

Spring Boot Cookbook

Over 35 recipes to help you build, test, and run Spring
applications using Spring Boot

Alex Antonov

BIRMINGHAM - MUMBAI

FM-2

Spring Boot Cookbook

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: September 2015

Production reference: 1240915

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-415-1

www.packtpub.com

www.packtpub.com

FM-3

Credits

Author
Alex Antonov

Reviewers
Theo Pack

Eric Pirard

Geoffroy Warin

Ricky Yim

Commissioning Editor
Dipali Goankar

Acquisition Editor
Sonali Vernekar

Content Development Editor
Shweta Pant

Technical Editor
Bharat Patil

Copy Editor
Tasneem Fatehi

Project Coordinator
Shipra Chawhan

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

FM-4

About the Author

Alex Antonov is a very passionate technologist with a hunger to learn new tools, languages,
techniques, and concepts behind enterprise application design. His specialty lies in designing
highly scalable distributed large-scale enterprise systems, which he has been successfully
doing for the last 12 years. He is also a frequent presenter on the topics of architecture and
design at conferences such as UberConf, JavaOne, and Spring 2GX.

Alex joined Orbitz Worldwide in 2004, and in his current role of Senior Principal Engineer, he is
responsible for providing technical leadership and guidance in the development of foundational
technologies, core libraries, and APIs for enterprise-wide use, as well as establishing and
maintaining common design principles and standards used within the company and integration
of new software development practices within the development community. He has extensive
experience in enterprise architecture designing distributed systems, and spends a lot of time
doing object domain modeling and focusing on domain-driven design and behavior-driven
development and testing. Prior to that, Alex was a lead engineer in the same team that was
responsible for web application frameworks and developing common practices and additional
functionality on top of Spring MVC and Webflow.

He has been a long-time Spring user, starting with Spring 2.0.8 and all the way to the latest
and greatest—Spring Boot. Ever since the introduction of Spring Boot, he has been writing
applications using the framework as well as contributing patches to the codebase. His
general interests lie in the area of distributed computing and technologies and frameworks
that enable ease of application creation and cross communication. Besides Java, he is also
proficient in Ruby/Rails, PHP, Groovy and is currently learning Erlang.

Alex is a graduate of Loyola University of Chicago, with a BS in computer science and an MS
in computer science specializing in software architecture. He currently resides in Evanston, IL.
When not coding, Alex enjoys playing tennis, hiking, skiing, and traveling.

FM-5

Acknowledgment

I would like to thank all the people who have inspired, supported, and encouraged me through
the book writing process. For me, this book represents the ability to take my passion to build
software, my appreciation of the Spring family of frameworks and the amazing work that
was done by their creators, combine it with many years of my first-hand experience building
complex applications and share all the thoughts and best practices, which I've developed
over time and always wanted to share, with the community, to help them build better, more
elegant, robust, and performant applications.

I want to specially thank my wife, Alla, for constantly being there for me, for supporting me in
writing this book, for being understanding when I spent countless evenings and weekends
working on the chapters, for giving me an extra push to the finish line, when I was close to
being done and for just being there for me! Honey, I love you very much!!!

A special thank you goes to my parents, for giving me the opportunity to pursue my carrier
dreams, for the education, and raising me to become the person I am. All your hard work is
now paying off, and I would not be able to achieve what I had, and write this book, if it weren't
for you. I love you guys a lot, and while you are around, I can still be a child.

FM-6

About the Reviewers

Theo Pack is a software engineer with several years of experience in developing frontend
and backend applications. He completed his M.Sc. and has been working at Cologne
Intelligence GmbH, a consulting company in Germany, since 2009.

Theo is passionate about technology and likes to master new programming languages.

You can read his blog at http://furikuri.github.io or follow him on Twitter
at @furikuri.

Eric Pirard is a Java developer from the past few years. He is interested in the new
technologies that help developers in their jobs to satisfy the customer's requirements as
quick as possible. He also likes to help his friends or colleagues in solving their problems
and progressing in their projects if he can.

As there are a lot of things to do in addition to his exciting job, if technology can help to solve
customers problems as soon as possible, he is very interested. In this way, he has more time
to spend with his family, enjoying sports, travelling, in short, enjoying life.

http://furikuri.github.io

FM-7

Geoffroy Warin has been programming since he was 10. He is a firm believer in the
software craftsmanship movement and open source initiatives. A developer by choice and
conviction, he has been working on the conception of enterprise-level web applications in
Java and JavaScript throughout the course of his career.

He also teaches courses on Java web stacks and is a Groovy and Spring enthusiast.

You can read more about him on his blog at http://geowarin.github.io and on Twitter
at @geowarin.

Ricky Yim is a passionate software engineer who has over 15 years of industry experience.
He is a firm believer in using test-driven and behavior-driven development and agile practices
to solve problems. He takes a flexible approach to software delivery and applies innovative
solutions. He is currently the Delivery Manager for DiUS, an Australian technology services
organization, http://www.dius.com.au.

You can find out more about him at http://codingricky.com, and you can follow him on
GitHub at http://github.com/codingricky and on Twitter at @codingricky.
He is also an avid runner and you can read about his adventures here at
http://runningricky.com.

http://geowarin.github.io
https://twitter.com/geowarin
http://www.dius.com.au
http://runningricky.com

FM-8

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via a web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/

i

Table of Contents
Preface	 iii
Chapter 1: Getting Started with Spring Boot	 1

Introduction	 1
Using a Spring Boot template and starters	 2
Creating a simple application	 4
Launching an application using Gradle	 7
Using the command-line runners	 9
Setting up a database connection	 10
Setting up a data repository service	 13
Scheduling executors	 17

Chapter 2: Configuring Web Applications	 19
Creating a basic RESTful application	 19
Creating a Spring Data REST service	 21
Configuring custom servlet filters	 24
Configuring custom interceptors	 25
Configuring custom HttpMessageConverters	 27
Configuring custom PropertyEditors	 29
Configuring custom type Formatters	 31

Chapter 3: Web Framework Behavior Tuning	 35
Introduction	 35
Configuring route matching patterns	 35
Configuring custom static path mappings	 38
Tuning Tomcat via EmbeddedServletContainerCustomizer	 39
Choosing embedded servlet containers	 41
Adding custom connectors	 43

ii

Table of Contents

Chapter 4: Writing Custom Spring Boot Starters	 49
Introduction	 49
Understanding Spring Boot autoconfiguration	 50
Creating a custom Spring Boot autoconfiguration starter	 52
Configuring custom conditional bean instantiations	 56
Using custom @Enable* annotations to toggle configurations	 58

Chapter 5: Application Testing	 63
Introduction	 63
Creating tests for Spring MVC Controllers	 64
Automatically configuring the database schema and
populating it with data	 70
Creating tests using in-memory database with data fixtures	 74
Creating tests using Mockito to mock DB	 78
Writing tests using Cucumber	 82
Writing tests using Spock	 91

Chapter 6: Application Packaging and Deployment	 101
Introduction	 101
Creating a Spring Boot executable JAR	 102
Creating Docker images	 106
Building self-executing binaries	 112
Spring Boot environment config hierarchy and precedence	 116
Externalizing environmental config using property files	 125
Externalizing environmental config using environment variables	 127
Externalizing environmental config using Java system properties	 129
Setting up Consul	 131
Externalizing environmental config using Consul and envconsul	 135

Chapter 7: Health Monitoring and Data Visualization	 139
Introduction	 139
Writing custom health indicators	 140
Emitting metrics	 147
Monitoring Spring Boot via JMX	 154
Management of Spring Boot via CRaSH and writing
custom remote shell commands	 156
Integrating Codahale/Dropwizard metrics with Graphite	 163
Integrating Codahale/Dropwizard metrics with Dashing	 173

Index	 183

iii

Preface
Spring Boot gives you the ability to create modern enterprise applications using a
convention-over-configuration design principle and building on the power and flexibility
of the underlying Spring Framework and its various components.

This book will help readers to create different types of Spring Boot applications, understand
how to configure their behavior, and write and add custom components. They will obtain
knowledge in how to be more efficient in testing, deploying, and monitoring their applications,
which will help them through all the stages of the Software Development Life Cycle. By the
end of the book, readers will have gained the skills and expertise to deploy and develop
applications using Spring Boot.

What this book covers
Chapter 1, Getting Started with Spring Boot, provides you with an overview of the important
and useful Spring Boot starters that are included in the framework. You will learn how to use
the http://spring.io/ resources, how to get started with a simple project, configure
the build file to contain your desired starters, and finish by creating a simple command-line
application configured to execute some scheduled tasks.

Chapter 2, Configuring Web Application, provides you with examples of how to create and add
the custom ServletFilters, Interceptors, Converters, Formatters and PropertyEditors to a Spring
Boot web application. It will start by creating a new web application and proceed to use it as a
base to customize with the above mentioned components.

Chapter 3, Web Framework Behavior Tuning, delves into fine-tuning the behavior of a web
application. It will cover configuring the custom routing rules and patterns, adding additional
static asset paths, and adding and modifying the servlet container connectors and other
properties such as enabling SSL.

Preface

iv

Chapter 4, Writing Custom Spring Boot Starters, shows you how to create custom Spring
Boot Starters in order to provide additional behaviors and functionalities that might be
required for complex enterprise applications. You will learn about the inner workings of the
autoconfiguration mechanics and how to use them to selectively enable/disable default
functionalities and conditionally load your own.

Chapter 5, Application Testing, explores the different techniques to test Spring Boot
applications. It starts by introducing you to the testing of MVC applications, then proceeds
with some tips on how to use the in-memory database with prepopulated data in order to
mimic the real DB interactions during tests, and concludes with examples of behavior-driven
development via testing tools such as Cucumber and Spock.

Chapter 6, Application Packaging and Deployment, shows you how every written application
needs to be deployed. You will see examples of configuring their build to produce Docker
images and self-executing binary files for the Linux/OSX environments. It will explore the
options to configure the external applications using Consul and delve into the details of the
Spring Boot environment and configuration functionalities.

Chapter 7, Health Monitoring and Data Visualization, explores the various mechanisms
that Spring Boot provides to help us see the data about our application's health. It will
start by showing you how to write and expose the custom health metrics and see the data
using the http endpoints and JMX. It will then proceed with the overview and creation of the
management commands for CRaSH and finish with the integration of the monitoring data with
Graphite and Dashing using the Codahale/Dropwizard Metrics framework.

What you need for this book
For this book, you need JDK 1.8 installed in your favorite operating system: Linux, Windows,
or OS X.

The rest of the software such as the Gradle build tool, all the necessary Java libraries such
as Spring Boot and Spring Framework, and their dependencies as well as Docker, Consul,
Graphite, Grafana, and Dashing will all be installed through the recipes in this book.

Who this book is for
This book is targeted at the Java developers who have a good knowledge level and an
understanding of the Spring and Java application development, are familiar with the notions
of Software Development Life Cycle (SDLC), and understand the need for different kinds
of testing strategies, general monitoring, and deployment concerns. This book is for those
who want to learn efficient Spring Boot development techniques, integration, and extension
capabilities in order to make the existing development process more efficient.

Preface

v

Conventions
In this book, you will find a number of styles of text that distinguish between the different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We can
include other contexts through the use of the include directive."

A block of code is set as follows:

public class StartupRunner implements CommandLineRunner {
 protected final Log logger = LogFactory.getLog(getClass());
 @Autowired
 private DataSourceds;
 @Override
 public void run(String... args) throws Exception {
 logger.info("DataSource: "+ds.toString());
 }
}

Any command-line input or output is written as follows:

spring.datasource.driver-class-name: com.mysql.jdbc.Driver

spring.datasource.url: jdbc:mysql://localhost:3306/springbootcookbook

spring.datasource.username: root

spring.datasource.password:

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: " Clicking on Generate Project
will download a premade project skeleton for us to start with.".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

vi

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles that
you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded on our website, or added to any list of existing errata, under the Errata section
of that title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.

Preface

vii

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1

1
Getting Started with

Spring Boot

Spring Boot has a lot of starters that are already a part of the Spring Boot family. This chapter
will provide you with an overview of http://start.spring.io/, available components
provided by Spring Boot, and will also show you how to make a project Bootiful, as Josh Long
likes to call it.

In this chapter, we will learn about the following topics:

ff Using a Spring Boot template and starter

ff Creating a simple application

ff Launching an application using Gradle

ff Using the command-line runners

ff Setting up a database connection

ff Setting up a data repository service

ff Scheduling executors

Introduction
In a fast-paced world of today's software development, the speed of an application creation
and the need for rapid prototyping are becoming more and more important. If you are
developing a software using a JVM language, Spring Boot is exactly the kind of framework that
will give you the power combined with the flexibility that will enable you to produce high-quality
software at a rapid pace. So, let's take a look at how Spring Boot can help you to make your
application Bootiful.

Getting Started with Spring Boot

2

Using a Spring Boot template and starters
Spring Boot comes with over 40 different starter modules, which provide ready-to-use
integration libraries for many different frameworks, such as database connections that are
both relational and NoSQL, web services, social network integration, monitoring libraries,
logging, template rendering, and the list just keeps going. While it is not practically feasible to
cover every single one of these components, we will go over the important and popular ones
in order to get an idea of the realm of possibilities and the ease of application development
that Spring Boot provides us with.

How to do it…
We will start with creating a basic simple project skeleton and Spring Boot will help us in this:

1.	 Let's head over to http://start.spring.io.

2.	 Fill out a simple form with the details about our project.

3.	 Clicking on Generate Project will download a premade project skeleton for us to
start with.

How it works…
You will see the Project Dependencies section, where we can choose the kind of functionalities
that our application will perform: will it connect to a database, will it have a web interface,
do we plan to integrate with any of the social networks, provide runtime operational support
capabilities, and so on. By selecting the desired technologies, the appropriate starter libraries
will be added automatically to the dependency list of our pregenerated project template.

Before we proceed with the generation of our project, let's go over exactly what a Spring Boot
starter is and the benefits it provides us with.

Spring Boot aims to simplify the process of getting started with an application creation. Spring
Boot starters are bootstrap libraries that contain a collection of all the relevant transitive
dependencies that are needed to start a particular functionality. Each starter has a special
file, which contains the list of all the provided dependencies—spring.provides. Let's take
a look at the following link for a spring-boot-starter-test definition as an example:

https://github.com/spring-projects/spring-boot/blob/master/spring-
boot-starters/spring-boot-starter-test/src/main/resources/META-INF/
spring.provides

Here we will see the following:

provides: spring-test, spring-boot, junit, mockito, hamcrest-library

Chapter 1

3

This tells us that by including spring-boot-starter-test in our build as a dependency,
we will automatically get spring-test, spring-boot, junit, mockito, and hamcrest-
library. These libraries will provide us with all the necessary things in order to start writing
application tests for the software that we will develop, without needing to manually add these
dependencies to the build file individually.

With more than 40 starters provided and with the ongoing community additions increasing
the list, it is very likely that in case we find ourselves with the need to integrate with a fairly
common or popular framework, there is already a starter out there that we can use.

