpl, create the
ProxyFactory, to which we add the interface on which the proxy (Command class)
has to operate. We create the pointcut to which we append the names of the methods
to intercept.

Then we create the advisor, passing the pointcut and the BeforeAdviceExample. We
add the advisor and the target to the ProxyFactory. Finally, we retrieve the proxy
class that is seen as the Command interface and invoke the method on the proxy.

The result will be:

With the instruction pf.setExposeProxy(true), we could have at
our disposal the proxy as ThreadLocal to retrieve it with the class
AopContext; by default it is false to improve performance.
Usually, it is used if a class on which an advice is applied has to call
another method on itself, advised too. (If it uses this, the invocation will
not be advised.)

AspectJProxy
It is also possible to programmatically create Aspect� aspects using the
@Aspect annotation.

The class org.springframework.aop.aspectj.annotation.AspectJProxyFactory
can be used to create a proxy for a target object that is advised by one or more
Aspect� aspects.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[83]

package org.springaop.chapter.three.proxy;

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Before;
import org.aspectj.lang.annotation.Pointcut;
import org.springframework.aop.aspectj.annotation.AspectJProxyFactory;

@Aspect
public class BeforeAspectJProxyExample {

 @Pointcut("execution(* org.springaop.chapter.three.proxy.
CommandImpl.execute(..))")
 void beforeExecute(){}

 @Before("beforeExecute()")
 public void before() {
 System.out.println("I'm a AspectJ proxied invocation");
 }

 public static void main(String[] args) {

 Command target = new CommandImpl();
 AspectJProxyFactory factory = new AspectJProxyFactory(target
);
 factory.addAspect(BeforeAspectJProxyExample.class);
 Command proxy = factory.getProxy();
 proxy.execute();
 }
}

The annotation @Aspect marks a class as an aspect.

The annotation @Pointcut marks the method beforeExecute() as a pointcut that
can be used as parameter in the annotation @Before.

These annotations enable the crosscutting functionality in this class, instead of in the
programmatic way that we saw in the previous chapters.

ProxyFactoryBean
As we've previously seen, we have at our disposal two kinds of proxies: the ones
provided by �DK, which we can also write as seen in the previous section, and those
provided by the CGLIB, which work in a transparent manner.

In everyday use, we don't directly use either of the two implementations. We rather
rely on a factory that provides the proxy class ready for use. This allows us to focus
our attention and development on crosscutting concerns to apply through the proxy,
rather than focus on the proxy.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Spring AOP Proxies

[84]

To make our job easier Spring provides the class org.springframework.aop.
config.ProxyFactoryBean, and we mostly use it in a declarative way by doing
the "dirty work" that we have seen. It is necessary to create and use proxies in a
programmatic way. ProxyFactoryBean is a central component in SpringAOP
because if proxies act as links among advices, targets, joinpoints, and advisors, the
ProxyFactoryBean performs its tasks in a declarative manner rather than by code
in a programmatic manner.

As a factory bean, it creates beans of the required type by introducing a layer of
indirection and allowing the creation of different types of objects. The intrinsic
advantage that it brings is the use of IoC to use AOP and its components.

The interface of the ProxyFactoryBean is as follows:

setTarget: Specify the target object you want to proxy.
setProxyTargetClass: The default behavior is the following:

If an interface is available, it's used as a �DK proxy.
If an interface is not available, it's used as a CGLIB proxy.
If we set the value to true, it's used as a CGLIB proxy.

setOptimize: If a CGLIB proxy is used, this instruction tells the proxy to
apply some aggressive optimizations. It doesn't have any effect if the proxy
is a �DK proxy.
setFrozen: The default value is false. If a proxy configuration is frozen,
then changes to the configuration are no longer allowed. This is useful as a
slight optimization, and is also useful for those cases where you don't want
callers to be able to manipulate the proxy (via the Advised interface), after
the proxy has been created.
setExposeProxy: If a target needs to obtain the proxy and the exposeProxy
property is set to true, the target can use the AopContext.currentProxy().
The proxy is exposed in a ThreadLocal so that it can be accessed by
the target.
setAopProxyFactory: The implementation of AopProxyFactory offers a
way of customizing whether to use dynamic proxies, CGLIB, or any other
proxy strategy.

•

•

°

°

°

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[85]

Parameters that can be passed to the ProxyFactoryBean's constructor:

proxyInterfaces: These are an array of String interface names. If they aren't
supplied, a CGLIB proxy for the target class will be used.
interceptorNames: These are a string array of Advisor, interceptor, or
other advice names to apply. Ordering is significant, on a first-come-first-
served basis. That is to say, the first interceptor in the list will be the first to
be able to intercept the invocation. The names are bean names in the current
factory, including those from the ancestor factories. You can't mention
bean references here since doing so would result in the ProxyFactoryBean
ignoring the singleton setting of the advice. You can append an interceptor
name with an asterisk (*). This will result in the application of all advisor
beans with names starting with the part before the asterisk to be applied.
singleton: If true, a singleton pattern is applied (the factory creates a single
instance of the object and returns it at every getObject() invocation).
The default value is true. If you want to use stateful advice, use prototype
advices along with a singleton value of false.

ProxyFactoryBean and proxies
Now we will see the strategy with which the ProxyFactoryBean chooses whether to
use a �DK proxy or a CGLIB proxy, and the manner in which it autonomously gets
the presence of interfaces.

Scenarios:

If the target class doesn't implement interfaces, a CGLIB proxy is created. In
this case, we simply have to indicate the list of interceptors to introduce as
interceptorNames. If the target class implements one or more interfaces,
the creation of the type of proxy depends on the configuration in detail.
If the property proxyTargetClass of the ProxyFactoryBean is true, a
CGLIB proxy is created even if the property proxyInterfaces is set with
one or more interfaces.
If the property feature proxyTargetClass isn't set and the feature
proxyInterfaces is set with one or more interfaces, a �DK proxy that
implements these interfaces declared in proxyInterfaces is created.
If the property proxyInterfaces is not set, but the target class actually
implements one or more interfaces, the ProxyFactoryBean detects the
fact that the object implements interfaces and creates a �DK proxy.
Unfortunately, with this self-discovery, the proxy implements all the
interfaces of the class—not only those we wish and that are indicated with
the feature proxyInterfaces—if the class implements several interfaces.

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Spring AOP Proxies

[86]

ProxyFactoryBean in action
After having seen the main features and strategies on the type of proxy created, we
are going to see how the ProxyFactoryBean must be configured in XML.

In this example we have three "anemic" objects—User, Command, and PersonUser.
The User implementation has two interfaces, while the Command implementation has
only one, and the PersonUser doesn't implement any interface at all. We will see
how to configure the bean factory with some lists of interceptors, and how to choose
which interfaces must be considered by the proxy.

The interfaces:

package org.springaop.chapter.three.domain;

public interface User {

 public String getName();
 public String getSurname();
}

package org.springaop.chapter.three.domain;

public interface Address {

 public String getAddress();
 public String getNation();
 public String getState();

}

package org.springaop.chapter.three.domain;

public interface Command {

 public Object execute();
}

The following class implements the User and Address interfaces:

package org.springaop.chapter.three.domain;

public class UserImpl implements User, Address {

 public String getAddress() {
 return address;
 }

 public String getNation() {
 return nation;
 }

 public String getState() {

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[87]

 return state;
 }

 public String getName() {
 return name;
 }

 public String getSurname() {
 return surname;
 }

 public void setAddress(String address) {
 this.address = address;
 }

 public void setNation(String nation) {
 this.nation = nation;
 }

 public void setState(String state) {
 this.state = state;
 }

 public void setName(String name) {
 this.name = name;
 }

 public void setSurname(String surname) {
 this.surname = surname;
 }

 private String address, nation, state, name, surname;
}

The following class contains implementation of the method execute, which
performs the print of a point on a new line in the output on console and file:

package org.springaop.chapter.three.domain;

public class CommandImpl implements Command {

 public Object execute() {
 for (int x = 0; x < 1000; x++) {
 action();
 }
 return null;
 }

 private void action() {
 System.out.println("\n .");
 }
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Spring AOP Proxies

[88]

The following class PersonUser doesn't implement any interface:

package org.springaop.chapter.three.domain;

public class PersonUser {

 public String getName(){
 return user.getName();
 }

 public String getSurname(){
 return user.getSurname();
 }

 public void setUser(User user) {
 this.user = user;
 }

 private User user;
}

After the three principal classes, we see the interceptors used in the example.

In the following code, we have the interceptor MethodLoggerInterceptor that logs
the executions of methods and writes to files through log4j, which is an appropriate
library for logging.

The method invoke receives the MethodInvocation that contains all runtime
information about invocation.

package org.springaop.chapter.three;

import org.aopalliance.intercept.MethodInterceptor;
import org.aopalliance.intercept.MethodInvocation;
import org.apache.log4j.Logger;
import org.springaop.chapter.three.util.Constants;

public class MethodLoggerInterceptor implements MethodInterceptor {

 public Object invoke(MethodInvocation invocation) throws Throwable
{

 Logger log = Logger.getLogger(Constants.LOG_NAME);
 StringBuilder sb = new StringBuilder();
 sb.append("\n Method:").append(invocation.getMethod())
 .append("\n on class:").append(invocation.
getClass()).append("\n with arguments:").append(invocation.
getArguments());
 log.info(sb.toString());

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[89]

 Object retVal = invocation.proceed();
 log.info("\n return value:" + retVal);
 return retVal;
 }
}

The TimeExecutionInterceptor class measures the time before and after the
method's invocation. It uses the class StopWatch, which is a class of Spring, to
measure the milliseconds used for the execution of the method invoked from the
interceptor's interior.

It performs a dump of the invocation, recording through log4j the invoked method,
the class on which it was invoked, the input arguments, and the return value.

package org.springaop.chapter.three;

import java.lang.reflect.Method;

import org.aopalliance.intercept.MethodInterceptor;
import org.aopalliance.intercept.MethodInvocation;
import org.apache.log4j.Logger;
import org.springaop.chapter.three.util.Constants;
import org.springframework.util.StopWatch;

public class TimeExecutionInterceptor implements MethodInterceptor{

 public Object invoke(MethodInvocation invocation) throws Throwable{

 long timeBeforeMethodExecution = 0;
 long timeAfterMethodExecution = 0;

 Logger log = Logger.getLogger(Constants.LOG_NAME);

 // Spring util class
 StopWatch sw = new StopWatch();

 log.info(new StringBuilder("\n Time before execution:")
 .append(timeBeforeMethodExecution));

 sw.start(invocation.getMethod().getName());

 Object returnValue = invocation.proceed();

 sw.stop();

 timeAfterMethodExecution = System.currentTimeMillis();
 log.info(new StringBuilder("\n Time after execution:")
 .append((timeAfterMethodExecution -
 timeBeforeMethodExecution)).append(" ms").append(
 "\n result:").append(returnValue));

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Spring AOP Proxies

[90]

 dumpInfo(invocation, sw.getTotalTimeMillis(), log);

 return returnValue;
 }

 private void dumpInfo(MethodInvocation invocation, long ms, Logger
log) {

 Method m = invocation.getMethod();
 Object[] args = invocation.getArguments();

 log.info(new StringBuilder("\n Method :").append(m.
getName()).append(
 "\n On object type: :").append(
 invocation.getThis().getClass().getName()).
append(
 (" \n With arguments : \n")));

 for (int x = 0; x < args.length; x++) {
 log.info(new StringBuilder(" >
").append(args[x]));
 }

 log.info(new StringBuilder(" \n Time of execution:
").append(ms)
 .append(" ms"));
 }
}

The following class does not differ in its functionality from the
MethodLoggerInterceptor. But in the configuration, it will be used with pointcut
and advisor to show how an advisor can be put in the list of interceptorNames.

package org.springaop.chapter.three;

import org.aopalliance.intercept.MethodInterceptor;
import org.aopalliance.intercept.MethodInvocation;

public class ConsoleAdvice implements MethodInterceptor {

 public Object invoke(MethodInvocation invocation) throws Throwable
{

 StringBuilder sb = new StringBuilder();
 sb.append("ConsoleAdvice");

 sb.append("\n Method:").append(invocation.getMethod())
 .append("\n on class:").append(invocation.
getClass()).append("\n with arguments:").append(invocation.
getArguments());

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[91]

 System.out.println(sb.toString());

 Object retVal = invocation.proceed();

 System.out.println("\n return value:" + retVal);

 System.out.println();
 return retVal;
 }
}

Now, we see the configuration Spring file that contains the configuration of the
previous classes.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

 <bean id="userTarget" class="org.springaop.chapter.three.domain.
UserImpl">
 <property name="name" value="james"/>
 <property name="surname" value="bond"/>
 </bean>

 <bean id="personUserTarget" class="org.springaop.chapter.three.
domain.PersonUser">
 <property name="user" ref="userTarget"/>
 </bean>

 <bean id="commandTarget" class="org.springaop.chapter.three.
domain.CommandImpl"/>

 <bean id="methodLoggerInterceptor" class="org.springaop.chapter.
three.MethodLoggerInterceptor"/>

 <bean id="timeExecutionInterceptor" class="org.springaop.chapter.
three.TimeExecutionInterceptor"/>

 <bean id="consoleAdvice" class="org.springaop.chapter.three.
ConsoleAdvice"/>

 <!-- Advisor -->
 <bean id="consoleAdvisor" class="org.springframework.aop.support.
DefaultPointcutAdvisor">
 <property name="pointcut" ref="methodNamePointcut"/>
 <property name="advice" ref="consoleAdvice"/>
 </bean>

 <!-- Pointcut -->
 <bean id="methodNamePointcut" class="org.springframework.aop.
support.NameMatchMethodPointcut">
 <property name="mappedName" value="execute"/>
 </bean>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Spring AOP Proxies

[92]

 <bean id="user" class="org.springframework.aop.framework.
ProxyFactoryBean">
 <property name="proxyInterfaces" value="org.springaop.chapter.
three.domain.User"/>
 <property name="target"><ref local="userTarget"/></property>
 <property name="interceptorNames">
 <list>
 <value>methodLoggerInterceptor</value>
 </list>
 </property>
 </bean>

 <bean id="personUser" class="org.springframework.aop.framework.
ProxyFactoryBean">
 <property name="proxyTargetClass" value="true"/>
 <property name="target">
 <bean class="org.springaop.chapter.three.domain.
PersonUser">
 <property name="user">
 <bean class="org.springaop.chapter.three.domain.
UserImpl">
 <property name="name" value="jack"/>
 <property name="surname" value="folla"/>
 </bean>
 </property>
 </bean>
 </property>
 <property name="interceptorNames">
 <list>
 <value>methodLoggerInterceptor</value>
 </list>
 </property>
 </bean>

 <bean id="command" class="org.springframework.aop.framework.
ProxyFactoryBean">
 <property name="proxyInterfaces" value="org.springaop.chapter.
three.domain.Command"/>
 <property name="target"><ref local="commandTarget"/></
property>
 <property name="interceptorNames">
 <list>
 <value>timeExecutionInterceptor</value>
 <value>consoleAdvisor</value>
 </list>
 </property>
 </bean>
</beans>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[93]

In the configuration files, the beans UserTarget, PersonUserTarget,
and CommandTarget describe the three normal classes. The beans
methodLoggerInterceptor, timeExecutionInterceptor, and consoleAdvice
describe the three interceptors that contain the logic to be executed.

The bean consoleAdvisor exists to put together (that is the purpose of an
advisor) the pointcut methodNamePointcut and advice consoleAdvice. The bean
methodNamePointcut contains the name of the method (execute) to intercept.

The bean user contains the fully qualified name of the interfaces, the reference to the
bean that implements the interface (userTarget), and the list of interceptors to apply
(only methodLoggerInterceptor).

The bean personUser defines inline the target bean (which doesn't implement any
interface), and the list of interceptors to apply (only methodLoggerInterceptor).

The bean command contains the fully qualified name of the interfaces, the reference to
the bean that implements the interface (commandTarget), and the list of interceptors
(timeExecutionInterceptor and consoleAdvisor).

The following configuration contains the configuration of log4j to write to the
console and log files in the file system.

Global logging configuration
log4j.rootLogger=INFO, stdout, logfile_application

Console output...
log4j.logger.org.springaop= INFO, logfile_application, stdout

#SPRING
log4j.logger.org.springframework =INFO, logfile_spring

log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%5p [%t] - %m%n

log4j.appender.logfile_application=org.apache.log4j.
DailyRollingFileAppender
log4j.appender.logfile_application.file=/tmp/logs/apringaop.log
change the path on windows
log4j.appender.logfile_application.layout=org.apache.log4j.
PatternLayout
log4j.appender.logfile_application.layout.ConversionPattern=%5p [%t]
- %m%n
log4j.appender.logfile_application.DatePattern='.'yyyy-MM-dd

log4j.appender.logfile_spring=org.apache.log4j.
DailyRollingFileAppender

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Spring AOP Proxies

[94]

log4j.appender.logfile_spring.file=/tmp/logs/springaop.log
change the path on windows

log4j.appender.logfile_spring.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile_spring.layout.ConversionPattern=%5p [%t] - %m%n
log4j.appender.logfile_spring.DatePattern='.'yyyy-MM-dd

log4j debug
log4j.debug=false

Test class:

package org.springaop.chapter.three;

import org.springaop.proxies.proxyfactorybean.domain.Command;
import org.springaop.proxies.proxyfactorybean.domain.PersonUser;
import org.springaop.proxies.proxyfactorybean.domain.User;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.
ClassPathXmlApplicationContext;

public class ProxyFactoryBeanTest {

 public static void main(String[] args) {

 String[] paths = {"org/springaop/chapter/three/
applicationContext.xml"};
 ApplicationContext ctx = new ClassPathXmlApplicationContext(
paths);

 User user = (User)ctx.getBean("user");
 user.getName();

 Command command = (Command)ctx.getBean("command");
 command.execute();

 PersonUser person = (PersonUser)ctx.getBean("personUser");
 person.getName();
 }
}

In the test class, first of all we load Spring's ApplicationContext with the beans'
definitions. Once we've loaded them we do the lookup of three beans, user,
command, and personUser.

The proxy returns the bean user from the target class UserImpl, which implements
two interfaces, of which we want the proxy to use just one. To this bean the
ProxyFactoryBean applies the methodLoggerInterceptor, which logs class,
method, and arguments on the method on which the methods defined in the User
interface are invoked.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[95]

The bean command is what the proxy returns from the target class
CommandImpl, which implements just one interface. To this bean, it applies the
timeExecutionInterceptor that logs the time needed for method's invocations.

Bean personUser is the bean the proxy returns from the target class PersonUser,
which doesn't implement any interface. To this the ProxyFactoryBean applies the
methodLoggerInterceptor. It logs class, method, and arguments to the method on
which methods defined on the PersonUser class are invoked.

Output:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Spring AOP Proxies

[96]

We can organize interceptors so that we don't need to list them all, for example by
giving a prefix to names of the interceptors—for example profile; we can use it in
the interceptorsName list with profile*.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">
…
<bean id="profileMethodLoggerInterceptor"
 class="org.springaop.chapter.three.MethodLoggerInterceptor"/>

<bean id="profileTimeExecutionInterceptor"
 class="org.springaop.chapter.three.TimeExecutionInterceptor"/>

<bean id="command"
 class="org.springframework.aop.framework.ProxyFactoryBean">
 <property name="proxyInterfaces" value="org.springaop.chapter.
three.domain.Command"/>
 <property name="target"><ref local="commandTarget"/></
property>
 <property name="interceptorNames">
 <list>
 <value>profile*</value>
 </list>
 </property>
</bean>
…
</beans>

In order to simplify the XML necessary for the configuration, we might as well
define an abstract template, for example to define the list of interceptors list, and
declare as the abstract template's parent all the beans that need that particular list
of interceptors list.

The possibility to define a bean abstract and use it as a completion of other beans is
available in any Spring configuration.

A bean can be a parent of just one bean.

Let's see a configuration's example with a bean abstract, and a bean that is a parent
of the abstract one.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">
…
 <bean id="user" class="org.springframework.aop.framework.
ProxyFactoryBean" parent="profileInterceptorTemplate">

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[97]

 <property name="proxyInterfaces" value="org.springaop.chapter.
three.domain"/>
 <property name="target"><ref local="userTarget"/></property>
</bean>
…
 <bean id="profileInterceptorTemplate" abstract="true">
 <property name="interceptorNames">
 <list>
 <value>methodLoggerInterceptor</value>
<value>timeExecutionInterceptor</value>
<value>memoryJVMInterceptor</value>
 </list>
 </property>
 </bean>
…
</beans>

Advised objects
In the examples used in this chapter, we have seen the different proxies available.
It's significant to note that Spring even allows the manipulation of proxies, with the
org.springframework.aop.framework.Advised interface that is implemented by
proxies. The default operations exposed by this interface can be can be done on an
existing proxy.

An exception is constituted by the introductions (introduction advisor), which
can't be applied on the already created proxy. (If necessary, a new proxy instance
is requested.)

Advisor[] getAdvisors();

This returns the advisor's array contained in the proxy.

void addAdvice(Advice advice) throws AopConfigException;

This allows the addition of an advice.

void addAdvice(int pos, Advice advice) throws AopConfigException;

This adds an advice at the specified position (the order reflects the order of
application to the target object).

void addAdvisor(Advisor advisor) throws AopConfigException;

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Spring AOP Proxies

[98]

This adds an advisor. If that's an interceptor, it is wrapped in a
DefaultPointcutAdvisor, which uses a pointcut that always returns
true, and as an interceptor it returns the passed argument.

void addAdvisor(int pos, Advisor advisor) throws AopConfigException;

This adds an advisor at the defined position. If that's an interceptor it is wrapped in a
DefaultPointcutAdvisor, which uses a pointcut that always returns true, and
as an interceptor returns the passed argument.

int indexOf(Advisor advisor);

This returns the index where the advisor is:

boolean removeAdvisor(Advisor advisor) throws AopConfigException;

This removes an advisor.

void removeAdvisor(int index) throws AopConfigException;

This removes the advisor at the specified position.

boolean replaceAdvisor(Advisor a, Advisor b) throws
AopConfigException;

This replaces an advisor with another one.

boolean isFrozen();

This signals if it's in the frozen state (already explained in the chapter).

Now let's see an example.

package org.springaop.chapter.three;

import org.springaop.proxies.proxyfactorybean.domain.Command;
import org.springframework.aop.Advisor;
import org.springframework.aop.framework.Advised;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.
ClassPathXmlApplicationContext;

public class TestClass {

 public static void main(String[] args) {

 String[] paths = {"org/springaop/chapter/three/
applicationContext.xml"};
 ApplicationContext ctx = new ClassPathXmlApplicationContext(
paths);

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[99]

 Command command = (Command)ctx.getBean("command");

 Advisor consoleAdvisor = (Advisor)ctx.getBean(
 "consoleAdvisor");

 Advised advised = (Advised) command;

 System.out.println("Is Frozen ?:"+advised.isFrozen());
 System.out.println("Advisors size:"+advised.getAdvisors().
 length);
 System.out.println("IndexOf consoleAdvisor :"
 +advised.indexOf(consoleAdvisor));

 }
}

This test class shows how the advised interface's method can be called on a proxy.
First of all, a bean (command) that we know is behind a proxy is retrieved.

Another bean is retrieved because it's known to be an advisor containing pointcut
and advice. After that, we obtain pieces of information from command through the
advised interface.

We could even add other advisors at runtime in particular positions by calling the
addAdvisor methods on the advised object, and specifying the positions where we
want to add them.

applicationContext.xml:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">
…
<bean id="commandTarget"
 class="org.springaop.chapter.three.domain.CommandImpl"/>
…
<bean id="consoleAdvice"
 class="org.springaop.chapter.three.ConsoleAdvice"/>

<!-- Advisor -->
<bean id="consoleAdvisor" class="org.springframework.aop.support.
DefaultPointcutAdvisor">
 <property name="pointcut" ref="methodNamePointcut"/>
 <property name="advice" ref="consoleAdvice"/>
 </bean>

<!-- Pointcut -->
<bean id="methodNamePointcut"
 class="org.springframework.aop.support.NameMatchMethodPointcut">
 <property name="mappedName" value="execute"/>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Spring AOP Proxies

[100]

</bean>
…
<bean id="command"
 class="org.springframework.aop.framework.ProxyFactoryBean">
 <property name="proxyInterfaces"
 value="org.springaop.proxies.proxyfactorybean.domain.
Command"/>
 <property name="target"><ref local="commandTarget"/>
</property>
 <property name="interceptorNames">
 <list>
 <value>timeExecutionInterceptor</value>
 <value>consoleAdvisor</value>
 </list>
 </property>
</bean>

</beans>

Output:

If we don't want changes to be allowed anymore, we have to set the proxy property
setFrozen as true; after that, any attempt to add or remove advices would cause
an AopConfigException.

The adoption of freezing the proxy state is advisable. For example, when you're
already managing an aspect concerning security, removing any type of advice or
interceptor would mean revoking the authorization rules.

Autoproxy
Spring also allows us to use "autoproxy" bean definitions, which can automatically
proxy selected bean definitions.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[101]

Autoproxy with classic Spring
In the section about ProxyFactoryBean, we saw how to use AOP in the classic way.
But it's clear that writing seperately for each bean on which we want to apply an
advisor is not a pleasant thing to see, especially if they are many. So let's consider it
as a practicable way only if the beans to be configured in that modality are few.

On the other hand, if the beans to which we have to apply AOP are many, in order
to avoid finding ourselves with very long configuration files, we adopt another
tactic: We use the auto proxy creator system, which allows us to automatically
create proxies for the beans and avoid using ProxyFactoryBean.

There are two classes made available by Spring to allow the autoproxy creator:
BeanNameAutoProxyCreator and DefaultAdvisorAutoProxyCreator.

BeanNameAutoProxyCreator
BeanNameAutoProxyCreator just has a list of beans names to which proxies can be
created automatically.

The way in which the autoproxy is created is really simple. It implements the
BeanPostProcessor interface, which in its implementation replaces the bean
(target) with a proxy.

Example:

This is the interface describing an animal.

package org.springaop.chapter.three.autoproxy.domain;

public interface Animal {

 public Integer getNumberPaws();
 public Boolean hasTail();
 public boolean hasFur();
 public Boolean hasHotBlood();

}

The interface Bird extends Animal.

package org.springaop.chapter.three.autoproxy.domain;

public interface Bird extends Animal{

 public Boolean hasBeak();
 public Boolean hasFeathers();

}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Spring AOP Proxies

[102]

The class that implements the Animal interface to describe Cat:

package org.springaop.chapter.three.autoproxy.domain;

public class Cat implements Animal{

 public boolean hasFur() {
 return true;
 }

 public Integer getNumberPaws() {
 return 4;
 }

 public Boolean hasTail() {
 return true;
 }

 public Boolean hasHotBlood() {
 return true;
 }

 public void setSpecies(String species) {
 this.species = species;
 }

 public String getSpecies() {
 return species;
 }

 public String getColour() {
 return colour;
 }

 public void setColour(String colour) {
 this.colour = colour;
 }

 private String species, colour;
}

The class that implements Animal and Bird to describe a Seabird:

package org.springaop.chapter.three.autoproxy.domain;

public class Seabird implements Animal,Bird{

 public Integer getNumberPaws() {
 return 2;
 }

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[103]

 public Boolean hasTail() {
 return false;
 }

 public Boolean hasBeak() {
 return true;
 }

 public Boolean hasFeathers() {
 return true;
 }

 public boolean hasFur() {
 return false;
 }

 public Boolean hasHotBlood() {
 return false;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 private String name;
}

AnimalAdvice containing just the log with the target class, the invoked method, and
the result:

package org.springaop.chapter.three.autoproxy;

import org.aopalliance.intercept.MethodInterceptor;
import org.aopalliance.intercept.MethodInvocation;

public class AnimalAdvice implements MethodInterceptor {

 public Object invoke(MethodInvocation invocation) throws Throwable
{
 Logger log = Logger.getLogger(Constants.LOG_NAME);
 StringBuilder sb = new StringBuilder();
 sb.append("Target Class:").append(invocation.getThis()).
append("\n").append(
 invocation.getMethod()).append("\n");

 Object retVal = invocation.proceed();

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Spring AOP Proxies

[104]

 sb.append(" return value:").append(retVal).append("\n");
 log.info(sb.toString());
 return retVal;
 }
}

The configuration file applicationContext.xml:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

 <bean id="tiger" class="org.springaop.chapter.three.autoproxy.
domain.Cat">
 <property name="species" value="tiger"/>
 <property name="colour" value="tear stripes"/>
</bean>

 <bean id="albatross" class="org.springaop.chapter.three.autoproxy.
domain.Seabird">
 <property name="name" value="albatross"/>
</bean>

 <!-- Pointcut -->
 <bean id="methodNamePointcut" class="org.springframework.aop.
support.NameMatchMethodPointcut">
 <property name="mappedNames">
 <list>
 <value>has*</value>
 <value>get*</value>
 </list>
 </property>
 </bean>

 <!-- Advices -->
 <bean id="animalAdvice" class="org.springaop.chapter.three.
autoproxy.AnimalAdvice"/>

 <!-- Advisor -->
 <bean id="animalAdvisor" class="org.springframework.aop.support.
DefaultPointcutAdvisor">
 <property name="pointcut" ref="methodNamePointcut"/>
 <property name="advice" ref="animalAdvice"/>
 </bean>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[105]

 <bean id="autoProxyCreator" class="org.springframework.aop.
framework.autoproxy.BeanNameAutoProxyCreator">
 <property name="proxyTargetClass" value="true"/>
 <property name="beanNames">
 <list>
 <value>tiger</value>
 <value>albatross</value>
 </list>
 </property>
 <property name="interceptorNames">
 <list>
 <value>animalAdvisor</value>
 </list>
 </property>
 </bean>

</beans>

Application context contains two beans, tiger and albatross. The
methodNamePointcut acts on the methods starting with has and get.

The animalAdvice (around advice) contains the logic to be executed, the
animal advisor that links the animalAdvice to the methodNamePointcut, and
the autoProxyCreator, where we declare just the beans' names and the list of
interceptors' names.

package org.springaop.chapter.three.autoproxy;

public class AutoProxyTest {

 public static void main(String[] args) {

 String[] paths = { "org/springaop/chapter/three/
autoautoproxy/applicationContext.xml" };

 ApplicationContext ctx = new ClassPathXmlApplicationContext(
paths);

 Cat tiger = (Cat)ctx.getBean("tiger");
 tiger.hasHotBlood();

 Bird albatross = (Bird)ctx.getBean("albatross");
 albatros.hasBeak();
 }
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Spring AOP Proxies

[106]

The test class invokes two methods on the beans tiger and albatross.

Output:

DefaultAdvisorAutoProxyCreator
With BeanNameAutoProxyCreator, we've seen that the configuration file's length has
reduced; but we can do better.

Using the previous example, we modify only the configuration file.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

 <bean id="tiger" class="org.springaop.proxies.autoproxy.domain.
Cat">
 <property name="species" value="tiger"/>
 <property name="colour" value="tear stripes"/>
 </bean>

 <bean id="albatross" class="org.springaop.chapter.three.autoproxy.
domain.Seabird">
 <property name="name" value="albatross"/>
</bean>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[107]

 <!-- Pointcut -->
 <bean id="methodNamePointcut" class="org.springframework.aop.
support.NameMatchMethodPointcut">
 <property name="mappedNames">
 <list>
 <value>has*</value>
 <value>get*</value>
 </list>
 </property>
 </bean>

 <!-- Advices -->
 <bean id="animalAdvice" class="org.springaop.chapter.three.
autoproxy.AnimalAdvice"/>

 <!-- Advisor -->
 <bean id="animalAdvisor" class="org.springframework.aop.support.
DefaultPointcutAdvisor">
 <property name="pointcut" ref="methodNamePointcut"/>
 <property name="advice" ref="animalAdvice"/>
 </bean>

 <bean class="org.springframework.aop.framework.autoproxy.
DefaultAdvisorAutoProxyCreator" >
 <property name="proxyTargetClass" value="true"/>
 </bean>

</beans>

With DefaultAdvisorAutoProxyCreator, we don't need to define anything,
apart from declaring it. This is because it applies the proxies' creation for the
classes concerned in the advisors' application through pointcuts. It's important
to have advisors, and not any other type of interceptor, because the operation is
based on advisors.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Spring AOP Proxies

[108]

The result of the advices' application is the same as you can see from the output:

AbstractAdvisorAutoProxyCreator
If you want to create your own AutoproxyCreator, you can employ
the DefaultAdvisorAutoProxyCreator superclass, which is the
AbstractAdvisorAutoProxyCreator, just by extending it.

AutoProxyCreator with metadata
This autoproxy option concerns the possibility of employing annotations in the
classes, for example to define transactions.