The following table shows you the most notable ones so as to give you an idea of what
is available:

Starter Description
spring-boot-starter This is the core Spring Boot starter that provides you with all

the foundational functionalities. It is depended upon by all
other starters, so there is no need to declare it explicitly.

spring-boot-starter-
actuator

This starter provides you with a functionality to monitor,
manage an application, and audit it.

spring-boot-starter-
jdbc

This starter provides you with a support to connect and use
JDBC databases, connection pools, and so on.

spring-boot-starter-
data-jpa

The JPA starter provides you with needed libraries in order
to use Java Persistence API such as Hibernate, and others.

spring-boot-starter-
data-*

Collection of data-* family starter components providing
support for a number of data stores such as MongoDB,
Data-Rest, or Solr.

spring-boot-starter-
security

This brings in all the needed dependencies for
spring-security.

spring-boot-starter-
social-*

This provides you with integration with Facebook, Twitter,
and LinkedIn.

spring-boot-starter-
test

This is a starter that contains the dependencies for
spring-test and assorted testing frameworks
such as JUnit and Mockito among others.

spring-boot-starter-web This gives you all the needed dependencies for web
application development. It can be complimented with
spring-boot-starter-hateoas, spring-boot-
starter-websocket, spring-boot-starter-
mobile, or spring-boot-starter-ws, and assorted
template rendering starters such as sping-boot-
starter-thymeleaf or spring-boot-starter-
mustache.

Getting Started with Spring Boot

4

Creating a simple application
Now that we have a basic idea of the starters that are available to us, let's go ahead and
create our application template at http://start.spring.io.

How to do it…
The application that we are going to create is a book catalog management system. It will
keep a record of books that were published, who were the authors, the reviewers, publishing
houses, and so forth. We will name our project BookPub, and apply the following steps:

1.	 Use the default proposed Group name: org.test.

2.	 Enter bookpub for an Artifact field.

3.	 Provide BookPub as a Name for the application.

4.	 Specify org.test.bookpub as our Package Name.

5.	 Choose Gradle Project.

6.	 Select Jar as Packaging.

7.	 Use Java Version as 1.8.

8.	 Use Spring Boot Version as 1.2.5.

9.	 Select the H2, JDBC, and JPA starters from the Project Dependencies selection
so that we can get the needed artifacts in our build file in order to connect to an
H2 database

10.	 Click Generate Project to download the project archive.

How it works…
Clicking on the Generate Project button will download the bookpub.zip archive, which
we will extract in our working directory. In the newly created bookpub directory, we will see
a build.gradle file that defines our build. It already comes preconfigured with the right
version of a Spring Boot plugin and libraries and even includes the extra starters, which we
have chosen.

The following is the code of the build.gradle file:

dependencies {
 compile("org.springframework.boot:spring-boot-starter-data-jpa")
 compile("org.springframework.boot:spring-boot-starter-jdbc")
 runtime("com.h2database:h2")
 testCompile("org.springframework.boot:spring-boot-starter-test")
}

Chapter 1

5

We have selected the following starters:

ff org.springframework.boot:spring-boot-starter-data-jpa pulls in the
JPA dependency

ff org.springframework.boot:spring-boot-starter-jdbc pulls in the JDBC
supporting libraries

ff com.h2database:h2 is a particular type of database implementation, namely H2

As you can see, the runtime("com.h2database:h2") dependency is a runtime one.
This is because we don't really need, and probably don't even want, to know the exact kind
of a database to which we will connect at the compile time. Spring Boot will autoconfigure
the needed settings and create appropriate beans once it detects the presence of the
org.h2.Driver class in the classpath when the application is launched. We will look
into the inner workings of how and where this happens later in this chapter.

The data-jpa and jdbc are Spring Boot starter artifacts. If we look inside these dependency
jars once they are downloaded locally by Gradle, or using Maven Central online file repository,
we will find that they don't contain any actual classes, only the various metadata. The two
containing files that are of particular interest to us are pom.xml and spring.provides.
Let's first look at the spring.provides file in the spring-boot-starter-jdbc.jar
artifact, with the following content:

provides: spring-jdbc,spring-tx,tomcat-jdbc

This tells us that by having this starter as our dependency, we will transitively get the
spring-jdbc, spring-tx, and tomcat-jdbc dependency libraries in our build. The
pom.xml file contains the proper dependency declarations that will be used by Gradle or
Maven to resolve the needed dependencies during the build time. This also applies to our
second starter: spring-boot-starter-data-jpa. This starter will transitively provide us
with the spring-orm, hibernate-entity-manager, and spring-data-jpa libraries.

At this point, we have enough libraries/classes in our application classpath so as to give
Spring Boot an idea of what kind of application we are trying to run and what are the kind of
facilities and frameworks that need to be configured automatically by Spring Boot in order to
stitch things together.

Earlier, we mentioned that the presence of the org.h2.Driver class in the classpath will
trigger Spring Boot to automatically configure the H2 database connection for our application.
To see exactly how this will happen, let's start by looking at our newly created application
template, specifically at BookPubApplication.java located in the src/main/java/
org/test/bookpub directory in the root of the project, as follows:

package org.test.bookpub;

import org.springframework.boot.SpringApplication;

Getting Started with Spring Boot

6

import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class BookPubApplication {

 public static void main(String[] args) {
 SpringApplication.run(BookPubApplication.class, args);
 }
}

This is effectively our entire and fully runnable application. There's not a whole lot of code
here and definitely no mention about configuration or databases anywhere. The key to making
magic is the @SpringBootApplication meta-annotation. In order to understand what
actually happens, we can take a look inside the code definition for this annotation, where we
will find the real annotations that will direct Spring Boot to set things up automatically:

@Configuration
@EnableAutoConfiguration
@ComponentScan
public @interface SpringBootApplication {…}

Let's go through the following list of annotations:

ff @Configuration tells Spring (and not just Spring Boot, as it is a Spring Framework
core annotation) that the annotated class contains Spring configuration definitions
such as the @Bean, @Component, and @Service declarations, and others.

ff @ComponentScan tells Spring that we want to scan our application packages—
starting from the package of our annotated class as a default package root—for the
other classes that might be annotated with @Configuration, @Controller, and
other applicable annotations, which Spring will automatically include as part of the
context configuration.

ff @EnableAutoConfiguration is a part of the Spring Boot annotation, which
is a meta-annotation on its own (you will find that Spring libraries rely very
heavily on the meta-annotations in order to group and compose configurations
together). It imports the EnableAutoConfigurationImportSelector and
AutoConfigurationPackages.Registrar classes that effectively instruct
Spring to automatically configure the conditional beans depending on the classes
available in the classpath. (We will cover the inner workings of autoconfiguration in
detail in Chapter 4, Writing Custom Spring Boot Starters).

The SpringApplication.run(BookPubApplication.class, args); line in the
main method basically creates a Spring application context that reads the annotations
in BookPubApplication.class and instantiates a context, which is similar to how
it would have been done if instead of using Spring Boot we would have stuck with the
regular Spring Framework.

Chapter 1

7

Launching an application using Gradle
Typically, the very first step of creating any application is to have a basic skeleton, which
can be immediately launched as is. As the Spring Boot starter has created the application
template for us already, all we have to do is extract the code, build, and execute it. Now let's
go to the console and launch the app with Gradle.

How to do it…
1.	 Change in the directory where the bookpub.zip archive was extracted from and

execute the following command from the command line:
$./gradlew clean bootRun

If you don't have gradlew in the directory, then download a version of Gradle
from https://gradle.org/downloads or install it via homebrew by
executing brew install gradle. After Gradle is installed, run gradle
wrapper to get the Gradle wrapper files generated. Another way is to invoke
gradle clean bootRun in order to achieve the same results.

The output of the preceding command will be as follows:

…

 . ____ _ __ _ _

 /\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \

(()___ | '_ | '_| | '_ \/ _` | \ \ \ \

 \\/ ___)| |_)| | | | | || (_| |))))

 ' |____| .__|_| |_|_| |___, | / / / /

 =========|_|==============|___/=/_/_/_/

 :: Spring Boot :: (v1.2.3.BUILD-SNAPSHOT)

2015-03-09 23:18:53.721 : Starting BookPubApplication on mbp with PID
43850

2015-03-09 23:18:53.781 : Refreshing org.springframework.context.
annotation.Annotatio

2015-03-09 23:18:55.544 : Building JPA container EntityManagerFactory for
persistence

2015-03-09 23:18:55.565 : HHH000204: Processing PersistenceUnitInfo
[name: default	

2015-03-09 23:18:55.624 : Hibernate Core {4.3.8.Final}

2015-03-09 23:18:55.625 : HHH000206: hibernate.properties not found

Getting Started with Spring Boot

8

2015-03-09 23:18:55.627 : HHH000021: Bytecode provider name : javassist

2015-03-09 23:18:55.774 : HCANN000001: Hibernate Commons Annotations
{4.0.5.Final

2015-03-09 23:18:55.850 : HHH000400: Using dialect: org.hibernate.
dialect.H2Dialect

2015-03-09 23:18:55.902 : HHH000397: Using ASTQueryTranslatorFactory

2015-03-09 23:18:56.094 : HHH000227: Running hbm2ddl schema export

2015-03-09 23:18:56.096 : HHH000230: Schema export complete

2015-03-09 23:18:56.337 : Registering beans for JMX exposure on startup

2015-03-09 23:18:56.345 : Started BookPubApplication in 3.024 seconds
(JVM running...

2015-03-09 23:18:56.346 : Closing org.springframework.context.annotation.
AnnotationC..

2015-03-09 23:18:56.347 : Unregistering JMX-exposed beans on shutdown

2015-03-09 23:18:56.349 : Closing JPA EntityManagerFactory for
persistence unit 'def…

2015-03-09 23:18:56.349 : HHH000227: Running hbm2ddl schema export

2015-03-09 23:18:56.350 : HHH000230: Schema export complete

BUILD SUCCESSFUL

Total time: 52.323 secs

How it works…
As we can see, the application started just fine, but as we didn't add any functionality or
configure any services, it terminated right away. From the startup log, however, we do see
that the autoconfiguration did take place. Let's take a look at the following lines:

Building JPA container EntityManagerFactory for persistence unit
'default'

HHH000412: Hibernate Core {4.3.8.Final}

HHH000400: Using dialect: org.hibernate.dialect.H2Dialect

This information tells us that because we added the jdbc and data-jpa starters, the JPA
container was created and will use Hibernate 4.3.8.Final to manage the persistence using
H2Dialect. This was possible because we had the right classes in the classpath.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Chapter 1

9

Using the command-line runners
With our basic application skeleton ready, let's add some meat to the bones by making our
application do something.

Let's start by first creating a class named StartupRunner. This will implement the
CommandLineRunner interface, which basically provides just one method—public void
run(String… args)—that will get called by Spring Boot only once after the application
has started.

How to do it…
1.	 Create the file named StartupRunner.java under the src/main/java/org/

test/bookpub/ directory from the root of our project with the following content:
package org.test.bookpub;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.springframework.boot.CommandLineRunner;
public class StartupRunner implements CommandLineRunner {
 protected final Log logger = LogFactory.getLog(getClass());
 @Override
 public void run(String... args) throws Exception {
 logger.info("Hello");
 }
}

2.	 After we have defined the class, let's proceed by defining it as @Bean in the
BookPubApplication.java application configuration, which is located in the
same folder as our newly created StartupRunner.java, shown as follows:
@Bean
public StartupRunner schedulerRunner() {
 return new StartupRunner();
}

How it works…
If we run our application again by executing $./gradlew clean bootRun, we will get
an output that is similar to our previous application startup. However, we will see our Hello
message in the logs as well, which will look as follows:

2015-03-10 21:57:51.048 INFO --- org.test.bookpub.StartupRunner
: Hello

Even though the program will get terminated on execution, at least we made it do something!

Getting Started with Spring Boot

10

Command line runners are a useful functionality to execute the various types of code that
only have to be run once, right after application startup. Some may also use this as a place to
start various executor threads but Spring Boot provides a better solution for this task, which
will be discussed at the end of this chapter. The CommandLineRunner interface is used by
Spring Boot to scan all of its implementations and invoke each instance's run method with
the startup arguments. We can also use an @Order annotation or implement an Ordered
interface so as to define the exact order in which we want Spring Boot to execute them. For
example, Spring Batch relies on the runners in order to trigger the execution of the jobs.

As command-line runners are instantiated and executed after the application has started, we
can use the dependency injection to our advantage in order to wire in whatever dependencies
that we need, such as data sources, services, and other components. These can be utilized
later while implementing run(String... args) method..

It is important to note that if any exceptions are thrown inside the
run(String… args) method, this will cause the context to close and
an application to shut down. Wrapping the risky code blocks with try/
catch is recommended in order to prevent this from happening.

Setting up a database connection
In every application, there is a need to access some data and conduct some operations
on it. Most frequently, this source of data is a data store of some kind, namely a database.
Spring Boot makes it very easy to get started in order to connect to the database and start
consuming the data via the Java Persistence API among others.

Getting ready
In our previous example, we created the basic application that will execute a command-
line runner by printing a message in the logs. Let's enhance this application by adding a
connection to a database.

Earlier, we already added the necessary jdbc and data-jpa starters as well as an H2
database dependency to our build file. Now, we will configure an in-memory instance of the
H2 database.

In the case of an embedded database such as H2, HSQL, or Derby, no
actual configuration is required besides including the dependency on one
of these in the build file. When one of these databases is detected in the
classpath and a DataSource bean dependency is declared in the code,
Spring Boot will automatically create one for you.

Chapter 1

11

To demonstrate the fact that just by including the H2 dependency in the classpath,
we will automatically get a default database, let's modify our StartupRunner.java
to look as follows:

public class StartupRunner implements CommandLineRunner {
 protected final Log logger = LogFactory.getLog(getClass());
 @Autowired
 private DataSourceds;
 @Override
 public void run(String... args) throws Exception {
 logger.info("DataSource: "+ds.toString());
 }
}

Now, if we proceed with the running of our application, we will see the name of the
DataSource printed in the log, as follows:

2015-03-11 21:46:22.067 org.test.bookpub.StartupRunner :DataSource: org.
apache.tomcat.jdbc.pool.DataSource@4…{…driverClassName=org.h2.Driver; … }

So, under the hood, Spring Boot recognized that we've autowired a DataSource dependency
and automatically created one initializing the in-memory H2 datastore. It is all good and well,
but probably not all too useful beyond an early prototyping phase or for the purpose of testing.
Who would want a database that goes away with all the data as soon as your application
shuts down and you have to start with a clean slate every time you restart the app?

How to do it…
Let's change the defaults in order to create an embedded H2 database that will not store data
in-memory, but rather use a file to persist the data in between application restarts.

1.	 Open the file named application.properties under the src/main/
resources directory from the root of our project and add the following content:
spring.datasource.url = jdbc:h2:~/test;DB_CLOSE_DELAY=-1;DB_CLOSE_
ON_EXIT=FALSE
spring.datasource.username = sa
spring.datasource.password =

2.	 Start the application by executing ./gradlew clean bootRun from the
command line.

3.	 Check your home directory and you should see the following file in there:
test.mv.db.

Getting Started with Spring Boot

12

The user home directory is located under /home/<username>
on Linux and under /Users/<username> on OS X.

How it works…
Even though, by default, Spring Boot makes certain assumptions about the database
configuration by examining the classpath for the presence of supported database drivers,
it provides you with easy configuration options in order to tweak the database access via
a set of exposed properties grouped under spring.datasource.

The things that we can configure are the url, username, password, driver-class-name,
and so on. If you want to consume the datasource from a JNDI location, where an actual
instance of a DataSource is being created outside the application, for example by a
container, like JBoss or Tomcat, and shared via JNDI, you can configure this using the
spring.datasource.jndi-name property. The complete set of possible properties
is fairly large, so we will not go into all of them. However, we will cover more options in
Chapter 5, Application Testing, where we will talk about mocking data for application
tests using a database.

By looking at various blogs and examples, you might notice that some
places use dashes in property names such as driver-class-name
while others use camel-cased variants such as driverClassName. In
Spring Boot, these are actually two equally supported ways of naming
the same property and they get translated into the same thing internally.

If you want to connect to a regular (non-embedded) database, besides just having the
appropriate driver library in the classpath, we need to specify the driver of our choice
in the configuration. The following snippet is what the configuration to connect to MySQL
would resemble:

spring.datasource.driver-class-name: com.mysql.jdbc.Driver

spring.datasource.url: jdbc:mysql://localhost:3306/springbootcookbook

spring.datasource.username: root

spring.datasource.password:

If we wanted Hibernate to create the schema automatically, based on our entity classes,
we will need to add the following line to the configuration:

spring.jpa.hibernate.ddl-auto=create-drop

Don't do this in the production environment, otherwise on
startup, all the table schemas and data will be deleted! Use
the update or validate values instead, where needed.

Chapter 1

13

One can go even further in the abstraction layer and instead of auto-wiring a DataSource
object, you could go straight for a JdbcTemplate. This would instruct Spring Boot to
automatically create a DataSource and then create a JdbcTemplate wrapping the
DataSource, thus providing you with a more convenient way of interacting with a
database in a safe way. The code for JdbcTemplate is as follows:

@Autowired
private JdbcTemplate jdbcTemplate;

For the extra curious minds, one can look in the spring-boot-autoconfigure source at an
org.springframework.boot.autoconfigure.jdbc.DataSourceAutoConfiguration
class so as to see the code behind the DataSource creation magic.

Setting up a data repository service
Connecting to a database and then executing good old SQL—while simplistic and
straightforward—is not the most convenient way to operate on the data, map it in a set of
domain objects, and manipulate the relational content. This is why multiple frameworks
emerged in order to aid you with mapping the data from tables into objects, better known as
Object Relational Mapping. The most notable example of such a framework is Hibernate.

In the previous example, we covered how to set up a connection to a database and configure
the settings for the username, password, which driver to use, and so on. In this recipe, we will
enhance our application by adding a few entity objects that define the structure of the data in
the database and a CrudRepository interface to access the data.

As our application is a book tracking catalogue, the obvious domain objects would be the
Book, Author, Reviewers, and Publisher.

How to do it…
1.	 Create a new package folder named entity under the src/main/java/org/

test/bookpub directory from the root of our project.

2.	 In this newly created package, create a new class named Book with the following
content:
@Entity
public class Book {
 @Id
 @GeneratedValue
 private Long id;
 private String isbn;
 private String title;

Getting Started with Spring Boot

14

 private String description;

 @ManyToOne
 private Author author;
 @ManyToOne
 private Publisher publisher;

 @ManyToMany
 private List<Reviewers> reviewers;

 protected Book() {}

 public Book(String isbn, String title, Author author,
 Publisher publisher) {
 this.isbn= isbn;
 this.title = title;
 this.author= author;
 this.publisher= publisher;
 }
 //Skipping getters and setters to save space, but we do need
them
}

3.	 As any book should have an author and a publisher, and ideally some reviewers, we
need to create these entity objects as well. Let's start by creating an Author entity
class under the same directory as our Book on, as follows:
@Entity
public class Author {
 @Id
 @GeneratedValue
 private Long id;
 private String firstName;
 private String lastName;
 @OneToMany(mappedBy = "author")
 private List<Book> books;

 protected Author() {}

 public Author(String firstName, String lastName) {...}
 //Skipping implementation to save space, but we do need
 it all
}

Chapter 1

15

4.	 Similarly, we will create the Publisher and Reviewer classes, as shown in the
following code:
@Entity
public class Publisher {
 @Id
 @GeneratedValue
 private Long id;
 private String name;
 @OneToMany(mappedBy = "publisher")
 private List<Book> books;

 protected Publisher() {}

 public Publisher(String name) {...}
 }

 @Entity
 public class Reviewer {
 @Id
 @GeneratedValue
 private Long id;
 private String firstName;
 private String lastName;

 protected Reviewer() {}

 public Reviewer(String firstName, String lastName) {
 //Skipping implementation to save space
 }
}

5.	 Now, we will create our BookRepository interface by extending Spring's
CrudRepository under the src/main/java/org/test/bookpub/repository
package, as follows:
@Repository
public interface BookRepository extends CrudRepository<Book, Long> {
 public Book findBookByIsbn(String isbn);
}

Getting Started with Spring Boot

16

6.	 Finally, let's modify our StartupRunner in order to print the number of books in our
collection instead of some random DataSource string by auto-wiring a newly created
BookRepository and printing the result of a .count() call to the log, as follows:
public class StartupRunner implements CommandLineRunner {
 @Autowired
 private BookRepository bookRepository;

 public void run(String... args) throws Exception {
 logger.info("Number of books: " +
 bookRepository.count());
 }
}

How it works…
As you have probably noticed, we didn't write a single line of SQL or even mentioned anything
about database connections, building queries, or things like that. The only hint that we are
dealing with the database-backed data that we have in our code are the class and field
annotations: @Entity, @Repository, @Id, @GeneratedValue, and @ManyToOne along
with @ManyToMany and @OneToMany. These annotations, which are a part of the Java
Persistance API, along with the extension of the CrudRepository interface are our ways of
communicating with Spring about the need to map our objects to the appropriate tables and
fields in the database and provide us with the programmatic ability to interact with this data.

Let's go through the following annotations:

ff @Entity indicates that the annotated class should be mapped to a database
table. The name of the table will be derived from the name of the class but it can
be configured, if needed. It is important to note that every entity class should have
a default protected constructor, which is needed for automated instantiation and
Hibernate interactions.

ff @Repository indicates that the interface is intended to provide you with the access
and manipulation of data for a database. It also serves as an indication to Spring
during the component scan that this instance should be created as a bean that will
be available for use and injection into other beans in the application.

Chapter 1

17

ff The CrudRepository interface defines the basic common methods to read, create,
update, and delete data from a data repository. The extra methods that we will define
in our BookRepository extension, public Book findBookByIsbn(String
isbn), indicate that Spring JPA should automatically translate the call to this method
to a SQL finder query selecting a Book by its ISBN field. This is a convention-named
mapping that translates the method name into a SQL query. It can be a very powerful
ally, allowing you to build queries such as findByNameIgnoringCase(String
name) and others.

ff The @Id and @GeneratedValue annotations provide you with an indication that an
annotated field should be mapped to a primary key column in the database and the
value for this field should be generated, instead of being explicitly entered.

ff The @ManyToOne and @ManyToMany annotations define the relational field
associations that refer to the data stored in the other tables. In our case, multiple
Books belong to one Author and many Reviewers review multiple Books. The
mappedBy attribute in @OneToMany annotation declaration defines a reverse
association mapping. It indicates to Hibernate that the mapping source of truth is
defined in the Book class, in the author or publisher fields. The Books references
from within Author and Publisher classes are merely reverse associations.

For more information about all the vast capabilities of Spring Data, visit
http://docs.spring.io/spring-data/data-commons/
docs/current/reference/html/.

Scheduling executors
Earlier in this chapter, we discussed how the command-line runners can be used as a place
to start the scheduled executor thread pools in order to run the worker threads in intervals.
While that is certainly a possibility, Spring provides you with a more concise configuration to
achieve the same goal: @EnableScheduling.

Getting ready
We will enhance our application so that it will print a count of books in our repository
every 10 seconds. To achieve this, we will make the necessary modifications to the
BookPubApplication and StartupRunner classes.

Getting Started with Spring Boot

18

How to do it…
1.	 Let's add an @EnableScheduling annotation to the BookPubApplication class,

as follows:
@SpringBootApplication
@EnableScheduling
public class BookPubApplication {…}

2.	 As an @Scheduled annotation can be placed only on methods without arguments,
let's add a new run() method to the StartupRunner class and annotate it with the
@Scheduled annotation, as shown in the following line:
@Scheduled(initialDelay = 1000, fixedRate = 10000)
public void run() {
 logger.info("Number of books: " + bookRepository.count());
}

3.	 Start the application by executing ./gradlew clean bootRun from the command
line so as to observe the Number of books: 0 message that shows in the logs
every 10 seconds.

How it works…
Like some other annotations that we discussed in this chapter and will further discuss
in the book, @EnableScheduling is not a Spring Boot annotation, but instead is
a Spring Context module annotation. Similar to the @SpringBootApplication and
@EnableAutoConfiguration annotations, this is a meta-annotation and internally
imports the SchedulingConfiguration via the @Import(SchedulingConfiguration.
class) instruction, which can be seen if looked found inside the code for the
@EnableScheduling annotation class.

ScheduledAnnotationBeanPostProcessor that will be created by the imported
configuration will scan the declared Spring Beans for the presence of the @Scheduled
annotations. For every annotated method without arguments, the appropriate executor
thread pool will be created. It will manage the scheduled invocation of the annotated method.

19

2
Configuring Web

Applications

In the previous chapter, we learned how to create a starting application template, add some
basic functionalities, and set up a connection to a database. In this chapter, we will continue
to evolve our BookPub application and give it a web presence.

In this chapter, we will learn about the following topics:

ff Creating a basic RESTful application

ff Creating a Spring Data REST service

ff Configuring custom servlet filters

ff Configuring custom interceptors

ff Configuring custom HttpMessageConverters

ff Configuring custom PropertyEditors

ff Configuring custom type Formatters

Creating a basic RESTful application
While command-line applications do have their place and use, most of today's application
development is centered around web, REST, and data services. Let's start with enhancing
our BookPub application by providing it with a web-based API in order to get access to the
book catalogues.

We will start where we left off in the previous chapter, so there should already be an
application skeleton with the entity objects and a repository service defined and a
connection to the database configured.

Configuring Web Applications

20

How to do it…
1.	 The very first thing that we will need to do is add a new dependency to build.gradle

with the spring-boot-starter-web starter to get us all the necessary libraries for
a web-based functionality. The following snippet is what it would look like:
dependencies {
 compile("org.springframework.boot:spring-boot-starter-data-jpa")
 compile("org.springframework.boot:spring-boot-starter-jdbc")
 compile("org.springframework.boot:spring-boot-starter-web")
 runtime("com.h2database:h2")
 testCompile("org.springframework.boot:spring-boot-
 starter-test")
}

2.	 Next, we will need to create a Spring controller that will be used to handle the web
requests for the catalog data in our application. Let's start by creating a new package
structure to house our controllers so that we have our code nicely grouped by their
appropriate purposes. Create a package folder called controllers in the src/
main/java/org/test/bookpub directory from the root of our project.

3.	 As we will be exposing the Book data, let's create the controller class file called
BookController in our newly created package with the following content:
@RestController
@RequestMapping("/books")
public class BookController {
 @Autowired
 private BookRepository bookRepository;

 @RequestMapping(value = "", method = RequestMethod.GET)
 public Iterable<Book> getAllBooks() {
 return bookRepository.findAll();
 }

 @RequestMapping(value = "/{isbn}", method =
 RequestMethod.GET)
 public Book getBook(@PathVariable String isbn) {
 return bookRepository.findBookByIsbn(isbn);
 }
}

Chapter 2

21

4.	 Start the application by running ./gradlew clean bootRun.

5.	 After the application has started, open the browser and go to
http://localhost:8080/books and you should see a response: [].

How it works…
The key to get the service exposed to web requests is the @RestController annotation.
This is yet another example of a meta-annotation or a convenience annotation, as the
Spring documentation refers to it at times, which we have seen in previous recipes. In
@RestController, two annotations are defined: @Controller and @ResponseBody.
So we could just as easily annotate BookController, as follows:

@Controller
@ResponseBody
@RequestMapping("/books")
public class BookController {...}

ff @Controller is a Spring stereotype annotation that is similar to @Bean and
@Repository and declares the annotated class as an MVC Controller

ff @ResponseBody is a Spring MVC annotation indicating that responses from the
web-request-mapped methods constitute the entire content of the HTTP response
body payload, which is typical for RESTful applications

Creating a Spring Data REST service
In the previous example, we fronted our BookRepository with a REST controller in order
to expose the data behind it via a web RESTful API. While this is definitely a quick and easy
way to make the data accessible, it does require us to manually create a controller and define
the mappings for all the desired operations. To minimize the boilerplate code, Spring provides
us with a more convenient way: spring-boot-starter-data-rest. This allows us to
simply add an annotation to the repository interface and Spring will do the rest to to expose
it to the web.

We will continue from the place where we had finished in the previous recipe, and so the
entity models and the BookRepository should already exist.

Configuring Web Applications

22

How to do it…
1.	 We will start by adding another dependency to our build.gradle file in order to

add the spring-boot-starter-data-rest artefact:
dependencies {
 ...
 compile("org.springframework.boot:spring-boot-starter-data-rest")
 ...
}

2.	 Now, let's create a new interface to define AuthorRepository in the src/main/
java/org/test/bookpub/repository directory from the root of our project with
the following content:
@RepositoryRestResource
public interface AuthorRepository extends
 PagingAndSortingRepository<Author, Long> {
}

3.	 While we are at it—given how little code it takes—let's create the repository
interfaces for the remaining entity models, PublisherRepository and
ReviewerRepository by placing the files in the same package directory
as AuthorRepository with the following content:
@RepositoryRestResource
public interface PublisherRepository extends
 PagingAndSortingRepository<Publisher, Long> {
}

Otherwise, you can use this code instead of the previous:
@RepositoryRestResource
public interface ReviewerRepository extends
 PagingAndSortingRepository<Reviewer, Long> {
}

4.	 Start the application by running ./gradlew clean bootRun.

Chapter 2

23

5.	 After the application has started, open the browser and go to
http://localhost:8080/authors and you should see the following response:

How it works…
As is evident from the browser view, we will get significantly more information than
we got when we wrote the books controller. This is in part due to us extending not a
CrudRepository interface, but a PagingAndSortingRepository one, which in turn
is an extension of CrudRepository. The reason that we've decided to do this is to get the
extra benefits provided by the PagingAndSortingRepository. This will add the extra
functionality to retrieve entities using the pagination and being able to sort them.

The @RepositoryRestResource annotation, while optional, provides us with the ability to
have a finer control over the exposure of the repository as a web data service. For example,
if we wanted to change the URL path or rel value, to writers instead of authors, we could
have tuned the annotation, as follows:

@RepositoryRestResource(collectionResourceRel = "writers",
 path = "writers")

As we included spring-boot-starter-data-rest in our build dependencies, we will
also get the spring-hateoas library support, which gives us nice ALPS metadata, such as a
_links object. This can be very helpful when building an API-driven UI, which can deduce the
navigational capabilities from the metadata and present them appropriately.