In order to be able to employ this type of configuration, we have to use
DefaultAdvisorAutoProxyCreator, a CommonsAttributes bean that interprets
source-level metadata, and another bean that employs those attributes.

In order to employ the CommosAttributes bean, we must have in the classpath the
�akarta library Commons Attributes (http://commons.apache.org/attributes).

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[109]

…

<bean id="autoProxyCreator" class="org.springframework.aop.framework.
autoproxy.DefaultAdvisorAutoProxyCreator"/>

 <bean id="advisor" class="org.springframework.transaction.
interceptor.TransactionAttributeSourceAdvisor">
 <property name="transactionInterceptor" ref="transactionInte
rceptor" />
 </bean>

 <bean id="transactionInterceptor" class="org.springframework.
transaction.interceptor.TransactionInterceptor">
 <property name="transactionManager" ref="transactionManager"
/>
 <property name="transactionAttributeSource">
 <bean class="org.springframework.transaction.
interceptor.AttributesTransactionAttributeSource">
 <property name="attributes"
ref="metadataAttributes" />
 </bean>
 </property>
 </bean>

 <bean id="metadataAttributes" class="org.springframework.metadata.
commons.CommonsAttributes" />

 <bean name="transactionManager" class="org.springframework.jdbc.
datasource.DataSourceTransactionManager">
 <property name="dataSource" ref="datasource"/>
 </bean>

</beans>

The autoProxyCreator bean creates proxies according to what advisors in the
application context indicate to it, or the advices to apply and the pointcuts at which
apply them.

In the example case, it is composed by a transactionInterceptor, the rules
of which are defined into classes through annotations. In order to interpret
these annotations, which are the bean's attributes property, it uses the
metadataAttributes bean, which is of the type CommonsAttributes.

This type of configuration used mostly to be employed before JDK 1.5, and it
requires a particular compilation task.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Spring AOP Proxies

[110]

With the use of JDK 1.5 or upward, configuration doesn't require the use of the bean
CommonsAttributes to interpret annotations.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

 <bean class="org.springframework.aop.framework.autoproxy.
DefaultAdvisorAutoProxyCreator"/>

 <bean class="org.springframework.transaction.interceptor.
TransactionAttributeSourceAdvisor">
 <property name="transactionInterceptor" ref="transactionInte
rceptor"/>
 </bean>

 <bean id="transactionInterceptor" class="org.springframework.
transaction.interceptor.TransactionInterceptor">
 <property name="transactionManager" ref="
transactionManager"/>
 <property name="transactionAttributeSource">
 <bean class="org.springframework.transaction.
annotation.AnnotationTransactionAttributeSource"/>
 </property>
 </bean>

 <bean name="transactionManager" class="org.springframework.jdbc.
datasource.DataSourceTransactionManager">
 <property name="dataSource" ref="datasource"/>
 </bean>

</beans>

Autoproxy with AspectJ
We have seen how autoproxy is used with the classic configuration of Spring. Now
we're going to see a short introduction on proxies with Aspect�. We will have a full
overview of their use in the chapter AspectJ support.

The use of Aspect� can be connected to two typologies: through code annotations or
through XML Schema. Here are the rules that define which beans are excluded from
the autoproxy:

Proxy is not applied to beans that implement the interfaces
BeanPostProcessor or BeanFactoryPostProcessor.
The class AnnotationAwareAspectJAutoProxyCreator implements the
interface BeanPostProcessor, which allows the class to modify the life cycle
of beans on which a proxy must be created and applied.

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[111]

Classes with annotations @AspectJ and classes that implement or extend any
other AOP component are excluded from the autoproxy. This is because they
aren't target classes, and they perform tasks in Spring AOP infrastructure.

Apart from the beans that belong to these two cases, the others can be subject to
proxy auto-creation. This is so if they are subject to aspects and advisors with the
matching rules defined in pointcuts that are defined in the applicationContext.

Autoproxy with annotation
If we use annotations, we will tell Spring that proxies must be created according
to them:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

 <bean class="org.springframework.aop.aspectj.annotation.
AnnotationAwareAspectJAutoProxyCreator"/>
 …
</beans>

AnnotationAwareAspectJAutoProxyCreator must be declared only one time. It's
used by Spring to configure all the classes that have the annotation @Aspect, in order
to create the proxy for the annotated class and return it for the execution of advices
when a pointcut is matched.

Autoproxy with XML Schema
If we want automatic generation of proxies, we will use the tag <aop:aspectj-
autoproxy/> through the AOP namespaces. This tag too must be used one time.
But in case of error, beans' proxies will be created only once, whereas if we declare
AnnotationAwareAspectJAutoProxyCreator at several points in beans, we'll have
the proxies created several times. The effect is anyway identical to the use of the bean
AnnotationAwareAspectJAutoProxyCreator.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/aop

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Spring AOP Proxies

[112]

http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">
…
 <aop:aspectj-autoproxy/>
 …
</beans>

If we want to force the use of CGLIB proxies, we will modify the tag
aspectj-autoproxy in this way:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

 <aop:aspectj-autoproxy proxy-target-class="true"/>
…
</beans>

Target sources
Until now, we have used the word "target" to define the object that receives the calls
from a caller object, where a proxy was interposed to add logic contained in advices.

In this interposition mechanism, Spring puts at our disposal the interface org.
springframework.aop.TargetSource, which returns the object target.

public interface TargetSource {

Class getTargetClass();

boolean isStatic();

Object getTarget() throws Exception;

void releaseTarget(Object target) throws Exception;
}

This interface is interesting as it permits target pooling and hot swapping.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[113]

Without specifying the targetSource, the default implementation that
wraps the local object is returned and also the target is returned for all the
following invocations.

Hot swappable target sources
The target source org.springframework.aop.target.HotSwappableTargetSource
allows a proxy's target object to be replaced in a ThreadSafe way with immediate
effect, and the caller doesn't lose the reference.

To make the change, the method swap() is called.

Example interface:

package org.springaop.chapter.three.autoproxy.domain;

public interface Animal {

 public Integer getNumberPaws();
}

Implementing class:

package org.springaop.chapter.three.autoproxy.domain;

public class AnimalImpl implements Animal{

 public Integer getNumberPaws() {
 return paws;
 }

 public void setPaws(Integer paws) {
 this.paws = paws;
 }

 private Integer paws;
}

ApplicationContext.xml, which contains three AnimalImpl, one swappable bean,
and one ProxyFactoryBean:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

 <bean id="animal1" class="org.springaop.chapter.three.autoproxy.
domain.AnimalImpl">
 <property name="paws" value="2" />
</bean>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Spring AOP Proxies

[114]

<bean id="animal2" class="org.springaop.chapter.three.autoproxy.
domain.AnimalImpl">
 <property name="paws" value="4" />
</bean>

<bean id="animal3" class="org.springaop.chapter.three.autoproxy.
domain.AnimalImpl">
 <property name="paws" value="1000" />
</bean>
 <bean id="swapper" class="org.springframework.aop.target.
HotSwappableTargetSource">
 <constructor-arg><ref local="animal1"/></constructor-arg>
 </bean>

 <bean id="swappable" class="org.springframework.aop.framework.
ProxyFactoryBean">
 <property name="targetSource"><ref local="swapper"/></
property>
 </bean>

</beans>

The test class:

package org.springaop.chapter.three.targetsource.swap;

import org.springaop.targetsources.domain.Animal;
import org.springframework.aop.target.HotSwappableTargetSource;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.
ClassPathXmlApplicationContext;

public class SwappableTargetSourceTest {

 public static void main(String[] args) {

 String[] paths = { "org/springaop/chapter/three/
targetsource/swap/applicationContext.xml" };
 ApplicationContext ctx = new ClassPathXmlApplicationContext(
paths);

 Animal target1 = (Animal) ctx.getBean("animal1");
 Animal target2 = (Animal) ctx.getBean("animal2");
 Animal target3 = (Animal) ctx.getBean("animal3");

 Animal proxied = (Animal) ctx.getBean("swappable");

 System.out.println(proxied.getNumberPaws());

 HotSwappableTargetSource swapper =
(HotSwappableTargetSource)

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[115]

 ctx.getBean("swapper");

 Object old = swapper.swap(target2);

 System.out.println(proxied.getNumberPaws());

 Object oldTwo = swapper.swap(target3);

 System.out.println(proxied.getNumberPaws());
 }
}

Output:

Pooling target sources
The target source org.springframework.aop.target.CommonsPoolTargetSource
works with �akarta Library's Commons pool that must be in the classpath, and
provides a behavior where the objects are part of a pool and one of these objects is
provided to the caller. But the target object must be prototype, and this is because
the PoolingTargetSource creates a new instance of the target object every time
it's necessary.

If we need it, we can have information about the pool and can tell Spring to cast the
pool objects with org.springframework.aop.target.PoolingConfig.

Example:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

<bean id="animalTarget" class="org.springaop.chapter.three.autoproxy.
domain.AnimalImpl" scope="prototype">
 <property name="paws" value="2" />
</bean>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Spring AOP Proxies

[116]

 <bean id="poolTargetSource" class="org.springframework.aop.target.
CommonsPoolTargetSource">
 <property name="targetBeanName" value="animalTarget"/>
 <property name="maxSize" value="14"/>
 </bean>

 <bean id="animal" class="org.springframework.aop.framework.
ProxyFactoryBean">
 <property name="targetSource" ref="poolTargetSource"/>
 </bean>
…
</beans>

Prototype target sources
With this targetSource, a new instance of the target class is provided at every
invocation. We have to consider the fact that if the creation of new objects is not
wasteful, then the wiring of every object in the applicationContext could
be wasteful.

Unless we have particular needs, this type of targetSource is inadvisable.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

<bean id="animalTargetObject" class="org.springaop.chapter.three.
autoproxy.domain.AnimalImpl" scope="prototype" >
 <property name="paws" value="4"/>
</bean>

 <bean id="animalObject" class="org.springframework.aop.framework.
ProxyFactoryBean">
 <property name="targetSource" ref="prototypeAnimalTargetSour
ce"/>
 </bean>

 <bean id="prototypeAnimalTargetSource" class="org.springframework.
aop.target.PrototypeTargetSource">
 <property name="targetBeanName" ref="animalTarget"/>
 </bean>
…
</beans>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[117]

ThreadLocal target source
A ThreadLocal target source is indicated when we need to have an object for each
request (that is, per thread). The concept of a ThreadLocal provides a �DK-wide
facility to transparently store resources alongside a thread.

With this type of targetSource we have to pay attention to problems that can arise,
such as memory leaks. It would be appropriate to wrap the ThreadLocal and never
use it directly, and to set and remove resources properly from the thread. Spring
provides support for the ThreadLocal, and its use should be favored.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">
 …

 <bean id="animalTargetThreadObject" class="org.springaop.chapter.
three.autoproxy.domain.AnimalImpl" scope="prototype">
 <property name="paws" value="4"/>
</bean>

 <bean id="threadlocalTargetSource" class="org.springframework.aop.
target.ThreadLocalTargetSource">
 <property name="targetBeanName" value="animalTargetThreadObj
ect"/>
 </bean>
…

</beans>

Summary
In this chapter we have seen the important role of proxies on which all Spring AOP
is based. We have seen how to use proxies in a programmatic way and with several
implementations (�DK and CGLIB). We have seen how ProxyFactoryBean simplifies
and masks the work of proxies' creation and preparation. Then we saw how to
reduce the configuration with the features provided by Spring for the automatic
creation of beans with three types of autoproxy. Towards the end of the chapter
we glanced at how Spring allows us to act on advised objects and target sources,
to enable us to do advanced operations in our code.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

AspectJ Support
In this chapter, we will see how Aspect� facilitates Spring AOP. We will particularly
focus on syntax for pointcuts and the possibility of using IoC on domain objects:
either the definition is applied to the hierarchies of objects (context bindings), or
pointcuts are applied on the names of Spring beans. We will see how aspects are set
up in complex contexts to avoid conflicts, and which advanced functionalities are
allowed (annotations on annotations). The possibility of using Aspect� syntax means
that we can define the rules on which aspects can be applied through pointcuts in a
better way. There are two modalities to use Aspect�'s features with Spring: by means
of annotations and XML configuration.

AspectJ annotations
The annotations introduced in �ava 5 allow us to add features in a very simple way.

In our context, they allow us to define aspects and other AOP components already
seen in this book, by means of annotations.

The power of this functionality lies in allowing the definition of aspect, pointcut,
and advice directly on �ava classes with features provided by Aspect�. One doesn't
have to put up with inconveniences such as the alteration of bytecode required by a
solution based only on Aspect�.

To put the AOP components together, a proxy is created (autoproxy) on the beans on
which annotations have been defined.

In SpringAOP, an aspect can't be a target of another aspect.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

AspectJ Support

[120]

Annotation:
To use Aspect� as shown below, there must be the two �ARs in the
classpath: aspectjweaver.jar and aspectjrt.jar.

They are available in the lib/aspectj folder in the distribution
Spring-with-dependencies, or in the lib folder of the installation of
Aspect� (1.5.x or upwards).

Aspect
An aspect is a normal �ava class with the annotation @Aspect, and also a
Spring bean.

import org.aspectj.lang.annotation.Aspect;

@Aspect
public class AspectJAnnotatedExample {
…
}

Like any other class, it can have methods and fields, and can contain pointcuts,
advices, and introductions.

To tell Spring that it must create autoproxies for the classes that are noted in the
configuration, we have to write:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

<bean class="org.springframework.aop.aspectj.annotation.
AnnotationAwareAspectJAutoProxyCreator"/>
...
</beans>

If we want to use AOP namespaces, we have to write:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 4

[121]

http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

<aop:aspectj-autoproxy/>

</beans>

Pointcut
In the previous chapters, we said that Spring AOP uses the execution of the methods
on Spring beans as a pointcut.

The declaration of a pointcut is composed of two parts: a signature with parameters,
and the expression that determines exactly the method execution that must be
intercepted by the pointcut.

By annotating methods, it's possible to indicate at which points of the execution flow
(in the Aspect class) the advices must be applied with their additional logic.

package org.springaop.chapter.four.pointcut;

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Before;

@Aspect
public class AspectJAnnotatedExample {
 …

 @Before("execution(* insert(..))")
 public void fooMethod(){

 }
…

}

As I have said several times, Spring AOP provides fewer pointcuts compared
to Aspect� in order to simplify the use of Aspect-Oriented Programming. The
expressions that can be defined in methods that function as advice, as in the case of
the before method in the example, are the expressions to designate pointcuts. They
are indicated as Pointcut Designators (PCD).

With Spring AOP, PCD that acts with the execution of methods as joinpoints are
available. They are:

execution

within

this

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

AspectJ Support

[122]

target

args

@target

@args

@within

@annotation

bean

Moreover, we have the possibility of indicating a Spring bean that acts at instance
level, and is available only with Spring AOP and not with Aspect�.

target and args are more commonly used in the binding form. @target, @within,
@annotation and @args can also be used in the binding form.

We will explain the binding form later in this chapter.

The wildcard characters that can be used in the definition of pointcut designators are:

 *, && (AND), || (OR), ! (negated), and +, which indicates the hierarchy of the object
to which it is applied.

Let's see the role of each PCD.

execution
This PCD is used to define the execution of methods as joinpoints. This is the main
pointcut designator used.

within
This limits the matching of joinpoints to the execution from within some types
of classes.

this
This limits matching to joinpoints where the bean reference (Spring AOP proxy) is an
instance of the given type.

target
This limits matching to joinpoints where the target object (application object being
proxied) is an instance of the given type.

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 4

[123]

args
This limits matching to joinpoints (the execution of methods when using Spring
AOP) where the arguments are instances of the given types.

@target
This limits matching to joinpoints where the class of the executing object has an
annotation of the given type.

@args
This limits matching to joinpoints where the runtime type of the actual arguments
passed has annotations of the given type(s).

@ within
This limits matching to joinpoints within types that have the given annotation (the
execution of methods declared in types with the given annotation when using
Spring AOP).

@ annotation
This limits matching to joinpoints where the subject of the joinpoint has the
given annotation.

bean
The form to define the execution of a bean is bean(idOrNameOfBean). This pointcut
designator acts only at instance level, rather than at type level, since Spring 2.5.

This pointcut is only supported in XML-based Spring AOP configurations, and not in
Aspect� annotations.

The following of Aspect�'s PCD are not available in Spring: their use causes an
IllegalArgumentException:

call

get

set

preinitialization

staticinitialization

•

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

AspectJ Support

[124]

initialization

handler

adviceexecution

withincode

cflow

cflowbelow

if

@this

@withincode

The advantage of defining a poincut rather than the type of advice in methods'
annotation is having the possibility of reusing pointcuts in the aspects and
combining them to compose more complex rules.

If the pointcut used in the aspect is not located in the same class, you have
to include the package name also.

Now let's declare them:

package org.springaop.chapter.four.pointcut;

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Pointcut;

@Aspect
public class ApplicationPointcutsAspect {

 @Pointcut("execution (public * *(..))")
 public void allPublicMethod(){}

 @Pointcut("within(org.springaop.web..*)")
 public void inWebLayer(){}

 @Pointcut("within(org.springaop.service..*)")
 public void inServiceLayer(){}

 @Pointcut("within(org.springaop.dao..*)")
 public void inResourceLayer(){}

 @Pointcut("inWebLayer() && inServiceLayer() && inResourceLayer()
")
 public void inAllLayers(){}
}

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 4

[125]

The @Pointcut must be declared within a class annotated with @Aspect.

In the method allPublicMethod, the matching is declared on the execution of
public methods.

Its body is empty. This method is in fact not called, but is used just to define
a pointcut.

Once pointcuts have been defined, it is possible to use them in the annotations
with advices.

package org.springaop.chapter.four.pointcut;

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Before;

@Aspect
public class FooAspect {

 @Before ("org.springaop.chapter.four.pointcut.
ApplicationPointcutsAspect.inResourceLayer()")
 public void beforeFooMethods(){
 //do something
 }

 }
}

In class FooAspect, a pointcut defined in class ApplicationPointcutsAspect was
used with a before advice.

Let's see the formal syntax of a pointcut execution as an example:

execution(modifiers-pattern? ret-type-pattern declaring-type-pattern?
name-pattern(param-pattern) throws-pattern?

All the fields apart from ret-type-pattern, that is the return-type pattern,
name-pattern (method name), and param-pattern (name and type of parameters)
are optional (indicated with the "?")

Usable patterns include the wildcard characters as well.

The asterisk (*) indicates any type, and can be used as a wildcard even in a fully
qualified type name.

Empty brackets () indicate a method without parameters, whereas brackets
containing two dots (..) indicate any number of parameters (even no parameters).

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

AspectJ Support

[126]

An asterisk between brackets (*) means just a parameter of any type.

Let's see some examples.

execution(public * *(..))

In this case, the modifiers-pattern is public, and therefore it refers to
public methods.

The "*" (asterisk) means "any value": applied to the method's return type and name
(declaring-type-pattern) it matches with a public method with any return type
and with any name. For the name-pattern there is an *, which matches a method
with any name, and the (param-pattern) is (..) so any number of parameters
is allowed.

In this example, this pointcut designator will match any public method in
any package.

execution(* set*(..))

This pointcut intercepts the execution of any type of method (public, protected),
whose name starts with "set" and accepts any number and type of parameters.

execution(* org.springaop.service.Example.*(..))

This pointcut intercepts the execution of methods with any visibility (public ,
protected, private, default) that are contained in the Example class in the
org.springaop.service package and accept any type and number of parameters.

execution(* org.springaop.service.*.*(..))

This pointcut intercepts the execution of methods with any visibility (public,
protected) and name that are contained in the package org.springaop.service
and accept any type and number of parameters.

execution(* org.springaop.service..*.*(..))

This pointcut intercepts the execution of methods with any visibility (public,
protected, private, default) and name that are contained in the package
org.springaop.service or in its subpackages and accept any type and number
of parameters.

within(org.springaop.service..*)

This pointcut intercepts the execution of any method into the package or
subpackages of org.springaop.service.

within(org.springaop.service.*)

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 4

[127]

This pointcut intercepts the execution of any method into the package
org.springaop.service.

Pointcuts equivalent:
execution(*org.springaop.service.ExampleService.*(..))

within(org.springaop.service.ExampleService)

this(org.springaop.service.ExampleService)

This pointcut intercepts any method where the proxy implements the
ExampleService interface.

target(org.springaop.service.ExampleService)

This pointcut intercepts the execution of any method where the target object
implements the ExampleService interface.

args(java.lang.String)

This pointcut intercepts the execution of any method where at runtime a parameter
is String type.

args(*, java.lang.String)

This pointcut intercepts the execution of any method where at runtime the first
parameter is of any type, and the second parameter is String type.

The difference between

args(java.lang.String)

and

execution(* *(java.lang.String))

is that in the first case we consider the String type argument a runtime,
whereas the second one is String type in the method's declaration.

@target(org.springframework.transaction.annotation.Transactional)

This pointcut intercepts the execution of any method where the target object has the
@Transactional annotation.

@args(org.company.Classified)

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

AspectJ Support

[128]

This pointcut intercepts the execution of any method where, at runtime, a parameter
has the @Classified annotation.

bean(magicbox.ehCache)

This pointcut intercepts any joinpoint on the bean called magicbox.ehCache.

bean(magicbox.*)

This pointcut intercepts any joinpoint on the beans with a name starting
with magicbox.

execution(public * *(..)) throws java.lang.IOException

This pointcut intercepts the execution of public methods with any name, which
return anything, accept any number and type of parameters, and have throws java.
lang.IOException in the declaration.

within(org.company.domain.Example+)

This pointcut intercepts methods coming from examples or classes belonging to its
own hierarchy, that is, of the same type.

After looking at these short introductory examples, we can logically collect the types
of pointcut designators on the strength of general groupings.

Selection on methods' names
Selection on types of argument
Selection on types of return
Selection on declared exceptions
Selection on hierarchy
Selection on annotations

Selection on methods' names
Using wildcards, it is possible to compose pointcuts using the names of methods.

@Aspect
public class ApplicationPointcutsAspect {
...
@Pointcut("execution(* swim*(..)) || execution(* play*(..)) ||
execution(* run(..))")
 public void goodTimesOnTheBeach() {}
…
}

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 4

[129]

In this case, we are joining with logical OR the executions of methods whose name
starts with swim, play, or run. The result is that the advice intercepts the execution
of each of the three methods.

Selection on types of argument
We can compose several pointcuts using the arguments of the declarations of
methods (opposite to args, which uses the values of arguments at runtime).

Let's see some pointcuts with names that explain their function:

package org.springaop.chapter.four.pointcut;
...
@Aspect
public class ApplicationPointcutsAspect {
...

 @Pointcut("execution(* *())")
 public void allMethodsWithoutArguments() {}

 @Pointcut("execution(* *(..))")
 public void allMethodsWithOneOrMoreArgumentRegarlessOfType() {}

 @Pointcut("execution(* *(java.lang.Integer, java.lang.String))")
 public void allMethodsWithTwoArgumentFirstIntegerSecondString() {}

 @Pointcut("execution(* *(java.lang.Integer,..))")
 public void

allMethodsWithFirstArgumentOfTypeIntegerAndZeroOrMoreOtherArguments()
{}

 @Pointcut("execution(* *(*,java.lang.Integer,..))")
 public void
allMethodsWithSecondArgumentOfTypeIntegerAndZeroOrMoreOtherArguments
() {}

 @Pointcut("args(java.util.Hashtable)")
 public void allMethodsWithHashtableInsteadOfMap() {}
...
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

AspectJ Support

[130]

Selection on type of return
Let's see some pointcuts with names that explain their functions:

package org.springaop.chapter.four.pointcut;

@Aspect
public class ApplicationPointcutsAspect {
...
 @Pointcut("execution (* get*(..))")
 public void methodsWithAllReturnType() {}

 @Pointcut("execution (java.lang.Integer get*(..))")
 public void getterMethodsWithIntegerReturnType() {}

 @Pointcut("execution (void set*(..))")
 public void setterMethods() {}
...
}

Selection on declared exceptions
Declared exceptions are supposed to be CheckedException.

Let's see some pointcuts with names that explain their function:

package org.springaop.chapter.four.pointcut;

@Aspect
public class ApplicationPointcutsAspect {
...
 @Pointcut("execution (* *(..) throws java.lang.IOException)")
 public void methodsThatThrowsIoExceptions() {}

@Pointcut("execution (* *(..) throws java.lang.
IllegalThreadStateException)")
public void methodsThatThrowsIllegalThreadStateException() {}
...
}

Selection on hierarchy
In this case, it is necessary to select the classes of a hierarchy (subtype pattern).

execution(* com.company.Product+.*(..))

or:

within(com.company.Product+)

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 4

[131]

Selection on annotations
Let's define an annotation:

package org.springaop.chapter.four.pointcut.annotation;

import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;

@Retention(RetentionPolicy.RUNTIME)
public @interface SensitiveOperation {

}

Then we can use it:

package org.springaop.chapter.four.pointcut.annotation;

public class OnLineBanking {

 @SensitiveOperation
 public boolean addMoney(Integer amount){
 …
 }
}
package org.springaop.chapter.four.pointcut;

@Aspect
public class ApplicationPointcutsAspect {
...
 @Pointcut("@annotation (org.springaop.chapter.four.pointcut.
annotation.SensitiveOperation)")
 public void methodsWithSensitiveOperationAnnotation(){}
…
}

It is now possible to use it in an advice like this:

@Before("org.springaop.chapter.four.pointcut.
ApplicationPointcutsAspect.methodsWithSensitiveOperationAnnotation
()")
public void methodsWithSensitiveOperationAnnotation() {}

or:

@Pointcut("@within(org.springaop.chapter.four.pointcut.annotation.
SensitiveOperation)")

public void methodsWithSensitiveOperationAnnotation() {}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

AspectJ Support

[132]

Binding advice arguments
We can add arguments to advice methods and bind any argument value, exception,
return value, or annotation.

JoinPoint
Advices can use a joinpoint implementation that contains information about the
entering arguments (getArgs()), about the method on which the advice must be
applied (being advised) (getSignature()), about the proxy object (getThis()),
or about the target object (getTarget()). In around advices, the joinpoint's
implementation is the ProceedingJoinPoint.

In advices, JoinPoint (if present) must be the first argument passed.

Binding arguments
While using joinpoints, it may be necessary to read and to use arguments' methods
with before advices, above all in order to limit the matching of methods that can be
invoked simply with the execution.

Arguments can be obtained through JoinPoint, recovering them from the array of
objects that is passed, and casting it.

 @Before("execution(* set*(..))")
 public void foo(JoinPoint jp){
 Object[] args = jp.getArgs();
 }

or even defining args on the static match that is made with the execution.

In this way, Spring AOP binds a method's parameters, which must match.

@Before("execution(* set*(..)) && args(param,..)")
public void foo(String param){
 ...
}

Parameters' binding in invocations is based on names contained in joinpoints, but
not with reflection. SpringAOP uses the following strategy.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 4

[133]

If the arguments' names are present, they are used:

@Before("execution(* set*(..) && args(name, surname))")
public void foo(String name, String surname){
 //do something
}

If JoinPoint is present too, both of them are used. But it's convenient to use
JoinPoint if there is no other information available.

If there aren't arguments' names, Spring AOP recovers the information from the
debug information, that can have been set at the time of compilation if the flag ('-g:
vars') has been set.

If the latter has NOT been set, Spring tries to deduce the binding matching variable
with the parameter. If there were ambiguities that Spring could not resolve, an
AmbiguousBindingException would be thrown.

If none of the previous points work, an IllegalArgumentException will be thrown.

When declaring an independent pointcut that exposes parameters, you
have to include it in the argument list of the pointcut method as well.

Binding of return values
Binding of return values can be useful with AfterReturning advices; you can assign
a name to the return value (with returning) that is the name of the argument to be
used in the advice.

 @AfterReturning(value = "execution(com.company.service.*Service
get(..))", returning = "output")
 public void interceptOutputParam(String output) {
 ...
 }

Exception binding
Exception binding is used with an AfterThrowing advice; the throwing property
specifies the argument name to be used in the advice.

@AfterThrowing(value = "execution(* startMatch(..) throws java.lang.
IOException)", throwing = "ioex")
public void interceptIOException(IOException ioex) {
 ..
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

AspectJ Support

[134]

Annotation binding
Annotations that compose the compiled class can be used to bind information they
contain. Two cases are possible: annotation on methods or on classes.

If we define an annotation that has a value, this value can be bound.

package org.springaop.chapter.four.pointcut.annotation;

import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;

@Retention(RetentionPolicy.RUNTIME)
public @interface SensitiveOperation {

 String value() default "secret";
}

In this way, the value given in the annotation-sensitive operation can be bound and
passed to the method on which the pointcut is defined.

@Pointcut("@annotation(operation)")
 public void methodsForAccounting(SensitiveOperation operation){}

In case of annotation on class:

@SensitiveOperation(value="superSecret")
public class OnLineBanking {…}

the pointcut uses within, which works in a static manner at the level of class, using
information obtained from the method's signature at the time of proxy creation.

@Pointcut("@within(operation)")
 public void bankingMethods(SensitiveOperation operation) {}

Advice
An advice is the logic part that is executed when a joinpoint's matching is done.

It's simply the action at the point indicated by the joinpoint during the execution of
the application.

In the previous paragraph, we saw with several examples all the ways to define a
pointcut. In the first two chapters, we saw the classic part of Spring AOP present
since 1.x version, where advices were defined at the level of interfaces to
be implemented.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 4

[135]

In this section, we will see how advices are defined by normal methods. The
difference is in annotations that declare for which use and in which context those
methods must be used inside a class. This is also annotated too so that it is treated
as aspect.

Advices must always be defined with annotations within a class annotated with
@Aspect. So, we will have a regular �ava class with the annotation @Aspect above
the definition of the class, and public methods with annotations indicated in the
following list. This indicates that those methods are eligible to be used as advice and
can be applied according to the rules present and points indicated in the annotation.

An aspect can contain any number of advices.

package org.springaop.chapter.four;

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Before;

@Aspect
public class AspectAdvicesExamples {

 @Before("execution (org.springaop.service.AccessOperation.*(..))")
 public void controlAccessCheck(){
 ...
 }
…
}

Advices must be defined within a class annotated with @Aspect.

As we said in earlier chapters, advices can be of different types, but in this case they
are formed with the annotations:

@Before
@AfterReturning
@AfterThrowing
@After (After Finally)
@Around

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

AspectJ Support

[136]

Let's describe them in detail:

@Before
Before advice allows us to perform actions before the proxy does the call on the
target object (thus, before the joinpoint's execution). The annotated method returns
nothing, so the signature will be public void.

In the before annotation, we will have to indicate the pointcut that tells Spring where
to apply it (bean, package class, and so on).

This advice doesn't forestall the continuation of processing, unless an exception
is thrown.

package org.springaop.chapter.four;

@Aspect
public class AspectAdvicesExamples {

...
@Before("execution(* org.springaop.service.AccessOperation.*(..))")
 public void controlAccessCheck(){
 ...
 }

...
}

In this case, we are declaring that we want the content of method
ControlAccessCheck to be executed when any method is called on the
AccessOperation class; or, even better, using pointcut designators:

package org.springaop.chapter.four;

@Aspect
public class AspectAdvicesExamples {

...
@Before("execution(* org.springaop.app.services.*.*(..))")
 public void controlAccessCheck(){
 ...
 }
...
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 4

[137]

@AfterReturning
The after returning advice is executed once the method on which we are applying
the advice has finished its execution normally (no exception thrown).

Even in this case, a public method must be annotated within a class that is annotated
as @Aspect.

package org.springaop.chapter.four;

@Aspect
public class AspectAdvicesExamples {

...
 @AfterReturning("execution(* org.springaop.service.*.*(..))")
 public void logOperationCommited(){

 }
...
}

If we want to have the return value of the method to use in the advice, we have to
bind it. So we will write :

package org.springaop.chapter.four;

@Aspect
public class AspectAdvicesExamples {

...

 @AfterReturning(pointcut="execution
(* org.springaop.service.*.*(..))", returning="returningValue")
 public void logOperationPerformed(Object returningValue){
 …
 }
...
}

The type of value for which the bind is done is given in the advice. Putting object as
the type of the return, we are sure that any type of object will fit. Naturally, it's not
possible to return another object different from the one returned by the method on
which the advice is applied.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

AspectJ Support

[138]

@AfterThrowing
The after throwing advice is applied when a method's execution ends with the
throwing of an exception.