Configuring Web Applications

24

Configuring custom servlet filters
In a real-world web application, we almost always find a need to add facades or
wrappers to service requests; to log them, filter out bad characters for XSS, perform
authentication, and so on and so forth. Out of the box, Spring Boot automatically adds
OrderedCharacterEncodingFilter and HiddenHttpMethodFilter, but we can
always add more. Let's see how Spring Boot helps us achieve this task.

Among the various assortments of Spring Boot, Spring Web, Spring MVC, and others, there
is already a vast variety of different servlet filters that are available and all we have to do is
to define them as beans in the configuration. Let's say that our application will be running
behind a load balancer proxy and we would like to translate the real request IP that is used by
the users instead of the IP from the proxy when our application instance receives the request.
Luckily, Tomcat 8 already provides us with an implementation: RemoteIpFilter. All we will
need to do is add it to our filter chain.

How to do it…
1.	 It is a good idea to separate and group the configurations in different classes in order

to provide more clarity about what kind of things are being configured. So, let's create
a separate configuration class called WebConfiguration in the src/main/java/
org/test/bookpub directory from the root of our project with the following content:
@Configuration
public class WebConfiguration {
 @Bean
 public RemoteIpFilter remoteIpFilter() {
 return new RemoteIpFilter();
 }
}

2.	 Start the application by running ./gradlew clean bootRun.

3.	 In the startup log, we should see the following line, indicating that our filter has
been added:
..FilterRegistrationBean : Mapping filter: 'remoteIpFilter' to:
[/*]

How it works…
The magic behind this functionality is actually very simple. Let's start from the separate
configuration class and work our way to the filter bean detection.

Chapter 2

25

If we look in our main class, BookPubApplication, we will see that it is annotated with
@SpringBootApplication, which in turn is a convenience meta-annotation that declares
@ComponentScan among others. We discussed this in detail in one of our earlier recipes.
The presence of @ComponentScan instructs Spring Boot to detect WebConfiguration
as a @Configuration class and add its definitions to the context. So, anything
that we will declare in WebConfiguration is as good as if we were to put it right in
BookPubApplication itself.

The @Bean public RemoteIpFilter remoteIpFilter() {…} declaration simply
creates a spring bean for the RemoteIpFilter class. When Spring Boot detects all the
beans of javax.servlet.Filter, it will add them to the filter chain automatically.
So, all we have to do, if we want to add more filters, is to just declare them as @Bean
configurations. For example, for a more advanced filter configuration, if we want a particular
filter to apply only to specific URL patterns, we can create a @Bean configuration of a
FilterRegistrationBean type and use it to configure the precise settings.

Configuring custom interceptors
While Servlet Filters are a part of the Servlet API and have really nothing to do with Spring—
besides being automatically added in the filter chain—Spring MVC provides us with another
way of wrapping web requests: HandlerInterceptor. According to the documentation,
HandlerInterceptor is just like a Filter; but instead of wrapping a request in a nested
chain, an interceptor gives us cutaway points at different phases, such as before the request
gets handled, after the request has been processed, before the view has been rendered, and
at the very end, after the request has been fully completed. It does not let us change anything
about the request but it does let us stop the execution by throwing an exception or returning
false if the interceptor logic determines so.

Similar to the case with Filters, Spring MVC comes with a number of premade
HandlerInterceptors. The commonly used ones are LocaleChangeInterceptor and
ThemeChangeInterceptor; but there are certainly others that provide great value. So let's
add LocaleChangeInterceptor to our application in order to see how it is done.

How to do it…
Despite what you might think, after seeing the previous recipe, adding an interceptor is not as
straightforward as just declaring it a bean. We actually need to do it via WebMvcConfigurer
or by overriding WebMvcConfigurationSupport.

1.	 Let's enhance our WebConfiguration class to extend
WebMvcConfigurerAdapter:
public class WebConfiguration extends
 WebMvcConfigurerAdapter {…}

Configuring Web Applications

26

2.	 Now we will add a @Bean declaration for LocaleChangeInterceptor:
@Bean
public LocaleChangeInterceptor localeChangeInterceptor() {
 return new LocaleChangeInterceptor();
}

3.	 This will actually create the interceptor spring bean but will not add it to the request
handling chain. For this to happen, we will need to override the addInterceptors
method and add our interceptor to the provided registry:
@Override
public void addInterceptors(InterceptorRegistry registry) {
 registry.addInterceptor(localeChangeInterceptor());
}

4.	 Start the application by running ./gradlew clean bootRun.

5.	 In the browser, go to http://localhost:8080/books?locale=foo.

6.	 Now, if you look at the console logs, you will see a bunch of stack trace errors
basically saying the following:

Caused by: java.lang.UnsupportedOperationException: Cannot change
HTTP accept header - use a different locale resolution strategy

The error is not because we entered an invalid locale, but because
the default locale resolution strategy does not allow the resetting
of the locale that is requested by the browser. The fact that we got
an error shows that our interceptor is working.

How it works…
When it comes to configuring the Spring MVC internals, it is not as simple as just defining a
bunch of beans—at least not always. This is due to the need of providing a more fine-tuned
mapping of the MVC components to requests. To make things easier, Spring provides us with
an adapter implementation of WebMvcConfigurer, WebMvcConfigurerAdapter, that we
can extend and override the settings that we need.

In the particular case of configuring interceptors, we are overriding the addInterceptors(
InterceptorRegistry registry) method. This is a typical callback method where we
are given a registry in order to register as many additional interceptors as we need. During the
MVC autoconfiguration phase, Spring Boot, just as in the case of Filters, detects instances of
WebMvcConfigurer and sequentially calls the callback methods on all of them. It means
that we can have more than one implementation of the WebMvcConfigurer class if we want
to have some logical separation.

Chapter 2

27

Configuring custom HttpMessageConverters
While we were building our RESTful web data service, we defined the controllers, repositories,
and put some annotations on them; but nowhere did we do any kind of object translation from
the java entity beans to the HTTP data stream output. However, behind the scenes, Spring
Boot automatically configured HttpMessageConverters to translate our entity beans
objects into a JSON representation using Jackson library, writing the resulting JSON data to an
HTTP response output stream. When multiple converters are available, the most applicable
one gets selected based on the message object class and the requested content type.

The purpose of HttpMessageConverters is to translate various object types into
their corresponding HTTP output formats. A converter can either support a range of
multiple data types or multiple output formats, or a combination of both. For example,
MappingJackson2HttpMessageConverter can translate any Java Object into
application/json, whereas ProtobufHttpMessageConverter can only operate
on instances of com.google.protobuf.Message but can write them to the wire as
application/json, application/xml, text/plain, or application/x-protobuf.
HttpMessageConverters support not only writing out to the HTTP stream but also
converting HTTP requests to appropriate Java objects as well.

How to do it…
There are a number of ways in which we can configure converters. It all depends on which one
you prefer or how much control you want to achieve.

1.	 Let's add ByteArrayHttpMessageConverter as @Bean to our
WebConfiguration class in the following manner:
@Bean
public
 ByteArrayHttpMessageConverter byteArrayHttpMessageConverter() {
 return new ByteArrayHttpMessageConverter();
}

2.	 Another way to achieve this is to override the configureMessageConverters
method in the WebConfiguration class, which extends
WebMvcConfigurerAdapter, defining such method as follows:
@Override
public void configureMessageConverters(
 List<HttpMessageConverter<?>> converters) {
 converters.add(new ByteArrayHttpMessageConverter());
}

Configuring Web Applications

28

3.	 If you want to have a bit more control, we can override the
extendMessageConverters method in the following way:
@Override
public void
 extendMessageConverters(List<HttpMessageConverter<?>>
 converters) {
 converters.clear();
 converters.add(new ByteArrayHttpMessageConverter());
}

How it works…
As you can see, Spring gives us multiple ways of achieving the same thing and it all depends
on our preference or particular details of the implementation.

We covered three different ways of adding HttpMessageConverter to our application.
So what is the difference, one might ask?

Declaring HttpMessageConverter as @Bean is the quickest and simplest way of adding
a custom converter to the application. It is similar to how we added Servlet Filters in an
earlier example. If Spring detects a bean of the HttpMessageConverter type, it will add
it to the list automatically. If we did not have a WebConfiguration class that extends
WebMvcConfigurerAdapter, it would have been the preferred approach.

When the application needs to dictate the extension of WebMvcConfigurerAdapter to
configure other things such as interceptors, then it would be more consistent to override the
configureMessageConverters method and add our converter to the list. As there can
be multiple instances of WebMvcConfigurers, which could be either added by us or via the
autoconfiguration settings from various Spring Boot Starters, there is no guarantee that our
method can get called in any particular order.

If we need to do something even more drastic such as removing all the other
converters from the list or clearing it of duplicate converters, this is where overriding
extendMessageConverters comes into play. This method gets invoked after all the
WebMvcConfigurers get called for configureMessageConverters and the list of
converters is fully populated. Of course, it is entirely possible that some other instance of
WebMvcConfigurer could override the extendMessageConverters as well; but the
chances of this are very low so you have a high degree of having the desired impact.

Chapter 2

29

Configuring custom PropertyEditors
In the previous example, we learned how to configure converters for an HTTP request and
response data. There are other kinds of conversions that take place, especially in regards to
dynamically converting parameters to various objects, such as Strings to Date or an Integer.

When we declare a mapping method in a controller, Spring allows us to freely define the
method signature with the exact object types that we require. The way in which this is
achieved is via the use of the PropertyEditor implementations. PropertyEditor is
a default concept defined as part of the JDK and designed to allow the transformation of
a textual value to a given type. It was initially intended to be used to build Java Swing/AWT
GUI and later proved to be a good fit for Spring's need to convert web parameters to method
argument types.

Spring MVC already provides you with a lot of PropertyEditor implementations for most
of the common types, such as Boolean, Currency, and Class. Let's say that we want to
create a proper Isbn class object and use this in our controller instead of a plain String.

How to do it…
1.	 First, we will need to remove the extendMessageConverters method from

our WebConfiguration class as the converters.clear() call will break the
rendering because we removed all of the supported type converters.

2.	 Next, we will add the definition of an Isbn object and IsbnEditor class as well
as a method, initBinder, to our BookController where we will configure the
IsbnEditor with the following content:
public class Isbn {
 private String isbn;

 public Isbn(String isbn) {
 this.isbn = isbn;
 }

 public String getIsbn() {
 return isbn;
 }
}

public class IsbnEditor extends PropertyEditorSupport {
 @Override
 public void setAsText(String text) throws
 IllegalArgumentException {
 if (StringUtils.hasText(text)) {

Configuring Web Applications

30

 setValue(new Isbn(text.trim()));
 }
 else {
 setValue(null);
 }
 }

 @Override
 public String getAsText() {
 Isbn isbn = (Isbn) getValue();
 if (isbn != null) {
 return isbn.getIsbn();
 }
 else {
 return "";
 }
 }
}

@InitBinder
public void initBinder(WebDataBinder binder) {
 binder.registerCustomEditor(Isbn.class, new IsbnEditor());
}

3.	 Our getBook method in the BookController will also change in order to accept
the Isbn object, in the following way:
@RequestMapping(value = "/{isbn}", method = RequestMethod.GET)
public Book getBook(@PathVariable Isbn isbn) {
 return bookRepository.findBookByIsbn(isbn.getIsbn());
}

4.	 Start the application by running ./gradlew clean bootRun.

5.	 In the browser, go to http://localhost:8080/books/978-1-78528-415-1.

6.	 While we will not observe any visible changes, the IsbnEditor is indeed at work,
creating an instance of an Isbn class object from the {isbn} parameter.

Chapter 2

31

How it works…
Spring automatically configures a large number of default editors; but for custom types, we
have to explicitly instantiate new editors for every web request. This is done in the controller
in a method that is annotated with @InitBinder. This annotation is scanned and all the
detected methods should have a signature of accepting WebDataBinder as an argument.
Among other things, WebDataBinder provides us with an ability to register as many custom
editors as we require for the controller methods to be bound properly.

It is VERY important to know that PropertyEditor is not thread safe!
For this reason, we have to create a new instance of our custom editors
for every web request and register them with WebDataBinder.

In case a new PropertyEditor is needed, it is best to create one by extending
PropertyEditorSupport and overriding the desired methods with custom implementation.

Configuring custom type Formatters
Mostly because of its statefulness and lack of thread safety, since version 3, Spring has
added a Formatter interface as a replacement for PropertyEditor. The Formatters
are intended to provide a similar functionality but in a completely thread-safe manner and
focusing on a very specific task of parsing a String in an object type and converting an object
to its String representation.

Let's suppose that for our application, we would like to have a Formatter that would take an
ISBN number of a book in a String form and convert it to a Book entity object. This way,
we can define the controller request methods with a Book argument when the request URL
signature only contains an ISBN number or a database ID.

How to do it…
1.	 First, let's create a new package called formatters in the src/main/java/org/

test/bookpub directory from the root of our project.

2.	 Next, we will create the Formatter implementation called BookFormatter
in our newly created formatters directory from the root of our project with
the following content:
public class BookFormatter implements Formatter<Book> {
 private BookRepository repository;
 public BookFormatter(BookRepository repository) {
 this.repository = repository;
 }

Configuring Web Applications

32

 @Override
 public Book parse(String bookIdentifier, Locale locale)
 throws ParseException {
 Book book = repository.findBookByIsbn(bookIdentifier);
 return book != null ? book :
 repository.findOne(Long.valueOf(bookIdentifier));
 }
 @Override
 public String print(Book book, Locale locale) {
 return book.getIsbn();
 }
}

3.	 Now that we have our formatter, we will add it to the registry by overriding
an addFormatters(FormatterRegistry registry) method in the
WebConfiguration class:
@Autowired
private BookRepository bookRepository;
@Override
public void addFormatters(FormatterRegistry registry) {
 registry.addFormatter(new BookFormatter(bookRepository));
}

4.	 Finally, let's add a new request method to our BookController class located in the
src/main/java/org/test/bookpub/controllers directory from the root of
our project that will display the reviewers for a given ISBN of a book:
@RequestMapping(value = "/{isbn}/reviewers", method =
 RequestMethod.GET)
public List<Reviewer> getReviewers(@PathVariable("isbn") Book
book) {
 return book.getReviewers();
}

5.	 Just so that we can have some data to play with, let's manually (for now) populate
our database with some test data by adding two more autowired repositories to the
StartupRunner class:
@Autowired private AuthorRepository authorRepository;
@Autowired private PublisherRepository publisherRepository;

�� The following code snippet is used for StartupRunner's run(…) method:
Author author = new Author("Alex", "Antonov");
author = authorRepository.save(author);
Publisher publisher = new Publisher("Packt");
publisher = publisherRepository.save(publisher);
Book book = new Book("978-1-78528-415-1", "Spring Boot
Recipes", author, publisher);
bookRepository.save(book);

Chapter 2

33

6.	 Start the application by running ./gradlew clean bootRun.

7.	 Let's open http://localhost:8080/books/978-1-78528-415-1/reviewers
in the browser and you should be able to see the following results:

How it works…
The Formatter facility is aimed towards providing a similar functionality to
PropertyEditors. By registering our formatter with the FormatterRegistry in the
overridden addFormatters method, we are instructing Spring to use our Formatter to
translate a textual representation of our Book into an entity object and back. As Formatters
are stateless, we don't need to do the registration in our controller for every call; we have to
do it only once and this will ensure Spring to use it for every web request.

It is also good to remember that if you want to define a conversion of a
common type, such as String or Boolean—as we did in our IsbnEditor
example—it is best to do this via PropertyEditors initialization in
Controller's InitBinder method because such a change is probably not
globally desired and is only needed for a particular Controller's functionality.

Configuring Web Applications

34

You have probably noticed that we also autowired BookRepository to a
WebConfiguration class, as this was needed to create the BookFormatter. This is
one of the cool things about Spring—it lets us combine the configuration classes and make
them dependent on the other beans at the same time. As we indicated that we need a
BookRepository in order to create a WebConfiguration class, Spring ensured that the
BookRepository will be created first and then automatically injected as a dependency
during the creation of the WebConfiguration class. After WebConfiguration is
instantiated, it is processed for configuration instructions.

The rest of the added functionalities should already be familiar as we covered that
in our previous recipes. We will explore how to automatically populate databases with
schemas and data in Chapter 5, Application Testing, in detail, where we will also talk
about application testing.

35

3
Web Framework
Behavior Tuning

In this chapter, we will learn about the following topics:

ff Configuring route matching patterns

ff Configuring custom static path mappings

ff Tuning Tomcat via the EmbeddedServletContainerCustomizer

ff Choosing embedded servlet containers

ff Adding custom connectors

Introduction
In Chapter 2, Configuring Web Applications, we explored how to configure web applications in
Spring Boot with our custom filters, interceptors, and so on. We will continue to look further
into enhancing our web application by doing behavior tuning, configuring the custom routing
rules and patterns, adding additional static asset paths, and adding and modifying servlet
container connectors and other properties such as enabling SSL.

Configuring route matching patterns
When we build web applications, it is not always the case that a default, out-of-the-box,
mapping configuration is applicable. At times, we want to create our RESTful URLs that
contain characters such as . (dot), which Spring treats as a delimiter defining format,
for example the dot in path.xml, or we might not want to recognize a trailing slash,
as in /home/, and so on. Conveniently, Spring provides us with a way to get this
accomplished with ease.

Web Framework Behavior Tuning

36

In Chapter 2, Configuring Web Applications, we introduced a WebConfiguration class,
which extends from WebMvcConfigurerAdapter. This extension allows us to override
methods that are geared toward adding filters, formatters, and many more. It also has
methods that can be overridden in order to configure the path match, among other things.

Let's imagine that the ISBN format does allow the use of dots to separate the book number
from the revision with a pattern looking like [isbn-number].[revision].

How to do it…
We will configure our application to not use the suffix pattern match of .* and not to strip the
values after the dot when parsing the parameters. Let's perform the following steps:

1.	 Let's add the necessary configuration to our WebConfiguration class with the
following content:
@Override
public void configurePathMatch(PathMatchConfigurer configurer) {
 configurer.setUseSuffixPatternMatch(false).
 setUseTrailingSlashMatch(true);
}

2.	 Start the application by running ./gradlew clean bootRun.

3.	 Let's open http://localhost:8080/books/978-1-78528-415-1.1/
reviewers in the browser to see the following results:

Chapter 3

37

If we enter the correct ISBN, we will see a different result, as follows:

How it works…
Let's look at what we did in detail. The configurePathMatch(PathMatchConfigurer
configurer) method gives us an ability to set our own behavior in how we want Spring to
match the request URL path to the controller parameters:

ff The configurer.setUseSuffixPatternMatch(false) method indicates that
we don't want to use the .* suffix so as to strip the trailing characters after the last
dot. This translates into Spring parsing out the entire 978-1-78528-415-1.1 as
an {isbn} parameter for BookController. So http://localhost:8080/
books/978-1-78528-415-1.1 and http://localhost:8080/
books/978-1-78528-415-1 will become different URLs.

ff The configurer.setUseTrailingSlashMatch(true) method indicates that
we want to use the trailing / in the URL as a match as if it were not there. This
effectively makes http://localhost:8080/books/978-1-78528-415-1 the
same as http://localhost:8080/books/978-1-78528-415-1/.

If you want to do further configuration of how the path matching takes place, you can provide
your own implementation of PathMatcher and UrlPathHelper, but these would be required
in the most extreme and custom-tailored situations and are not generally recommended.

Web Framework Behavior Tuning

38

Configuring custom static path mappings
In the previous recipe, we looked at how to tune the URL path mapping for requests and
translate them into controller methods. It is also possible to control how our web application
deals with static assets and the files that exist on the file system or are bundled in the
deployable archive.

Let's say that we want to expose our internal application.properties file via the static
web URL of http://localhost:8080/internal/application.properties from our
application. To get started with this, proceed with the steps in the next section.

How to do it…
1.	 Let's add a new method, addResourceHandlers, to the WebConfiguration

class with the following content:
@Override
public void addResourceHandlers(ResourceHandlerRegistry registry)
{
 registry.addResourceHandler("/internal/**")
 .addResourceLocations("classpath:/");
}

2.	 Start the application by running ./gradlew clean bootRun.

3.	 Let's open http://localhost:8080/internal/application.properties in
the browser to see the following results:

Chapter 3

39

How it works…
The method that we overrode, addResourceHandlers(ResourceHandlerRegistry
registry), is another configuration method from WebMvcConfigurer, which gives us
an ability to define custom mappings for static resource URLs and connect them with the
resources on the file system or application classpath. In our case, we defined a mapping of
anything that is being accessed via the / internal URL to be looked for in classpath:/ of
our application. (For production environment, you probably don't want to expose the entire
classpath as a static resource!) So let's look at what we did in detail, as follows:

ff The registry.addResourceHandler("/internal/**") methods adds a
resource handler to the registry to handle our static resources and it returns a
ResourceHandlerRegistration to us, which can be used to further configure
the mapping in a chained fashion. The /internal/** string is a path pattern that
will be used to match against the request URL using PathMatcher. We have seen
how PathMatcher can be configured in the previous example, but by default an
AntPathMatcher implementation is used. We can configure more than one URL
pattern to be matched to a particular resource location.

ff The addResourceLocations("classpath:/") method is called on the newly
created instance of ResourceHandlerRegistration and it defines the directories
where the resources should be loaded from. These should be valid file systems or
classpath directories, and there can be more than one entered. If multiple locations
are provided, they will be checked in the order in which they were entered.

We can also configure a caching interval for the given resource using the
setCachePeriod(Integer cachePeriod) method.

Tuning Tomcat via
EmbeddedServletContainerCustomizer

Spring Boot exposes many of the server properties that can be used to configure things
such as PORT, SSL, and others by simply setting the values in application.properties.
However, if we need to do any more complex tuning, Spring Boot provides us with an
EmbeddedServletContainerCustomizer interface to programmatically define
our configuration.

Even though the session timeout can be easily configured by setting the server.session-
timeout property in application.properties to our desired value in seconds, we will do
it using EmbeddedServletContainerCustomizer to demonstrate the functionality.

Web Framework Behavior Tuning

40

How to do it…
1.	 Let's say that we want our session to last for one minute. To make this happen,

we will add an EmbeddedServletContainerCustomizer bean to our
WebConfiguration class with the following content:
@Bean
public
 EmbeddedServletContainerCustomizer
 embeddedServletContainerCustomizer() {
 return new EmbeddedServletContainerCustomizer() {
 @Override
 public void
 customize(ConfigurableEmbeddedServletContainer
 container) {
 container.setSessionTimeout(1, TimeUnit.MINUTES);
 }
 };
}

2.	 Just for the purpose of demonstration, we will ask the request object for the session
by calling getSession() method, which will force its creation. To do this, we will add
a new request mapping to our BookController class with the following content:
@RequestMapping(value = "/session", method = RequestMethod.GET)
public String getSessionId(HttpServletRequest request) {
 return request.getSession().getId();
}

3.	 Start the application by running ./gradlew clean bootRun.

4.	 Let's open http://localhost:8080/books/session in the browser to see the
following results:

If we wait for more than a minute and then reload this page, the session ID will change to a
different one.

Chapter 3

41

How it works…
The EmbeddedServletContainerCustomizer interface defines the customize(Con
figurableEmbeddedServletContainer container) method. This is actually a nice
convenience for those using Java 8 as we can just return a lambda rather than create an
implementation of the class. In this case, it would look as follows:

public
 EmbeddedServletContainerCustomizer
 embeddedServletContainerCustomizer() {
 return (ConfigurableEmbeddedServletContainer container) -> {
 container.setSessionTimeout(1, TimeUnit.MINUTES);
 };
}

During the application startup, the Spring Boot autoconfiguration detects the
presence of the customizer and invokes the customize(…) method, passing the
reference to a servlet container. In our specific case, we actually get an instance of the
TomcatEmbeddedServletContainerFactory implementation; but depending on the
kind of servlet container that is used, such as Jetty, or Undertow, the implementation will vary.

Choosing embedded servlet containers
Despite Tomcat being the default embedded container in Spring Boot, we are not limited to
only one. Spring Boot provides you with ready-to-use starters for Jetty and Undertow as well,
so we have a choice of containers.

If we decide that we want to use Jetty as our servlet container, we will need to add a Jetty
starter to our build file.

How to do it…
1.	 As Tomcat already comes as a transitive dependency of Spring Boot, we will need to

exclude it from our build dependency tree by adding the following to build.gradle:
configurations {
 compile.exclude module: "spring-boot-starter-tomcat"
}

2.	 We will also need to add a compile dependency to our build dependencies on Jetty:
compile("org.springframework.boot:spring-boot-starter-jetty")

Web Framework Behavior Tuning

42

3.	 To fix the compiler errors, we will need to remove the bean declaration of Tomcat's
RemoteIpFilter from our WebConfiguration class as the Tomcat dependency
has been removed.

4.	 Start the application by running ./gradlew clean bootRun.

5.	 If we now look at the console logs, we will see that our application is running in Jetty:
2015-03-29 --- o.eclipse.jetty.server.ServerConnector : Started
ServerConn…

2015-03-29 ---.s.b.c.e.j.JettyEmbeddedServletContainer : Jetty
started on port(s) 8080 (http/1.1)

How it works…
The reason that this works is because of Spring Boot's autoconfiguration magic. We had to
remove the Tomcat dependency from the build file in order to prevent a dependency collision
between Tomcat and Jetty. Spring Boot does a conditional scan of the classes in the classpath
and depending on what it detects, it determines which servlet container will be used.

If we look in the EmbeddedServletContainerAutoConfiguration class, we will
see the following conditional code that checks for the presence of Servlet.class,
Server.class and Loader.class from the Jetty package in order to determine if
JettyEmbeddedServletContainerFactory should be used:

/**
 * Nested configuration if Jetty is being used.
 */
@Configuration
@ConditionalOnClass({ Servlet.class, Server.class, Loader.class})
@ConditionalOnMissingBean(value = EmbeddedServletContainerFactory.
class, search = SearchStrategy.CURRENT)
public static class EmbeddedJetty {

 @Bean
 public
 JettyEmbeddedServletContainerFactory
 jettyEmbeddedServletContainerFactory() {
 return new JettyEmbeddedServletContainerFactory();
 }
}

The @ConditionalOnClass annotation tells Spring Boot to use only the EmbeddedJetty
configuration if Jetty's classes, namely org.eclipse.jetty.server.Server and
org.eclipse.jetty.util.Loader, are present in the classpath.

Chapter 3

43

Adding custom connectors
Another very common scenario in the enterprise application development and deployment
is to run the application with two separate HTTP port connectors: one for HTTP and the other
for HTTPS.

Getting ready
We will start by going back to using Tomcat; so for this recipe, we will undo the changes that
we implemented in the previous example.

In order to create an HTTPS connector, we will need a few things; but most importantly,
we will need to generate Certificate keystore that is used to encrypt and decrypt the SSL
communication with the browser.

If you are using Unix or Mac, you can do it by running the following command:

$JAVA_HOME/bin/keytool -genkey -alias tomcat -keyalg RSA

On Windows, this could be achieved via the following code:

"%JAVA_HOME%\bin\keytool" -genkey -alias tomcat -keyalg RSA

During the creation of the keystore, you should enter the information that is appropriate to
you, including passwords, name, and so on. For the purpose of this book, we will use the
default password: changeit. Once the execution is complete, a newly generated keystore file
will appear in your home directory under the name: .keystore.

You can find more information about preparing the certificate keystore at
https://tomcat.apache.org/tomcat-8.0-doc/ssl-howto.
html#Prepare_the_Certificate_Keystore.

How to do it…
With the keystore creation complete, we will need to create a separate properties file in order
to store our configuration for the HTTPS connector, such as port and others. After that, we
will create a configuration property binding object and use it to configure our new connector.
Perform the following steps;

1.	 First, we will create a new properties file named tomcat.https.properties
in the src/main/resources directory from the root of our project with the
following content:
custom.tomcat.https.port=8443
custom.tomcat.https.secure=true

https://tomcat.apache.org/tomcat-8.0-doc/ssl-howto.html#Prepare_the_Certificate_Keystore
https://tomcat.apache.org/tomcat-8.0-doc/ssl-howto.html#Prepare_the_Certificate_Keystore

Web Framework Behavior Tuning

44

custom.tomcat.https.scheme=https
custom.tomcat.https.ssl=true
custom.tomcat.https.keystore=${user.home}/.keystore
custom.tomcat.https.keystore-password=changeit

2.	 Next, we will create a nested static class named TomcatSslConnectorProperties
in our WebConfiguration class with the following content:
@ConfigurationProperties(prefix = "custom.tomcat.https")
public static class TomcatSslConnectorProperties {
 private Integer port;
 private Boolean ssl= true;
 private Boolean secure = true;
 private String scheme = "https";
 private File keystore;
 private String keystorePassword;
 //Skipping getters and setters to save space, but we do need
them

 public void configureConnector(Connector connector) {
 if (port != null)
 connector.setPort(port);
 if (secure != null)
 connector.setSecure(secure);
 if (scheme != null)
 connector.setScheme(scheme);
 if (ssl!= null)
 connector.setProperty("SSLEnabled", ssl.toString());
 if (keystore!= null && keystore.exists()) {
 connector.setProperty("keystoreFile",
 keystore.getAbsolutePath());
 connector.setProperty("keystorePassword",
 keystorePassword);
 }
 }
}

3.	 Now, we will need to add our newly created tomcat.http.properties file as
a Spring Boot property source and enable TomcatSslConnectorProperties
to be bound. This can be done by adding the following code right above the class
declaration of the WebConfiguration class:
@Configuration
@PropertySource("classpath:/tomcat.https.properties")

Chapter 3

45

@EnableConfigurationProperties(WebConfiguration.
TomcatSslConnectorProperties.class)
public class WebConfiguration extends
 WebMvcConfigurerAdapter {...}

4.	 Finally, we will need to create an EmbeddedServletContainerFactory Spring
bean where we will add our HTTPS connector. We will do that by adding the following
code to the WebConfiguration class:
@Bean
public
 EmbeddedServletContainerFactory
 servletContainer(TomcatSslConnectorProperties properties) {
 TomcatEmbeddedServletContainerFactory tomcat = new
 TomcatEmbeddedServletContainerFactory();
 tomcat.addAdditionalTomcatConnectors(
 createSslConnector(properties)
);
 return tomcat;
}

private Connector
 createSslConnector(TomcatSslConnectorProperties
 properties) {
 Connector connector = new Connector();
 properties.configureConnector(connector);
 return connector;
}

5.	 Start the application by running ./gradlew clean bootRun.

6.	 Let's open https://localhost:8443/internal/tomcat.https.properties
in the browser to see the following results:

Web Framework Behavior Tuning

46

How it works…
In this recipe, we did a number of things; so let's break them down one change at a time.