It is defined by declaring the annotation @AfterThrowing on a method within a class
annotated with @Aspect:

package org.springaop.chapter.four;

@Aspect
public class AspectAdvicesExamples {
…
@AfterThrowing("execution(* org.springaop.service.*.*(..))")
 public void doRecoveryActionsOnDataAccessException(){
...
}
}

Or using the pointcut designators, you can make the exception object available to
the advice.

package org.springaop.chapter.four;

@Aspect
public class AspectAdvicesExamples {

…

 @AfterThrowing(pointcut="execution
(* org.springaop.service.*.*(..))", throwing="ex")
 public void doRecoveryActionsOnDataAccessException(DataAccessExce
ption ex){
…
}

}

As usual, the name used in the annotation's throwing has to be the same as the
advice's parameter one.

The advice's parameter narrows down the type of exception that can be thrown.

@After
The after (finally) advice is executed after the execution of the method on which the
pointcut's matching is performed. The advice is executed in any case, that is whether
an exception is thrown or not.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 4

[139]

It is defined by the annotation @After on a method within a class annotated
with @Aspect.

This advice wasn't present in Spring 1.x and in the configurations we
called "classic".

package org.springaop.chapter.four;

@Aspect
public class AspectAdvicesExamples {

 @After("execution (* org.springaop.service.*.*(..))")
 public void releaseResource(){

 }
}

In this type of advice we don't have any type of specific binding, except for the one
that we could have using a pointcut designator with argNames.

@Around
The around advice presents some peculiarities compared with the ones we've
previously seen, and it is the most complicated to use as well because it wasn't
designed for a specific action. Before using it, it is recommended to verify if the
requirements can be satisfied by another type of advice which is less powerful
than this one.

This advice has full control over the method to be called, both before and after the
invocation, and it can even decide not to invoke it.

The aim with which it is most often used is sharing state in a thread-safe manner
before and after the invocation of the method.

The advice has a return value, unlike the others, which return void.
The advice has as first type of parameter org.aspectj.lang.
ProceedingJoinPoint.
The advice declares in the signature throws Throwable.

package org.springaop.chapter.four;

@Aspect
public class AspectAdvicesExamples {

…

 @Around("execution(* startMatch(..))")

•
•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

AspectJ Support

[140]

 public Object doTimeProfiling(ProceedingJoinPoint pjp) throws
Throwable{
 // start stopwatch
 Object retVal = pjp.proceed();
 // stop stopwatch
 return retVal;
 }
…
}

The first parameter has to be an object of the type ProceedingJoinPoint.

ProceedingJoinPoint contains parameters in an array of objects, the target object,
the proxy object, and all the other pieces of information of the execution context.

In order to invoke the method on the target object, you need to call the method
proceed() on ProceedingJoinPoint .

Depending on requirements the method proceed() can be invoked one or
more times or not be invoked at all.

Introduction
An introduction is defined by the annotation @DeclareParents, and indicates
that the type of class used for the matching has a new parent that will be the
implementation of a new interface. Below it is used to declare the Matter and
GeometricForm interfaces.

package org.springaop.chapter.four.introduction;

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.DeclareParents;

@Aspect
public class ParallelepipedIntroduction {

 @DeclareParents(value = "org.springaop.chapter.four.introduction.
Box",
 defaultImpl = Titanium.class)
 public Matter matter;

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 4

[141]

 @DeclareParents(value = "org.springaop.chapter.four.introduction.
Box",
 defaultImpl = Cube.class)
 public GeometricForm geometricForm;

}

In this way, we have a chance to define interfaces (Matter and GeometricForm) and
provide implementations (Titanium and Cube) to apply them on the target classes
detected by joinpoints.

The test class:

package org.springaop.chapter.four.introduction;

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.
ClassPathXmlApplicationContext;

/* run with jvm argument: -javaagent:<path>/spring-agent.jar */
public class TestIntroduction {

 public static void main(String[] args) {
 String[] paths = {"org/springaop/chapter/four/introduction/
applicationContext.xml"};
 ApplicationContext ctx = new ClassPathXmlApplicationContext
(paths);

 Box bean = (Box)ctx.getBean("box");
 System.out.println(bean.getName());

 Matter beanMatter = (Matter) bean;
 System.out.println(beanMatter.getType());

 GeometricForm geoMetricBean = (GeometricForm) bean;
 System.out.println(geoMetricBean.getShape());
 }
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

AspectJ Support

[142]

The configuration in eclipse for spring-agent.jar:

The output will be:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 4

[143]

XML Schema-based configuration
Now we are going to see SpringAOP configuration using XML configuration.

The choice to use XML instead of annotations, beyond personal preferences, is the
only practicable one in contexts where we use JDK previous to 1.5; it is the first JDK
version in which annotations have been introduced.

Therefore, if you want to use Spring with �DK 1.3 or 1.4, the use of schema-based
configuration is mandatory.

The only supported instantiation model for XML-defined aspects is the
Singleton model.

In order to use XML tags and namespaces instead of annotations, we have to import:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">
…
</beans>

While using annotations, the class annotated with @Aspect acts as a container of
advices and pointcuts; with XML configuration advices and pointcuts are declared
inside the tag:

<aop:config>

An aspect equivalent to a class annotated with @Aspect is indicated with:

<aop:aspect>

An advisor is configured with:

<aop:advisor>

It enables the link between an Aspect� pointcut and a classic SpringAOP
advice object.

A pointcut is configured with:

<aop:pointcut>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

AspectJ Support

[144]

The tag <aop:config> heavily uses the Spring autoproxy
mechanism. Therefore, there could be some problems if Spring
was configured to explicitly use per this autoproxying with the
BeanNameAutoProxyCreator.

Aspect
An aspect in the case of XML schema configuration can be any other bean defined in
the application context.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

 <aop:config>
 <aop:aspect id="myAspect" ref="exampleBean"></aop:aspect>
 </aop:config>

 <bean id="exampleBean class="org.springaop.schemabased.
ExampleBean/>

</beans>

Pointcut
A named pointcut can be inserted in the tag <aop:config>.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

 <aop:config>
 <aop:pointcut expression="execution(* org.springaop.app.
services.*.*(..))" id="pointcutServices"/>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 4

[145]

 <aop:aspect id="myAspect" ref="exampleBean"></aop:aspect>
 </aop:config>

 <bean id="exampleBean" class="org.springaop.schemabased.
ExampleBean"/>

</beans>

The syntax used to define the pointcut's intervention is the same used by AspectJ.

If you use the schema-based notation on �DK 1.5 (or upward), you can refer to
pointcuts defined in @Aspect annotated classes in the pointcut.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

 <aop:config>
 <aop:pointcut expression="org.springaop.pointcuts.
ApplicationPointcutsAspect.inServiceLayer()" id="pointcutServices"/>
 <aop:aspect id="myAspect" ref="exampleBean"></aop:aspect>
 </aop:config>

 <bean id="exampleBean" class="org.springaop.schemabased.
ExampleBean"/>

</beans>

A limitation of XML notation is that from XML you can refer to an annotated class,
but you cannot do the other way round. That is, you can't use a pointcut in an
annotation identified by its ID in the XML file.

An action you can perform is defining the pointcut directly inside the tag
<aop:aspect>, with the advantage of the chance of the binding of parameters
as we have seen with annotations.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

AspectJ Support

[146]

<bean id="exampleBean" class="org.springaop.schemabased.ExampleBean/>

<aop:config>
<aop:aspect id="myAspect" ref=exampleBean>
<aop:pointcut expression="execution(* org.springaop.pointcuts.*.*(..)
&& this(service)" id="pointcutServices"/>
<aop:before pointcut-ref="fooService" method="foo"/>
</aop:aspect>
</aop:config>

</beans>

Of course, the advice has to declare to receive the pieces of information from the
joinpoint's context:

public void foo(Object fooService) {
...
}

In situations where more expressions must be combined, the symbols OR (||),
AND (&&), and NEGATION (!) can be substituted by or, and, and not.

Advice
The advices that were used in the annotations can be used here as well.

Before advice
The function is the same as when using annotations—executing some logic before
the target class.

With XML, you declare it in this manner:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd"
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-2.5.xsd>

<bean id="exampleBean" class="org.springaop.schemabased.ExampleBean"/>

 <aop:pointcut expression="execution(* org.springaop.
pointcuts.*.*(..) && this(service)" id="pointcutServices"/>

 <aop:config>
 <aop:aspect id="myAspect" ref="exampleBean">
 <aop:before pointcut-ref="pointcutServices"

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 4

[147]

method="foo"/>
 </aop:aspect>
 </aop:config>

</beans>

The pointcut's syntax declares the type, in this case before, of the pointcut to which
we should refer for the matching rules, and the name of the method containing the
advice's body, or defining inline the matching rule.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

 <aop:config>

 <aop:aspect id="aspect" ref="myAspect">
 <aop:before method="trace"
 pointcut="execution (* org.springaop.chapter.four.
schema.*.*(..))"
 arg-names="msg"/>
 </aop:aspect>
 </aop:config>

 <bean id="myAspect" class="org.springaop.chapter.four.schema.
MyAspect"/>

 <bean id="exampleBean" class="org.springaop.chapter.four.schema.
ExampleBean"/>

</beans>

After returning advice
The after returning advice's behavior is the same as when using annotations, that is,
to execute some logic after the invoked method has finished its execution normally
without throwing any exceptions.

The configuration declaring the advice within the aspect tag is:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

AspectJ Support

[148]

http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

 <aop:config>
 <aop:aspect ref="myAspect">
 <aop:after-returning method="afterGreeting"
pointcut="execution(* greeting(..))" />
 </aop:aspect>
 </aop:config>

 <bean id="myAspect" class="org.springaop.chapter.four.schema.
MyAspect"/>

 <bean id="exampleBean" class="org.springaop.chapter.four.schema.
ExampleBeanImpl"/>

</beans>

Also in this type of advice, we can use the return value (returnValue) to pass it to
the class method:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-2.5.xsd>

<aop:config>
<aop:aspect ref="myAspect">
<aop:after-returning method="afterGreeting" pointcut="execution(*
greeting(..))" returning="returnValue"/>
</aop:aspect>
</aop:config>

 <bean id="myAspect" class="org.springaop.chapter.four.schema.
MyAspect"/>

 <bean id="exampleBean" class="org.springaop.chapter.four.schema.
ExampleBeanImpl"/>

</beans>

In the class that contains the method with the body of the advice to execute, we'll
have a parameter with the same name of the returnValue.

public void fooAfterReturning(Object returnValue) {
...
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 4

[149]

After throwing advice
The after throwing advice, as specified earlier in this chapter, is executed after a
method's execution throws an exception.

It is configured in this way:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

 <aop:config>
 <aop:pointcut id="fooMethod"
 expression="execution (* org.springaop.chapter.four.schema.
afterthrowing.ExceptionBean.*(..))"/>
 <aop:aspect id="aspect" ref="myAspect">
 <aop:after-throwing pointcut-ref="fooMethod" method="fooRe
coveryActions"
 throwing="nullPointerException"/>
 </aop:aspect>
 </aop:config>

 <bean id="myAspect" class="org.springaop.chapter.four.schema.
MyAspect"/>

 <bean id="exceptionBean" class="org.springaop.chapter.four.schema.
afterthrowing.ExceptionBean"/>

</beans>

Here it's also possible to indicate the parameter to pass, that is the exception in this
case, which we call DataAccessException.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

 <bean id="exampleBean" class="org.springaop.schemabased.
ExampleBean"/>

 <aop:config>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

AspectJ Support

[150]

 <aop:aspect id="afterThrowingExample" ref="aBean">
 <aop:after-throwing pointcut-ref="pointcutServices" method="
fooRecoveryActions throwing=dataAccessException"/>
 </aop:aspect>
 </aop:config>
</beans>

In the method that contains the advice to apply, the input parameter will be:

public void fooRecoveryActions(DataAccessException dataAccessEx) {
...
}

After (finally) advice
The after (finally) advice is the advice type that is always executed, irrespective of
success or failure of the joinpoint.

The configuration is the following:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

 <aop:config>
 <aop:aspect ref="myAspect">
 <aop:after method="afterGreeting" pointcut="execution(*
greeting(..))" />
 </aop:aspect>
 </aop:config>

 <bean id="myAspect" class="org.springaop.chapter.four.schema.
MyAspect"/>

 <bean id="exampleBean" class="org.springaop.chapter.four.schema.
ExampleBeanImpl"/>

</beans>

Around advice
The last advice we look at is the most powerful, but it less easy to use as well.

Let's recall that it is the most powerful one because it allows us to execute logic
before and after the method's execution, and also allows us to prevent its invocation,
if necessary.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 4

[151]

In order to proceed with the invocation, it's necessary that the advice's body
should call the method proceed() on the ProceedingJoinPoint that's passed
as a parameter.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

 <aop:config>
 <aop:pointcut id="fooMethod"
 expression="execution (* org.springaop.chapter.four.schema.
ExampleBean.foo())"/>
 <aop:aspect id="aspect" ref="myAspect">
 <aop:around method="around" pointcut-ref="fooMethod"/>
 </aop:aspect>
 </aop:config>

 <bean id="myAspect" class="org.springaop.chapter.four.schema.
MyAspect"/>

 <bean id="exampleBean" class="org.springaop.chapter.four.schema.
ExampleBean"/>

</beans>

Then, in the around method it is executed like this:

public Object around(ProceedingJoinPoint pjp) throws Throwable {
…
Object retVal = pjp.proceed();
…
return retVal;
}

As in the configuration with annotations, the first parameter has to be a
ProceedingJoinPoint and the method has to declare throws Throwable.

Introduction
As I said before in this chapter, introductions allow declaring that a target object
implements interfaces, providing the implementation.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

AspectJ Support

[152]

To allow the building of introductions, we declare the tag <aop:declare-parents>
within the tag <aop:aspect>aop:aspect> using the same example code as for annotations:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

 <aop:config>
 <aop:aspect id="introduction" ref="counterIntroduction">
 <aop:declare-parents
 types-matching=
"org.springaop.chapter.four.schema.introduction."*
 implement-interface=
"org.springaop.chapter.four.schema.introduction.CounterTracker"
 default-impl=
"org.springaop.chapter.four.schema.introduction.CounterTrackerImpl"/>
 <aop:after pointcut="execution(* org.springaop.chapter.
four.schema.introduction.*.*(..)) and this(counter)"
 method="increase" />
 </aop:aspect>
 </aop:config>

 <bean id="counterIntroduction" class="org.springaop.chapter.four.
schema.introduction.CounterIntroduction" />

 <bean id="cube" class="org.springaop.chapter.four.schema.
introduction.Cube" />

 <bean id=titanium class="org.springaop.chapter.four.schema.
introduction.Titanium" />
</beans>

types-matching is the usual pattern for matching with Aspect�. implement-
interface indicates the interface to be implemented, and default-impl indicates
the implementation of the interface to be used.

The class of bean counterIntroduction will contain the call to the method
increaseCounter, defined in interface CounterTracker.

public class CounterIntroduction {

 public void increase(CounterTracker counter){
 counter.increaseCounter();
 }
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 4

[153]

Advisors
As I explained, in the classic part of Spring AOP, advisors are useful for joining
together the aspect and advice. They are a typical construction of Spring, not
of Aspect�.

Using annotations advisors aren't present, whereas with XML schema they can be
used with the tag <aop:advisor>. The most common use is with the advice for
transactions <tx:advice>.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

 ...

 <aop:config>
 <aop:pointcut id="pointcutServices" expression="execution(*
org.springaop.pointcuts.*.*(..) && this(service)"/>
 <aop:advisor pointcut-ref="pointcutServices"
order="1" advice-ref="tx-advice"/>
 </aop:config>
 <tx:advice id="tx-advice">
 <tx:attributes>
 <tx:method name="*" propagation="REQUIRED"/>
 </tx:attributes>
 </tx:advice>
</beans>

Recipes
Let's see some recipes on how to use AOP with the domain object to solve the
concurrency of aspects and the mixin of configurations.

Dependency injection in domain objects
Spring instantiates and configures beans contained in application context
configuration files. If you use Domain-Driven Design, you can ask a bean factory
to configure your domain object.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

AspectJ Support

[154]

The spring-aspects.jar contains an annotation-driven aspect that exploits
this capability to allow dependency injection of any object with @Configurable
annotation, and with AnnotationBeanConfigurerAspect behind the scenes. In this
way, you can apply dependency injection with objects created outside the control of
any IoC container using the new operator.

An example of a domain class:

package org.springaop.chapter.four.configurable;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Configurable;

@Configurable()
public class User {

 public String getName(){
 return name;
 }

 @Autowired
 public void setName(String name) {
 this.name = name;
 }

 private String name;
}

To enable the @Configurable aspect, add <context:spring-configured> in the
configuration file and configure the bean with scope=prototype.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context=http://www.springframework.org/schema/context
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-2.5.xsd">

 <context:load-time-weaver />
 <context:annotation-config />

 <bean scope="prototype" class="org.springaop.chapter.four.
configurable.User">
 <property name="name" value="max"/>
 </bean>
</beans>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 4

[155]

To use the Spring aspect, you have to include the spring-aspects.jar
file (located in the dist/weaving directory of the Spring distribution) in
your classpath.

Advice ordering
A situation that could occur in the execution of logic contained in advices is a conflict
in their execution. This is because some pointcuts could be defined so that they are
executed concurrently during a method's execution.

To solve this problem, we can specify a priority order of advices and aspects,
implementing the interface contained in the package org.springframework.core.

public interface Ordered {
int getOrder();
}

These are the cases that we can have:

The aspect classes that don't implement this interface are executed after those
that implement it.
The aspect classes that implement it are executed according to the value: the
lower the value, the higher is the priority.
Classes that have the same order are not executed in a predefined sequence;
however, they are executed before any class with lower order and after those
with higher order.

With annotations, we put @Order(value), whereas with XML schema we use
the tag <property name="order" value="100"/> on the bean or implement the
Ordered interface.

Configuration mixin
The two types of configuration can be easily used simultaneously. They indicate
to Spring to use the annotations with the autoproxying tag and the XML
based scheme.

Aspect instantiation model
The default instantiation model of Aspect is Singleton model. Therefore, there will
be a single instance of each aspect within the application context.

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

AspectJ Support

[156]

It is possible to define aspects with alternative lifecycles:

Aspect�'s perthis and pertarget instantiation models (percflow, percflowbelow,
and pertypewithin) are not supported in Spring 2.5.

Here is an example of a perthis aspect:

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Before;

@Aspect("perthis(org.springaop.app.Manager.execute())")
public class AspectPerThis {

 @Before("execution(org.springaop.app.Manager.execute())")
 public void controlExecuteCheck(){
 //…
 }

}

The effect of the perthis is that one aspect instance will be created for each unique
Manager object executing an execute method (each unique object bound to this at
joinpoints matched by the pointcut expression).

The aspect instance is created the first time the method execute is invoked on the
Manager object. The aspect goes out of scope when the Manager object goes out of
scope.

The pertarget instantiation model works in exactly the same way as perthis, but
creates one aspect instance for each unique target object at matched joinpoints.

Here is an example of a pertarget aspect:

import org.aspectj.lang.JoinPoint;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Before;

@Aspect("pertarget(@annotation(javax.annotation.security.RolesAllowed)
|| " +
 "@annotation(javax.annotation.security.PermitAll) || " +
 "@annotation(javax.annotation.security.DenyAll))")
public class AspectPerTarget {

 @Before("@annotation(javax.annotation.security.DenyAll)")
 public void deny(JoinPoint jp) throws Throwable {
 throw new SecurityException();
 }

}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 4

[157]

AspectJ weaving in Spring
AspectJ is a language with a full compiler and support for weaving binary class files
either offline or at runtime, as classes are loaded into the virtual machine. Let's see
how we can use load-time weaving (LTW) with Spring.

The Spring AOP framework only supports limited types of Aspect� pointcuts
(method invocation). If you want use the complete set of Aspect� pointcuts, you must
use Aspect� load-time weaver to enable the Aspect� framework.

This is an example of a class with call pointcut:

package org.springaop.aspectj.aspects;

public aspect AspectJAspectExample {

 before(): call(* relax(..)) {
 System.out.println("relax() method is about to be
executed!");
 }
}

Aspect� load-time weaving happens when the target classes are loaded into �VM by
a class loader. For a class to be woven, a special class loader is required to enhance
the bytecode of the target class. The configuration of the AspectJ framework is done
through a file named aop.xml in the META-INF directory in the classpath root.

<!DOCTYPE aspectj PUBLIC "-//AspectJ//DTD//EN" "http://www.eclipse.
org/aspectj/dtd/aspectj.dtd">
<aspectj>
 <weaver>
 <include within="org.springaop.aspectj.aspects.*" />
 </weaver>
 <aspects>
 <aspect name="org.springaop.aspectj.aspects.
AspectJAspectExample" />
 </aspects>
</aspectj>

In this AspectJ configuration file, you have to specify the aspects and the
classes into which you want your aspects woven. Here we specify weaving
AspectJAspectExample into all the classes in the org.springaop.aspectj.
aspects package.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

AspectJ Support

[158]

Load-time weaving with Spring
You may enable Spring's support for LTW in any �ava application (standalone
as well as application server based) through the use of the Spring-provided
instrumentation agent.

To do so, start the VM by specifying the -javaagent:path/to/spring-agent.jar
option. But Spring offers a more simple choice. You only need to declare the empty
XML element <context:load-time-weaver>.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-2.5.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-2.5.xsd">

<context:load-time-weaver />
…
</beans>

From the command line:

java -javaagent:<path_on_your_machine>/spring-framework-X.X/dist/weaving/
spring-agent.jar

<package>.<yourclass>.Main

Load-time weaving with AspectJ
Aspect� provides a load-time weaving agent. You only need to add a VM argument
to the command line. Then your classes will get woven when they are loaded into
the �VM.

From the command line:

java -javaagent:<path_on_your_machine>/spring-framework-X.X/lib/aspectj/
aspectjweaver.jar

<package>.<yourclass>.Main

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 4

[159]

AOP strategy considerations
In this chapter we have seen several configuration strategies. XML, annotations,
autoproxy and Load-Time Weaving. These strategies can be reduced to three
approaches: Spring AOP proxy, Spring with Aspect� weaver, or simply Aspect�.
Now think about the conditions that best fit the following prerequisites.

Spring AOP proxy:

There are no domain objects with crosscutting functionality.
Full features of Aspect� are not required.
The IDE must support A�DT.
You don't want to use Aspect� compiler.
 You don't want to change the deploy configuration.

Spring with Aspect� Weaver:

Domain objects have crosscutting functionalities.
LTW can be enabled at deploy time.
Long load time at LTW is not an issue.

Aspect�:

Full joinpoints are required.
The build system can use Aspect�.
Long compile time is not an issue.

Summary
In this chapter, we gave a general view of the integration between Aspect� and
Spring using the powerful syntax of joinpont definition, both through annotations
and XML configuration.

We saw how AspectJ, through annotations, makes the work of defining the
application of advices easier. We have much shorter configuration files, since we
don't have to configure each AOP component in the classic way.

The other option is the configuration with AspectJ through XML file, which is far
simpler compared to the classic version and becomes nearly compulsory if we use
a �DK previous to 1.5, which is the one that supports annotations.

In the last part, I gave some advice to solve conflicts in the priorities of execution,
and about the possible uses of the different configuration methods.

•

•

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Design with AOP
In this chapter, we're going to examine some design decisions that are important for
building better applications. In these design decisions, the AOP plays a significant
role because it provides smart solutions to common crosscutting problems.

We will look at the following AOP design solutions:

Concurrency with AOP
Transparent caching with AOP
Security with AOP

Designing and implementing an enterprise �ava application means not only dealing
with the application core business and architecture, but also with some typical
enterprise requirements.

We have to define how the application manages concurrency so that the application
is robust and does not suffer too badly from an increase in the number of requests.
We have to define the caching strategies for the application because we don't want
CPU- or data-intensive operations to be executed over and over.

We have to define roles and profiles, applying security policies and restricting access
to application parts, because different kinds of users will probably have different
rights and permissions. All these issues require writing additional code that clutters
our application business code and reduces its modularity and maintainability.

But we have a choice. We can design our enterprise �ava application keeping AOP in
mind. This will help us to concentrate on our actual business code, taking away all
the infrastructure issues that can otherwise be expressed as crosscutting concerns.

This chapter will introduce such issues, and will show how to design and implement
solutions to them with Spring 2.5 AOP support.

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Design with AOP

[162]

Concurrency with AOP
For many developers, concurrency remains a mystery.

Concurrency is the system's ability to act with several requests simultaneously, such
a way that threads don't corrupt the state of objects when they gain access at the
same time.

A number of good books have been written on this subject, such as Concurrent
Programming in Java and Java Concurrency in Practice. They deserve much attention,
since concurrency is an aspect that's hard to understand, and not immediately visible
to developers. Problems in the area of concurrency are hard to reproduce. However,
it's important to keep concurrency in mind to assure that the application is robust
regardless of the number of users it will serve.

If we don't take into account concurrency and document when and how the
problems of concurrency are considered, we will build an application taking some
risks by supposing that the CPU will never simultaneously schedule processes on
parts of our application that are not thread-safe.

To ensure the building of robust and scalable systems, we use proper patterns. There
are �DK packages just for concurrency. They are in the java.util.concurrent
package, a result of �SR-166.

One of these patterns is the read-write lock pattern, which consists of is the interface
java.util.concurrent.locks.ReadWriteLock and some implementations, one of
which is ReentrantReadWriteLock.

The goal of ReadWriteLock is to allow the reading of an object from a virtually
endless number of threads, while only one thread at a time can modify it. In this
way, the state of the object can never be corrupted because threads reading the
object's state will always read up-to-date data, and the thread modifying the state
of the object in question will be able to act without the possibility of the object's
state being corrupted. Another necessary feature is that the result of a thread's
action can be visible to the other threads. The behavior is the same as we could have
achieved using synchronized, but when using a read-write lock we are explicitly
synchronizing the actions, whereas with synchronized synchronization is implicit.

Now let's see an example of ReadWriteLock on the BankAccountThreadSafe object.

Before the read operation that needs to be safe, we set the read lock. After the read
operation, we release the read lock.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 5

[163]

Before the write operation that needs to be safe, we set the write lock. After a state
modification, we release the write lock.

package org.springaop.chapter.five.concurrent;

import java.util.Date;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;

public final class BankAccountThreadSafe {

 public BankAccountThreadSafe(Integer id) {
 this.id = id;
 balance = new Float(0);
 startDate = new Date();
 }

 public BankAccountThreadSafe(Integer id, Float balance) {
 this.id = id;
 this.balance = balance;
 startDate = new Date();
 }

 public BankAccountThreadSafe(Integer id, Float balance, Date start)
{
 this.id = id;
 this.balance = balance;
 this.startDate = start;
 }

 public boolean debitOperation(Float debit) {

 wLock.lock();
 try {

 float balance = getBalance();

 if (balance < debit) {

 return false;

 } else {

 setBalance(balance - debit);

 return true;
 }
 } finally {

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Design with AOP

[164]

 wLock.unlock();
 }
 }

 public void creditOperation(Float credit) {

 wLock.lock();
 try {
 setBalance(getBalance() + credit);

 } finally {

 wLock.unlock();
 }
 }

 private void setBalance(Float balance) {

 wLock.lock();
 try {
 balance = balance;

 } finally {

 wLock.unlock();
 }
 }

 public Float getBalance() {

 rLock.lock();

 try {
 return balance;

 } finally {

 rLock.unlock();
 }
 }

 public Integer getId() {
 return id;
 }

 public Date getStartDate() {

 return (Date) startDate.clone();
 }

 …

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 5

[165]

 private Float balance;
 private final Integer id;
 private final Date startDate;
 private final ReadWriteLock lock = new ReentrantReadWriteLock();
 private final Lock rLock = lock.readLock();
 private final Lock wLock = lock.writeLock();
}

BankAccountThreadSafe is a class that doesn't allow a bank account to be
overdrawn (that is, have a negative balance), and it's an example of a thread-safe
class. The final fields are set in the constructors, hence implicitly thread-safe.
The balance field, on the other hand, is managed in a thread-safe way by the
setBalance, getBalance, creditOperation, and debitOperation methods.

In other words, this class is correctly programmed, concurrency-wise. The problem is
that wherever we would like to have those characteristics, we have to write the same
code (especially the finally block containing the lock's release).

We can solve that by writing an aspect that carries out that task for us.

A state modification is execution(void
 com.mycompany.BankAccount.set*(*))

A safe read is execution(* com.mycompany.BankAccount.getBalance())

package org.springaop.chapter.five.concurrent;

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;

import org.aspectj.lang.annotation.After;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Before;
import org.aspectj.lang.annotation.Pointcut;

@Aspect
public class BankAccountAspect {

 /*pointcuts*/

 @Pointcut(
"execution(* org.springaop.chapter.five.concurrent.BankAccount.
getBalance())")

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Design with AOP

[166]

 public void safeRead(){}

 @Pointcut(
"execution(* org.springaop.chapter.five.concurrent.BankAccount.
set*(*))")
 public void stateModification(){}

 @Pointcut(
"execution(* org.springaop.chapter.five.concurrent.BankAccount.
getId())")
 public void getId(){}

@Pointcut("execution(* org.springaop.chapter.five.concurrent.
BankAccount.getStartDate()))
 public void getStartDate(){}

 /*advices*/

 @Before("safeRead()")
 public void beforeSafeRead() {

 rLock.lock();
 }

 @After("safeRead()")
 public void afterSafeRead() {

 rLock.unlock();
 }

 @Before("stateModification()")
 public void beforeSafeWrite() {

 wLock.lock();
 }

 @After("stateModification()")
 public void afterSafeWrite() {

 wLock.unlock();
 }

 private final ReadWriteLock lock = new
ReentrantReadWriteLock();
 private final Lock rLock = lock.readLock();
 private final Lock wLock = lock.writeLock();
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 5

[167]

The BankAccountAspect class applies the crosscutting functionality. In this case,
the functionality is calling the lock and unlock methods on the ReadLock and the
WriteLock. The before methods apply the locks with the @Before annotation,
while the after methods release the locks as if they were in the final block, with
the @After annotation that is always executed (an after-finally advice).

In this way the BankAccount class can become much easier, clearer, and briefer.
It doesn't need any indication that it can be executed in a thread-safe manner.

package org.springaop.chapter.five.concurrent;

import java.util.Date;

public class BankAccount {

 public BankAccount(Integer id) {
 this.id = id;
 this.balance = new Float(0);
 this.startDate = new Date();
 }

 public BankAccount(Integer id, Float balance) {
 this.id = id;
 this.balance = balance;
 this.startDate = new Date();
 }

 public BankAccount(Integer id, Float balance, Date start) {
 this.id = id;
 this.balance = balance;
 this.startDate = start;
 }

 public boolean debitOperation(Float debit) {

 float balance = getBalance();

 if (balance < debit) {

 return false;

 } else {

 setBalance(balance - debit);

 return true;
 }
 }

 public void creditOperation(Float credit) {

 setBalance(getBalance() + credit);

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Design with AOP

[168]

 }

 private void setBalance(Float balance) {

 this.balance = balance;
 }

 public Float getBalance() {

 return balance;
 }

 public Integer getId() {

 return id;
 }

 public Date getStartDate() {

 return (Date) startDate.clone();
 }

 private Float balance;
 private final Integer id;
 private final Date startDate;
}

Another good design choice, together with the use of ReadWriteLock when
necessary, is using objects that once built are immutable, and therefore, not
corruptible and can be easily shared between threads.

Transparent caching with AOP
Often, the objects that compose applications perform the same operations with the
same arguments and obtain the same results. Sometimes, these operations are costly
in terms of CPU usage, or may be there is a lot of I/O going on while executing
those operations.

To get better results in terms of speed and resources used, it's suggested to use a
cache. We can store in it the results corresponding to the methods' invocations
as key-value pairs: method and arguments as key and return object as value.

Once you decide to use a cache you're just halfway. In fact, you must decide which
part of the application is going to use the cache. Let's think about a web application
backed by a database. Such a web application usually involves Data Access Objects
(DAOs), which access the relational database. Such objects are usually a bottleneck
in the application as there is a lot of I/O going on. In other words, a cache can be
used there.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 5

[169]

The cache can also be used by the business layer that has already aggregated and
elaborated data retrieved from repositories, or it can be used by the presentation
layer putting formatted presentation templates in the cache, or even by the
authentication system that keeps roles according to an authenticated username.

There are almost no limits as to how you can optimize an application and make it
faster. The only price you pay is having RAM to dedicate the objects that are to be
kept in memory, besides paying attention to the rules on how to manage the life of
the objects in cache.

After these preliminary remarks, using a cache could seem common and obvious. A
cache essentially acts as a hash into which key-value pairs are put. The keys are used
to retrieve objects from the cache. Caching usually has configuration parameters that
allow you to change its behavior.

Now let's have a look at an example with ehcache (http://ehcache.sourceforge.
net). First of all let's configure it with the name methodCache so that we have at the
most 1000 objects. The objects are inactive for a maximum of five minutes, with a
maximum life of 10 minutes. If the objects count is over 1000, ehcache saves them
on the filesystem, in java.io.tmpdir.