The first change, which we did in this recipe, ignoring the need to create the keystore, was the
creation of tomcat.https.properties and TomcatSslConnectorProperties object
to bind them to. Previously, we already dealt with making changes to the various settings in
application.properties when configuring our DataSource. At that time, though, we did
not have to create any binding objects because Spring Boot already has them defined.

As we learned earlier, Spring Boot already exposes many properties to configure the application
settings, including a whole set of settings for the server configuration. These values get bound to
an internal Spring Boot class: ServerProperties.

A complete list of the common application properties can be found in
the Spring Boot reference documentation at http://docs.spring.
io/spring-boot/docs/current/reference/html/common-
application-properties.html.

What we did with our addition was simply mimicking Spring Boot and creating our own
configuration group with a binding object behind it. The reason that we didn't use the
already existing server.prefix, and instead opted for custom.tomcat, was due to
ServerProperties forbidding the reuse of the namespace and throwing an exception
during property binding upon detection of unknown configuration fields, as it would have
been in our case.

The @ConfigurationProperties(prefix = "custom.tomcat.https") method is an
important annotation for our TomcatSslConnectorProperties object. It tells Spring Boot
to automatically bind the properties with the custom.tomcat.https prefix to fields that are
declared in TomcatSslConnectorProperties. In order for the binding to take place—in
addition to defining the fields in the class—it is very important to define the getters and setters
as well. It is also worth mentioning that during the binding process, Spring will automatically
try to convert the property values to their appropriate data types. For example, the value of
custom.tomcat.https.keystore gets automatically bound to a private File keystore
field object.

The converters, which we learned about earlier, will also be used
during the process of converting to custom-defined data types.

The next step is to tell Spring Boot to include the properties that are defined in
tomcat.https.properties in the list of properties. This is achieved by adding
@PropertySource("classpath:/tomcat.https.properties") next to
@Configuration in the WebConfiguration class.

http://docs.spring.io/spring-boot/docs/current/reference/html/common-application-properties.html
http://docs.spring.io/spring-boot/docs/current/reference/html/common-application-properties.html
http://docs.spring.io/spring-boot/docs/current/reference/html/common-application-properties.html

Chapter 3

47

After the values are imported, we will need to tell Spring Boot to automatically create an
instance of TomcatSslConnectorProperties for us to use. This is done by adding the
following annotation next to @Configuration:

@EnableConfigurationProperties(WebConfiguration.TomcatSslConnector
 Properties.class)

After all the property support is set and done, we will proceed with the actual code to create a
second connector. The creation of the EmbeddedServletContainerFactory bean provides
Spring Boot with a factory to use in order to create the EmbeddedServletContainer. The
convenient configureConnector(Connector connector) method, which we added to
TomcatSslConnectorProperties, gives us a good place to encapsulate and consolidate
all the settings that are needed to configure the newly created Connector instance.

49

4
Writing Custom Spring

Boot Starters

In this chapter, we will cover the following topics:

ff Understanding Spring Boot autoconfiguration

ff Creating a custom Spring Boot autoconfiguration starter

ff Configuring custom conditional bean instantiations

ff Using custom @Enable* annotations to toggle configurations

Introduction
In the previous chapters, we did a lot of configuration, and even more autoconfiguration while
developing our Spring Boot application. Now, it is time to take a look behind the scenes and
find out the magic behind the Spring Boot autoconfiguration, and write some starters of our
own as well.

This is a very useful capability to possess, especially for large software enterprises where the
presence of a proprietary code is inevitable, and it is very helpful to be able to create internal
custom starters that would automatically add some of the configuration or functionalities to
the applications. Some likely candidates can be custom configuration systems, libraries, and
configurations that deal with connecting to databases, using custom connection pools, http
clients, servers, and so on. We will go through the internals of Spring Boot autoconfiguration,
take a look at how new starters are created, explore conditional initialization and wiring
of beans based on various rules, and see that annotations can be a powerful tool, which
provides the consumers of the starters with more control over dictating what configurations
should be used and where.

Writing Custom Spring Boot Starters

50

Understanding Spring Boot
autoconfiguration

Spring Boot has a lot of power when it comes to bootstrapping an application and configuring
it with exactly the things that are needed, all without much of the glue code that is required
of us, the developers. The secret behind this power actually comes from Spring itself or
rather from the Java Configuration functionality that it provides. As we add more starters
as dependencies, more and more classes will appear in our classpath. Spring Boot detects
the presence or absence of specific classes and based on this information, makes some
decisions, which are fairly complicated at times, and automatically creates and wires the
necessary beans to the application context.

Sounds simple, right?

In the previous recipes, we added a number of Spring Boot starters such as spring-boot-
starter-data-jpa, spring-boot-starter-web, spring-boot-starter-data-
test, and so on. We will use the same code that we finished in the previous chapter in order
to see what actually happens during the application startup and the decisions that Spring
Boot will make while wiring our application together.

How to do it…
1.	 Conveniently, Spring Boot provides us with an ability to get the AUTO-

CONFIGURATION REPORT by simply starting the application with the debug flag.
This can be passed to the application either as an environment variable, DEBUG,
as a system property, -Ddebug, or as an application property, --debug.

2.	 Start the application by running DEBUG=true ./gradlew clean bootRun.

3.	 Now, if you look at the console logs, you will see a lot more information printed there
that is marked with the DEBUG level log. At the end of the startup log sequence, we
will see the AUTO-CONFIGURATION REPORT as follows:
=========================

AUTO-CONFIGURATION REPORT

=========================

Positive matches:

…

DataSourceAutoConfiguration

Chapter 4

51

 - @ConditionalOnClass classes found: javax.sql.
DataSource,org.springframework.jdbc.datasource.embedded.
EmbeddedDatabaseType (OnClassCondition)

…

Negative matches:

…

GsonAutoConfiguration

 - required @ConditionalOnClass classes not found: com.
google.gson.Gson (OnClassCondition)

…

How it works…
As you can see, the amount of information that is printed in the debug mode can be
somewhat overwhelming; so I've selected only one example of positive and negative
matches each.

For each line of the report, Spring Boot tells us why certain configurations have been selected
to be included, what they have been positively matched on, or, for the negative matches, what
was missing that prevented a particular configuration to be included in the mix. Let's look at
the positive match report for DataSourceAutoConfiguration:

ff The @ConditionalOnClass marker in parenthesis classes found tells us that
Spring Boot has detected the presence of a particular class, specifically two classes
in our case: javax.sql.DataSource and org.springframework.jdbc.
datasource.embedded.EmbeddedDatabaseType.

ff The OnClassCondition indicates the kind of matching that was used. This is
supported by the @ConditionalOnClass and @ConditionalOnMissingClass
annotations.

While OnClassCondition is the most common kind of detection, Spring Boot also
uses many other conditions. For example, OnBeanCondition is used to check the presence
or absence of specific bean instances, OnPropertyCondition is used to check the
presence, absence, or a specific value of a property as well as any number of the custom
conditions that can be defined using the @Conditional annotation and Condition
interface implementations.

Writing Custom Spring Boot Starters

52

The negative matches show us a list of configurations that Spring Boot has evaluated, which
means that they do exist in the classpath and were scanned by Spring Boot but didn't pass
the conditions required for their inclusion. GsonAutoConfiguration, while available in the
classpath as it is a part of the imported spring-boot-autoconfigure artifact, was not
included because the required com.google.gson.Gson class was not detected as present
in the classpath, thus failing the OnClassCondition presence check.

The implementation of the GsonAutoConfiguration file looks as follows:

@Configuration
@ConditionalOnClass(Gson.class)
public class GsonAutoConfiguration {

 @Bean
 @ConditionalOnMissingBean
 public Gson gson() {
 return new Gson();
 }

}

After looking at the code, it is very easy to make the connection between the conditional
annotations and the report information that is provided by Spring Boot at the start time.

Creating a custom Spring Boot
autoconfiguration starter

We have a high-level idea of the process by which Spring Boot decides which configurations
to include in the formation of the application context. Now, let's take a stab at creating our
own Spring Boot starter artifact, which we can include as an autoconfigurable dependency
in our build.

In Chapter 2, Configuring Web Applications, you learned how to create database Repository
objects. So, let's build a simple starter that will create another CommandLineRunner that
will take the collection of all the Repository instances and print out the count of the total
entries for each.

We will start by adding a child Gradle project to our existing project that will house the
codebase for the starter artifact. We will call it db-count-starter.

Chapter 4

53

How to do it…
1.	 We will start by creating a new directory named db-count-starter in the root of

our project.

2.	 As our project has now become what is known as a multiproject build, we will
need to create a settings.gradle configuration file in the root of our project with
the following content:
include 'db-count-starter'

3.	 We should also create a separate build.gradle configuration file for our
subproject in the db-count-starter directory in the root of our project
with the following content:
apply plugin: 'java'

repositories {
 mavenCentral()
 maven { url "https://repo.spring.io/snapshot" }
 maven { url "https://repo.spring.io/milestone" }

}

dependencies {
 compile("org.springframework.boot:spring-boot:1.2.3.RELEASE")
 compile("org.springframework.data:spring-data-
 commons:1.9.2.RELEASE")
}

4.	 Now we are ready to start coding. So, the first thing is to create the directory
structure, src/main/java/org/test/bookpubstarter/dbcount, in
the db-count-starter directory in the root of our project.

5.	 In the newly created directory, let's add our implementation of the
CommandLineRunner file named DbCountRunner.java with the following content:
public class DbCountRunner implements CommandLineRunner {
 protected final Log logger = LogFactory.getLog(getClass());

 private Collection<CrudRepository> repositories;

 public DbCountRunner(Collection<CrudRepository>
 repositories) {
 this.repositories = repositories;
 }

 @Override

Writing Custom Spring Boot Starters

54

 public void run(String... args) throws Exception {
 repositories.forEach(crudRepository ->
 logger.info(String.format("%s has %s entries",
 getRepositoryName(crudRepository.getClass()),
 crudRepository.count())));

 }

 private static String getRepositoryName(Class
crudRepositoryClass) {
 for(Class repositoryInterface :
 crudRepositoryClass.getInterfaces()) {
 if (repositoryInterface.getName().
startsWith("org.test.bookpub.repository")) {
 return repositoryInterface.getSimpleName();
 }
 }
 return "UnknownRepository";
 }
}

6.	 With the actual implementation of DbCountRunner in place, we will now
need to create the configuration object that will declaratively create an
instance during the configuration phase. So, let's create a new class file
called DbCountAutoConfiguration.java with the following content:
@Configuration
public class DbCountAutoConfiguration {
 @Bean
 public DbCountRunner dbCountRunner(
 Collection<CrudRepository> repositories) {
 return new DbCountRunner(repositories);
 }
}

7.	 We will also need to tell Spring Boot that our newly created JAR artifact contains the
autoconfiguration classes. For this, we will need to create a resources/META-INF
directory in the db-count-starter/src/main directory in the root of our project.

8.	 In this newly created directory, we will place the file named spring.factories with
the following content:
org.springframework.boot.autoconfigure.
EnableAutoConfiguration=org.test.bookpubstarter.dbcount.
DbCountAutoConfiguration

Chapter 4

55

9.	 For the purpose of our demo, we will add the dependency to our starter artifact
in the main project's build.gradle by adding the following entry in the
dependencies section:
compile project(':db-count-starter')

10.	 Start the application by running ./gradlew clean bootRun.

11.	 Once the application is complied and has started, we should see the following in the
console logs:
2015-04-05 INFO org.test.bookpub.StartupRunner : Welcome
to the Book Catalog System!

2015-04-05 INFO o.t.b.dbcount.DbCountRunner :
AuthorRepository has 1 entries

2015-04-05 INFO o.t.b.dbcount.DbCountRunner :
PublisherRepository has 1 entries

2015-04-05 INFO o.t.b.dbcount.DbCountRunner :
BookRepository has 1 entries

2015-04-05 INFO o.t.b.dbcount.DbCountRunner :
ReviewerRepository has 0 entries

2015-04-05 INFO org.test.bookpub.BookPubApplication : Started
BookPubApplication in 8.528 seconds (JVM running for 9.002)

2015-04-05 INFO org.test.bookpub.StartupRunner : Number
of books: 1

How it works…
Congratulations! You have now built your very own Spring Boot autoconfiguration starter.

First, let's quickly walk through the changes that we made to our Gradle build configuration
and then we will examine the starter setup in detail.

As the Spring Boot starter is a separate, independent artifact, just adding more classes to
our existing project source tree would not really demonstrate much. To make this separate
artifact, we had a few choices: making a separate Gradle configuration in our existing project
or creating a completely separate project altogether. The most ideal solution, however, was to
just convert our build to Gradle Multi-Project Build by adding a nested project directory and
subproject dependency to build.gradle of the root project. By doing this, Gradle actually
creates a separate artifact JAR for us but we don't have to publish it anywhere, only include it
as a compile project(':db-count-starter') dependency.

For more information about Gradle multi-project builds, you
can check out the manual at http://gradle.org/docs/
current/userguide/multi_project_builds.html.

http://gradle.org/docs/current/userguide/multi_project_builds.html
http://gradle.org/docs/current/userguide/multi_project_builds.html

Writing Custom Spring Boot Starters

56

Spring Boot Auto-Configuration Starter is nothing more than a regular Spring Java
Configuration class annotated with the @Configuration annotation and the presence
of spring.factories in the classpath in the META-INF directory with the appropriate
configuration entries.

During the application startup, Spring Boot uses SpringFactoriesLoader, which is a part
of Spring Core, in order to get a list of the Spring Java Configurations that are configured for the
org.springframework.boot.autoconfigure.EnableAutoConfiguration property
key. Under the hood, this call collects all the spring.factories files located in the META-
INF directory from all the jars or other entries in the classpath and builds a composite list to be
added as application context configurations. In addition to the EnableAutoConfiguration
key, we can declare the following other keys with implementations, which would be
automatically initializable during startup in a similar fashion:

ff org.springframework.context.ApplicationContextInitializer

ff org.springframework.context.ApplicationListener

ff org.springframework.boot.SpringApplicationRunListener

ff org.springframework.boot.env.PropertySourceLoader

ff org.springframework.boot.autoconfigure.template.
TemplateAvailabilityProvider

ff org.springframework.test.contex.TestExecutionListener

Ironically enough, a Spring Boot Starter does not need to depend on the Spring
Boot library as its compile time dependency. If we look at the list of class imports in
the DbCountAutoConfiguration class, we will not see anything from the org.
springframework.boot package. The only reason that we have a dependency declared
on Spring Boot is because our implementation of DbCountRunner implements the org.
springframework.boot.CommandLineRunner interface.

Configuring custom conditional bean
instantiations

In the previous example, you learned how to get the basic Spring Boot Starter going. On the
inclusion of the jar in the application classpath, the DbCountRunner bean will be created
automatically and added to the application context. In the very first recipe of this chapter, we
have also seen that Spring Boot has an ability to do conditional configurations depending on a
few conditions, such as the presence of specific classes in the classpath, existence of a bean,
and others.