<ehcache>
 …
 <diskStore path="java.io.tmpdir"/>
 ….
 <defaultCache

 maxElementsInMemory="10000"
 eternal="false"
 timeToIdleSeconds="120"
 timeToLiveSeconds="120"
 overflowToDisk="true"
 diskPersistent="false"
 diskExpiryThreadIntervalSeconds="120"

 />
 …
 <cache name="methodCache"
 maxElementsInMemory="1000"
 eternal="false"
 overflowToDisk="false"
 timeToIdleSeconds="300"
 timeToLiveSeconds="600"
 />
</ehcache>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Design with AOP

[170]

Now let's create a CacheAspect. Let's define the cacheObject to which the
ProceedingJoinPoint is passed. Let's recover an unambiguous key from the
ProceedingJoinPoint with the method getCacheKey. We will use this key to
put the objects into the cache and to recover them.

Once we have obtained the key, we ask to cache the Element with the instruction
cache.get(cacheKey). The Element has to be evaluated because it may be null if
the cache didn't find an Element with the passed cacheKey.

If the Element is null, advice invokes the method proceed(), and puts in the cache
the Element with the key corresponding to the invocation. Otherwise, if the Element
recovered from the cache is not null, the method isn't invoked on the target class,
and the value taken from the cache is returned to the caller.

package org.springaop.chapter.five.cache;

import it.springaop.utils.Constants;
import net.sf.ehcache.Cache;
import net.sf.ehcache.Element;

import org.apache.log4j.Logger;
import org.aspectj.lang.ProceedingJoinPoint;

public class CacheAspect {

 public Object cacheObject(ProceedingJoinPoint pjp) throws Throwable
{

 Object result;
 String cacheKey = getCacheKey(pjp);

 Element element = (Element) cache.get(cacheKey);
 logger.info(new StringBuilder("CacheAspect invoke:").append("\n
get:")
 .append(cacheKey).append(" value:").append(element).
toString());

 if (element == null) {

 result = pjp.proceed();

 element = new Element(cacheKey, result);

 cache.put(element);

 logger.info(new StringBuilder("\n put:").append(cacheKey).
append(
 " value:").append(result).toString());
 }

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 5

[171]

 return element.getValue();
 }

public void flush() {
 cache.flush();
 }

 private String getCacheKey(ProceedingJoinPoint pjp) {

 String targetName = pjp.getTarget().getClass().getSimpleName();
 String methodName = pjp.getSignature().getName();
 Object[] arguments = pjp.getArgs();

 StringBuilder sb = new StringBuilder();
 sb.append(targetName).append(".").append(methodName);
 if ((arguments != null) && (arguments.length != 0)) {
 for (int i = 0; i < arguments.length; i++) {
 sb.append(".").append(arguments[i]);
 }
 }
 return sb.toString();
 }

 public void setCache(Cache cache) {
 this.cache = cache;
 }

 private Cache cache;
 private Logger logger = Logger.getLogger(Constants.LOG_NAME);
}

Here is applicationContext.xml:

<beans xmlns=»http://www.springframework.org/schema/beans»
xmlns:xsi=»http://www.w3.org/2001/XMLSchema-instance»
xmlns:aop=»http://www.springframework.org/schema/aop»
xsi:schemaLocation=»http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-2.5.xsd»> …

 <bean id="rockerCacheAspect" class="org.springaop.chapter.five.
cache.CacheAspect" >
 <property name="cache">
 <bean id="bandCache" parent="cache">
 <property name="cacheName" value="methodCache" />
 </bean>
 </property>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Design with AOP

[172]

</bean>

<!-- CACHE config -->

<bean id="cache" abstract="true"
 class="org.springframework.cache.ehcache.EhCacheFactoryBean">
 <property name="cacheManager" ref="cacheManager" />
</bean>

<bean id="cacheManager"
class="org.springframework.cache.ehcache.
EhCacheManagerFactoryBean">
 <property name="configLocation" value="classpath:org/springaop/
chapter/five/cache/ehcache.xml" />
 </bean>

 …
</beans>

The idea about the caching aspect is to avoid repetition in our code base and have
a consistent strategy for identifying objects (for example using the hash code of an
object) so as to prevent objects from ending up in the cache twice.

Employing an around advice, we can use the cache to make the method invocations
return the cached result of a previous invocation of the same method in a totally
transparent way. In fact, to the methods of the classes defined in the interception rules
in pointcuts will be given back the return values drawn from the cache or, if these are
not present, they will be invoked and inserted in the cache. In this way, the classes and
methods don't have any knowledge of obtaining values retrieved from the cache.

Let's define the pointcut that intercepts the methods of the class DummyClass.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">
 …

<aop:config>

<!-- Pointcuts -->
<aop:pointcut id="readOperation" expression=
"execution(* org.springaop.chapter.five.cache.DummyClass.get*(..))"
/>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 5

[173]

<aop:pointcut id="exitOperation" expression=
"execution(void org.springaop.chapter.five.cache.DummyClass.exit())"
/>

<!-- Aspects -->
<aop:aspect id="dummyCacheAspect" ref="rockerCacheAspect">
<aop:around pointcut-ref="readOperation" method="cacheObject" />
 <aop:after pointcut-ref="exitOperation" method="flush" />
</aop:aspect>

</aop:config>
 …
</beans>

Class DummyClass used to check the cache's working:

package org.springaop.chapter.five.cache;

public class DummyClass {

 public String getFooFighters(){
 return "My hero";
 }

 public String getHives(String year){
 if(year.equals("2004")){
 return "Walk idiot walk !";}else{
 return "Abra Cadaver";
 }
 }

 public String getDandyWarhols(){
 return "Ride";
 }

public void exit(){
 System.out.println("The end.");
 }
}

Here is ApplicationContext.xml complete:

<beans xmlns=»http://www.springframework.org/schema/beans»
xmlns:xsi=»http://www.w3.org/2001/XMLSchema-instance»
xmlns:aop=»http://www.springframework.org/schema/aop»
xsi:schemaLocation=»http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Design with AOP

[174]

http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-2.5.xsd»>

<bean id="dummy" class="org.springaop.chapter.five.cache.DummyClass"/>

 <aop:config>
 <!-- Pointcuts -->

 <aop:pointcut id="readOperation"
 expression="execution(* org.springaop.chapter.five.cache.
DummyClass.get*(..))" />

 <aop:pointcut id="exitOperation"
 expression="execution(void org.springaop.chapter.five.
cache.DummyClass.exit())" />

 <!-- Aspects -->

 <aop:aspect id="dummyCacheAspect" ref="rockerCacheAspect">
 <aop:around pointcut-ref="readOperation" method="cacheObject"
/>
 <aop:after pointcut-ref="exitOperation" method="flush" />
 </aop:aspect>

 </aop:config>

 <bean id="rockerCacheAspect" class="org.springaop.chapter.five.
cache.CacheAspect" >
 <property name="cache">
 <bean id="bandCache" parent="cache">
 <property name="cacheName" value="methodCache" />
 </bean>
 </property>
 </bean>

 <!-- CACHE config -->

 <bean id="cache" abstract="true"
 class="org.springframework.cache.ehcache.EhCacheFactoryBean">
 <property name="cacheManager" ref="cacheManager" />
 </bean>

 <bean id="cacheManager"
 class="org.springframework.cache.ehcache.
EhCacheManagerFactoryBean">
 <property name="configLocation" value="classpath:org/springaop/
chapter/five/cache/ehcache.xml" />
 </bean>

</beans>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 5

[175]

ApplicationContext contains the following beans:

1. The dummy bean, used to test the cache's working.
2. The readOperation and exitOperation pointcuts.
3. The dummyCacheAspect aspect, with around and after advices.
4. The rockerCacheAspect, which is the implementation of the aspect class

that contains the logic of recovery from and insertion into the cache.
5. The cache bean, which is an EhCacheFactoryBean.
6. The cacheManager bean, which is an EhCacheManagerFactoryBean.

Here is the test class:

package org.springaop.chapter.five.cache;

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.
ClassPathXmlApplicationContext;

public class CacheTest {

 public static void main(String[] args){

 String[] paths = { "org/springaop/chapter/five/cache/
applicationContext.xml" };

 ApplicationContext ctx = new ClassPathXmlApplicationContext
(paths);

 DummyClass dummy = (DummyClass) ctx.getBean("dummy");
 dummy.getFooFighters();
 dummy.getHives("2004");
 dummy.getDandyWarhols();

 dummy.getFooFighters();
 dummy.getHives("2004");
 dummy.getDandyWarhols();

dummy.exit();
 }
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Design with AOP

[176]

The result will be:

As we can see from the log, the first invocations of methods are always followed by
put because the cache didn't contain the results of invocations.

On the second calls, the values are instead recovered by the cache with key
className.method.arguments. The number of hits, the date of creation, and
the last access are shown as well.

Security with AOP
Security is one of the most important elements of an application. The word "security"
covers two concepts:

Authentication is the verification's process of a principal's identity; a
principal is typically a user. A principal in order to be authenticated
provides a credential that is the password.
Authorization, on the other hand, is the process of granting authorities,
which are usually roles, to an authenticated user.

Once a user is authenticated and has roles, he or she can work on the application and
perform the actions permitted by an access control list, which according to the user's
roles allows certain operations.

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 5

[177]

Before Spring Security, the rules of who can do what were usually implemented
using custom code and an in-house framework, or using JAAS. Usually, the first
type of implementation was a consequence of the second type's difficulty.
Unfortunately, though custom-type security fits its purposes, it lacks in its main
aim. This is because it's safer to employ a much-used framework that is constantly
updated and corrects security problems, rather than having an in-house framework
that might be barely tested. Beside these considerations, which should be carefully
take into account, defining and applying security rules without AOP means causing
code tangling and code scattering.

In fact, AOP applied to security solves most of the common practical problems
concerning security. In order to solve them we use Spring Security 2.0.x (formerly
Acegi Security System for Spring), configuring it properly to carry out most of the
work according to the application's needs. We will see its configuration in Chapter 7.
Now let's look just at some parts where AOP intervenes in its configuration.

For now, we will not deal with the authentications and roles attribution. Instead,
we will start from the point at which the decision is taken to authorize a user and to
provide him or her with roles to access a certain resource. Taking an actual decision
whether or not to allow the user (based on its roles) gain access to the secure resource
is the responsibility of the access decision manager.

An access decision manager implements the AccessDecisionManager interface,
and in order to carry out his or her job, the manager needs a group of voters which
implement the AccessDecisionVoter interface.

The AccessDecisionManagers provided by Spring are:

AffirmativeBased: At least one voter votes to grant access
ConsensusBased: A consensus of voters votes to grant access
UnanimousBased: All voters vote to abstain or grant access

If none of them is specified, we employ AffirmativeBased with two voters,
RoleVoter and AuthenticatedVoter. A voter can vote to grant, deny, or abstain.

RoleVoter: This bases its vote on role. If the user has the required role by the
required resource, it votes ACCESS_GRANTED. But if the resource doesn't have
a specified role, it votes ACCESS_ABSTAIN. If the resource has a role the user
doesn't have, then it votes ACCESS_DENIED.
AuthenticatedVoter: This votes on the strength of the user's authentication.
A user can be authenticated with:

IS_AUTHENTICATED_FULLY
IS_AUTHENTICATED_REMEMBERED

•

•

•

•

•

°

°

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Design with AOP

[178]

IS_AUTHENTICATED_ANONYMOUSLY

AuthenticatedVoter votes ACCESS_GRANTED if the
authentication level is higher than the level requested by the
resource. The highest one is IS_AUTHENTICATED_FULLY.

In the following XML, we see the declaration of the access decision manager:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.springframework.org/schema/security"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/security
http://www.springframework.org/schema/security/spring-security-
2.0.4.xsd
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">
…
 <bean id="accessDecisionManager" class="org.springframework.
security.vote.AffirmativeBased">
 <property name="decisionVoters">
 <list>
 <bean class="org.springframework.security.vote.RoleVoter" />
 <bean class="org.springframework.security.vote.AuthenticatedVoter"
/>
 </list>
 </property>
 </bean>

</beans>

Once we have defined the AccessDecisionManager, we can use AOP to decide the
roles that are necessary to call the several beans' methods.

We can employ three strategies:

1. Securing methods with security interceptors.
2. Securing methods with pointcuts.
3. Securing methods with annotations.

In order to employ interceptors, the aspectjrt.jar and
aspectjweaver.jar �ARs must be in the classpath. For the annotations,
there must be the �AR spring-security-core-tiger-2.0.x.jar.

°

°

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 5

[179]

Securing methods with security interceptors
With security interceptors we can define the roles necessary to execute methods on
the bean.

Let's have the interface:

public interface FooService {

 public Integer getBalance(Integer idAccount);
 public void setBalanceAccount(Integer id, Integer balance);
 public boolean suspendAccount(Integer id);

}

FooService is implemented by FooServiceImpl, that is configured as follows :

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:security="http://www.springframework.org/schema/security"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/security
http://www.springframework.org/schema/security/spring-security-
2.0.4.xsd">
…

 <bean id="accessDecisionManager" class="org.springframework.
security.vote.AffirmativeBased">
 <property name="decisionVoters">
 <list>
 <bean class="org.springframework.security.vote.RoleVoter"
/>
 <bean class="org.springframework.security.vote.AuthenticatedVoter"
/>
 </list>
 </property>
 </bean>
…

<bean class="org.springaop.chapter.five.security.FooServiceImpl">
 <security:intercept-methods
 access-decision-manager-ref="accessDecisionManager">
 <security:protect method="org.springaop.chapter.five.
security.FooService.getBalance"
 access="ROLE_USER" />
 <security:protect

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Design with AOP

[180]

 method="org.springaop.chapter.five.security.FooService.
setBalanceAccount"
 access="ROLE_ACCOUNTING,ROLE_ADMIN" />
 <security:protect method="org.springaop.chapter.five.
security.FooService.suspendAccount"
 access="ROLE_ADMIN" />
 </security:intercept-methods>
 </bean>
…
</beans>

We have defined some roles (separated by a comma) that can execute those method
we want to be executed by a user that has a particular role. This choice permits us to
define roles on methods directly on beans, but makes the configuration files too long.

Securing methods with pointcuts
With this strategy, it's possible to define the roles required for the different pointcuts
with AspectJ syntax that we define with the tag global-method-security.

We use the same rules on the same methods of the interface FooService.

 <global-method-security
 access-decision-manager-ref="accessDecisionManager">
 <protect-pointcut
 expression="execution(* org.springaop.chapter.five.security.
FooService.getBalance(..))"
 access="ROLE_USER" />
 <protect-pointcut
 expression="execution(* org.springaop.chapter.five.security.
FooService.set*(..))"
 access="ROLE_ACCOUNTING,ROLE_ADMIN" />
 <protect-pointcut
 expression="execution(* org.springaop.chapter.five.security. org.springaop.chapter.five.security.org.springaop.chapter.five.security.
FooService.suspendAccount(..))"
 access="ROLE_ADMIN" />

 </global-method-security>

When using pointcuts, we don't have to use interceptors if they can be in conflict
with the execution of methods that we have defined in the configuration. This
modality of configuration is consistent with AspectJ syntax for the definition of
pointcuts, making the modality of configuration of aspects homogeneous.

Compared to interceptors, the configuration is less prolix and dispersive as it
concentrates the methods that can be invoked with the different roles at one point.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 5

[181]

Securing methods with annotations
We can use annotations to define which roles can be executed by the methods of our
classes. We will use the same rules on the same methods of the interface We will use the same rules on the same methods of the interface FooService.

package org.springaop.chapter.five.security;

import org.springframework.security.annotation.Secured;

public class FooServiceImplWithAnnotations implements FooService{

 @Secured("ROLE_USER")
 public Integer getBalance(Integer idAccount) {
 Integer result = 0;
 // do something
 return result;
 }

 @Secured({ "ROLE_ACCOUNTING", "ROLE_ADMIN" })
 public void setBalanceAccount(Integer id, Integer balance) {
 // do something
 }

 @Secured("ROLE_ADMIN")
 public boolean suspendAccount(Integer id) {
 boolean result = false;
 // do something
 return result;
 }
}

With this strategy, we define the roles within the class, needed for the execution
of methods. With this choice we don't have to configure any XML, but we lose the
possibility of seeing the roles for the methods present defined in a single place.

Summary
In this chapter we've seen how to implement crosscutting functionalities, such
as concurrency control, the employment of a cache, and security management.
Without AOP those functionalities would be scattered across the application, with
the same code duplicated in different modules. With AOP we can have cleaner
code, much more concise and easier to maintain and debug. We've seen how it is
possible to implement these functionalities without having tangled or scattered code,
implementing functionalities with aspects and advices.

Other important functionalities are transactions management, application logging,
exception management, layout, and others. They will be illustrated in the next two
chapters in a complete and working application.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Three-tier Spring Application,
Domain-Driven Design

This chapter presents an overview of the Domain-Driven Design (DDD) concept
and explains its capabilities and features. Here is a brief outline of the topics covered
in this chapter:

Domain-Driven Design
The Domain layer of the sample application
The Infrastructure layer of the sample application

Domain-Driven Design
DDD is not a technology or methodology. It is a way of thinking and a set of
priorities aimed at accelerating software projects that have to deal with complicated
domains (http://www.domaindrivendesign.org).

For many years, designing and realizing �EE application has meant moving Data
Transfer Objects (DTO) and Value Objects (VO) between layers and writing
procedural code to allow Enterprise JavaBeans (EJB) to do their work.

This led to the use of classes that were defined as anemic by Martin Fowler
(http://martinfowler.com/bliki/AnemicDomainModel.html), that's to say,
classes where the business logic is completely separate from the domain objects;
usually it is in a service layer, which uses the domain classes as classes of data.

The business logic is contained in services using anemic domain models. But as we
have seen, the application works in a procedural way, and is not object-oriented. The
objects are mere carriers of data realized as DTO or VO, with only the methods get
and set. They have no behavior.

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Three-tier Spring Application, Domain-Driven Design

[184]

As well as being an anti-pattern, this is a misuse of the Object-Oriented
Programming (OOP) paradigm. OOP provides concepts and constructs that
simplify and rationalize the design of application model and business logic.

DDD proposes a lot of little domain classes, instead of the big service classes,
that generate anemic domain models. We have indeed gone back to the origins of
OOP, when the objects had states and behaviors as models of the entities of a
particular domain.

DDD uses all of the OOP concepts to define the business logic in the domain
classes, making it easier to modify the application as requirements change and
where needed.

The application is extendable, modular, and easy to change. Also, the testability is
improved, and the customer and the development team use a common language
(ubiquitous language).

Using anemic classes, a fat service layer is created where we have façade classes to
move anemic objects that are used only as data containers. (For details about façade
pattern http://en.wikipedia.org/wiki/Facade_pattern.)

This leads to the same problems for which we apply AOP with the OOP: duplicated
code that is scattered in several classes, façade classes in this case.

In the rest of the chapter, we will see how AOP and Dependency Injection support
the design obtained with DDD and make class testing easier.

Roles and responsibilities
In this section we are going to see a generic organization to define the roles and
responsibilities of objects with DDD. This organization should be considered open.
If we need to act in a different way, we are free to do so.

Entities
These are objects that have their own identity and almost always correspond to real
concepts. They are the core of the domain model, and are realized as Plain Old Java
Objects (POJO).

Aggregates
The domain model can be composed of several associated entities. If aggregated,
they can be considered as a unique entity that must be accessible from a unique point
to preserve the integrity of the objects contained. An aggregation is accessible only
through the root, that is, an entity.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 6

[185]

The root internally keeps the references to all the objects that compose the
aggregation, which in some cases have an identity only as parts of the aggregation.

If we have to act on the aggregation, it's the root that makes the modifications in a
controlled way. As the entities inside the aggregation can't be accessed from outside,
their state can't be corrupted.

If we need to pass data to the external code, a copy (and not the reference) is passed
just to make the aggregation impenetrable to external modifications. Everything has
to pass through the root. If the root is removed, all the objects of the aggregation are
removed. The root guarantees the maintenance of invariance.

Modules
When the application gets bigger, the model grows consequently. To manage
the organization and complexity, the domain model is divided into modules that
are interrelated.

Value objects
These are objects defined only by the value of their attributes and have no behavior
and identity.

They are often unchangeable, and since they are defined only by the value of their
attributes, they are interchangeable.

Factories
These define methods to create entities that may need many operations to be built.
Above all, in this case, it would be necessary to build a complex graph of objects.

The factory becomes responsible for the encapsulation of the logic behind the
creation of object graphs that are linked and work together to perform necessary
business logic.

This encapsulation enables the caller class to have the entities needed to perform
its work.

Repositories
The repository classes manage the entity collections and read/write/update/
delete methods.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Three-tier Spring Application, Domain-Driven Design

[186]

The exposed methods are declared in the interface, which masks the implementation,
which uses the framework for persistence.

Defining the operations through the interface in terms of domain objects eliminates
the need to focus on the details of persistence.

Services
Services are objects that have responsibilities that can't be contained in a class
of a single domain model, and so act on several objects, nearly always in a
transactional way.

A service has three characteristics:

The operation is related to a domain concept that is not a natural part of an
entity or VO
The interface is defined in terms of other elements of the domain model
The operation is stateless

Architecture
After seeing the division of responsibilities, we will see the conceptual architecture.

User interface
This is the presentation layer. Its task is presenting information from the application
to the user, and acquiring commands from the user to the application.

Application layer
The application layer's task is to coordinate the application's activities. It doesn't
contain any business logic or object status, but rather maintains the progress status of
the application tasks such as navigation in the User Interface (UI) and validation of
the fields received by the application.

Domain layer
This layer contains the business domain and the status of the business objects, which
contain the status and behavior of business entities, and the business rules.

If it is necessary to execute several steps to perform a business use case, it maintains
information about status among the steps.

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 6

[187]

In addition to domain objects, it also contains services that implement logic that can't
be contained in a single domain object.

The objects contained in this layer do not depend on any framework employed in
other layers because it must be completely isolated from the other layers.

In this layer we find entities, VO, services, and factories.

All the concepts of OOP have been used in the implementation of this layer:
interfaces, inheritance, encapsulation, and polymorphism. Entities have status
(attributes) and behavior (methods that act on the state) because they have to
model concepts of the real world.

However, by using all the features of OOP we fall again into the problems explained
in the first chapter, such as code scattering and tangling.

In order to support the domain layer, AOP and Dependency Injection are employed.

Infrastructure layer
This layer provides support to the other layers, such as persistence, support for the
UI, and allowing communication between layers. This layer contains the repositories.

Sample application
The application we are going to prototype creates an online wholesale fresh-fruit
shop, a market where in the evening goods that will be delivered to customers the
next morning are traded. In this way, goods are not collected and handled until there
is actually a buyer. The buyer buys goods that are actually available and will collect
them the next morning to sell at a retail market.

Farmers inform about the availability of a certain quantity of fruit they offer,
pointing out the main features that qualify the product.

Certified customers buy a certain quantity of different kinds of fruits.

At the time of ordering, the system ensures the full availability of goods (orders take
place in real time). The order will be put in ACCEPTED status and the customer will be
immediately notified. The customer can pay by credit card and get the goods early
the next morning.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Three-tier Spring Application, Domain-Driven Design

[188]

The following image contains an overview of the application:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 6

[189]

Design
The first step in the use of DDD is the location of entities.

Let's define a method that is shared between all the entities to identify
them univocally.

package it.freshfruits.domain.entity;

public interface BaseEntity {

 public Integer getId();
}

Let's identify the customer in the domain, since the sale of the produce is the first
reason for the application's existence.

package it.freshfruits.domain.entity;

public interface NamedEntity extends BaseEntity{

 public String getName();
}

NamedEntity adds a getName to BaseEntity:

package it.freshfruits.domain.entity;

import it.freshfruits.domain.vo.Address;
import it.freshfruits.domain.vo.ContactInformation;

import java.util.List;

public interface Customer extends NamedEntity{

 public Address getAddress();

 public ContactInformation getContact();

 public void modifyContactInformation(ContactInformation contact);

 public void modifyAddress(Address address);

 public Boolean saveCustomer();

 public Boolean createOrder();

 public Boolean saveOrder();

 public Order getOrder();

 public List<Order> getOrders();
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Three-tier Spring Application, Domain-Driven Design

[190]

Customer interface define the customer's behaviors.

The entity Customer uses internally VO Address and VO ContactInformation.

Let's identify the fruit type in the domain. It may seem a VO, but it represents the
type of object bought by the customer; vice versa, the real VO is the item in the order.

package it.freshfruits.domain.entity;

import java.math.BigDecimal;

public interface FruitType extends NamedEntity{

 public String getLocation();

 public String getColor();

 public String getFlavour();

 public BigDecimal getPrice();
}

The entity FruitType represents a type of fruit with its characteristics.

The following Order class represents an order from a customer.
package it.freshfruits.domain.entity;

import it.freshfruits.domain.vo.OrderItem;

import java.math.BigDecimal;
import java.util.Date;
import java.util.Set;

public interface Order extends BaseEntity{

 public String getStatus();

 public String getIdCustomer();

 public Set<OrderItem> getOrderItems();

 public Integer getNumberItems();

 public void addOrderItem(OrderItem item);

 public void saveOrder();

 public BigDecimal getOrderAmount();

 public Date getDateOrder();

 public Boolean removeOrderItem(String idItem);
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 6

[191]

The entity Order contains a Set of VO OrderItem . Any OrderItem contains the
information about the quantity and amount of a certain FruitType.

Each OrderItem contains a FruitType different from others. An Order can't contain
two instances of OrderItem with the same FruitType.

The OrderItem represents one of the elements that compose the Order of
a Customer.

package it.freshfruits.domain.vo;

import java.math.BigDecimal;

import it.freshfruits.domain.entity.FruitType;

public interface OrderItem {

 public FruitType getFruitType();

 public Integer getQuantity();

 public Integer getIdOrder();

 public BigDecimal getAmountItem();
}

An Address object acts as a VO object that contains address information.

The Address represents the address of a Customer.

package it.freshfruits.domain.vo;

public interface Address {

 public String getStreet();

 public String getCity();

 public String getState();
}

ContactInformation represents contact information about the Customer.

package it.freshfruits.domain.vo;

public interface ContactInformation {

 public String getPhoneNumber();

 public String getMobilePhoneNumber();

 public String getFaxNumber();

 public String getEmail();
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Three-tier Spring Application, Domain-Driven Design

[192]

It is important to underline that, apart from being an entity, Customer is
also an aggregate that performs the work of root towards Address and
ContactInformation. In fact, the interfaces of Address and ContactInformation
provide only accessors method to avoid compromising their internal state.

Let's see the implementations of Customer and the VO that it contains
(Address and ContactInformation).

package it.freshfruits.domain.entity;

import it.freshfruits.application.repository.CustomerRepository;
import it.freshfruits.application.repository.OrderRepository;
import it.freshfruits.domain.vo.Address;
import it.freshfruits.domain.vo.AddressImpl;
import it.freshfruits.domain.vo.ContactInformation;
import it.freshfruits.domain.vo.ContactInformationImpl;
import it.freshfruits.util.Constants;

import java.io.Serializable;
import java.util.Date;
import java.util.List;

import org.springframework.beans.factory.annotation.Autowire;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Configurable;
import org.springframework.beans.factory.annotation.Qualifier;

@Configurable(dependencyCheck = true, autowire = Autowire.BY_TYPE)
public class CustomerImpl implements Customer, Serializable {

 public Boolean createOrder() {
 Boolean result = false;
 if (order == null) {
 order = new OrderImpl.Builder(Constants.ID_NEW, new
Date(), id.toString()).build();
 result = true;
 }
 return result;
 }

 public Boolean saveCustomer() {
 return customerRepository.saveCustomer(this);
 }

 public Address getAddress() {
 return address;
 }

 public ContactInformation getContact() {

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 6

[193]

 return contactInformation;
 }

 public Integer getId() {
 return id;
 }

 public String getName() {
 return name;
 }

 public void modifyContactInformation(ContactInformation contact) {
 contactInformation = contact;
 }

 public void modifyAddress(Address address) {
 this.address = address;
 }

 public List<Order> getOrders() {
 return orderRepository.getOrders(id.toString());
 }

 public Order getOrder() {
 return order;
 }

 public Boolean saveOrder() {
 return orderRepository.saveOrder(order);
 }

 public String toString() {
 return new StringBuilder().append("\nid:").append(id).
append("\nname:").append(name).append("\n<-address->").
append(address).append("\n<-contactInformation->").append(
contactInformation)
 .toString();
 }

 public static class Builder {
 // Required parameters
 private String name = "";
 private Integer id = 0;

 // Optional parameters
 private Address address;
 private ContactInformation contactInformation;
 private OrderRepository orderRepository;
 private CustomerRepository customerRepository;

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Three-tier Spring Application, Domain-Driven Design

[194]

 public Builder(String name, String id) {
 this.name = name;
 this.id = Integer.valueOf(id);
 }

 public Builder(String name, String id, Address address,
ContactInformation contact) {
 this.name = name;
 this.id = Integer.valueOf(id);
 this.address = address;
 this.contactInformation = contact;
 }

 public Builder address(String street, String city, String
state) {
 address = new AddressImpl.Builder(street, city, state).
build();
 return this;
 }

 public Builder contactInfo(String phoneNumber, String
mobilePhoneNumber, String faxNumber, String email) {
 contactInformation = new ContactInformationImpl.
Builder(phoneNumber, mobilePhoneNumber, faxNumber, email).build();
 return this;
 }

 public Builder orderRepository(OrderRepository
orderRepository) {
 this.orderRepository = orderRepository;
 return this;
 }

 public Builder customerRepository(CustomerRepository
customerRepository) {
 this.customerRepository = customerRepository;
 return this;
 }

 public CustomerImpl build() {
 return new CustomerImpl(this);
 }
 }

 private CustomerImpl(Builder builder) {
 id = builder.id;
 name = builder.name;
 address = builder.address;
 contactInformation = builder.contactInformation;
 orderRepository = builder.orderRepository;

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 6

[195]

 customerRepository = builder.customerRepository;
 }

 @Autowired
 public void setCustomerRepository(@Qualifier("customerRepository")
CustomerRepository customerRepository) {
 this.customerRepository = customerRepository;
 }

 @Autowired
 public void setOrderRepository(@Qualifier("orderRepository")
OrderRepository orderRepository) {
 this.orderRepository = orderRepository;
 }

 private CustomerRepository customerRepository;
 private OrderRepository orderRepository;
 private Address address;
 private Order order;
 private ContactInformation contactInformation;
 private String name;
 private Integer id;
 private static final long serialVersionUID = 6512264975502119631L;
}

Customer is one of the main objects questioned by the application layer. To let it
perform its work, the dependencies are injected at the moment of the creation of
the Customer through the annotation @Configurable(dependencyCheck = true,
autowire=Autowire.BY_TYPE)

It does not have public constructors and new instances are built using a Builder.
It interacts with two repositories to perform operations: the OrderRepository and
the CustomerRepository. It allows placing a new order and saving the customer's
address. Using the order provided by customer, it is possible to perform all the
operations defined by the Order interface.

The AddressImpl class implements the VO interface Address.

package it.freshfruits.domain.vo;

import it.freshfruits.util.ValidationUtils;

public final class AddressImpl implements Address {

 public static class Builder {
 private String street = "";
 private String city = "";
 private String state = "";

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Three-tier Spring Application, Domain-Driven Design

[196]

 public Builder(String street, String city, String state) {
 ValidationUtils.validateStreet(street);
 ValidationUtils.validateCity(city);
 ValidationUtils.validateState(state);
 this.street = street;
 this.city = city;
 this.state = state;
 }

 public AddressImpl build() {
 return new AddressImpl(this);
 }
 }

 public String getStreet() {
 return street;
 }

 public String getCity() {
 return city;
 }

 public String getState() {
 return state;
 }

 public String toString() {
 return new StringBuilder().append("\nstreet:").append(street).
append(
 "\ncity:").append(city).append("\nstate:").append(state)
 .toString();
 }

 private AddressImpl(Builder builder) {
 city = builder.city;
 state = builder.state;
 street = builder.street;
 }

 private String street = "";
 private String city = "";
 private String state = "";
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 6

[197]

ContactInformationImpl implements the VO interface ContactInformation.

package it.freshfruits.domain.vo;

import it.freshfruits.util.ValidationUtils;

public final class ContactInformationImpl implements
ContactInformation {

 public static class Builder {
 private String phoneNumber = "";
 private String mobilePhoneNumber = "";
 private String faxNumber = "";
 private String email = "";

 public Builder(String phoneNumber, String mobilePhoneNumber,
 String faxNumber, String email) {
 ValidationUtils.validatePhoneNumber(phoneNumber);
 ValidationUtils.validateMobilePhoneNumber(mobilePhoneNumber);
 ValidationUtils.validateFaxNumber(faxNumber);
 ValidationUtils.validateEmail(email);
 this.phoneNumber = phoneNumber;
 this.mobilePhoneNumber = mobilePhoneNumber;
 this.faxNumber = faxNumber;
 this.email = email;
 }

 public ContactInformationImpl build() {
 return new ContactInformationImpl(this);
 }
 }

 public String getPhoneNumber() {
 return phoneNumber;
 }

 public String getMobilePhoneNumber() {
 return mobilePhoneNumber;
 }

 public String getFaxNumber() {
 return faxNumber;
 }

 public String getEmail() {
 return email;
 }

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Three-tier Spring Application, Domain-Driven Design

[198]

 public String toString() {
 return new StringBuilder().append("\nphoneNumber:").
append(phoneNumber)

 .append("\nmobilePhoneNumber:").append(mobilePhoneNumber)

 .append("\nfaxNumber:").append(faxNumber).append("\nemail:")
 .append(email).toString();
 }

 private ContactInformationImpl(Builder builder) {
 this.email = builder.email;
 this.faxNumber = builder.faxNumber;
 this.mobilePhoneNumber = builder.mobilePhoneNumber;
 this.phoneNumber = builder.phoneNumber;
 }

 private String phoneNumber = "";
 private String mobilePhoneNumber = "";
 private String faxNumber = "";
 private String email = "";
}

These implementations (CustomerImpl, AddressImpl, ContactInformationImpl)
don't have public constructors, but internal builders and validators.

Even though AddressImpl and ContactInformationImpl are simple VO, they
contain minimal validation rules to ensure building with values that make sense for
the application. In fact, the fields are either empty or have a minimal pre-established
length. The validation on the UI will then decide if they must have values or not
and if the type is correct (numeric or text). In any case, the validation on the UI is
made both on the builder and mutator methods. The class is final to prevent the
possibility of the creation of subclasses. In the class, the override of toString is done
to allow a communicative visualization when it's needed.

AddressImpl and ContactInformationImpl are the implementations of the VO that
are used in the interface Customer.

Now let's see the other entities, such as FruitType, Order, and OrderItem.

package it.freshfruits.domain.entity;

import it.freshfruits.application.repository.FruitTypeRepository;
import it.freshfruits.util.ValidationUtils;

import java.io.Serializable;
import java.math.BigDecimal;

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 6

[199]

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Configurable;

@Configurable(dependencyCheck = true)
public class FruitTypeImpl implements FruitType, Serializable {

 @Autowired
 public void setFruitTypeRepository(FruitTypeRepository
fruitTypeRepository) {
 this.fruitTypeRepository = fruitTypeRepository;
 }

 public void save() {
 if (id == 0) {
 fruitTypeRepository.insert(this);
 } else {
 fruitTypeRepository.update(this);
 }
 }

 public String getColor() {
 return color;
 }

 public String getFlavour() {
 return flavour;
 }

 public String getLocation() {
 return location;
 }

 public String getName() {
 return name;
 }

 public BigDecimal getPrice() {
 return price;
 }

 public Integer getId() {
 return id;
 }

 public String toString() {
 return new StringBuilder().append("\nid:").append(id).append(
"\nname:")
 .append(name).append("\ncolor:").append(color).append(

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Three-tier Spring Application, Domain-Driven Design

[200]

 "\nflavour:").append(flavour).append("\nlocation:")
 .append(location).toString();
 }

 public static class Builder {
 // Required parameters
 private String name = "";
 private Integer id = 0;
 private BigDecimal price;

 // optional parameters
 private String color = "";
 private String flavour = "";
 private String location = "";
 private FruitTypeRepository fruitTypeRepository;

 private void validatePrice(BigDecimal price) {

 if (price == null || (price.compareTo(BigDecimal.ZERO) <= 0))

 throw new IllegalArgumentException("price argument < 0 :"+
price);
 }

 private void validateName(String name) {
 if (name == null || name.length() != 0 && name.length() < 3)
 throw new IllegalArgumentException("name argument < 3 :" +
name);
 }

 private void validateColor(String color) {
 if (color == null || color.length() != 0 && color.length() <
3)
 throw new IllegalArgumentException("color argument < 3 :"+
color);
 }

 private void validateFlavour(String flavour) {
 if (flavour == null || flavour.length() != 0
 && flavour.length() < 4)
 throw new IllegalArgumentException("flavour argument < 4 :"+
flavour);
 }

 private void validateLocation(String location) {
 if (location == null || location.length() != 0
 && location.length() < 3)

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 6

[201]

 throw new IllegalArgumentException("location argument < 3
:"+ location);
 }

 public Builder(String name, Integer id, BigDecimal price) {
 ValidationUtils.validateId(id.toString());
 validateName(name);
 validatePrice(price);
 this.name = name;
 this.id = id;
 this.price = price;
 }

 public Builder color(String val) {
 validateColor(val);
 color = val;
 return this;
 }

 public Builder flavour(String val) {
 validateFlavour(val);
 flavour = val;
 return this;
 }

 public Builder location(String val) {
 validateLocation(val);
 location = val;
 return this;
 }

 public Builder fruitTypeRepository(
 FruitTypeRepository fruitTypeRepository) {
 this.fruitTypeRepository = fruitTypeRepository;
 return this;
 }

 public FruitTypeImpl build() {
 return new FruitTypeImpl(this);
 }
 }

 private FruitTypeImpl(Builder builder) {
 id = builder.id;
 name = builder.name;
 price = builder.price;
 color = builder.color;

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Three-tier Spring Application, Domain-Driven Design

[202]

 flavour = builder.flavour;
 location = builder.location;
 fruitTypeRepository = builder.fruitTypeRepository;
 }

 private Integer id;
 private BigDecimal price;
 private String color, flavour, location, name;
 private FruitTypeRepository fruitTypeRepository;

}

FruitTypeImpl represents a type of product with unambiguous features and
contains information about the price for the sale item.

package it.freshfruits.domain.entity;

import it.freshfruits.application.repository.OrderRepository;
import it.freshfruits.domain.service.SupplyService;
import it.freshfruits.domain.vo.OrderItem;
import it.freshfruits.util.Constants;
import it.freshfruits.util.ValidationUtils;

import java.io.Serializable;
import java.math.BigDecimal;
import java.util.Date;
import java.util.HashSet;
import java.util.Set;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Configurable;

@Configurable(dependencyCheck = true)
public class OrderImpl implements Order, Serializable {

 public String getIdCustomer() {
 return idCustomer.toString();
 }

 public void saveOrder() {
 orderRepository.saveOrder(this);
 }

 public Integer getNumberItems() {
 return orderItems.size();
 }

 public String getStatus() {
 return status;
 }

 public boolean addOrderItem(OrderItem item) {
 return supplyService.isAvailable(item) ? orderItems.add(item)
: false;

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 6

[203]

 }

 public Date getDateOrder() {
 return new Date(dateOrder.getTime());
 }

 public Set<OrderItem> getOrderItems() {
 return orderItems;
 }

 public BigDecimal getOrderAmount() {
 if ((amount.compareTo(BigDecimal.ZERO) == 0) && orderItems.
size() != 0) {

 for (OrderItem item : orderItems) {
 amount = amount.add(item.getAmountItem());
 }
 }
 return amount;
 }

 public Boolean removeOrderItem(String idOrder, String idItem) {
 Boolean result = false;
 for (OrderItem item : orderItems) {
 if (item.getFruitType().getId().toString().equals(idItem))
{
 result = orderItems.remove(item);
 if (result)
 supplyService.release(idOrder, idItem);
 continue;
 }
 }
 return result;
 }

 public Integer getId() {
 return id;
 }

 public String toString() {

 StringBuilder sb = new StringBuilder().append("\nid:").
append(id).append("\nidCustomer:").append(idCustomer).append("\
ndateOrder:").append(dateOrder).append("\namount:").append(amount);

 if (orderItems != null && orderItems.size() > 0) {
 sb.append("\n");
 for (OrderItem item : orderItems) {
 sb.append(item);
 }
 }
 return sb.toString();
 }

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Three-tier Spring Application, Domain-Driven Design

[204]

 @Autowired
 public void setOrderRepository(OrderRepository orderRepository) {
 this.orderRepository = orderRepository;
 }

 @Autowired
 public void setSupplyService(SupplyService supplyService) {
 this.supplyService = supplyService;
 }

 public static class Builder {
 // Required parameters
 private Integer id, idCustomer;
 private Date dateOrder;

 // Optional parameters
 private BigDecimal amount = new BigDecimal("0");
 private Set<OrderItem> orderItems = new HashSet<OrderItem>();

 public Builder(String id, Date dateOrder, String idCustomer) {
 ValidationUtils.validateId(id);
 ValidationUtils.validateId(idCustomer);
 ValidationUtils.validateDate(dateOrder);
 this.dateOrder = dateOrder;
 this.id = Integer.valueOf(id);
 this.idCustomer = Integer.valueOf(idCustomer);
 }

 public Builder amount(BigDecimal val) {
 ValidationUtils.validateAmount(val);
 amount = val;
 return this;
 }

 public Builder orderItems(Set<OrderItem> values) {
 orderItems = values;
 return this;
 }

 public OrderImpl build() {
 return new OrderImpl(this);
 }
 }

 private OrderImpl(Builder builder) {
 id = builder.id;
 idCustomer = builder.idCustomer;
 dateOrder = builder.dateOrder;
 amount = builder.amount;
 orderItems = builder.orderItems;
 }

 private Integer id, idCustomer;
 private String status = Constants.ORDER_NEW;

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 6

[205]

 private BigDecimal amount;
 private Set<OrderItem> orderItems;
 private Date dateOrder;
 private OrderRepository orderRepository;
 private SupplyService supplyService;
 private static final long serialVersionUID = 2525105011114628958L;
}

Order represents the order of a Customer, who can make only one new order at a
time. It returns a visualization of items, implements the addition and removal of an
OrderItem, and maintains the state of the order.

An Order contains some OrderItem that contains information about the type of
product and the amount bought.

Services
There are important domain operations that can't find a natural home in an ENTITY
or VO. Some of these are intrinsically activities or actions.

The name service explains the relationship with other objects.

Our SupplyService provides an availability check and reservation service.

package it.freshfruits.domain.service;

import it.freshfruits.domain.vo.OrderItem;
import it.freshfruits.domain.vo.QuantityAndItemVO;

import java.util.List;
import java.util.Map;

public interface SupplyService {

 public Boolean isAvailable(OrderItem item);

 public Boolean retainItem(OrderItem item);

 public Boolean release(String idOrder, String idItem);

 public Map<String, QuantityAndItemVO> getItemsAvailable();

 public void init();

 public Map<String, List<OrderItem>> getReservedItems();
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Three-tier Spring Application, Domain-Driven Design

[206]

This is the SupplyService implementation:

package it.freshfruits.domain.service;

import it.freshfruits.domain.entity.FruitType;
import it.freshfruits.domain.entity.FruitTypeImpl;
import it.freshfruits.domain.vo.OrderItem;
import it.freshfruits.domain.vo.OrderItemImpl;
import it.freshfruits.domain.vo.QuantityAndItemVO;

import java.math.BigDecimal;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

public class SupplyServiceImpl implements SupplyService {

 public SupplyServiceImpl(){
 this.availableItems = new HashMap<String, QuantityAndItemVO>();
 this.reservedItems = new HashMap<String, List<OrderItem>>();
 }

 public void init() { //test purpose only
 FruitType fruit = new FruitTypeImpl.Builder("orange", new
Integer(2), new BigDecimal("0.20")).build();
 OrderItem item = new OrderItemImpl.Builder(fruit, 400, "1").
build();
 availableItems.put(item.getFruitType().getId().toString(), new
QuantityAndItemVO(item));
 FruitType fruitTwo = new FruitTypeImpl.Builder("lemon", new
Integer(3), new BigDecimal("0.15")).build();
 OrderItem itemTwo = new OrderItemImpl.Builder(fruitTwo, 350,
"1").build();
 availableItems.put(itemTwo.getFruitType().getId().toString(),
new QuantityAndItemVO(itemTwo));
 }

 public Map<String, QuantityAndItemVO> getItemsAvailable() {
 return availableItems;
 }

 public Map<String, List<OrderItem>> getReservedItems() {
 return reservedItems;
 }

 public Boolean isAvailable(OrderItem item) {

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 6

[207]

 return availableItems.containsKey(item.getFruitType().getId().
toString());
 }

 public Boolean release(String idOrder, String idItem) {
 Boolean result = false;

 List<OrderItem> listItems = reservedItems.get(idOrder);

 if (listItems != null && listItems.size() > 0) {

 for (int index = 0; index < listItems.size(); index++) {

 OrderItem item = listItems.get(index);
 if (item.getFruitType().getId().toString().
equals(idItem)) {
 listItems.remove(item);
 QuantityAndItemVO qat = availableItems.
get(idItem);
 qat.add(item.getQuantity());
 availableItems.put(idItem, qat);
 reservedItems.put(idOrder, listItems);
 result = true;
 }
 }
 }
 return result;
 }

 public Boolean retainItem(OrderItem item) {

 Boolean result = false;

 QuantityAndItemVO qat = availableItems.get(item.
getFruitType().getId().toString());

 if (qat != null) {

 if (qat.getQuantity() >= item.getQuantity()) {

 List<OrderItem> items = reservedItems.get(item.
getIdOrder().toString());
 if (items == null) {
 items = new ArrayList<OrderItem>();
 }
 items.add(item);
 reservedItems.put(item.getIdOrder().toString(),
items);

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Three-tier Spring Application, Domain-Driven Design

[208]

 qat.setQuantity(qat.getQuantity() - item.
getQuantity());
 availableItems.put(qat.getItem().getFruitType().
getId().toString(), qat);
 result = true;
 }
 }
 return result;
 }

 private Map<String, QuantityAndItemVO> availableItems;
 private Map<String, List<OrderItem>> reservedItems;
}

Factories
In the interaction of the user with the application layer, the domain object must be
available because its creation/instantiation may involve several objects. Therefore,
factory objects are used.

package it.freshfruits.domain.factories;

public interface CustomerFactory {

 public Customer getCustomer(String idCustomer);

 public Customer getCurrentCustomer();
}

package it.freshfruits.domain.factory;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;

import it.freshfruits.application.repository.CustomerRepository;
import it.freshfruits.domain.entity.Customer;
import it.freshfruits.security.SecurityUtils;

// good candidate for customerCache
@Component("customerFactory")
public class CustomerFactoryImpl implements CustomerFactory {

 public Customer getCurrentCustomer() {
 return customerRepository.selectCustomer(SecurityUtils.
getIdCustomer());
 }

 public Customer getCustomer(String idCustomer) {

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 6

[209]

 return customerRepository.selectCustomer(idCustomer);
 }

 @Autowired
 private CustomerRepository customerRepository;
}

As we can see from the implementation of CustomerFactory, we could recover
it during the interactions with the UI. But after the creation, it is better to keep it
in cache instead of recovering it every time from the database. In fact, this is an
excellent class for a cache that is transparent with AOP.

In this way, the result we obtain is that the Customer object remains alive and
available in the cache. When the Customer object is persisted, it will be eliminated
from the cache.

A good strategy is to retrieve the Customer after the login and to put it in the cache.

A Spring handler interceptor makes this Customer available as a request attribute to
the UI to provide its functionality to the application's users.

At the end of the session, a session listener removes the customer from the cache.

In the next chapter, we will see these operations of insertion and elimination from
the AOP cache.

Repositories
Repositories are the classes that deal with persistence and are used by the domain
classes. In the implementation of Customer, we have seen that two repositories
are used: OrderRepository, which persists the order of a Customer and its
OrderItems, or populates an order with the different items from the database;
and CustomerRepository:

package it.freshfruits.application.repository;

import it.freshfruits.domain.entity.Customer;

import java.util.List;

public interface CustomerRepository {

 public String getIdCustomer(String username);

 public Boolean saveCustomer(Customer customer);

 public String insertCustomer(Customer customer);

 public Boolean updateCustomer(Customer customer);

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Three-tier Spring Application, Domain-Driven Design

[210]

 public Boolean disableCustomer(String id);

 public Boolean deleteCustomer(String id);

 public Customer selectCustomer(String id);

 public List<CustomerView> selectCustomers();

 public List<CustomerView> selectDisabledCustomers();

 public Boolean isPresent(String name);
}

The following CustomerRepositoryImpl is the implementation of the
CustomerRepository. This implementation uses Apache iBATIS (http://ibatis.
apache.org), a data mapper, to perform the storage on database.

package it.freshfruits.application.repository;

import it.freshfruits.domain.entity.Customer;
import it.freshfruits.domain.entity.CustomerImpl;
import it.freshfruits.util.Constants;

import java.util.List;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.orm.ibatis.SqlMapClientTemplate;
import org.springframework.stereotype.Repository;

import com.ibatis.sqlmap.client.SqlMapClient;

@Repository("customerRepository")
public class CustomerRepositoryImpl extends SqlMapClientTemplate
implements CustomerRepository {

 public Boolean saveCustomer(Customer customer) {

 if (customer.getId().toString().equals(Constants.ID_NEW)) {

 return !insertCustomer(customer).equals(null) ? true : false;

 } else {

 return updateCustomer(customer);
 }
 }

 public Boolean deleteCustomer(String id) {

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 6

[211]

 return delete("deleteCustomerVO", Integer.valueOf(id)) == 1 ?
true
 : false;
 }

 public String insertCustomer(Customer customer) {
 return insert("insertCustomerVO", new CustomerMap(customer)).
toString();
 }

 public Boolean isPresent(String name) {
 return queryForObject("selectIdCustomerByName", name) != null ?
true : false;
 }

 public Customer selectCustomer(String id) {
 CustomerMap vo = (CustomerMap) queryForObject("selectCustomerVO
",
 Integer.valueOf(id));
 return new CustomerImpl.Builder(vo.getName(), vo.getId().
toString(), vo.getAddress(), vo.getContactInformation()).
build();
 }

 public Boolean updateCustomer(Customer customer) {
 return update("updateCustomerVO", new CustomerMap(customer)) ==
1 ? true : false;
 }

 public Boolean disableCustomer(String id) {
 return update("disableCustomer", Integer.valueOf(id)) == 1 ?
true : false;
 }

 @SuppressWarnings("unchecked")
 public List<CustomerView> selectCustomers() {
 return queryForList("selectCustomers");
 }

 @SuppressWarnings("unchecked")
 public List<CustomerView> selectDisabledCustomers() {
 return queryForList("selectDisabledCustomers");
 }

 public String getIdCustomer(String username) {
 return queryForObject("selectIdByUsername", username).
toString();
 }

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Three-tier Spring Application, Domain-Driven Design

[212]

 @Autowired @Override
 public void setSqlMapClient(
 @Qualifier("sqlMapClient") SqlMapClient sqlMapClient) {
 super.setSqlMapClient(sqlMapClient);
 }
}

The OrderRepository persists the orders of the customers.

package it.freshfruits.application.repository;

import it.freshfruits.domain.entity.Order;
import it.freshfruits.exception.OrderItemsException;

import java.util.List;

public interface OrderRepository {

 public String insertOrder(Order order) throws OrderItemsException;

 public Boolean saveOrder(Order order);

 public Boolean updateOrder(Order order);

 public Order getOrder(String id, String idCustomer);

 public List<Order> getOrders(String idCustomer);
}

The following OrderRepositoryImpl is the implementation of OrderRepository.

package it.freshfruits.application.repository;

import it.freshfruits.domain.entity.Order;
import it.freshfruits.domain.entity.OrderImpl;
import it.freshfruits.domain.vo.OrderItem;
import it.freshfruits.domain.vo.OrderItemImpl;
import it.freshfruits.exception.OrderItemsException;
import it.freshfruits.util.Constants;

import java.sql.SQLException;
import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Set;

import org.apache.log4j.Logger;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 6

[213]

import org.springframework.orm.ibatis.SqlMapClientCallback;
import org.springframework.orm.ibatis.SqlMapClientTemplate;
import org.springframework.stereotype.Repository;

import com.ibatis.sqlmap.client.SqlMapClient;
import com.ibatis.sqlmap.client.SqlMapExecutor;

@Repository("orderRepository")
public class OrderRepositoryImpl extends SqlMapClientTemplate
implements OrderRepository {

 public Boolean saveOrder(Order order) {
 if (order.getId().toString().equals(Constants.ID_NEW)) {
 return !insertOrder(order).equals(null) ? true : false;
 } else {
 return updateOrder(order);
 }
 }

 public Order getOrder(String id, String idCustomer) {
 Map<String, Integer> params = new HashMap<String, Integer>();
 params.put("id", Integer.valueOf(id));
 params.put("idCustomer", Integer.valueOf(idCustomer));
 OrderMap dto = (OrderMap) queryForObject("selectOrderVO",
params);
 return new OrderImpl.Builder(dto.getId().toString(),
 dto.getDateOrder(), dto.getIdCustomer().toString()).
orderItems(
 dto.getOrderItems()).build();
 }

 @SuppressWarnings("unchecked")
 public List<Order> getOrders(String idCustomer) {
 return queryForList("selectOrdersVO", Integer.
valueOf(idCustomer));
 }

 public Boolean updateOrder(Order order) {
 return update("updateOrderVO", new OrderMap(order)) == 1
? true : false;
 }

 @Autowired
 @Override
 public void setSqlMapClient(
 @Qualifier("sqlMapClient") SqlMapClient sqlMapClient) {

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Three-tier Spring Application, Domain-Driven Design

[214]

 super.setSqlMapClient(sqlMapClient);
 }

 public String insertOrder(Order order) throws OrderItemsException {
 Integer idOrder = (Integer) insert("insertOrderVO", new
OrderMap(order));
 if (order.getNumberItems() > 0) {
 int result = insertOrderItems(order.getOrderItems(),
idOrder);
 if (result != order.getNumberItems()) {
 throw new OrderItemsException();
 }
 }
 return idOrder.toString();
 }

 private Integer insertOrderItems(final Set<OrderItem> items,
 final Integer idOrder) {
 return (Integer) execute(new SqlMapClientCallback() {
 public Object doInSqlMapClient(SqlMapExecutor executor) {
 int ris = 0;
 try {
 executor.startBatch();
 Iterator<OrderItem> iter = items.iterator();

 while (iter.hasNext()) {
 OrderItem item = iter.next();
 executor.insert("insertOrderItemVO",
 new OrderItemImpl.Builder(item.getFruitType(),
 item.getQuantity(), idOrder.toString())
 .build());
 }
 ris = executor.executeBatch();
 } catch (SQLException e) {
 Logger log = Logger.getLogger(this.getClass());
 StringBuffer sb = new StringBuffer(
 "insertOrderItem failed \n").append(
 "num items batch:").append(items.size()).append(
 "\n").append(e.getNextException());
 log.error(sb.toString());
 ;
 }
 return ris;
 }
 });
 }

}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 6

[215]

The RepositoryImpl classes are implemented with iBATIS to realize persistence.

Its configuration files (customer.xml, order.xml) follow. In them we can see the
order fields that correspond to orderItems populated with selectOrderItems,
and fruit populated with selectFruitType (present in another file).

iBatis maps the row of the resultset with an object.

In the following file, we see an alias (typeAlias tag) of the Customer class with the
name customer.

In the tag resultMap we see the effective mapping between the column of the table
in the database and the properties available through set* and get* methods of the
object (Customer in this case). This mapping has the name resultCustomer.

After this mapping, we see the query in the database and the resultMap to map the
row during the select and the insert/update/delete operations.

The following XML configuration map customer.xml acts on the table "customers".

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sqlMap PUBLIC "-//ibatis.apache.org//DTD SQL Map 2.0//EN"
"http://ibatis.apache.org/dtd/sql-map-2.dtd">
<sqlMap>

 <typeAlias type="it.freshfruits.application.repository.CustomerMap"
alias="customerVO" />

 <resultMap class="customerVO" id="resultCustomerVO">
 <result column="id" property="id" jdbcType="BIGINT" />
 <result column="name" property="name" jdbcType="VARCHAR" />
 <result column="city" property="city" jdbcType="VARCHAR" />
 <result column="email" property="email" jdbcType="VARCHAR" />
 <result column="fax" property="faxNumber" jdbcType="VARCHAR" />
 <result column="state" property="state" jdbcType="VARCHAR" />
 <result column="street" property="street" jdbcType="VARCHAR" />
 <result column="mobile" property="mobilePhoneNumber"
 jdbcType="VARCHAR" />
 <result column="phone" property="phoneNumber"
 jdbcType="VARCHAR" />
 </resultMap>

 <!-- S E L E C T -->

 <select id="selectKeyCustomer" resultClass="int">

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Three-tier Spring Application, Domain-Driven Design

[216]

 select nextval('customers_id_seq') ;
 </select>

 <select id="selectCustomerVO" resultMap="resultCustomerVO">
 SELECT id, name, city, email, fax, mobile,
 phone, state, street FROM customers WHERE id = #value# ;
 </select>

 <select id="selectCustomers" resultMap="resultCustomerVO">
 SELECT id, name, city, email, fax, mobile,
 phone, state, street FROM customers WHERE enabled = true;
 </select>

 <select id="selectIdCustomerByName" resultClass="int">
 SELECT id FROM customers WHERE name = #value# ;
 </select>

 <!-- I N S E R T -->

 <insert id="insertCustomerVO" parameterClass="customerVO">
 <selectKey keyProperty="id" resultClass="int">
 select nextval('customers_id_seq')
 </selectKey>
 INSERT INTO customers (id, name, city, email, fax,
 mobile, phone, state, street) VALUES
 (#id:BIGINT#, #name:VARCHAR#, #city:VARCHAR#, #email:VARCHAR#,
 #faxNumber:VARCHAR#, #mobilePhoneNumber:VARCHAR#,
 #phoneNumber:VARCHAR#, #address.state:VARCHAR#, #address.street:
VARCHAR#) ;
 </insert>

 <!-- U P D A T E -->

 <update id="updateCustomerVO" parameterClass="customerVO">
 UPDATE customers SET
 name = #name:VARCHAR#,
 city = #city:VARCHAR#,
 email = #email:VARCHAR#,
 fax = #faxNumber:VARCHAR#,
 mobile = #mobilePhoneNumber:VARCHAR#,
 phone = #phoneNumber:VARCHAR#,
 state = #state:VARCHAR#,
 street = #street:VARCHAR#
 WHERE id = #id:BIGINT# AND enabled = true;
 </update>

 <update id="disableCustomer" parameterClass="int">

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 6

[217]

 UPDATE customers SET
 enabled = false
 WHERE id = #id:BIGINT# ;
 </update>

 <update id="enableCustomer" parameterClass="int">
 UPDATE customers SET
 enabled = true
 WHERE id = #id:BIGINT# ;
 </update>

 <!-- D E L E T E -->

 <delete id="deleteCustomerVO" parameterClass="int">
 DELETE FROM customers WHERE id = #value# ;
 </delete>

</sqlMap>

The following XML configuration map order.xml acts on the table orders.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sqlMap PUBLIC "-//ibatis.apache.org//DTD SQL Map 2.0//EN"
"http://ibatis.apache.org/dtd/sql-map-2.dtd">
<sqlMap>
 <typeAlias type="it.freshfruits.application.repository.OrderMap"
alias="orderVO" />
 <typeAlias type="it.freshfruits.application.repository.
OrderItemMap" alias="orderItemVO" />

 <resultMap class="orderVO" id="resultOrder">
 <result column="id" property="id" jdbcType="BIGINT" />
 <result column="id_customer" property="idCustomer"
jdbcType="BIGINT" />
 <result column="date" property="dateOrder" jdbcType="DATE" />
 <result property="orderItems" select="selectOrderItems"
column="id"/>
 </resultMap>

 <resultMap class="orderItemVO" id="resultOrderItem">
 <result column="id_order" property="idOrder" jdbcType="BIGINT"
/>
 <result column="quantity" property="quantity" jdbcType="INT" />
 <result property="fruit" select="selectFruitTypeVO" column="id_
fruit"/>
 </resultMap>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Three-tier Spring Application, Domain-Driven Design

[218]

 <!-- S E L E C T -->

 <select id="selectKeyOrder" resultClass="int">
 select nextval('orders_id_seq') ;
 </select>

 <select id="selectOrderVO" resultMap="resultOrder">
 SELECT id, id_customer, date FROM orders WHERE id = #id# AND
id_customer = #idCustomer# ;
 </select>

 <select id="selectOrdersVO" resultMap="resultOrder">
 SELECT id, id_customer, date FROM orders WHERE id_customer =
#value# ;
 </select>

 <select id="selectOrderItems" resultMap="resultOrderItem">
 SELECT id_fruit, id_order, quantity FROM orderitems WHERE id_
order = #value# ;
 </select>

 <!-- I N S E R T -->

 <insert id="insertOrderVO" parameterClass="orderVO">
 <selectKey keyProperty="id" resultClass="int">
 select nextval('orders_id_seq')
 </selectKey>
 INSERT INTO orders (id, id_customer, date) VALUES
 (#id:BIGINT#, #idCustomer:BIGINT#, #dateOrder:DATE#) ;
 </insert>

 <insert id="insertOrderItemVO" parameterClass="orderItemVO">
 INSERT INTO orderitems (id_order, id_fruit, quantity) VALUES
 (#idOrder:BIGINT#, #fruit.id:BIGINT#, #quantity:INT#) ;
 </insert>

 <!-- U P D A T E -->

 <update id="updateOrderVO" parameterClass="orderVO">
 UPDATE orders SET
 date = #dateOrder:DATE#
 WHERE id = #id:BIGINT# AND id_customer = #idCustomer:BIGINT# ;
 </update>

</sqlMap>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 6

[219]

Summary
In this chapter, we have seen how use Domain-Driven Design to have an
effective object-oriented design for the sample application and the
components and definitions of the DDD.

We have seen how to use the annotation @Configurable to use IoC in domain
objects that aren't Spring bean, and how provide persistence to the entities with
Apache iBATIS.

In the next chapter, we will see the other parts of the sample application.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Three-tier Spring Application,
Tests and AOP

This chapter continues the sample application described in Chapter 6.

Here is a brief outline of the topics that will be covered in this chapter:

Application layer and user interface
Tests
AOP

Application layer and user interface
To be used by the users, the Domain Classes have to be used by the controllers that
form the application layer. This layer coordinates and interprets the commands given
on the User Interface (UI), which is the HTML pages seen by the final user.

Now we will see some controllers that are part of the UI.

CustomerController lets the customer interact with the store. The names of the
methods of the Controller are:

Create: To perform creation of a new order
save: To save the order
show: To show the customer details
order: To show the content of the order
items: To show the items contained in the order
remove: To remove an item from the order

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Three-tier Spring Application, Tests and AOP

[222]

The controller is built through Spring MVC annotation. The class is marked as
controller with the @Controller annotation with the name customerController.
Each method is marked with @RequestMapping to assign the HTTP URL used to call
the method on the controller.

Every method returns a ModelAndView object that contains the logical template name
and the name and value of the objects to show in the template.

To perform actions on the Customer object, every method uses UiUtils to obtain the
customer object corresponding to user logged in.

package it.freshfruits.ui;

import it.freshfruits.domain.entity.Order;
import it.freshfruits.ui.util.UiUtils;

import javax.servlet.http.HttpServletRequest;

import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.servlet.ModelAndView;

@Controller("customerController")
public class CustomerController{

 @RequestMapping("/customer.create.page")
 public ModelAndView create(HttpServletRequest req) {
 return new ModelAndView("customer/create", "result", UiUtils.
getCustomer(req).createOrder());
 }

 @RequestMapping("/customer.save.page")
 public ModelAndView save(HttpServletRequest req) {
 return new ModelAndView("customer/save", "result", UiUtils.
getCustomer(req).saveOrder());
 }

 @RequestMapping("/customer.show.page")
 public ModelAndView show(HttpServletRequest req) {
 return new ModelAndView("customer/show", "customer", UiUtils.
getCustomer(req));
 }

 @RequestMapping("/customer.order.page")
 public ModelAndView order(HttpServletRequest req) {
 return new ModelAndView("customer/order", "order", UiUtils.
getOrder(req));

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 7

[223]

 }

 @RequestMapping("/customer.items.page")
 public ModelAndView items(HttpServletRequest req) {
 return new ModelAndView("customer/items", "items", UiUtils.
getOrder(req).getOrderItems());
 }

 @RequestMapping("/customer.remove.page")
 public ModelAndView remove(@RequestParam("id") String id,
HttpServletRequest req)
 throws Exception {

 Order order = UiUtils.getOrder(req);
 return order.removeOrderItem(order.getId().toString(), id) ?
 new ModelAndView("customer/items", "items", order.
getOrderItems()):
 new ModelAndView("customer/remove", "result", false);
 }
}

To support the controller in its task, the CustomerInterceptor adds the Customer
object to the request before the work of the controller (CustomerInterceptor acts
as a servlet filter).