For this recipe, we will enhance our starter with a conditional check. This will create the
instance of DbCountRunner only if no other bean instance of this class has already been
created and added to the application context.

Chapter 4

57

How to do it…
1.	 In the DbCountAutoConfiguration class, we will add an

@ConditionalOnMissingBean annotation to the dbCountRunner(…)
method, as follows:
@Bean
@ConditionalOnMissingBean
public DbCountRunner
 dbCountRunner(Collection<CrudRepository> repositories) {
 return new DbCountRunner(repositories);
}

2.	 We will also need to add a dependency on the spring-boot-autoconfigure
artifact to the dependencies section of the db-count-starter/build.gradle
file:
compile("org.springframework.boot:spring-boot-
 autoconfigure:1.2.3.RELEASE")

3.	 Now, let's start the application by running ./gradlew clean bootRun in order
to verify that we will still see the same output in the console logs as we did in the
previous recipe.

4.	 If we start the application with the DEBUG switch so as to see the Auto-
Configuration Report, which we already learned in the first recipe of this chapter,
we will see that our autoconfiguration is in the Positive Matches group, as follows:
DbCountAutoConfiguration#dbCountRunner

 - @ConditionalOnMissingBean (types: org.test.bookpubstarter.
dbcount.DbCountRunner; SearchStrategy: all) found no beans
(OnBeanCondition)

5.	 Let's explicitly/manually create an instance of DbCountRunner in our main
BookPubApplication configuration class and we will also override its run(…)
method, just so we can see the difference in the logs:
protected final Log logger = LogFactory.getLog(getClass());
@Bean
public DbCountRunner
 dbCountRunner(Collection<CrudRepository> repositories) {
 return new DbCountRunner(repositories) {
 @Override
 public void run(String... args) throws Exception {
 logger.info("Manually Declared DbCountRunner");
 }
 };
}

Writing Custom Spring Boot Starters

58

6.	 Start the application by running DEBUG=true ./gradlew clean bootRun.

7.	 If we look at the console logs, we will see two things: the Auto-Configuration
Report will print our autoconfiguration in the Negative Matches group and,
instead of the count output for each repository, we will see Manually Declared
DbCountRunner:
DbCountAutoConfiguration#dbCountRunner

 - @ConditionalOnMissingBean (types: org.test.bookpubstarter.
dbcount.DbCountRunner; SearchStrategy: all) found the following
[dbCountRunner] (OnBeanCondition)

2015-04-05 INFO org.test.bookpub.BookPubApplication$1 :
Manually Declared DbCountRunner

How it works…
As we learned from the previous recipe, Spring Boot will automatically process all the
configuration class entries from spring.factories during the application context creation.
Without any extra guidance, everything that is annotated with an @Bean annotation will
be used to create a Spring Bean. This functionality is actually a part of the plain old Spring
framework Java Configuration. To enhance this even further, Spring Boot adds an ability to
conditionally control the rules for when certain @Configuration or @Bean annotations
should be executed and when it is best to ignore them.

In our case, we used the @ConditionalOnMissingBean annotation to instruct Spring Boot
to create our DbCountRunner bean only if there is no other bean matching either the class
type or bean name already declared elsewhere. As we explicitly created an @Bean entry for
DbCountRunner in the BookPubApplication configuration, this took precedence and
caused OnBeanCondition to detect the existence of the bean; thus instructing Spring Boot
not to use DbCountAutoConfiguration during the application context setup.

Using custom @Enable* annotations to
toggle configurations

Allowing Spring Boot to automatically evaluate the classpath and detected configurations that
are found there makes it very quick and easy to get a simple application going. However, there
are times when we want to provide the configuration classes but require consumers of the
starter library to explicitly enable such a configuration rather than relying on Spring Boot to
decide automatically if it should be included or not.

We will modify our previous recipe to enable the starter via a meta-annotation rather than
using the spring.factories route.

Chapter 4

59

How to do it…
1.	 First, we will comment out the content of the spring.factories file located in

db-count-starter/src/main/resources in the root of our project, as follows:
#org.springframework.boot.autoconfigure.EnableAutoConfiguration =\
#org.test.bookpubstarter.dbcount.DbCountAutoConfiguration

2.	 Next, we will need to create the meta-annotation. We will create a new file named
EnableDbCounting.java in the db-count-starter/src/main/java/org/
test/bookpubstarter/dbcount directory in the root of our project with the
following content:
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Import(DbCountAutoConfiguration.class)
@Documented
public @interface EnableDbCounting {
}

3.	 We will now add the @EnableDbCounting annotation to our
BookPubApplication class and also remove the dbCountRunner(…)
method from it, as shown in the following snippet:
@SpringBootApplication
@EnableScheduling
@EnableDbCounting
public class BookPubApplication {

 public static void main(String[] args) {
 SpringApplication.run(BookPubApplication.class, args);
 }

 @Bean
 public StartupRunner schedulerRunner() {
 return new StartupRunner();
 }
}

4.	 Start the application by running ./gradlew clean bootRun.

Writing Custom Spring Boot Starters

60

How it works…
After running the application, the first thing that you might have noticed is that the printed
counts all showed 0, even though StartupRunner had printed Number of books: 1
to the console, as shown in the following output:

o.t.b.dbcount.DbCountRunner : AuthorRepository has 0 entries

o.t.b.dbcount.DbCountRunner : BookRepository has 0 entries

o.t.b.dbcount.DbCountRunner : PublisherRepository has 0
entries

o.t.b.dbcount.DbCountRunner : ReviewerRepository has 0
entries

org.test.bookpub.StartupRunner : Welcome to the Book Catalog
System!

org.test.bookpub.StartupRunner : Number of books: 1

This is because Spring Boot is randomly executing CommandLineRunners and, as we
changed the configuration to use the @EnableDbCounting annotation, it gets processed
before the configuration in the BookPubApplication class itself. As the database
population is done by us in the StartupRunner.run(…) method and the execution of
DbCountRunner.run(…) happens before this, the database tables have no data and so
report the 0 count.

If we want to enforce the order, Spring provides us with this ability using the @Order annotation.
Let's annotate the StartupRunner class with @Order(Ordered.LOWEST_PRECEDENCE
- 15). As LOWEST_PRECEDENCE is the default order that is assigned, we will ensure that
StartupRunner will be executed after DbCountRunner by slightly reducing the order number.
Let's run the app again and now we will see that the counts are properly displayed.

Now that this little ordering issue is behind us, let's examine what we did with the
@EnableDbCounting annotation in a bit more detail.

Without spring.factories containing the configuration, Spring Boot does not really know
that the DbCountAutoConfiguration class should be included during the application
context creation. By default, the configuration component scan will look only from the package
to which BookPubApplication class belongs to and below, so anything that provides
configuration and resides under org.test.bookpub.* will get detected and evaluated.
As the packages for BookPubApplication and DbCountAutoConfiguration classes
are different—org.test.bookpub versus org.test.bookpubstarter.dbcount—the
scanner won't pick it up.

Chapter 4

61

This is where our newly created meta-annotation comes into play. In the @EnableDbCounting
annotation, there is a key nested annotation, @Import(DbCountAutoConfiguration.
class), which makes things happen. This is an annotation that is provided by Spring,
which can be used to annotate other annotations with declarations of which configuration
classes should be imported in the process. By annotating our BookPubApplication
class with @EnableDbCounting, we transitively tell Spring that it should include
DbCountAutoConfiguration as a part of the application context as well.

Using the convenience meta-annotations, spring.factories, and conditional bean
annotations, we can now create sophisticated and elaborate custom autoconfiguration
Spring Boot starters in order to solve the needs of our enterprises.

63

5
Application Testing

In this chapter, we will cover the following topics:

ff Creating tests for MVC Controllers

ff Automatically configuring database schema and populating it with data

ff Creating tests using in-memory database with data fixtures

ff Creating tests using Mockito to mock DB

ff Writing tests using Cucumber

ff Writing tests using Spock

Introduction
In the previous chapters we did a lot of coding. We created a new Spring Boot application from
scratch, added an MVC component to it, some database services, made a few tweaks to the
application behavior, and even wrote our very own Spring Boot Starter. It is now time to take
the next step and learn what kind of tools and capabilities Spring Boot offers when it comes
to testing all this code and how well it integrates with the other popular testing frameworks.

We will see how to use the Spring JUnit integration to create unit tests. Next, we will explore
the options of setting up the database with test data to test against it. We will then look to the
Behavior Driven Development tools, Cucumber and Spock, and see how they integrate with
Spring Boot.

Application Testing

64

Creating tests for Spring MVC Controllers
In the previous chapters, we made a lot of progress in gradually creating our application; but
how do we know that it actually does what we want it to do? More importantly, how do we
know for sure that after six months, or even a year from now, it will still continue to do what
we expected it to do at the very beginning? This question is best answered by creating a set of
tests, preferably automated, that run a suite of assertions against our code. This ensures that
we constantly get the same and expected outputs given the specific inputs. Having tests gives
us the much needed peace of mind that our application is not only elegantly coded and looks
beautiful, but it also performs reliably and is as much error free as possible.

In Chapter 4, Writing Custom Spring Boot Starters, we left off with our web application fitted
with a custom-written Spring Boot starter. We will now create some basic tests to test our web
application to ensure that all the controllers expose the expected RESTful URLs on which we
can rely on as the service API. This type of testing is a bit beyond what is commonly known as
Unit Testing as it tests the entire web application, requires the application context to be fully
initialized, and all the beans should be wired together in order to work. This kind of testing is
sometimes referred as Integration or Service Testing.

How to do it…
Spring Boot gets us going by already creating a placeholder test file,
BookPubApplicationTests.java, in the src/test/java/org/test/bookpub
directory at the root of our project with the following content:

@RunWith(SpringJUnit4ClassRunner.class)
@SpringApplicationConfiguration(classes = BookPubApplication.class)
public class BookPubApplicationTests {

 @Test
 public void contextLoads() {
 }

}

1.	 In build.gradle, we also get a test dependency on spring-boot-starter-
test, as follows:
testCompile("org.springframework.boot:spring-boot-starter-test")

2.	 We will go ahead and extend the basic template test to contain the following code:
import static org.hamcrest.Matchers.containsString;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertNotNull;

Chapter 5

65

import static org.springframework.test.web.servlet.request.
MockMvcRequestBuilders.get;
import static org.springframework.test.web.servlet.result.
MockMvcResultMatchers.content;
import static org.springframework.test.web.servlet.result.
MockMvcResultMatchers.jsonPath;
import static org.springframework.test.web.servlet.result.
MockMvcResultMatchers.status;

@RunWith(SpringJUnit4ClassRunner.class)
@SpringApplicationConfiguration(classes = BookPubApplication.
class)
@WebIntegrationTest("server.port:0")
public class BookPubApplicationTests {
 @Autowired
 private WebApplicationContext context;
 @Autowired
 private BookRepository repository;
 @Value("${local.server.port}")
 private int port;

 private MockMvc mockMvc;
 private RestTemplate restTemplate = new TestRestTemplate();

 @Before
 public void setupMockMvc() {
 mockMvc = MockMvcBuilders.webAppContextSetup(context).build();
 }

 @Test
 public void contextLoads() {
 assertEquals(1, repository.count());
 }

 @Test
 public void webappBookIsbnApi() {
 Book book =
 restTemplate.getForObject("http://localhost:" +
 port + "/books/978-1-78528-415-1", Book.class);
 assertNotNull(book);
 assertEquals("Packt", book.getPublisher().getName());
 }

Application Testing

66

 @Test
 public void webappPublisherApi() throws Exception {
 mockMvc.perform(get("/publishers/1")).
 andExpect(status().isOk()).andExpect(content().
 contentType(MediaType.parseMediaType(
 "application/hal+json"))).
 andExpect(content().string(containsString("Packt"))).
 andExpect(jsonPath("$.name").value("Packt"));
 }
}

3.	 In order to be able to use the jsonPath(…) matcher at runtime, we will also need
to add the following dependency to the dependencies {…} block in our build.
gradle file:
testRuntime("com.jayway.jsonpath:json-path")

4.	 Execute the tests by running ./gradlew clean test.

5.	 By the console output, we can tell that our tests have succeeded and are running,
but we don't really see much information besides the following lines (truncated
for brevity):
:compileJava

:compileTestJava

:testClasses

:test

2015-04-13 21:40:44.694 INFO 25739 --- [Thread-4]
ationConfigEmbeddedWebApplicationContext : Closing org.
springframework.boot.context.embedded.AnnotationConfigEmbeddedWeb
ApplicationContext@206f4aa6: startup date [Mon Apr 13 21:40:36 CDT
2015]; root of context hierarchy

2015-04-13 21:40:44.704 INFO 25739 --- [Thread-4]
j.LocalContainerEntityManagerFactoryBean : Closing JPA
EntityManagerFactory for persistence unit 'default'

2015-04-13 21:40:44.705 INFO 25739 --- [Thread-4] org.
hibernate.tool.hbm2ddl.SchemaExport : HHH000227: Running hbm2ddl
schema export

2015-04-13 21:40:44.780 INFO 25739 --- [Thread-4] org.
hibernate.tool.hbm2ddl.SchemaExport : HHH000230: Schema export
complete

BUILD SUCCESSFUL

Total time: 24.635 secs

Chapter 5

67

6.	 A better insight can be gathered by viewing the HTML reports that are generated by
Gradle, which can be opened in the browser and reside in build/reports/tests/
index.html, as shown in the following screenshot:

7.	 Clicking on org.test.bookpub.BookPubApplicationTests will take us to the
individual test case breakdown that shows the status of each test and how long it
took to get executed, as follows:

8.	 The more curious minds can also click on the Standard output button in order to see
the runtime application logs that are produced during the execution of the test.

Application Testing

68

How it works…
Now that we created our first test, let's examine the code in detail.

We will first look at the following annotations that have been declared for the
BookPubApplicationTests class:

ff @RunWith(SpringJUnit4ClassRunner.class): This is a standard JUnit
annotation that we can configure so as to use the SpringJUnit4ClassRunner
providing functionality of Spring Test Context framework to the standard JUnit tests.

ff @SpringApplicationConfiguration(classes = BookPubApplication.
class): This is a Spring Boot annotation that is used to determine how to load and
configure the Spring Application Context for the integration tests. It is a meta-annotation
that contains the ContextConfiguration annotation, which instructs the testing
framework to use Spring Boot's SpringApplicationContextLoader for application
context creation.

ff @WebIntegrationTest("server.port:0"): This is an annotation that indicates
to Spring Boot that the current test is an integration test and will require a complete
context initialization and application startup, as if it were a real deal. This annotation
is usually included along with @SpringApplicationConfiguration for the
integration tests. The server.port:0 value is used to tell Spring Boot to start the
Tomcat server on a randomly chosen http port, which we will later obtain by declaring
the @Value("${local.server.port}") private int port; value field. This
ability to select a random http port is very handy when running tests on a Jenkins
or any other CI server where, if multiple jobs are running in parallel, you could get a
port collision.