In this way, the controller code is cleaner and has only one responsibility.

The intercepor contains the method preHandle, which is executed before
the controller. The interceptor sets the Customer object as an attribute of
the HttpServletRequest.

The CustomerFactory that provides the Customer object is injected with the
@Autowired Spring annotation.

package it.freshfruits.ui.interceptor;

import it.freshfruits.domain.factory.CustomerFactory;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.servlet.handler.
HandlerInterceptorAdapter;

import it.freshfruits.util.Constants;

public class CustomerInterceptor extends HandlerInterceptorAdapter{

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Three-tier Spring Application, Tests and AOP

[224]

 @Override
 public boolean preHandle(HttpServletRequest req,
 HttpServletResponse res, Object handler) throws Exception {
 req.setAttribute(Constants.CUSTOMER,customerFactory.
getCurrentCustomer());
 return true;
 }

 @Autowired
 private CustomerFactory customerFactory;
}

Another controller is the AddOrderItemController, which is used to add an
orderItem to the order object.

The method handle, which responds to the /customer.add.page URL, receives
the order object (bound to the HttpRequest parameters), and adds the items to
the order.

package it.freshfruits.ui;

import it.freshfruits.domain.vo.OrderItemImpl;
import it.freshfruits.ui.util.UiUtils;

import javax.servlet.http.HttpServletRequest;

import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.ModelAttribute;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.servlet.ModelAndView;

@Controller("addOrderItemController")
public class AddOrderItemController {

 @RequestMapping("/customer.add.page")
 public ModelAndView handle(@ModelAttribute("order") OrderItemImpl
order,
 HttpServletRequest req) throws Exception {

 UiUtils.getOrder(req).addOrderItem(order);
 return new ModelAndView("redirect:items.htm");
 }
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 7

[225]

Now let's create a form controller to handle the FruitType form
(creation and update):

FruitController.

package it.freshfruits.ui;

import it.freshfruits.application.repository.FruitTypeRepository;
import it.freshfruits.domain.vo.FruitMap;
import it.freshfruits.ui.validator.FruitValidator;
import it.freshfruits.util.Constants;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.beans.propertyeditors.StringTrimmerEditor;
import org.springframework.stereotype.Controller;
import org.springframework.ui.ModelMap;
import org.springframework.validation.BindingResult;
import org.springframework.web.bind.WebDataBinder;
import org.springframework.web.bind.annotation.InitBinder;
import org.springframework.web.bind.annotation.ModelAttribute;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.SessionAttributes;
import org.springframework.web.bind.support.SessionStatus;

@Controller("fruitController")
@RequestMapping("/fruit.edit.admin")
@SessionAttributes("fruit")
public class FruitController {

 @RequestMapping(method = RequestMethod.POST)
 public String processSubmit(@ModelAttribute("fruit") FruitMap
fruit, BindingResult result, SessionStatus status) {

 validator.validate(fruit, result);
 if (result.hasErrors()) {
 return "userForm";
 } else {
 fruit.save();
 status.setComplete();
 return "redirect:role.list.admin";
 }
 }

 @InitBinder()

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Three-tier Spring Application, Tests and AOP

[226]

 public void initBinder(WebDataBinder binder) throws Exception {
 binder.registerCustomEditor(String.class,
 new StringTrimmerEditor(false));
 }

 @RequestMapping(method = RequestMethod.GET)
 public String setupForm(
 @RequestParam(required = false, value = "id") Integer id,
 ModelMap model) {
 model.addAttribute(Constants.FRUIT, id == null ? new FruitMap()
 : fruitRepository.getFruitType(id));
 return "role/form";
 }

 @Autowired @Qualifier("fruitRepository")
 private FruitTypeRepository fruitRepository;

 @Autowired @Qualifier("fruitValidator")
 FruitValidator validator;
}

Test
Now that we've seen the implementation, let's look at the tests.

As a testing framework we use �Unit 4.5 with the use of annotations and for
the preparation of repositories before and after tests we employ DbUnit. (For
details about �Unit see: http://www.junit.org, for details about DbUnit see:
http://dbunit.sourceforge.net.)

The main class is AllTests, marked with @RunWith(Suite.class) to act
as TestSuite.

In the @SuiteClasses annotation, we put the classes that contain the tests.

The annotated setup method with @BeforeClass contains the initialization of Spring
applicationContext; the annotated tearDown method with @AfterClass destroys
the ApplicationContext and closes the DbUnit connection.

The folders that contain the tests have packages identical to the classes. This is to
have access to the classes that have visibility only for the package, so that the test
classes can test their targets.

We have three main classes to perform the tests: first, the unit tests; second, the
integration tests where Spring and the application context are used; and a third
suite that performs all the tests together.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 7

[227]

package it.freshfruits;

import it.freshfruits.conf.dbunit.DbUnit;
import it.freshfruits.domain.entity.CustomerUnitTest;
import it.freshfruits.domain.entity.FruitTypeUnitTest;
import it.freshfruits.domain.entity.OrderUnitTest;
import it.freshfruits.domain.factory.CustomerFactoryTest;
import it.freshfruits.domain.repository.CustomerRepositoryTest;
import it.freshfruits.domain.repository.OrderRepositoryTest;
import it.freshfruits.domain.service.SupplyServiceTest;
import it.freshfruits.domain.vo.AddressUnitTest;
import it.freshfruits.domain.vo.ContactInformationUnitTest;
import it.freshfruits.domain.vo.OrderItemUnitTest;
import it.freshfruits.ui.CustomerControllerTest;
import it.freshfruits.ui.FruitControllerTest;
import it.freshfruits.utils.ValidationUtilsTest;

import org.junit.AfterClass;
import org.junit.BeforeClass;
import org.junit.runner.RunWith;
import org.junit.runners.Suite;
import org.junit.runners.Suite.SuiteClasses;

@RunWith(Suite.class)
@SuiteClasses({ AddressUnitTest.class, ContactInformationUnitTest.
class,
 CustomerUnitTest.class, FruitTypeUnitTest.class,
 ValidationUtilsTest.class, OrderUnitTest.class,
 OrderItemUnitTest.class, CustomerRepositoryTest.class,
 OrderRepositoryTest.class, CustomerFactoryTest.class,
 CustomerControllerTest.class, FruitControllerTest.class,
 SupplyServiceTest.class })
public class AllTests {

 @BeforeClass
 public static void setUp() throws Exception {
 SpringFactory.setUpXmlWebApplicationContext();
 }

 @AfterClass
 public static void tearDown() throws Exception {
 DbUnit.closeConnection();
 SpringFactory.destroyXmlWebApplicationContext();
 }
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Three-tier Spring Application, Tests and AOP

[228]

Now we have some domain tests on domain classes.

The following AddressUnitTest tests the correctness of the VO Address.

�Unit 4.5 executes any method annotated with @Test as a test method.

package it.freshfruits.domain.vo;

import static org.junit.Assert.assertEquals;
import it.freshfruits.domain.vo.Address;
import it.freshfruits.domain.vo.AddressImpl;

import org.junit.Test;

public class AddressUnitTest {

 @Test
 public void testConstructorCorrect() {
 Address address = new AddressImpl.Builder("Viale Europa",
"Cagliari",
 "Italy").build();
 assertEquals(address.getCity(), "Cagliari");
 assertEquals(address.getState(), "Italy");
 assertEquals(address.getStreet(), "Viale Europa");
 }

 @Test(expected = IllegalArgumentException.class)
 public void testNullStreet() {
 new AddressImpl.Builder(null, "Cagliari", "Italy").build();
 }

 @Test(expected = IllegalArgumentException.class)
 public void testNullCity() {
 new AddressImpl.Builder("Viale Europa", null, "Italy").build();
 }

 @Test(expected = IllegalArgumentException.class)
 public void testNullState() {
 new AddressImpl.Builder("Viale Europa", "Cagliari", null).
build();
 }

}

The ContactInformationUnitTest tests the correctness of the
VO ContactInformation.

package it.freshfruits.domain.vo;

import static org.junit.Assert.assertEquals;
import it.freshfruits.domain.vo.ContactInformation;

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 7

[229]

import it.freshfruits.domain.vo.ContactInformationImpl;

import org.junit.Test;

public class ContactInformationUnitTest {

 @Test
 public void testConstructorCorrect() {

 ContactInformation contact = new ContactInformationImpl.Builder(
 "+39070123456", "3391234567", "", "foo[at]yahoo[dot]it")
 .build();
 assertEquals(contact.getEmail(), "foo[at]yahoo[dot]it");
 assertEquals(contact.getFaxNumber(), "");
 assertEquals(contact.getMobilePhoneNumber(), "3391234567");
 assertEquals(contact.getPhoneNumber(), "+39070123456");
 }

 @Test(expected = IllegalArgumentException.class)
 public void testNullEmail() {

 new ContactInformationImpl.Builder("+39070123456", "3391234567",
"",
 null).build();

 }

 @Test(expected = IllegalArgumentException.class)
 public void testNullPhoneNumber() {

 new ContactInformationImpl.Builder(null, "3391234567", "",
 "foo[at]yahoo[dot]it").build();

 }

 @Test(expected = IllegalArgumentException.class)
 public void testNullMobilePhoneNumber() {

 new ContactInformationImpl.Builder("+39070123456", null, "",
 "foo[at]yahoo[dot]it").build();

 }

 @Test(expected = IllegalArgumentException.class)
 public void testNullFaxNumber() {

 new ContactInformationImpl.Builder("+39070123456", "3391234567",
null,
 "foo[at]yahoo[dot]it").build();

 }
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Three-tier Spring Application, Tests and AOP

[230]

The OrderItemUnitTest tests the correctness of the VO OrderItemUnit.

package it.freshfruits.domain.vo;

import static org.junit.Assert.assertEquals;
import it.freshfruits.domain.entity.FruitType;
import it.freshfruits.domain.entity.FruitTypeImpl;
import it.freshfruits.domain.vo.OrderItem;
import it.freshfruits.domain.vo.OrderItemImpl;

import java.math.BigDecimal;

import org.junit.Test;

public class OrderItemUnitTest {

 @Test
 public void testConstructorCorrect() {
 FruitType fruit = new FruitTypeImpl.Builder("orange", new
Integer(2),
 new BigDecimal("0.20")).build();
 OrderItem item = new OrderItemImpl.Builder(fruit, 20, "1").
build();

 assertEquals(item.getFruitType(), fruit);
 assertEquals(item.getAmountItem().toString(), "4.00");
 assertEquals(item.getQuantity(), new Integer(20));
 }

 @Test(expected = IllegalArgumentException.class)
 public void testNullFruitType() {
 new OrderItemImpl.Builder(null, 20, "1").build();
 }

 @Test(expected = IllegalArgumentException.class)
 public void testNullQuantity() {

 FruitType fruit = new FruitTypeImpl.Builder("orange", new
Integer(2),
 new BigDecimal("0.20")).build();
 new OrderItemImpl.Builder(fruit, null, "1").build();
 }
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 7

[231]

The FruitTypeUnitTest tests the correctness of the VO FruitType.

package it.freshfruits.domain.entity;

import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertTrue;
import it.freshfruits.domain.entity.FruitType;
import it.freshfruits.domain.entity.FruitTypeImpl;

import java.math.BigDecimal;

import org.junit.Test;

public class FruitTypeUnitTest {

 @Test
 public void testBasicBuilder() {
 FruitType fruit = new FruitTypeImpl.Builder("orange", new
Integer(10),
 new BigDecimal("0.30")).build();

 assertEquals(fruit.getId().toString(), "10");
 assertEquals(fruit.getName(), "orange");
 assertEquals(fruit.getColor(), "");
 assertEquals(fruit.getFlavour(), "");
 assertEquals(fruit.getLocation(), "");
 assertTrue(fruit.getPrice().toString().equals("0.30"));
 }

 @Test
 public void testFullBuilder() {

 FruitType fruit = new FruitTypeImpl.Builder("orange", new
Integer(10),
 new BigDecimal("0.30")).color("red").flavour("sweet").
location(
 "Italy").build();

 assertEquals(fruit.getId().toString(), "10");
 assertEquals(fruit.getName(), "orange");
 assertEquals(fruit.getColor(), "red");
 assertEquals(fruit.getFlavour(), "sweet");
 assertEquals(fruit.getLocation(), "Italy");
 assertTrue(fruit.getPrice().toString().equals("0.30"));

 }

 @Test(expected = IllegalArgumentException.class)
 public void testNullName() {

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Three-tier Spring Application, Tests and AOP

[232]

 new FruitTypeImpl.Builder(null, new Integer(10), new
BigDecimal("0.30"))
 .color("red").flavour("sweet").location("Italy").build();

 }

 @Test(expected = IllegalArgumentException.class)
 public void testNullPrice() {

 new FruitTypeImpl.Builder("orange", new Integer(10), null).
color("red")
 .flavour("sweet").location("Italy").build();

 }

 @Test(expected = IllegalArgumentException.class)
 public void testNullColor() {

 new FruitTypeImpl.Builder("orange", new Integer(10), new
BigDecimal(
 "0.30")).color(null).flavour("sweet").location("Italy").
build();

 }

 @Test(expected = IllegalArgumentException.class)
 public void testNullFlavour() {

 new FruitTypeImpl.Builder("orange", new Integer(10), new
BigDecimal(
 "0.30")).color("red").flavour(null).location("Italy").
build();

 }

 @Test(expected = IllegalArgumentException.class)
 public void testNullLocation() {

 new FruitTypeImpl.Builder("orange", new Integer(10), new
BigDecimal(
 "0.30")).color("red").flavour("sweet").location(null).
build();

 }

 @Test(expected = IllegalArgumentException.class)
 public void testWrongPrice() {

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 7

[233]

 new FruitTypeImpl.Builder("orange", new Integer(10), new
BigDecimal(
 "-0.01")).color("red").flavour("sweet").location("Italy")
 .build();

 }

 @Test(expected = IllegalArgumentException.class)
 public void testWrongName() {

 new FruitTypeImpl.Builder("or", new Integer(10), new
BigDecimal("0.30"))
 .color("red").flavour("sweet").location("Italy").build();

 }

 @Test(expected = IllegalArgumentException.class)
 public void testWrongColor() {

 new FruitTypeImpl.Builder("orange", new Integer(10), new
BigDecimal(
 "0.30")).color("re").flavour("sweet").location("Italy").
build();

 }

 @Test(expected = IllegalArgumentException.class)
 public void testWrongFlavour() {

 new FruitTypeImpl.Builder("orange", new Integer(10), new
BigDecimal(
 "0.30")).color("red").flavour("sw").location("Italy").
build();
 }

 @Test(expected = IllegalArgumentException.class)
 public void testWrongLocation() {

 new FruitTypeImpl.Builder("orange", new Integer(10), new
BigDecimal(
 "0.30")).color("red").flavour("sweet").location("It").
build();

 }
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Three-tier Spring Application, Tests and AOP

[234]

The GUI of �Unit will report the results of the unit tests.

The internal changes to an aggregate all pass through the root, which exposes its
content where needed and some methods to modify its content in a controlled
way. But in no way does it expose the internal state of the objects contained in
the aggregate to external modification.

Now let's see the test of Customer.

package it.freshfruits.domain.entity;

import static org.junit.Assert.assertEquals;
import it.freshfruits.domain.entity.Customer;
import it.freshfruits.domain.entity.CustomerImpl;
import it.freshfruits.domain.vo.Address;
import it.freshfruits.domain.vo.AddressImpl;
import it.freshfruits.domain.vo.ContactInformation;
import it.freshfruits.domain.vo.ContactInformationImpl;

import org.junit.Test;

public class CustomerUnitTest {

 @Test
 public void testBuilder() {

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 7

[235]

 Customer customer = new CustomerImpl.Builder("max", "1").
address(
 "Viale Europa", "Cagliari", "Italy").contactInfo(
 "+39070123456", "3391234567", "", "foo[at]yahoo[dot]it")
 .build();

 assertEquals(customer.getId().toString(), "1");
 assertEquals(customer.getName(), "max");

 Address address = customer.getAddress();
 assertEquals(address.getCity(), "Cagliari");
 assertEquals(address.getState(), "Italy");
 assertEquals(address.getStreet(), "Viale Europa");

 ContactInformation contact = customer.getContact();
 assertEquals(contact.getEmail(), "foo[at]yahoo[dot]it");
 assertEquals(contact.getFaxNumber(), "");
 assertEquals(contact.getMobilePhoneNumber(), "3391234567");
 assertEquals(contact.getPhoneNumber(), "+39070123456");

 }

 @Test(expected = IllegalArgumentException.class)
 public void testWrongLenghtAddress() {

 new CustomerImpl.Builder("max", "1").address("Vi", "Cagliari",
"Italy")
 .contactInfo("+39070123456", "3391234567", "",
 "foo[at]yahoo[dot]it").build();

 }

 @Test(expected = IllegalArgumentException.class)
 public void testWrongLenghtCity() {

 new CustomerImpl.Builder("max", "1").address("Via", "Ca",
"Italy")
 .contactInfo("+39070123456", "3391234567", "",
 "foo[at]yahoo[dot]it").build();

 }

 @Test(expected = IllegalArgumentException.class)
 public void testWrongLenghtState() {

 new CustomerImpl.Builder("max", "1").address("Via", "Cagliari",
"It")
 .contactInfo("+39070123456", "3391234567", "",
 "foo[at]yahoo[dot]it").build();

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Three-tier Spring Application, Tests and AOP

[236]

 }

 @Test(expected = IllegalArgumentException.class)
 public void testWrongLenghtPhone() {

 new CustomerImpl.Builder("max", "1").address("Via", "Cagliari",
 "Italia").contactInfo("+39", "3391234567", "",
 "foo[at]yahoo[dot]it").build();

 }

 @Test(expected = IllegalArgumentException.class)
 public void testWrongLenghtMobilePhone() {

 new CustomerImpl.Builder("max", "1").address("Via", "Cagliari",
 "Italia").contactInfo("+39070123456", "339", "",
 "foo[at]yahoo[dot]it").build();

 }

 @Test
 public void testModifyAddressCorrect() {

 Customer customer = new CustomerImpl.Builder("max", "1").
address(
 "Viale Europa", "Cagliari", "Italy").contactInfo(
 "+39070123456", "3391234567", "", "foo[at]yahoo[dot]it")
 .build();

 Address newAddress = new AddressImpl.Builder("Viale Europa",
 "Cagliari", "Italy").build();
 customer.modifyAddress(newAddress);
 }

 @Test
 public void testModifyAddressWrong() {

 Customer customer = new CustomerImpl.Builder("max", "1").
address(
 "Viale Europa", "Cagliari", "Italy").contactInfo(
 "+39070123456", "3391234567", "", "foo[at]yahoo[dot]it")
 .build();

 Address newAddress = new AddressImpl.Builder("Viale Europa",
 "Cagliari", "Italy").build();
 customer.modifyAddress(newAddress);
 }

 @Test

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 7

[237]

 public void testModifyContactInformationCorrect() {

 Customer customer = new CustomerImpl.Builder("max", "1").
address(
 "Viale Europa", "Cagliari", "Italy").contactInfo(
 "+39070123456", "3391234567", "", "foo[at]yahoo[dot]it")
 .build();

 ContactInformation newContactInformation = new
ContactInformationImpl.Builder(
 "+39070123456", "3391234567", "", "foo[at]yahoo[dot]it")
 .build();
 customer.modifyContactInformation(newContactInformation);
 }

 @Test
 public void testModifyContactInformationWrong() {

 Customer customer = new CustomerImpl.Builder("max", "1").
address(
 "Viale Europa", "Cagliari", "Italy").contactInfo(
 "+39070123456", "3391234567", "", "foo[at]yahoo[dot]it")
 .build();

 ContactInformation newContactInformation = new
ContactInformationImpl.Builder(
 "+39070123456", "3391234567", "", "foo[at]yahoo[dot]it")
 .build();
 customer.modifyContactInformation(newContactInformation);
 }

}

Now let's see the test of Order.

package it.freshfruits.domain.entity;

import static org.junit.Assert.*;
import it.freshfruits.domain.entity.FruitType;
import it.freshfruits.domain.entity.FruitTypeImpl;
import it.freshfruits.domain.entity.OrderImpl;
import it.freshfruits.domain.vo.OrderItem;
import it.freshfruits.domain.vo.OrderItemImpl;
import it.freshfruits.util.DateTimeUtils;

import java.math.BigDecimal;
import java.util.Date;
import java.util.Iterator;
import java.util.Set;

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Three-tier Spring Application, Tests and AOP

[238]

import org.junit.Test;

public class OrderUnitTest {

 @Test
 public void testBasicBuilder() {

 Date date = DateTimeUtils.getDateNowToNextDays(2).toDate();
 OrderImpl order = new OrderImpl.Builder(new Integer(11).
toString(),
 date, "2").build();
 assertEquals(order.getId().toString(), "11");
 assertEquals(order.getDateOrder(), date);

 }

 @Test
 public void testFullBuilder() {

 Date now = new Date();
 OrderImpl order = new OrderImpl.Builder(new Integer(11).
toString(),
 now, "2").amount(new BigDecimal("5000")).build();
 assertEquals(order.getId().toString(), "11");
 assertEquals(order.getDateOrder(), now);
 assertEquals(order.getOrderAmount().toString(), "5000");
 }

 @Test
 public void testFruitItems() {

 Date date = DateTimeUtils.getDateNowToNextDays(2).toDate();
 OrderImpl order = new OrderImpl.Builder(new Integer(11).
toString(),
 date, "2").build();

 FruitType fruit = new FruitTypeImpl.Builder("orange", new
Integer(2),
 new BigDecimal("0.20")).build();
 OrderItem item = new OrderItemImpl.Builder(fruit, 20, order.
getId()
 .toString()).build();
 assertTrue(order.addOrderItem(item));

 assertTrue(order.getNumberItems() == 1);
 assertEquals(order.getOrderAmount().toString(), ("4.00"));

 Set<OrderItem> items = order.getOrderItems();
 assertTrue(items.size() == 1);
 Iterator<OrderItem> iterator = items.iterator();

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 7

[239]

 while (iterator.hasNext()) {
 OrderItem current = iterator.next();
 assertEquals(item.getFruitType().getName(), current.
getFruitType()
 .getName());
 assertEquals(item.getFruitType().getId(), current.
getFruitType()
 .getId());
 assertEquals(item.getIdOrder(), current.getIdOrder());
 assertEquals(item.getQuantity(), current.getQuantity());
 }

 assertTrue(order
 .removeOrderItem(order.getId().toString(), item.
getFruitType().getId().toString()));
 }

 @Test
 public void testNullAmount() {

 boolean result = false;
 try {
 new OrderImpl.Builder(new Integer(11).toString(), new Date(),
"2")
 .amount(null).build();
 } catch (IllegalArgumentException e) {
 if (e.getMessage().equals("amount < 0:null")) {
 result = true;
 }
 }
 assertTrue(result);
 }

 @Test
 public void testNullDate() {

 boolean result = false;
 try {
 new OrderImpl.Builder(new Integer(11).toString(), null, "2")
 .amount(new BigDecimal("5000")).build();
 } catch (IllegalArgumentException e) {
 if (e.getMessage().equals("dateOrder not correct")) {
 result = true;
 }
 }
 assertTrue(result);
 }

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Three-tier Spring Application, Tests and AOP

[240]

 @Test
 public void testNullIdCustomer() {

 boolean result = false;
 try {
 new OrderImpl.Builder(new Integer(11).toString(), new Date(),
null)
 .amount(new BigDecimal("5000")).build();
 } catch (IllegalArgumentException e) {
 if (e.getMessage().equals("id argument null")) {
 result = true;
 }
 }
 assertTrue(result);
 }

 @Test
 public void testWrongAmount() {

 boolean result = false;
 try {
 new OrderImpl.Builder(new Integer(11).toString(), new Date(),
"2")
 .amount(new BigDecimal("-1.0")).build();
 } catch (IllegalArgumentException e) {
 if (e.getMessage().equals("amount < 0:-1.0")) {
 result = true;
 }
 }
 assertTrue(result);
 }

 @Test
 public void testWrongDate() {

 boolean result = false;
 try {
 new OrderImpl.Builder(new Integer(11).toString(), null, "2").
amount(
 new BigDecimal("4000")).build();
 } catch (IllegalArgumentException e) {
 if (e.getMessage().equals("dateOrder not correct")) {
 result = true;
 }
 }
 assertTrue(result);
 }
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 7

[241]

The CustomerControllerUnitTest tests the controller with mock objects such as
MockHttprequest that simulate the user's browser interaction with the application.

package it.freshfruits.ui;

import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertTrue;
import it.freshfruits.conf.dbunit.DBCustomer;
import it.freshfruits.conf.dbunit.DBOrder;
import it.freshfruits.conf.dbunit.DBOrderItems;
import it.freshfruits.domain.entity.Customer;
import it.freshfruits.domain.entity.CustomerImpl;
import it.freshfruits.domain.entity.FruitType;
import it.freshfruits.domain.entity.FruitTypeImpl;
import it.freshfruits.domain.vo.OrderItemImpl;
import it.freshfruits.util.Constants;

import java.math.BigDecimal;

import org.junit.After;
import org.junit.Before;
import org.junit.Test;
import org.springframework.mock.web.MockHttpServletRequest;
import org.springframework.web.servlet.ModelAndView;

public class CustomerControllerTest {

 private CustomerController customerController;
 private Customer customer;
 private FruitType fruit;

 @Before
 public void setup() {
 customerController = new CustomerController();
 }

 @After
 public void tearDown() {
 customerController = null;
 customer = null;
 fruit = null;
 }

 @Test
 public void create() throws Exception {
 customer = new CustomerImpl.Builder("max", "26").address(
 "Viale Europa", "Cagliari", "Italy").contactInfo(

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Three-tier Spring Application, Tests and AOP

[242]

 "+39070123456", "3391234567", "", "foo[at]yahoo[dot]it")
 .build();
 MockHttpServletRequest req = new MockHttpServletRequest();
 req.setMethod("GET");
 req.setAttribute(Constants.CUSTOMER, customer);
 ModelAndView modelAndView = customerController.create(req);
 assertEquals(modelAndView.getViewName(), "customer/create");
 assertTrue(modelAndView.getModel().containsKey("result"));
 }

 @Test
 public void items() throws Exception {
 customer = new CustomerImpl.Builder("max", "26").address(
 "Viale Europa", "Cagliari", "Italy").contactInfo(
 "+39070123456", "3391234567", "", "foo[at]yahoo[dot]it")
 .build();
 assertTrue(customer.createOrder());
 MockHttpServletRequest req = new MockHttpServletRequest();
 req.setMethod("GET");
 req.setAttribute(Constants.CUSTOMER, customer);
 ModelAndView modelAndView = customerController.items(req);
 assertEquals(modelAndView.getViewName(), "customer/items");
 assertTrue(modelAndView.getModel().containsKey("items"));
 }

 @Test
 public void order() throws Exception {
 customer = new CustomerImpl.Builder("max", "26").address(
 "Viale Europa", "Cagliari", "Italy").contactInfo(
 "+39070123456", "3391234567", "", "foo[at]yahoo[dot]it")
 .build();
 assertTrue(customer.createOrder());
 MockHttpServletRequest req = new MockHttpServletRequest();
 req.setMethod("GET");
 req.setAttribute(Constants.CUSTOMER, customer);
 ModelAndView modelAndView = customerController.order(req);
 assertEquals(modelAndView.getViewName(), "customer/order");
 assertTrue(modelAndView.getModel().containsKey("order"));
 }

 @Test
 public void remove() throws Exception {
 customer = new CustomerImpl.Builder("max", "26").address(
 "Viale Europa", "Cagliari", "Italy").contactInfo(
 "+39070123456", "3391234567", "", "foo[at]yahoo[dot]it")

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 7

[243]

 .build();
 assertTrue(customer.createOrder());
 fruit = new FruitTypeImpl.Builder("orange", new Integer(10),
 new BigDecimal("0.30")).build();
 customer.getOrder().addOrderItem(
 new OrderItemImpl.Builder(fruit, 13, customer.getOrder()
 .getId().toString()).build());
 MockHttpServletRequest req = new MockHttpServletRequest();
 req.setMethod("GET");
 req.setAttribute(Constants.CUSTOMER, customer);
 ModelAndView modelAndView = customerController.remove(fruit.
getId()
 .toString(), req);
 assertEquals(modelAndView.getViewName(), "customer/items");
 assertTrue(modelAndView.getModel().containsKey("items"));
 }

 @Test
 public void save() throws Exception {
 DBCustomer dbCustomer = new DBCustomer();
 DBOrder dbOrder = new DBOrder();
 DBOrderItems dbItems = new DBOrderItems();
 dbCustomer.prepareDb();

 customer = new CustomerImpl.Builder("max", "26").address(
 "Viale Europa", "Cagliari", "Italy").contactInfo(
 "+39070123456", "3391234567", "", "foo[at]yahoo[dot]it")
 .build();
 assertTrue(customer.createOrder());
 fruit = new FruitTypeImpl.Builder("orange", new Integer(10),
 new BigDecimal("0.30")).build();
 customer.getOrder().addOrderItem(
 new OrderItemImpl.Builder(fruit, 13, customer.getOrder()
 .getId().toString()).build());
 MockHttpServletRequest req = new MockHttpServletRequest();
 req.setMethod("GET");
 req.setAttribute(Constants.CUSTOMER, customer);
 ModelAndView modelAndView = customerController.save(req);
 assertEquals(modelAndView.getViewName(), "customer/save");
 assertTrue(modelAndView.getModel().containsKey("result"));

 dbItems.cleanDb();
 dbOrder.cleanDb();
 dbCustomer.cleanDb();
 dbCustomer = null;
 }
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Three-tier Spring Application, Tests and AOP

[244]

Now we see the integration test for CustomerRepository. An integration test is
a test of the object with runtime conditions, such as db connection, or interaction
with other objects. The following CustomerRepositoryTest tests the repository
operations in the database.

Before each operation, DbUnit prepares the table on which the test operates by
populating it with data. The data used for the read operations is prepared in the
db.prepareDb() method of the CustomerRepositoryTest class, and is as follows:

<!DOCTYPE dataset SYSTEM "src_test/it/freshfruits/conf/dbunit/
database-schema.dtd">
<dataset>
 <customers id="26" name="max" street="Viale Europa" city="Cagliari"
 state="Italy" email="foo[at]yahoo[dot]it" fax=""
mobile="3391234567"
 phone="+39070123456" enabled="true" />
 <customers id="27" name="matt" street="Viale Europa 2"
city="Cagliari"
 state="Italy" email="foo[at]yahoo[dot]com" fax=""
mobile="3391234568"
 phone="+39070123458" enabled="true" />
</dataset>

Each integration test that involves repository operations has its own dedicated
DbUnit classes and XML with data (in the package it.freshfruits.conf.dbunit).

package it.freshfruits.domain.repository;

import static org.junit.Assert.assertTrue;
import static org.junit.Assert.fail;
import it.freshfruits.SpringFactory;
import it.freshfruits.application.repository.CustomerRepository;
import it.freshfruits.conf.dbunit.DBCustomer;
import it.freshfruits.domain.entity.Customer;
import it.freshfruits.domain.entity.CustomerImpl;
import it.freshfruits.domain.entity.CustomerView;
import it.freshfruits.domain.vo.Address;
import it.freshfruits.domain.vo.ContactInformation;
import it.freshfruits.util.Constants;

import java.util.List;

import org.junit.After;
import org.junit.Before;
import org.junit.Test;
import org.springframework.context.ApplicationContext;
import org.springframework.dao.DataAccessException;

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 7

[245]

public class CustomerRepositoryTest {

 @Before
 public void setUp() throws Exception {
 ctx = SpringFactory.getXmlWebApplicationContext();
 repo = (CustomerRepository) ctx.getBean("customerRepository");
 }

 @After
 public void tearDown() throws Exception {
 db.cleanDb();
 ctx = null;
 repo = null;
 }

 @Test
 public void testInsertCustomer() {

 Customer customer = new CustomerImpl.Builder("max", Constants.
ID_NEW)
 .address("Viale Europa", "Cagliari", "Italy")
 .contactInfo("+39070123456", "3391234567", "",
 "foo[at]yahoo[dot]it").build();

 try {
 repo.insertCustomer(customer);
 } catch (DataAccessException e) {
 fail("unexpected exception");
 }
 return;
 }

 @Test
 public void testSaveCustomer() {

 Customer customer = new CustomerImpl.Builder("max", Constants.
ID_NEW)
 .address("Viale Europa", "Cagliari", "Italy")
 .contactInfo("+39070123456", "3391234567", "",
 "foo[at]yahoo[dot]it").build();

 assertTrue(repo.saveCustomer(customer));

 }

 @Test
 public void testSelectCustomer() {
 db.prepareDb();

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Three-tier Spring Application, Tests and AOP

[246]

 Customer customer = repo.selectCustomer("26");
 Address address = customer.getAddress();
 ContactInformation contact = customer.getContact();

 assertTrue(customer.getName().equals("max"));
 assertTrue(customer.getId().toString().equals("26"));

 assertTrue(address.getCity().equals("Cagliari"));
 assertTrue(address.getState().equals("Italy"));
 assertTrue(address.getStreet().equals("Viale Europa"));

 assertTrue(contact.getEmail().equals("foo[at]yahoo[dot]it"));
 assertTrue(contact.getFaxNumber().equals(""));
 assertTrue(contact.getMobilePhoneNumber().equals("3391234567"));
 assertTrue(contact.getPhoneNumber().equals("+39070123456"));

 db.cleanDb();
 }

 @Test
 public void testSelectCustomers() {
 db.prepareDb();
 List<CustomerView> customers = repo.selectCustomers();
 assertTrue(customers.size() == 2);
 }

 @Test
 public void testSelectDisabledCustomers() {
 db.prepareDb();
 assertTrue(repo.disableCustomer("26"));
 List<CustomerView> customers = repo.selectCustomers();
 assertTrue(customers.size() == 1);
 }

 @Test
 public void testIsPresent() {
 db.prepareDb();
 assertTrue(!repo.isPresent("mike"));
 assertTrue(repo.isPresent("max"));
 }

 @Test
 public void testDeleteCustomer() {
 db.prepareDb();
 assertTrue(repo.deleteCustomer("26"));
 }

 @Test

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 7

[247]

 public void testdisableCustomer() {
 db.prepareDb();
 assertTrue(repo.disableCustomer("26"));
 }

 @Test
 public void testUpdateCustomer() {
 db.prepareDb();
 Customer customer = new CustomerImpl.Builder("max", "26").
address(
 "Via Scano", "Monserrato", "Italy").
contactInfo("+39070654321",
 "3397654321", "07012345678", "foo[at]yahoo[dot]com").
build();
 assertTrue(repo.updateCustomer(customer));
 }

 private DBCustomer db = new DBCustomer();
 private CustomerRepository repo;
 private ApplicationContext ctx;

}

The following OrderRepositoryTest tests the OrderRepository in the database.

package it.freshfruits.domain.repository;

import static org.junit.Assert.*;
import it.freshfruits.SpringFactory;
import it.freshfruits.application.repository.OrderRepository;
import it.freshfruits.conf.dbunit.DBCustomer;
import it.freshfruits.conf.dbunit.DBFruitType;
import it.freshfruits.conf.dbunit.DBOrder;
import it.freshfruits.conf.dbunit.DBOrderItems;
import it.freshfruits.domain.entity.Order;
import it.freshfruits.domain.entity.OrderImpl;
import it.freshfruits.domain.vo.OrderItem;
import it.freshfruits.util.Constants;
import it.freshfruits.util.DateTimeUtils;

import java.math.BigDecimal;

import org.junit.After;
import org.junit.Before;
import org.junit.Test;
import org.springframework.context.ApplicationContext;

public class OrderRepositoryTest {

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Three-tier Spring Application, Tests and AOP

[248]

 @Before
 public void setUp() throws Exception {
 ctx = SpringFactory.getXmlWebApplicationContext();
 repo = (OrderRepository) ctx.getBean("orderRepository");
 }

 @After
 public void tearDown() throws Exception {
 ctx = null;
 repo = null;
 }

 @Test
 public void testInsertOrder() {
 DBCustomer dbCustomer = new DBCustomer();
 DBOrder dbOrders = new DBOrder();
 dbCustomer.prepareDb();

 Order order = new OrderImpl.Builder(Constants.ID_NEW,
DateTimeUtils
 .getDateNowToNextDays(2).toDate(), "26").amount(
 new BigDecimal("5000")).build();
 try {
 String id = repo.insertOrder(order);
 Order retrieve = repo.getOrder(id, "26");
 assertNotNull(retrieve);
 } catch (Exception e) {
 fail("exception unexpected");
 }
 dbOrders.cleanDb();
 dbCustomer.cleanDb();
 }

 @Test
 public void testUpdateOrder() {
 DBCustomer dbCustomer = new DBCustomer();
 DBOrder dbOrders = new DBOrder();

 dbCustomer.prepareDb();
 dbOrders.prepareDb();

 Order order = new OrderImpl.Builder("34", DateTimeUtils
 .getDateNowToNextDays(2).toDate(), "26").amount(
 new BigDecimal("5000")).build();

 assertTrue(repo.updateOrder(order));
 Order retrieve = repo.getOrder("34", "26");
 assertNotNull(retrieve);

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 7

[249]

 dbOrders.cleanDb();
 dbCustomer.cleanDb();
 }

 @Test
 public void testSelectOrders() {
 DBCustomer dbCustomer = new DBCustomer();
 DBOrder dbOrders = new DBOrder();

 dbCustomer.prepareDb();
 dbOrders.prepareDb();

 assertTrue(repo.getOrders("26").size() == 1);
 assertTrue(repo.getOrders("27").size() == 0);

 dbOrders.cleanDb();
 dbCustomer.cleanDb();
 }

 @Test
 public void testSelectOrder() {
 DBCustomer dbCustomer = new DBCustomer();
 dbCustomer.prepareDb();
 DBFruitType dbFruit = new DBFruitType();
 dbFruit.prepareDb();
 DBOrder dbOrder = new DBOrder();
 dbOrder.prepareDb();
 DBOrderItems dbOrderItems = new DBOrderItems();
 dbOrderItems.prepareDb();

 Order order = repo.getOrder("34", "26");
 assertEquals(order.getNumberItems().toString(), "1");
 assertTrue(order.getNumberItems() == 1);

 for (OrderItem item : order.getOrderItems()) {
 assertEquals(item.getQuantity(), new Integer(8));
 assertEquals(item.getAmountItem(), new BigDecimal("9.6"));
 }

 dbOrderItems.cleanDb();
 dbOrder.cleanDb();
 dbFruit.cleanDb();
 dbCustomer.cleanDb();
 }

 private OrderRepository repo;
 private ApplicationContext ctx;

}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Three-tier Spring Application, Tests and AOP

[250]

To perform integration tests, so that the injection in the domain class works, we have
to use the �ARs that Spring gives for the Load Time Weaver.

In the dist/weaving folder of the distribution of Spring we have three �ARs:

spring-agent.jar

spring-aspects.jar

spring-tomcat-weaver.jar

In this case, to run the test we have to use spring-agent.jar and pass the following
parameter to the virtual machine :

-javaagent:<path to jar>/spring-agent.jar

We pass this command through the configuration window of Eclipse to run JUnit.

On Linux:

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 7

[251]

On Windows:

AOP
Now let's go on to explain how AOP plays an important role in the application, in
domain classes with @Configurable annotation, and with the other features seen
in the previous chapters.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Three-tier Spring Application, Tests and AOP

[252]

The following configuration enables the aspect classes:

sffs-aop-domain.xml:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-2.5.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

 <!--
 Enable @Configurable Annotation in conjunction with LTW jvm:
 (test) -javaagent:<path>/spring-agent.jar
 (tomcat) <tomcat6>/lib/spring-tomcat-weaver.jar-->
 <context:load-time-weaver /> <!-- enable the use of META-INF/aop.
xml -->
 <context:annotation-config />
 <context:spring-configured />

 <aop:config proxy-target-class="true">
 <aop:pointcut id="customerFactoryReadOperation"
 expression="execution(* it.freshfruits.domain.factory.
CustomerFactoryImpl.get*(..))" />
 <aop:pointcut id="customerRepoReadOperation"
expression="execution(* it.freshfruits.application.repository.
CustomerRepositoryImpl.select*(..))" />
 <aop:pointcut id="customerRepoInsertOperation"
expression="execution(* it.freshfruits.application.repository.
CustomerRepositoryImpl.insert*(..))" />
 <aop:pointcut id="customerRepoUpdateOperation"
expression="execution(* it.freshfruits.application.repository.
CustomerRepositoryImpl.update*(..))" />
 <aop:pointcut id="customerRepoDisableOperation"
expression="execution(* it.freshfruits.application.repository.
CustomerRepositoryImpl.disable*(..))" />
 <aop:pointcut id="fruitReadOperation" expression="execution(*
it.freshfruits.application.repository.FruitTypeRepositoryImpl.
get*(..))" />

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 7

[253]

 <aop:pointcut id="fruitInsertOperation" expression="execution(*
it.freshfruits.application.repository.FruitTypeRepositoryImpl.
insert*(..))" />
 <aop:pointcut id="fruitUpdateOperation" expression="execution(*
it.freshfruits.application.repository.FruitTypeRepositoryImpl.
update*(..))" />

 <aop:aspect id="customerAspect" ref="customerCacheAspect">
 <aop:around pointcut-ref="customerFactoryReadOperation"
method="invoke" />
 <aop:around pointcut-ref="customerRepoReadOperation"
method="invoke" />
 <aop:before pointcut-ref="customerRepoInsertOperation"
method="flush" />
 <aop:before pointcut-ref="customerRepoUpdateOperation"
method="flush" />
 <aop:before pointcut-ref="customerRepoDisableOperation"
method="flush" />
 </aop:aspect>

 <aop:aspect id="fruitAspect" ref="fruitCacheAspect">
 <aop:around pointcut-ref="fruitReadOperation" method="invoke"
/>
 <aop:before pointcut-ref="fruitInsertOperation"
method="flush" />
 <aop:before pointcut-ref="fruitUpdateOperation"
method="flush" />
 </aop:aspect>
 </aop:config>

 <bean id="customerCacheAspect" class="it.freshfruits.aspect.
CacheAspect" >
 <property name="cache">
 <bean id="customerCache" parent="cache">
 <property name="cacheName" value="customerCache" />
 </bean>
 </property>
 </bean>

 <bean id="fruitCacheAspect" class="it.freshfruits.aspect.
CacheAspect" >
 <property name="cache">
 <bean id="fruitCache" parent="cache">
 <property name="cacheName" value="fruitCache" />
 </bean>
 </property>
 </bean>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Three-tier Spring Application, Tests and AOP

[254]

 <bean id="customer" scope="prototype" class="it.freshfruits.domain.
entity.CustomerImpl"/>

<bean id="fruitType" scope="prototype" class="it.freshfruits.domain.
entity.FruitTypeImpl" />

<bean id="order" scope="prototype" class="it.freshfruits.domain.
entity.OrderImpl"/>

 <bean id="supplyService" class="it.freshfruits.domain.service.
SupplyServiceImpl"/>

</beans>

Besides the normal configurations, since the injection of domain classes (outside
Spring control) implies the action of AspectJ's weaver, we have to put file aop.xml
inside META-INF in order to configure AspectJ. Here is aop.xml:

<!DOCTYPE aspectj PUBLIC "-//AspectJ//DTD//EN"
"http://www.eclipse.org/aspectj/dtd/aspectj.dtd">
<aspectj>
<weaver options="-showWeaveInfo
-XmessageHandlerClass:org.springframework.aop.aspectj.
AspectJWeaverMessageHandler">
 <!-- only weave classes in our application-specific packages -->
 <include within="it.freshfruits.domain.entity.*"/>
 <include within="it.freshfruits.domain.factory.*"/>
 <include within="it.freshfruits.domain.service.*"/>
 <include within="it.freshfruits.domain.vo.*"/>
 <include within="it.freshfruits.application.repository.*"/>
 <include within="it.freshfruits.ui.*"/>
 <exclude within="it.freshfruits.aspect.*"/>
</weaver>
<!-- Be careful, those Aspects lose injected
 properties (AspectJ ignore Spring at LWT),
 otherwise consider aspect xml definition -->
<aspects>
 <aspect name="it.freshfruits.aspect.ConcurrentAspect" />
 <aspect name="it.freshfruits.aspect.LogManagedAspect" />
 <aspect name="it.freshfruits.aspect.
TimeExecutionManagedAspect" />
</aspects>
</aspectj>

(For detail about ltw configuration see: http://www.eclipse.org/aspectj/doc/
released/devguide/ltw-configuration.html.)

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 7

[255]

The behavior of the agent and of the weaver are exposed by the tests and by the
message on the console:

DbUnit setUpConnection
12 classes under test
67 test case
 INFO [main] - Refreshing
… org.springframework.beans.factory.support.DefaultListableBeanFactor
y@811c88
 INFO [main] - Found Spring's JVM agent for instrumentation
 INFO [main] - [AspectJ] AspectJ Weaver Version 1.6.2 built on
Saturday Oct 4, 2008 at 05:47:07 GMT
….

Besides the application IoC on domain classes, now we employ aspects
containing transversal.

Now let's add some aspects, such as the cache and concurrent aspects, introduced
in Chapter 5.

Cache
Let's see the aspect that manages the cache.

This class has been extensively described in Chapter 5.

package it.freshfruits.aspect;

import it.freshfruits.util.Constants;
import net.sf.ehcache.Cache;
import net.sf.ehcache.Element;

import org.apache.log4j.Logger;
import org.aspectj.lang.ProceedingJoinPoint;

public class CacheAspect {

 public void flush() {
 cache.flush();
 }

 public Object invoke(ProceedingJoinPoint pjp) throws Throwable {

 Object result;
 String cacheKey = getCacheKey(pjp);

 Element element = (Element) cache.get(cacheKey);

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Three-tier Spring Application, Tests and AOP

[256]

 logger.info(new StringBuilder("CacheAspect invoke:").append("\n
get:")
 .append(cacheKey).append(" value:").append(element).
toString());

 if (element == null) {

 result = pjp.proceed();

 element = new Element(cacheKey, result);
 cache.put(element);
 logger.info(new StringBuilder("\n put:").append(cacheKey).
append(
 " value:").append(result).toString());

 }
 return element.getValue();
 }

 private String getCacheKey(ProceedingJoinPoint pjp) {

 String targetName = pjp.getTarget().getClass().getSimpleName();
 String methodName = pjp.getSignature().getName();
 Object[] arguments = pjp.getArgs();

 StringBuilder sb = new StringBuilder();
 sb.append(targetName).append(".").append(methodName);
 if ((arguments != null) && (arguments.length != 0)) {
 for (int i = 0; i < arguments.length; i++) {
 sb.append(".").append(arguments[i]);
 }
 }
 return sb.toString();
 }

 public void setCache(Cache cache) {
 this.cache = cache;
 }

 private Cache cache;
 private Logger logger = Logger.getLogger(Constants.LOG_NAME);

}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 7

[257]

Concurrent
Let's see the aspect that manages the concurrency.

This class has been extensively described in Chapter 5.

package it.freshfruits.aspect;

import it.freshfruits.util.Constants;

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;

import org.apache.log4j.Logger;
import org.aspectj.lang.annotation.After;

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Before;
import org.aspectj.lang.annotation.Pointcut;
import org.springframework.core.annotation.Order;

@SuppressWarnings("unused")
@Aspect()
@Order(0)
public class ConcurrentAspect {

 @Pointcut("execution (* isAvailable(..))")
 private void isAvailable() {}

 @Pointcut("execution (* retainItem(..))")
 private void retainItem() {}

 @Pointcut("execution (* release(..))")
 private void release() {}

 @Pointcut("release() || retainItem()")
 private void releaseOrRetain() {}

 @Before("isAvailable()")
 public void setReadLock() {
 log.info("setReadLock");
 rLock.lock();
 }

 @After("isAvailable()")
 public void releaseReadLock() {
 rLock.unlock();
 log.info("releaseReadLock");

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Three-tier Spring Application, Tests and AOP

[258]

 }

 @Before("releaseOrRetain()")
 public void setWriteLock() {
 log.info("setWriteLock");
 wLock.lock();
 }

 @After("releaseOrRetain()")
 public void releaseWriteLock() {
 wLock.unlock();
 log.info("releaseWriteLock");
 }

 private final ReadWriteLock lock = new ReentrantReadWriteLock();
 private final Lock rLock = lock.readLock();
 private final Lock wLock = lock.writeLock();
 private Logger log = Logger.getLogger(Constants.LOG_NAME);;
}

TimeExecutionManagedAspect
To perform its work of measuring a method's average execution time,
TimeExecutionmanagedAspect uses the class StopWatch, provided by Spring.
The methods of the aspects are �MX exposed as attributes or operations.

package it.freshfruits.aspect;

import it.freshfruits.util.Constants;

import org.apache.log4j.Logger;
import org.aspectj.lang.ProceedingJoinPoint;
import org.aspectj.lang.annotation.Around;
import org.aspectj.lang.annotation.Aspect;
import org.springframework.core.annotation.Order;
import org.springframework.jmx.export.annotation.ManagedAttribute;
import org.springframework.jmx.export.annotation.ManagedOperation;
import org.springframework.jmx.export.annotation.ManagedResource;
import org.springframework.util.StopWatch;

@ManagedResource("freshfruitstore:type=TimeExecutionManagedAspect")
@Aspect() @Order(2)
public class TimeExecutionManagedAspect {

 @ManagedAttribute
 public boolean isLogEnabled() {
 return isLogEnabled;

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 7

[259]

 }

 @ManagedAttribute
 public void setLogEnabled(boolean isLogEnabled) {
 this.isLogEnabled = isLogEnabled;
 }

 @ManagedAttribute
 public boolean isTimeExecutionEnabled() {
 return isTimeExecutionEnabled;
 }

 @ManagedAttribute
 public void setTimeExecutionEnabled(boolean isTimeExecutionEnabled)
{
 this.isTimeExecutionEnabled = isTimeExecutionEnabled;
 }

 @ManagedAttribute
 public long getAverageCallTime() {
 return (this.callCount > 0 ? this.accumulatedCallTime / this.
callCount
 : 0);
 }

 @ManagedOperation
 public void resetCounters() {
 this.callCount = 0;
 this.accumulatedCallTime = 0;
 }

 @Around("within(it.freshfruits.domain.entity.CustomerImpl)")
 public Object invoke(ProceedingJoinPoint joinPoint) throws
Throwable {

 if (this.isTimeExecutionEnabled) {
 StopWatch sw = new StopWatch(joinPoint.toString());

 sw.start("invoke");
 try {
 return joinPoint.proceed();
 } finally {
 sw.stop();
 synchronized (this) {
 this.accumulatedCallTime += sw.getTotalTimeMillis();
 }
 if (isLogEnabled) {

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Three-tier Spring Application, Tests and AOP

[260]

 logger.info(sw.prettyPrint());
 }
 }
 } else {
 return joinPoint.proceed();
 }
 }

 private boolean isTimeExecutionEnabled = true;
 private boolean isLogEnabled = true;
 private long accumulatedCallTime = 0;
 private int callCount = 0;
 private Logger logger = Logger.getLogger(Constants.LOG_NAME);
}

Here is the configuration to enable the TimeExecutionManagedAspect aspect to the
�MX MBeanServer:

 <!-- JMX -->
 <bean id="mbeanServer" class="org.springframework.jmx.support.
MBeanServerFactoryBean"
 p:locateExistingServerIfPossible="true"/>

 <bean id="exporter" class="org.springframework.jmx.export.
MBeanExporter"
 p:assembler-ref="assembler" p:namingStrategy-
ref="namingStrategy" p:autodetect="true"/>

 <bean id="jmxAttributeSource" class="org.springframework.jmx.
export.annotation.AnnotationJmxAttributeSource"/>

 <bean id="assembler" class="org.springframework.jmx.export.
assembler.MetadataMBeanInfoAssembler"
 p:attributeSource-ref="jmxAttributeSource"/>

 <bean id="namingStrategy" class="org.springframework.jmx.export.
naming.MetadataNamingStrategy"
 p:attributeSource-ref="jmxAttributeSource"/>

Transactions
All the operations executed on the database must take place in a transactional way.
Let's see how we configure Spring to perform this task.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 7

[261]

xmlns:p="http://www.springframework.org/schema/p"
xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:tx="http://www.springframework.org/schema/tx"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx-2.5.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">
 …

 <!-- D A T A S O U R C E -->

 <bean id="dataSource" class="org.apache.commons.dbcp.
BasicDataSource" destroy-method="close"
 p:url="${jdbc.url}" p:username="${jdbc.username}" p:
password="${jdbc.password}"
 p:driverClassName="${jdbc.production.driver}" p:maxIdle="3" p:
maxWait="50" p:removeAbandoned="true"
 p:removeAbandonedTimeout="550" p:logAbandoned="true" p:
maxActive="20"/>

 <!-- iBATIS -->

 <bean id="sqlMapClient" class="org.springframework.orm.ibatis.
SqlMapClientFactoryBean"
 p:dataSource-ref="dataSource"
 p:configLocation="/sffs-sqlMapConfig.xml"/>

 <bean id="transactionManager" class="org.springframework.jdbc.
datasource.DataSourceTransactionManager"
 p:dataSource-ref="dataSource"/>

 <!-- T R A N S A C T I O N S Spring Classic -->
<!--
 <bean id="matchAllTxInterceptor" class="org.springframework.
transaction.interceptor.TransactionInterceptor"
 p:transactionManager-ref="transactionManager"
 p:transactionAttributeSource-ref="txAttributes"/>

 <bean id="txAttributes" class="org.springframework.transaction.
interceptor.NameMatchTransactionAttributeSource">
 <property name="properties">
 <props>
 <prop key="*">PROPAGATION_SUPPORTS,readOnly</prop>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Three-tier Spring Application, Tests and AOP

[262]

 <prop key="save*">PROPAGATION_REQUIRED,-Exception</prop>
 <prop key="insertOrder">PROPAGATION_REQUIRED,-
OrderItemsException</prop>
 <prop key="insert*">PROPAGATION_REQUIRED,-Exception</prop>
 <prop key="update*">PROPAGATION_REQUIRED,-Exception</prop>
 <prop key="delete*">PROPAGATION_REQUIRED,-Exception</prop>
 <prop key="disable*">PROPAGATION_REQUIRED,-Exception
</prop>
 </props>
 </property>
 </bean>

 <bean id="autoProxyCreator"
 class="org.springframework.aop.framework.autoproxy.
BeanNameAutoProxyCreator">
 <property name="interceptorNames">
 <list>
 <idref local="matchAllTxInterceptor"/>
 </list>
 </property>
 <property name="beanNames">
 <list>
 <value>customerRepository</value>
 <value>orderRepository</value>
 <value>fruitRepository</value>
 </list>
 </property>
 </bean>-->

 <tx:advice id="txAdvice" transaction-manager="transactionManager">
 <tx:attributes>
 <tx:method name="save*" propagation="REQUIRED" rollback-
for="Exception"/>
 <tx:method name="insertOrder" propagation="REQUIRED"
rollback-for="OrderItemsException"/>
 <tx:method name="insert*" propagation="REQUIRED" rollback-
for="Exception"/>
 <tx:method name="update*" propagation="REQUIRED" rollback-
for="Exception"/>
 <tx:method name="delete*" propagation="REQUIRED" rollback-
for="Exception"/>
 <tx:method name="disable*" propagation="REQUIRED" rollback-
for="Exception"/>
 <tx:method name="*" read-only="true"/>
 </tx:attributes>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 7

[263]

 </tx:advice>

 <aop:config>
 <aop:pointcut id="repoOperations" expression="execution(*
it.freshfruits.application.repository.*.*(..))" />
 <aop:advisor advice-ref="txAdvice" pointcut-ref="repoOperations
"/>
 </aop:config>

…

</beans>

Security
Now let's see the configuration that allows us, once authenticated, to be able
to use the user's information without him or her knowing it and in a totally
transparent way.

Our user will extend the User of Spring Security (formerly known as Acegi).

package it.freshfruits.security;

import org.springframework.security.GrantedAuthority;
import org.springframework.security.userdetails.User;

public class FreshFruitUser extends User {

 public FreshFruitUser(String username, String password, boolean
isEnabled,
 GrantedAuthority[] authorities, Object user) {
 super(username, password, isEnabled, true, true, true,
authorities);
 this.setUserInfo(user);
 }

 public FreshFruitUser(String username, String password, boolean
isEnabled,
 GrantedAuthority[] arrayAuths) {
 super(username, password, isEnabled, true, true, true,
arrayAuths);
 }

 public Object getUserInfo() {
 return userInfo;
 }

 public void setUserInfo(Object userInfo) {
 this.userInfo = userInfo;

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Three-tier Spring Application, Tests and AOP

[264]

 }

 private Object userInfo;
 private static final long serialVersionUID = -343812156239227785L;
}

Here is the class that loads the user's data and ID during authentication:

package it.freshfruits.security;

import it.freshfruits.application.repository.CustomerRepository;
import it.freshfruits.util.Constants;

import java.util.HashMap;
import java.util.Map;

import org.springframework.dao.DataAccessException;
import org.springframework.security.userdetails.UserDetails;
import org.springframework.security.userdetails.
UsernameNotFoundException;
import org.springframework.security.userdetails.jdbc.JdbcDaoImpl;

public class AuthenticationJdbcDaoImpl extends JdbcDaoImpl {

 public UserDetails loadUserByUsername(String username) {
 try {
 UserDetails user = super.loadUserByUsername(username);
 Map userInfo = new HashMap();
 userInfo.put(Constants.ID_CUSTOMER, repo.getIdCustomer(
username));
 return new FreshFruitUser(user.getUsername(), user.
getPassword(),
 user.isEnabled(), user.getAuthorities(), userInfo);
 } catch (UsernameNotFoundException ex1) {
 ex1.printStackTrace();
 throw ex1;
 } catch (DataAccessException ex2) {
 ex2.printStackTrace();
 throw ex2;
 }
 }

 public void setRepo(CustomerRepository repo) {
 this.repo = repo;
 }

 private CustomerRepository repo;
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 7

[265]

Now the class allows us to get information about the user's ID from whichever
class the call comes from, thanks to the pieces of information made available on
the current execution thread and displayed by the SecurityContextHolder.

package it.freshfruits.security;

import it.freshfruits.util.Constants;

import java.util.Map;

import org.springframework.security.context.SecurityContextHolder;

public class SecurityUtils {

 public static String getIdCustomer() {
 FreshFruitUser user = (FreshFruitUser) SecurityContextHolder.
getContext().getAuthentication().getPrincipal();
 Map userInfo = (Map) user.getUserInfo();
 return userInfo.get(Constants.ID_CUSTOMER).toString();

 }

 public static String getCustomerName() {
 return SecurityContextHolder.getContext().getAuthentication().
getName();
 }
}

sffs-security.xml:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xmlns:sec="http://www.springframework.org/schema/security"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/security
http://www.springframework.org/schema/security/spring-security-
2.0.4.xsd">

 <sec:http>
 <sec:intercept-url pattern="/log*.jsp" filters="none" />
 <sec:intercept-url pattern="/*.page" access="ROLE_ADMIN" />
 <sec:form-login login-page="/login.jsp"
 default-target-url="/" login-processing-url="/j_security_
check"
 authentication-failure-url="/loginError.jsp" />
 <sec:logout logout-url="/logout.jsp" invalidate-session="true"

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Three-tier Spring Application, Tests and AOP

[266]

 logout-success-url="/login.jsp" />
 <sec:remember-me />
 <sec:intercept-url pattern="*.htm"
 access="ROLE_USER,ROLE_ANONYMOUS" />
 <sec:intercept-url pattern="*.page" access="ROLE_USER,ROLE_
ADMIN" />
 <sec:intercept-url pattern="*.edit" access="ROLE_USER,ROLE_
ADMIN" />
 <sec:intercept-url pattern="*.admin" access="ROLE_ADMIN" />
 </sec:http>

 <sec:authentication-provider
 user-service-ref="sffsUserDetailservice">
 <sec:password-encoder hash="sha" />
 </sec:authentication-provider>

 <bean id="accessManager" class="org.springframework.security.vote.
AffirmativeBased">
 <property name="decisionVoters">
 <list>
 <bean class="org.springframework.security.vote.RoleVoter"
/>
 <bean class="org.springframework.security.vote.
AuthenticatedVoter" />
 </list>
 </property>
 </bean>

 <bean id="sffsUserDetailservice" class="it.freshfruits.security.
AuthenticationJdbcDaoImpl">
 <property name="rolePrefix" value="ROLE_" />
 <property name="dataSource" ref="dataSource" />
 <property name="usersByUsernameQuery"
 value="SELECT id AS username, password, enabled FROM riot_
users WHERE id = ? " />
 <property name="authoritiesByUsernameQuery"
 value="SELECT id AS username, role FROM riot_users WHERE id =
? " />
 </bean>

 <bean id="accessDecisionManager" class="org.springframework.
security.vote.AffirmativeBased">
 <property name="decisionVoters">
 <list>
 <bean class="org.springframework.security.vote.RoleVoter"
/>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 7

[267]

 <bean class="org.springframework.security.vote.
AuthenticatedVoter" />
 </list>
 </property>
 </bean>

 <sec:global-method-security
 access-decision-manager-ref="accessDecisionManager">
 <sec:protect-pointcut
 expression="execution(* it.freshfruits.domain.
entity.*.*(..))"
 access="ROLE_USER,ROLE_ADMIN" />
 </sec:global-method-security>

</beans>

The following files show the configurations explained in this chapter.

The file sffs-servlet.xml:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-2.5.xsd">

 <context:component-scan base-package="it.freshfruits.ui"/>

 <bean name="urlMapping" class="org.springframework.web.servlet.
mvc.annotation.DefaultAnnotationHandlerMapping">
 <property name="interceptors">
 <list>
 <ref bean="customerInterceptor"/>
 </list>
 </property>
 </bean>

 <bean name="customerInterceptor" class=" it.freshfruits.ui
CustomerInterceptor"/>

 <!-- M E S S A G E S -->
 <bean id="messageSource" class="org.springframework.context.
support.ResourceBundleMessageSource"
 p:basename=" it.freshfruits.ui.message"/>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Three-tier Spring Application, Tests and AOP

[268]

 <!-- V I E W R E S O L V E R -->
 <bean name="viewResolver" class="org.springframework.web.servlet.
view.InternalResourceViewResolver"
 p:viewClass="org.springframework.web.servlet.view.JstlView" p:
prefix="WEB-INF/jsp/" p:suffix=".jsp"/>

</beans>

The file sffs-application.xml:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:tx="http://www.springframework.org/schema/tx"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx-2.5.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-2.5.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-2.5.xsd">

 <context:component-scan base-package="it.freshfruits"/>
 <context:property-placeholder location="/config.properties" />

 <bean id="cache" abstract="true" class="org.springframework.cache.
ehcache.EhCacheFactoryBean"
 p:cacheManager-ref="cacheManager" />

 <bean id="cacheManager" class="org.springframework.cache.ehcache.
EhCacheManagerFactoryBean"
 p:configLocation="classpath:ehcache.xml" />

 <bean id="messageSource" class="org.springframework.context.
support.ResourceBundleMessageSource"
 p:basename="it.freshfruits.messages.msg"/>

 <bean id="viewResolver" class="org.springframework.web.servlet.
view.InternalResourceViewResolver"
 p:viewClass="org.springframework.web.servlet.view.JstlView" p:
prefix="WEB-INF/jsp/" p:suffix=".jsp"/>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 7

[269]

 <bean id="exceptionResolver" class="org.springframework.web.
servlet.handler.SimpleMappingExceptionResolver">
 <property name="exceptionMappings">
 <props>
 <prop key="java.lang.Exception">errors/exception</prop>
 </props>
 </property>
 </bean>

 <bean id="dataSource" class="org.apache.commons.dbcp.
BasicDataSource" destroy-method="close"
 p:url="${jdbc.url}" p:username="${jdbc.username}" p:
password="${jdbc.password}"
 p:driverClassName="${jdbc.production.driver}" p:maxIdle="3" p:
maxWait="50" p:removeAbandoned="true"
 p:removeAbandonedTimeout="550" p:logAbandoned="true" p:
maxActive="20"/>

 <bean id="sqlMapClient" class="org.springframework.orm.ibatis.
SqlMapClientFactoryBean"
 p:dataSource-ref="dataSource" p:configLocation="/sffs-
sqlMapConfig.xml"/>

 <bean id="transactionManager" class="org.springframework.jdbc.
datasource.DataSourceTransactionManager"
 p:dataSource-ref="dataSource"/>

 <tx:advice id="txAdvice" transaction-manager="transactionManager">
 <tx:attributes>
 <tx:method name="save*" propagation="REQUIRED" rollback-
for="Exception"/>
 <tx:method name="insertOrder" propagation="REQUIRED"
rollback-for="OrderItemsException"/>
 <tx:method name="insert*" propagation="REQUIRED" rollback-
for="Exception"/>
 <tx:method name="update*" propagation="REQUIRED" rollback-
for="Exception"/>
 <tx:method name="delete*" propagation="REQUIRED" rollback-
for="Exception"/>
 <tx:method name="disable*" propagation="REQUIRED" rollback-
for="Exception"/>
 <tx:method name="*" read-only="true"/>
 </tx:attributes>
 </tx:advice>

 <aop:config>
 <aop:pointcut id="repoOperations" expression="execution(*
it.freshfruits.application.repository.*.*(..))" />

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Three-tier Spring Application, Tests and AOP

[270]

 <aop:advisor advice-ref="txAdvice" pointcut-ref="repoOperations
"/>
 </aop:config>

 <!-- JMX -->
 <bean id="mbeanServer" class="org.springframework.jmx.support.
MBeanServerFactoryBean"
 p:locateExistingServerIfPossible="true"/>

 <bean id="exporter" class="org.springframework.jmx.export.
MBeanExporter"
 p:assembler-ref="assembler" p:namingStrategy-
ref="namingStrategy" p:autodetect="true"/>

 <bean id="jmxAttributeSource" class="org.springframework.jmx.
export.annotation.AnnotationJmxAttributeSource"/>

 <bean id="assembler" class="org.springframework.jmx.export.
assembler.MetadataMBeanInfoAssembler"
 p:attributeSource-ref="jmxAttributeSource"/>

 <bean id="namingStrategy" class="org.springframework.jmx.export.
naming.MetadataNamingStrategy"
 p:attributeSource-ref="jmxAttributeSource"/>
</beans>

The file config.properties:

jndi.datasource=java:comp/env/jdbc/sffs
jdbc.url=jdbc:postgresql://localhost:5432/sffs
jdbc.username=sffs
jdbc.password=sffs
jdbc.production.driver=org.postgresql.Driver
jdbc.debug.driver=com.p6spy.engine.spy.P6SpyDriver
jdbc.driver=org.postgresql.Driver

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 7

[271]

Summary
In this chapter we've used AOP and IoC with Spring to create in a minimal way an
application with DDD Test Driver Development.

We've seen what DDD is and what its philosophy is, and how it can be applied using
AOP and Spring to use IoC on domain objects instantiated outside Spring using
Aspect�'s weaver.

We've seen how to adopt Aspects to improve implementation by centralizing the
logic of crosscutting functionalities among classes.

We've improved the application's speed, avoiding calls to the database in a
transparent way, which without AOP would have been unavoidable for the
application layer.

We've also employed AOP for the authorization part with Spring Security.

As an exercise, the reader will be able to apply the other aspects described in
the previous chapters as well, which we left out for the sake of brevity in this
partial application.

We've used �Unit, DbUnit, Spring, and SpringIDE A�DT in Eclipse.

In the next chapter will see in detail how to install the whole development
environment on Ubuntu Linux, on apple MacOSX, and on Windows XP, and
how to make the best use of these tools during development.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Develop with AOP Tools
To create a working environment for Spring AOP development on Canonical
Ubuntu Linux 8.10, Apple MacOSX 10.5.6, or Windows XP, we need to:

Download and install the Integrated Development Environment (IDE)
Eclipse, Spring IDE, and A�DT plug-ins
Download and install the Apache Tomcat servlet container
Download and install the PostgreSQL database
Download the Spring full distribution

In this chapter we will see how to install the whole development environment on
Canonical Ubuntu Linux 8.10, Apple MacOSX 10.5.6, and Windows XP, including
the �ava Development Kit, the IDE Eclipse, the Eclipse plug-ins Spring IDE, and
AJDT, which allow Checking the Spring and AOP configurations.

We're also going to see how to install the database PostgreSQL 8.3, create the
application's database, and install the servlet engine Tomcat 6.0.x.

Our aim is to have a development environment, and not a production one. Therefore,
we won't deal with the permissions that must be correctly set in a production.

At the end of the chapter, we'll have an environment ready to employ and modify
the example application of Chapter 6.

Java Development Kit
A prerequisite is to have �ava Development Kit 1.5 or upward on your PC/Mac.

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Develop with AOP Tools

[274]

Spring
Go to http://www.springsource.org/ and click on the entry "Downloads", and
download the latest version of Spring (Spring 2.5.6 at the time of writing this book),
choose the "with dependencies" package that contains the �ARs of all the projects
supported by Spring.

This distribution also contains the �ARs of the third-party software that we will use
in all the examples of the book.

Source code for the examples described in the book is available online.

For each chapter there is a folder where you can find the file which_jars.txt that
lists the JAR files from the Spring distribution you have to include in each project to
make it run. For 3rd-party libraries not included in the Spring with-dependencies
distribution, you can find instructions to get them on the Web.

Eclipse
After downloading Eclipse (3.4.1 or upward) unpack and run it. You must install
some plug-ins.

In this section we will see which plug-ins should be installed, and how to install and
use them.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 8

[275]

Eclipse plug-ins (Linux, MacOSX, and
Windows)
The Eclipse plug-ins provide rich features such as code autocompletion of Spring
beans, a visual explorer for bean dependencies, management of resources and
automatic syntax checking for configuration files.

We're going to see two plug-ins: SpringIDE and A�DT (Aspect� Development Tool).

SpringIDE
SpringIDE provides an autocompletion of the beans in the XML files, and checks if
the classes exist and if the XML is well-formed. A "red signal" on the wrong XML line
appears if an error is found.

SpringIDE provides a visual graph to see the dependencies between your beans.

To install the SpringIDE in your eclipse installation, go to http://springide.org/
blog, and copy the link to the latest version of the plug-in.

The current link is http://springide.org/updatesite/. Copy this link in
your clipboard.

Now, to install the plug-in, let's go in Eclipse to Help | Software Update| Add site
and copy the link http://springide.org/updatesite/.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Develop with AOP Tools

[276]

After reading the remote site, Eclipse shows the available options provided by
the plug-in.

We select the visible entries and we confirm the choice.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 8

[277]

Once the installation is complete, we have a Spring tab in Eclipse, always reachable
with Window | Show view | Spring explorer.

To enable the plug-in on the current project, add the Spring nature command.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Develop with AOP Tools

[278]

Go to the project name and right-click the mouse. You can see a Spring tool label
that has an arrow with some label. Click Add Spring nature, a small blue S appears
near the project name.

Now a folder with project name and Spring symbols appears inside Spring explorer.
If you click on the folder a menu appears. Now you can choose the type of work you
want SpringIDE do for you after you add the configuration files to the project.

SpringIDE enables bean searching and is useful when you have a large number of
beans, or if you find pointcuts in the XML configuration.

You can find all the SpringIDE features in Window | Customize perspective, and in
the voice Shortcuts and Commands in the label that starts with Spring.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 8

[279]

AJDT
AspectJ Development Tool (AJDT) allows us to check whether the pointcuts are
correctly written, indicating on which methods they act. This is shown by arrows
beside of the methods.

A�DT checks both annotations and XML, using different arrow icons to indicate the
target of an advice.

This is indicated by small arrows with different orientation to indicate the type of
advice (before, after, and around). This is very helpful to understand whether a
pointcut is well-formed or not.

Another feature is an AOP trace view that shows how Aspect� performs.

Now to install the plug-in, let's go in Eclipse to Help | Software Update |
Available Software.

In the following image, Eclipse shows the selectable items; choose the AspectJ
Development Tools items.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Develop with AOP Tools

[280]

Check and install.

In the Spring explorer window, A�DT adds the arrows to indicate "advised" when the
pointcut advises some classes, and on the Spring beans to tell "advised by" pointcut.

In the following image AJDT is in action in the Spring config files:

In the following image, A�DT acts on annotated classes:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 8

[281]

The arrows enabled by A�DT indicate the type of advice.

A�DT doesn't work on aspects declared in META-INF/aop.xml.

Apache Tomcat
Apache Tomcat is a Servlet container and allows deployment of web applications,
based on the servlet application model.

Spring MVC, used in Chapter 7, is based on Spring DispatcherServlet.

Now we'll see how to download, install, and configure Tomcat on Linux, MacOSX,
and Microsoft Windows.

Ubuntu Linux
Go to the Tomcat site at http://tomcat.apache.org/.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Develop with AOP Tools

[282]

The Apache Tomcat home page shows the Tomcat version, according to the Servlet
and JSP specification version.

We choose the latest version (6.0.18 at the time of writing the book) from
apache-tomcat-6.0.18.tar.gz and download it, as shown in the following image:

Before unpacking and running Tomcat, we must create a Tomcat user with limited
privileges to execute it.

Create the Tomcat user with the following shell command:

sudo adduser tomcat

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 8

[283]

In the following image we see the result of the adduser command, like adding the
new group tomcat, and setting the password for this new user.

After creating the Tomcat user, we unpack the Tomcat distribution with this
command (the sudo command requires administration privileges) :

sudo tar –xvzf apache-tomcat-6.0.18.tar.gz

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Develop with AOP Tools

[284]

In the following image we see the unpacked folders inside Tomcat:

Now we move the output directory apache-tomcat-6.0.18 and rename it for
convenience as tomcat-6.0.18 (renaming it is an optional step).

sudo mv ./apache-tomcat-6.0.18 /usr/local/tomcat-6.0.18

Now we move to the new Tomcat location with this command:

cd /usr/local

Then we change the folder's owner with the command:

sudo chown –R tomcat ./tomcat-6.0.18/

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 8

[285]

Now we can log in as a Tomcat user with:

su tomcat

and start Tomcat with the command:

sh ./startup.sh

In the following image we see all these commands and their output:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Develop with AOP Tools

[286]

To see if Tomcat is up and verify that everything is fine, let's open a web browser at
http://localhost:8080:

MacOSX
Now we see the installation of Apache Tomcat on MacOSX. The steps are less, but it
is more insecure, and is suggested only for a development machine.

To get Apache Tomcat, go to http://tomcat.apache.org/ and then under
download, click on the Tomcat 6.x build (6.0.18 at the time of writing the book)
apache-tomcat-6.0.18.tar.gz and download it.

Create a folder in the filesystem tomcat_home (/Users/max/developer/
tomcat_home in the example) and unpack it inside.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 8

[287]

In the shell, go to the folder bin and launch startup.sh with the command:

sh startup.sh &

To see if Tomcat is up, let's open a web browser at http://localhost:8080 to
verify that everything is fine.

Microsoft Windows
Now we shall see the installation of Apache Tomcat on Microsoft Windows
XP, the steps are fewer, but it is more unsecure, and suggested only for a
development machine.

To download Tomcat go to http://tomcat.apache.org/, click on the Download
Tomcat 6.x item, choose apache-tomcat-6.0.18.zip and download it. Now, create
a directory tomcat_home and extract the ZIP file in this folder.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Develop with AOP Tools

[288]

The following image shows the Tomcat folder content.

Execute the startup.bat script in the bin\ folder.

To see if Tomcat is up, let's open a web browser at URL http://localhost:8080 to
verify that everything was fine.

Common steps for Linux, MacOSX,
and Windows
Now we will see how to deploy the prototype application freshfruitstore shown
in Chapters 6 and 7.

Create, in <tomcat_dir>/conf, the folder Catalina and localhost inside it, so that
you will have conf\Catalina\localhost where you will copy the file sffs.xml
contained in the tomcat folder of the SpringFreshFruitStore application.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 8

[289]

In SpringFreshFruitStore, you can find the structure and the files as shown in the
following image:

In the tomcat/6.0.x/bin folder you can find a readme with instructions to enable
�MX support in Tomcat.

In the conf/Catalina/localhost folder you can find the sffs.xml deployment file.

You only need to put the path in the filesystem in the <path_to> and change
username/password/url if needed, according to your installation after putting
the sffs.xml inside <tomcat_dir>Tomcat/conf/Catalina/localhost.

The tag <loader..> is a class that has the same effect as javaagent:<path_to>/
spring-agent.jar in the test classes. In other words, it is responsible for the
Load-Time Weaver in Tomcat.

<Context docBase="<path_to>/SpringFreshFruitsStore/www/" debug="0">

<Loader loaderClass="org.springframework.instrument.classloading.
tomcat.TomcatInstrumentableClassLoader"
 useSystemClassLoaderAsParent="false"/>

<Resource name="jdbc/sffs" auth="Container" type="javax.sql.
DataSource"
 username="sffs"
 password="sffs"

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Develop with AOP Tools

[290]

 driverClassName="org.postgresql.Driver"
 url="jdbc:postgresql://localhost:5432/sffs"
 removeAbandoned="true"
 removeAbandonedTimeout="60"

 maxWait="500"
 maxActive="20"
 logAbandoned="true"

 maxIdle="5"
 minEvictableIdleTimeMillis="4000"
 timeBetweenEvictionRunsMillis="5000"/>

<Manager className="org.apache.catalina.session.PersistentManager"
saveOnRestart="false"/>

</Context>

In <tomcat_dir> /lib you must put the spring-tomcat-weaver-2.5.6.jar
(available in Spring distribution), which contains the class mapped in the
<Loader..> tag.

PostgreSQL
PostgreSQL is an open-source object-relational database system.

We use PostgreSQL to store the information used by the SpringFreshfruitStore
application and to run the tests.

We will see how to download and install PostgreSQL on Linux MacOSX, and
Microsoft Windows.

Ubuntu Linux
Let's see how to install PostgreSQL as a service on Linux with Ubuntu
Package Manager.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 8

[291]

Open the Synaptic Package Manager and search for PostgreSQL.

We check PostgreSQL.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Develop with AOP Tools

[292]

We look for the entry pgadmin and check it.

We install it.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 8

[293]

Now we have to set a password on postgres. In the shell we write:

sudo su postgres -c psql template1

postgres=# will appear.

We key in ALTER USER postgres WITH PASSWORD 'postgres';—in this way
we have set the password postgres to the user postgres; postgres=# will appear.
Finally again we key in \q to end.

In the following image we see the command in the shell:

To start, we go to System Tools | pgAdmin III.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Develop with AOP Tools

[294]

MacOSX
Let's see how to download and install PostgreSQL as a service on MacOSX.

Go to http://www.postgresql.org/download/macosx and you will reach the link.

Download it, then unpack it and click twice on postgresql-8.3.x-osx.app to start
the installation.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 8

[295]

The installation path is the first choice.

The installation is now ready to begin.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Develop with AOP Tools

[296]

We disable Launch Stack Builder.

When the installation is finished, we will have the entry PostgreSQL 8.3 in the
Applications folder.

Microsoft Windows
Let's see how to download and install PostgreSQL as a service on
Microsoft Windows.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 8

[297]

Go to http://www.postgresql.org/ftp/binary/v8.3.3/win32 and you will
reach the link:

Download postgresql-8.3.3-2.zip, unpack it, and double-click on
postgresql-8.3.msi to start the installation.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Develop with AOP Tools

[298]

The setup wizard lets you select the installation language, installation path,
and options.

We will be asked if we want to install it as a service, and a user for the service is
created (we could subsequently disable it).

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 8

[299]

We choose the encoding UTF-8 and the password for the user administrator.

We choose to install PL/pgsql.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Develop with AOP Tools

[300]

We enable adminpack.

The installation is now ready to begin.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 8

[301]

We disable Launch Stack Builder.

When the installation is finished, we will have the entry PostgreSQL Database
Server 8.3 in the services, as shown in the image:

and pgAadmin III in Programs:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Develop with AOP Tools

[302]

Common steps for Linux, Apple MacOSX, and
Microsoft Windows
Connect to the database with the administration password and create the user sffs
with your preferred password (such as sffs)

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 8

[303]

Create the database with name sffs.

Open the SQL window and insert the text contained in dump.sql (in the db folder of
the SpringFreshFruitsStore example application).

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Develop with AOP Tools

[304]

If you already have a PostgreSQL installation and you only create
the database, check if you have to install pl/pgsql. In accordance,
uncomment or comment the instructions:
CREATE PROCEDURAL LANGUAGE plpgsql;
ALTER PROCEDURAL LANGUAGE plpgsql OWNER TO postgres;
in the SQL script.
Launch the query and wait for the end of the operation.

JDBC Driver
To connect the application to the database or to run the tests, the PostgreSQL �DBC
driver JAR file is necessary.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 8

[305]

To download it let's go to the web site http://jdbc.postgresql.org.

Choose the appropriate driver version for the PostgreSQL version installed.

After choosing the JAR version and downloading the file, copy postgresql-8.3-603.
jdbc3.jar in <tomcat_dir>/lib and in libExt in the SpringFreshFruits folder.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Develop with AOP Tools

[306]

Summary
In this chapter, we saw how to set up the development environment on Ubuntu
Linux, Apple MaxOSX, and Microsoft Windows XP. The tools needed are the �DK,
Eclipse IDE with SpringIDE and A�DT plug-ins, SpringFramework, Apache Tomcat,
and PostgreSQL to make our AOP application persistent and available on the Web.

It's now time to act in the world of Aspect-Oriented Programming, where we have
been introduced by SpringAOP.

Have fun with Spring and AOP!

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Index
Symbols

@After advice 138
@After running advice 137
@After throwing advice 138
@annotations PCD 123
@args PCD 123
@Around advice 139
@Before advice 136
@targets PCD 123
@within PCD 123

A
AccessDecisionManager, AOP security

Affirmativebased 177
AuthenticatedVoter 177
Consensusbased 177
declaring 178
RoleVoter 177
Unanimousbased 177

advice
about 63
after returning advice 65
after throwing advice 66
before advice 64, 65

advice, AspectJ annotations
@After advice 138
@After running advice 137
@After throwing advice 138
@Around advice 139
@Before advice 136
about 134
defining 135

advice, XML Schema based configuration
after (finally) advice 150
after returning advice 147, 148

after throwing advice 149, 150
around advice 150, 151
Before advice 146, 147

advice arguments, AspectJ annotations
annotations’ binding 134
arguments, binding 132
binding 132
binding of return values 133
exceptions’ binding 133
joinpoint’s implementation, using 132

advisor
about 67
hierarchy 68

AJDT, Eclipse plug-ins
about 279
installing 279-281

AOP
aspect classes, enabling 252-254
benefits 16
cache management 255, 256
concurrency management 257
enabling, actors 16
invocation method comparison, between

OOP and AOP 17
security 263-270
solutions, to problems 16, 17
Spring, configuring 260-263
TimeExecutionManagedAspect 258-260

AOP, advice types
after (finally) advice 19
after returning advice 19
around advice 19
before advice 19
throws advice 19

AOP, designing
cache, using 168

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

[308]

concurrency 162
ehcache example 169, 171
pointcut, defining 172-176
security 176

AOP, components
advice 18, 63, 64
advisor 67
aspect 18, 41
introduction 18, 69
joinpoint 18, 63
pointcut 18, 41
target object 18
weaving 18

AOP security
about 176
AccessDecisionManager 177
authentication 176
authorization 176
Spring Security 2.0 x used 177
strategies, employing 178

Apache Tomcat
about 281
application, deploying 288-290
configuring, on MacOSX 286
configuring, on Microsoft Windows 288
configuring, on Ubuntu Linux 284-286
downloading, on MacOSX 286
downloading, on Microsoft Window 287
downloading, on Ubuntu Linux 282-284
installing, on MacOSX 286
installing, on Microsoft Windows 287
installing, on Ubuntu Linux 282-284

aspect 12
about 41
advisor, implementing 41

Aspect-Oriented Programming. See AOP
AspectJ, Spring AOP 2.5

after (finally) advice, using with
annotations 32

after returning advice, using with
annotations 30

after throwing advice, using with
annotations 33, 34

around advice, using with annotations 31
before advice, using with annotations 29
examples 28, 29

AspectJ annotations
about 119
advice 134
advice arguments, binding 132
annotations, defining 131
AOP namespaces, using 121
aspect 120
autoproxies for classes, creating 120
introduction 140, 141, 142
jars used 120
pointcut 121
selecting, on annotations 131
selecting, on declared exceptions 130
selecting, on hierarchy 130
selecting, on methods’ names 128
selecting, on types of argument 129
selecting, on types of return 130

AspectJ Development Tool. See AJDT,
Eclipse plug-ins

autoproxy
annotation used 111
Aspect� used 110, 111
classic Spring used 101
metadata used 108
using 101
XML Schema used 111, 112

B
BeanNameAutoProxyCreator class,

autoproxy
proxy, creating automatically 101-105

C
CGLIB proxy, using 80
Class 12
classic Spring used, autoproxy

AbstractAdvisorAutoProxyCreator
class 108

DefaultAdvisorAutoProxyCreator class
106-108

code generation library proxy. See CGLIB
proxy

code scattering, object-oriented
programming

code duplication 13, 14

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

[309]

concurrency, AOP
about 162
example 162-168
management 257
thread-safe class example 165

Concurrent Programming in Java 162
configuring, Apache Tomcat

on MacOSX 287
on Microsoft Windows 287, 288
on Ubuntu Linux 284, 286

crosscutting concerns 9
about 10
defining 9
Servlet Engine Tomcat 4, modules 10, 11

D
Data Access Objects (DAOs) 168
Data Transfer Object (DTO) 183
DDD

about 183, 184
architecture 186
OOP concepts used 184
roles and responsibilites, defining 184
using, sample application 187

DDD, architecture
application layer 186
domain layer 186, 187
infrastructure layer 187
user interface 186

Domain-Driven Design. See DDD
downloading, Spring 274
downloading, Apache Tomcat

on MacOSX 286
on Microsoft Windows 287
on Ubuntu Linux 282

downloading, PostgreSQL
on Linux 290-293
on MacOSX 295, 296
on Microsoft Windows 296-301

E
Eclipse plug-ins

A�DT 279
feature 275
installing 274

SpringIDE 275
Extreme Programming 7

F
features, proxy 78

H
Hot swappable target source, target sources

113-115

I
installing, Apache Tomcat

on MacOSX 286
on Microsoft Windows 287
on Ubuntu Linux 282-286

installing, PostgreSQL
on Linux 290-293
on MacOSX 296
on Microsoft Windows 296-302

introduction
about 69
example 71-75
objectives 69

Inversion of Control. See IOC
IoC 7

J
Java Concurrency in Practice 162
Java Development Kit (JDK) 273
JDK proxy 78, 79
joinpoint 63

L
Load Time Weaving. See LTW
LTW 157

N
NameMatchMethodPointcut, pointcut

methods 43
testing 45
using 44, 45

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

[310]

M
metadata used, autoproxy 108
methods, NameMatchMethodPointcut 43

O
object-oriented programming, benefits

class concepts 8
concept of inheritance 8
design pattern 8
object reliability 8

object-oriented programming, limitations
code not reusable 16
code scattering 12, 13
code scattering, types 13
code tangling 14, 16
complexity ruling, managing 8
difficult evolution 16
poor quality 16
productivity 16
traceability 16

P
PCD, pointcut

@annotations 123
@args 123
@target 123
@within 123
args 123
bean 123
execution 122
non-available Spring PCD’s 123
target 122
this 122
within 122

pointcut
about 41, 42
composing 57
examples 42

pointcut, AspectJ annotations
declaring 121-128
PCD 121

pointcut, components
about 42
DynamicMethodMatcherPointcut 53-56

NameMatchMethodPointcut 43
RegexpMethodPointcut 46-49
RegexpMethodPointcut, example 47
StaticMethodMatcherPointcut 49-53

pointcut, operations
ComposablePointcut 57-59
ControlFlowPoint cut 60-62
pointcut constants 63

Pointcut Designators. See PCD, pointcut
PostgreSQL

about 290
application, depolying 302, 303
downloading, on Linux 291-293
downloading, on MacOSX 295
downloading, on Microsoft

Windows 296-301
installing, on Linux 290-293
installing, on MacOSX 294-296
installing, on Microsoft Windows 296-302
�DBC driver, downloading 304, 305
use 290

proxy
about 77, 78
constraint 78
features 78
purpose 77

proxy, creating programmatically
Aspect�Proxy used 82, 83
ClassicProxy used 80-82

ProxyFactoryBean
about 84
advantage 84
advised objects 97-100
choosing, between proxies 85
configuring, in XML 86-97
interface 84, 85

R
recipes

advices, ordering 155
aspect instantiation model 156
configuration mixin 155
dependancy injection, applying 154
Singleton model 155, 156
Spring aspect, using 155

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

[311]

roles and responsibilites, DDD
aggregates 184, 185
defining 184
entities 184
factory 185
modules 185
repository 186
service 186
service, characteristics 186
valued objects 185

S
sample application

about 187
application layer 221
customer implementations 192-198
entities, locating 189-191
factory objects, using 208, 209
FruitType entity 198-205
name service 205
order entity 198-205
orderItem entity 198-205
repositories 209-214
SupplyService 205-208
tests, performing 226
UI controller 221
XML configuration map 215-218

schema based configurations,
Spring AOP 2.5

after advice, using with XML
configuration 36

after returning advice, using with XML
configuration 37

after throwing advice using with XML con-
figuration 37

around advice, using with XML
configuration 39

before advice, using with XML
configuration 35, 36

Spring, downloading 274
Spring’s AspectJ weaving

about 157
LTW, using 157

Spring AOP. See AOP components

Spring AOP.
about 19
after returning advice method 21, 22
after throwing advice method 24, 25
aim 19
around advice method 23, 24
before advice method 20, 21
Canonical Ubuntu Linux 8.10, tools 273
proxies, using 20
Spring XML way 26, 27

Spring AOP 2.5
Aspect�, annotations 28
schema based configurations 35

Spring AOP Proxies. See proxy
Spring AspectJ weaving

LTW, with Aspect� 158
LTW, with Spring 158

SpringIDE, Eclipse plug-ins
about 275-278
enabling 277
installing 275
use 278

strategies, AOP security
employing 178
methods, securing with annotations 181
methods, securing with pointcuts 180
methods, securing with security

interceptors 179, 180

T
target sources

about 112
Hot swappable target source 113-115
pooling target source 115
prototype target source 116
ThreadLocal target source 117

tests
integration tests 244-249
�ARs used 250
�Unit, running on Linux 250
�Unit, running on Windows 251
performing 226
performing, classes 226-233
test of customer, performing 234-237
test of order ,performing 237-243

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

[312]

U
UI controller

AddOrderItemController 224, 225
building 222
form controller, creating 225
methods, names 221
UiUtils, using 222-224

V
VO(Value Object) 183

W
weaving AOP components 18
within PCD, pointcut 122

X
XML Schema based configuration

advice 146
advisors 153
aspect 144
introduction 151, 152
pointcut 144-146
using 143

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Thank you for buying
Spring 2.5 Aspect-Oriented
Programming

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that
project. Therefore by purchasing Spring 2.5 Aspect-Oriented Programming, Packt will have
given some of the money received to the Spring project.
In the long term, we see ourselves and you—customers and readers of our books—as part of
the Open Source ecosystem, providing sustainable revenue for the projects we publish on.
Our aim at Packt is to establish publishing royalties as an essential part of the service and
support a business model that sustains Open Source.
If you're working with an Open Source project that you would like us to publish on, and
subsequently pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.PacktPub.com.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Spring Web Flow 2 Web
Development
ISBN: 978-1-847195-42-5 Paperback: 200 pages

Master Spring’s well-designed web frameworks to
develop powerful web applications

1. Design, develop, and test your web applications
using the Spring Web Flow 2 framework

2. Enhance your web applications with
progressive A�AX, Spring security integration,
and Spring Faces

3. Stay up-to-date with the latest version of Spring
Web Flow

4. Walk through the creation of a bug tracker web
application with clear explanations

JasperReports for Java
Developers
ISBN: 978-1-904811-90-9 Paperback: 344 pages

Create, Design, Format and Export Reports with the
world’s most popular �ava reporting library

1. Get started with �asperReports, and develop the
skills to get the most from it

2. Create, design, format, and export reports

3. Generate report data from a wide range of
datasources

4. Integrate �asper Reports with Spring,
Hibernate, �ava Server Faces, or Struts

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

Service Oriented Architecture
with Java
ISBN: 978-1-847193-21-6 Paperback: 192 pages

Using SOA and web services to build powerful
�ava applications

1. Build effective SOA applications with �ava Web
Services

2. Quick reference guide with best-practice design
examples

3. Understand SOA concepts from core with
examples

4. Design scalable inter-enterprise communication

Learning Dojo
ISBN: 978-1-847192-68-4 Paperback: 249 pages

A practical, comprehensive tutorial to building
beautiful, scalable interactive interfaces for your Web
2.0 applications with Dijits

1. Learn real-world Dojo programming with
detailed examples and analysis of source code

2. Comprehensive guide to available Dojo
widgets (dijits) and how to use them

3. Extend Dojo by creating your own dijits

4. Highly practical, with hands on examples and
short, clear explanations right from the start

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by Richard Ostheimer on 6th June 2009

2205 hilda ave., , missoula, , 59801

	Cover
	Table of Contents
	Preface
	Chapter 1: Understanding AOP concepts
	Limits of object-oriented programming
	Code scattering
	Code tangling

	The AOP solution
	What Spring provides in terms of AOP
	Programmatic way
	Before advice
	After returning advice
	Around advice
	After throwing advice

	The old Spring XML way

	AOP with IoC in Spring 2.5
	AspectJ annotations
	Before advice
	After returning advice
	Around advice
	After (finally) advice
	After throwing advice

	Schema-based configuration
	Before advice
	After advice

	After returning advice
	After throwing advice
	Around advice

	Summary

	Chapter 2: Spring AOP Components
	Aspect
	Pointcut
	Pointcut and its components
	NameMatchMethodPointcut
	RegexpMethodPointcut
	StaticMethodMatcherPointcut
	DynamicMethodMatcherPointcut

	Operations on Pointcut
	ComposablePointcut
	ControlFlowPointcut
	Pointcut constants

	Joinpoint
	Advice
	Before advice
	After returning advice
	After throwing advice

	Advisor
	Introductions
	Summary

	Chapter 3: Spring AOP Proxies
	Proxy
	JDK proxy
	CGLIB proxy
	Creating proxies programmatically
	ClassicProxy
	AspectJProxy

	ProxyFactoryBean
	ProxyFactoryBean and proxies
	ProxyFactoryBean in action
	Advised objects

	Autoproxy
	Autoproxy with classic Spring
	BeanNameAutoProxyCreator
	DefaultAdvisorAutoProxyCreator
	AbstractAdvisorAutoProxyCreator

	AutoProxyCreator with metadata
	Autoproxy with AspectJ
	Autoproxy with annotation
	Autoproxy with XML Schema

	Target sources
	Hot swappable target sources
	Pooling target sources
	Prototype target sources
	ThreadLocal target source

	Summary

	Chapter 4: AspectJ Support
	AspectJ annotations
	Aspect
	Pointcut
	execution
	within
	this
	target
	args
	@target
	@args
	@ within
	@ annotation
	bean

	Selection on methods' names
	Selection on types of argument
	Selection on type of return
	Selection on declared exceptions
	Selection on hierarchy
	Selection on annotations
	Binding advice arguments
	JoinPoint
	Binding arguments
	Binding of return values
	Exception binding
	Annotation binding

	Advice
	@Before
	@AfterReturning
	@AfterThrowing
	@After
	@Around

	Introduction

	XML Schema-based configuration
	Aspect
	Pointcut
	Advice
	Before advice
	After returning advice
	After throwing advice
	After (finally) advice
	Around advice

	Introduction
	Advisors

	Recipes
	Dependency injection in domain objects
	Advice ordering
	Configuration mixin
	Aspect instantiation model

	AspectJ weaving in Spring
	Load-time weaving with Spring
	Load-time weaving with AspectJ
	AOP strategy considerations

	Summary

	Chapter 5: Design with AOP
	Concurrency with AOP
	Transparent caching with AOP
	Security with AOP
	Securing methods with security interceptors
	Securing methods with pointcuts
	Securing methods with annotations

	Summary

	Chapter 6: Three-tier Spring Application, Domain-Driven Design
	Domain-Driven Design
	Roles and responsibilities
	Entities
	Aggregates
	Modules
	Value objects
	Factories
	Repositories
	Services

	Architecture
	User interface
	Application layer
	Domain layer
	Infrastructure layer

	Sample application
	Design
	Services
	Factories
	Repositories

	Summary

	Chapter 7: Three-tier Spring Application, Tests and AOP
	Application layer and user interface
	Test
	AOP
	Cache
	Concurrent
	TimeExecutionManagedAspect
	Transactions
	Security

	Summary

	Chapter 8: Develop with AOP Tools
	Java Development Kit
	Spring
	Eclipse
	Eclipse plug-ins (Linux, MacOSX, and Windows)
	SpringIDE
	AJDT

	Apache Tomcat
	Ubuntu Linux
	MacOSX
	Microsoft Windows
	Common steps for Linux, MacOSX, and Windows

	PostgreSQL
	Linux
	MacOSX
	Microsoft Windows
	Common steps for Linux, Apple MacOSX, and Microsoft Windows
	JDBC Driver:
	Summary

	Index