With the class annotations magic dispelled, let's look at the content of the class itself. As
this is a Spring Boot test, we can declare any objects that are managed by Spring to be
@Autowired during the execution or set to a specific environment value using an @Value
annotation. In our test, we autowired the WebApplicationContext and BookRepository
objects, which we will use in the execution of the standard JUnit @Test annotated test cases.

In the first test case, the contextLoads() method, we will just assert that we have the
BookRepository connection established and that it contains our one book entry.

Our second test will ensure that our web application responds to a RESTful URL for a
Book lookup by ISBN – "/books/{isbn}". For this test, we will use the instance of
TestRestTemplate and make a RESTful call to the running instance on a randomly
selected port. Spring Boot provides the value of the port field.

Chapter 5

69

Alternatively, we can execute the same flavor of tests by going through the MockMvc object.
This is provided by the Spring Test framework and allows you to perform MVC testing without
actually doing the client-side-based testing through RestTemplate, but instead doing it
fully server-side where the Controller requests are executed from the same context as the
tested application.

In order to use MockMvc, we will use the MockMvcBuilders utility to build an instance using
@Autowired WebApplicationContext. We will do this in the setup method so that we
don't have to do it in every test explicitly.

MockMvc provides us with a very extensive set of capabilities in order to execute assertions
on practically all the things that are related to a web request. It is designed to be used in a
method chained fashion, allowing us to link the various tests together and forming a nice
continuous logical chain. We have used the following checks in our example:

ff The perform(get(…)) method sets up the web request. In our particular case, we
perform a GET request but the MockMvcRequestBuilders class provides you with
static helper functions for all the common method calls.

ff The andExpect(…) method can be invoked multiple times where each call
represents an evaluation of a condition against the result of the perform(…) call.
The argument of this call is any implementation of the ResultMatcher interface
along with many stock ones that are provided by the MockMvcResultMatchers
static utility class. This really opens up a possibility of having an infinite number of
different checks such as verifying the response status, content type, values stored in
a session, flash scope, verify redirects, contents of the rendering model or headers,
and much more. We will use a third-party json-path add-on library to test the
JSON response data in order to ensure that it contains the right elements in the right
tree hierarchy, andExpect(jsonPath("$.name").value("Packt")), which
validates that we have a name element at the root of the JSON document with a
value of Packt.

To learn more about the various possibilities that are available in
MockMvc, you can refer to https://github.com/spring-
projects/spring-mvc-showcase/tree/master/src/
test/java/org/springframework/samples/mvc.

https://github.com/spring-projects/spring-mvc-showcase/tree/master/src/test/java/org/springframework/samples/mvc
https://github.com/spring-projects/spring-mvc-showcase/tree/master/src/test/java/org/springframework/samples/mvc
https://github.com/spring-projects/spring-mvc-showcase/tree/master/src/test/java/org/springframework/samples/mvc

Application Testing

70

Automatically configuring the database
schema and populating it with data

Earlier in the book, in Chapter 2, Configuring Web Applications, we manually added a
few entries to the database in the StartupRunner's run(…) method. While doing so
programmatically can be a quick and easy way to get something going very quickly, in the long
run, it is not really a good idea to do so—especially when you are dealing with a large amount
of data. It is also a good practice to separate the database preparations, changes, and other
configurations from the rest of the running application code, even if it is setting up the test
cases. Thankfully, Spring has provided you with the support to make this task fairly easy and
straightforward to solve.

We will continue with the state of the application as we had left it in the previous recipe.
Spring provides us with a couple of ways to define how both the structure and data should be
populated in the database. The first way relies on using Hibernate to automatically create the
table structure by inferring it from our defined @Entity objects and using the import.sql
file to populate the data. The second approach is to use the plain old Spring JDBC capability,
which relies on using the schema.sql file that contains the database table definition and a
corresponding data.sql file that contains the data.

How to do it…
1.	 First, we will remove the programmatic database population, which we created in

Chapter 2. Configuring Web Applications. So let's comment out the following code
from the StartupRunner's run(…) method:
Author author = new Author("Alex", "Antonov");
author = authorRepository.save(author);
Publisher publisher = new Publisher("Packt");
publisher = publisherRepository.save(publisher);
Book book = new Book("978-1-78528-415-1", "Spring Boot Recipes",
author, publisher);
bookRepository.save(book);

2.	 If we were to run our tests, they might fail if the test.h2.db file is missing because
they expect the data to be in the database. We will populate the database by creating
a Hibernate import.sql file in the src/main/resources directory at the root of
our project with the following content:
INSERT INTO author (id, first_name, last_name) VALUES (1, 'Alex',
'Antonov')
INSERT INTO publisher (id, name) VALUES (1, 'Packt')
INSERT INTO book (isbn, title, author_id, publisher_id) VALUES
('978-1-78528-415-1', 'Spring Boot Recipes', 1, 1)

Chapter 5

71

3.	 On running the tests again by running ./gradlew clean test, they are magically
started to get passed again.

4.	 Another way to do this is to use the Spring JDBC support for schema.sql and data.
sql. Let's rename the newly created import.sql file to data.sql and create a
schema.sql file in the same directory with the following content:
-- Create syntax for TABLE 'author'
DROP TABLE IF EXISTS `author`;
CREATE TABLE `author` (
 `id` bigint(20) NOT NULL AUTO_INCREMENT,
 `first_name` varchar(255) DEFAULT NULL,
 `last_name` varchar(255) DEFAULT NULL,
 PRIMARY KEY (`id`)
);
-- Create syntax for TABLE 'publisher'
DROP TABLE IF EXISTS `publisher`;
CREATE TABLE `publisher` (
 `id` bigint(20) NOT NULL AUTO_INCREMENT,
 `name` varchar(255) DEFAULT NULL,
 PRIMARY KEY (`id`)
);
-- Create syntax for TABLE 'reviewer'
DROP TABLE IF EXISTS `reviewer`;
CREATE TABLE `reviewer` (
 `id` bigint(20) NOT NULL AUTO_INCREMENT,
 `first_name` varchar(255) DEFAULT NULL,
 `last_name` varchar(255) DEFAULT NULL,
 PRIMARY KEY (`id`)
);
-- Create syntax for TABLE 'book'
DROP TABLE IF EXISTS `book`;
CREATE TABLE `book` (
 `id` bigint(20) NOT NULL AUTO_INCREMENT,
 `description` varchar(255) DEFAULT NULL,
 `isbn` varchar(255) DEFAULT NULL,
 `title` varchar(255) DEFAULT NULL,
 `author_id` bigint(20) DEFAULT NULL,
 `publisher_id` bigint(20) DEFAULT NULL,
 PRIMARY KEY (`id`),
 CONSTRAINT `FK_publisher` FOREIGN KEY (`publisher_id`)
REFERENCES `publisher` (`id`),

Application Testing

72

 CONSTRAINT `FK_author` FOREIGN KEY (`author_id`) REFERENCES
`author` (`id`)
);
-- Create syntax for TABLE 'book_reviewers'
DROP TABLE IF EXISTS `book_reviewers`;
CREATE TABLE `book_reviewers` (
 `book_id` bigint(20) NOT NULL,
 `reviewers_id` bigint(20) NOT NULL,
 CONSTRAINT `FK_book` FOREIGN KEY (`book_id`) REFERENCES `book`
(`id`),
 CONSTRAINT `FK_reviewer` FOREIGN KEY (`reviewers_id`) REFERENCES
`reviewer` (`id`)
);

5.	 As we are now manually creating the database schema, we will need to tell the
Hibernate mapper not to automatically derive one from the entities and populate
the database with it. So, let's set the spring.jpa.hibernate.ddl-auto=none
property in the application.properties file in the src/main/resources
directory at the root of our project.

6.	 Execute the tests by running ./gradlew clean test and they should get passed.

How it works…
In this recipe, we actually explored two ways of achieving the same thing and this is quite
common when you are living in the Spring ecosystem. Depending on the components that are
used, whether it's a plain Spring JDBC, Spring JPA with Hibernate, or the Flyway or Liquidbase
migrations, the approach of populating and initializing the database differs but the end result
remains pretty much the same.

Both Flyway and Liquidbase are frameworks that provide incremental
database migration capabilities. This comes in very handy when one wants
to maintain the incremental log of the database changes in a programmatic,
describable fashion with an ability to quickly put the database in a desired
state for a particular version. While these frameworks differ in their approach
of providing such support, they are similar in the purpose. More detailed
information can be obtained at their respective sites, http://flywaydb.
org and http://www.liquibase.org.

http://flywaydb.org
http://flywaydb.org
http://www.liquibase.org

Chapter 5

73

In the preceding example, we explored two different ways of populating and initializing
the database.

Initializing the database with Spring JPA and Hibernate
In this approach, most of the work is actually done by the Hibernate library and we merely
set up the appropriate configurations and create conventionally expected files that are needed
for Hibernate to do the work. In this recipe we have used the following settings:

ff The spring.jpa.hibernate.ddl-auto=create-drop setting instructs
Hibernate to use the @Entity models and, based on their structure, automatically
deduce the database schema. On starting the application, the calculated schema
will be used to preinitialize the database table structure; when the application is shut
down, it will all be destroyed. Even in the event where the application was forcefully
terminated or it abruptly crashed, on startup, if the existing tables are detected, they
will be dropped and recreated from scratch; so it's probably not a good idea to rely on
this for the production environment.

If the spring.jpa.hibernate.ddl-auto property is not explicitly
configured, Spring Boot uses create-drop for embedded databases
such as H2 by default; so be careful and set it appropriately.

ff The import.sql file is also expected to reside in the root of the classpath
by Hibernate. This is used to execute the declared SQL statements on the
application startup. While any valid SQL statement can go in the file, it is
recommended that you put the data importing statements such as INSERT or
UPDATE and stay clear of table structure mutations, as the schema definition is
already taken care of by Hibernate.

Initializing the database with Spring JDBC
If the application does not use JPA or you don't want to depend on the Hibernate
functionality explicitly, Spring offers you another way of getting the database set up,
as long as the spring-boot-starter-jdbc dependency is present. So let's take
a look at what we did to get it to work, as shown in the following list:

ff The spring.jpa.hibernate.ddl-auto=none setting tells Hibernate not to do
any automatic handling of the database if the Hibernate dependency also exists, as
it does in our case. This setting is a good practice for the production environment
as you probably don't want to get all of your database tables wiped out clean
inadvertently—that would be one hell of a disaster, that's for sure!

Application Testing

74

ff The schema.sql file is expected to exist in the root of the classpath. It is executed by
Spring during the schema creation of the database on every startup of the application.
However, unlike Hibernate, this will not drop any of the existing tables automatically, so
it might be a good idea to either use DROP TABLE IF EXISTS to delete an existing
table before creating the new one or use the CREATE TABLE IF NOT EXISTS as
a part of the table creation SQL, if we only want to create new tables in case they
don't already exist. This makes it a lot more flexible to declare the database structure
evolution logic, thus making it safer to be used in production as well.

ff The data.sql file is expected to exist in the root of the classpath. This is used
to execute the data population SQL, so this is where all the INSERT INTO
statements go.

Given that this is a Spring native functionality, we will also get the ability to define the schema
and data files not only globally, but also as per the specific database platform. For example,
we can have one set of files that we can use for Oracle, schema-oracle.sql, and a
different one for MySQL, schema-mysql.sql. The same applies to the data.sql variants
as well; however, they don't have to be all defined per platform, so while you might have
platform-specific schema files, there could be a shared data file. The spring.datasource.
platform configuration value can be explicitly set if you want to override Spring Boot's
automatically deduced value.

If one wants to override the default names of schema.sql and
data.sql, Spring Boot provides us with the configuration properties,
which we can use to control spring.datasource.schema and
spring.datasource.data.

Creating tests using in-memory database
with data fixtures

In the previous recipe, we explored how to get our databases set up with the desired tables
and populated with the needed data. When it comes to testing, one of the typical challenges
is to get the environment set up correctly and predictably so that when the tests are executed,
we can safely assert the behavior in a deterministic fashion. In an application that connects
to a database, making sure that the database contains a deterministic dataset on which
the assertions can be evaluated is extremely important. For an elaborate test suite, it is also
necessary to be able to refresh or change that dataset based on the tests. Thankfully, Spring
has some nice facilities that aid you in accomplishing this task.

We will pick up from the state of our BookPub application as we left it in the previous recipe.
At this point, we have the schema.sql file defining all the tables and we also need the
database with some starting data that is defined in data.sql. In this recipe, we will extend
our tests to use the specific data fixture files that are tailored to a particular test suite.

Chapter 5

75

How to do it…
1.	 Our first step will be to create a resources directory in the src/test directory at

the root of our project.

2.	 In this directory, we will start placing our fixture SQL data files. Let's create a new file
named test-data.sql in the resources directory with the following content:
INSERT INTO author (id, first_name, last_name) VALUES (2, 'Greg',
'Turnquist')
INSERT INTO book (isbn, title, author_id, publisher_id) VALUES
('978-1-78439-302-1', 'Learning Spring Boot', 2, 1)

3.	 We now need a way to load this file when our test runs. We will modify our
BookPubApplicationTests class in the following way:
public class BookPubApplicationTests {
 ...
 @Autowired
 private BookRepository repository;
 @Autowired
 private DataSource ds;
 @Value("${local.server.port}")
 private int port;

 private MockMvc mockMvc;
 private RestTemplate restTemplate = new TestRestTemplate();
 private static boolean loadDataFixtures = true;

 @Before
 public void setupMockMvc() {
 ...
 }

 @Before
 public void loadDataFixtures() {
 if (loadDataFixtures) {
 ResourceDatabasePopulator populator = new ResourceDatabas
ePopulator(context.getResource("classpath:/test-data.sql"));
 DatabasePopulatorUtils.execute(populator, ds);
 loadDataFixtures = false;
 }
 }

 @Test
 public void contextLoads() {

Application Testing

76

 assertEquals(2, repository.count());
 }

 @Test
 public void webappBookIsbnApi() {
 ...
 }

 @Test
 public void webappPublisherApi() throws Exception {
 ...
 }
}

4.	 Execute the tests by running ./gradlew clean test and they should continue to
get passed despite us adding another book and its author to the database.

5.	 We can also use the method of populating the database, which we have learned in
the previous recipe. As the test code has its own resources directory, it is possible to
add another data.sql file to it and Spring Boot will use both the files to populate
the database. Let's go ahead and create the data.sql file in the src/test/
resources directory at the root of our project with the following content:
INSERT INTO author (id, first_name, last_name) VALUES (3,
'William', 'Shakespeare')
INSERT INTO publisher (id, name) VALUES (2, 'Classical Books')
INSERT INTO book (isbn, title, author_id, publisher_id) VALUES
('978-1-23456-789-1', 'Romeo and Juliet', 3, 2)

As Spring Boot collects all the occurrences of the data files from the
classpath, it is possible to place the data files in JARs or different
physical locations that all end up being at the root of the classpath.

It is also important to remember that as the loading order of
these scripts is not deterministic and in case you rely on certain
referential IDs, it is better if you use selects to get them instead
of making assumptions.

6.	 As we added another book to the database and now that we have three of them,
we should fix the assertion in our contextLoads() test method to the following:
assertEquals(3, repository.count());

7.	 Execute the tests by running ./gradlew clean test and they should continue
to pass.

Chapter 5

77

8.	 It would be a fair statement that when running unit tests, an in-memory database is
probably more suitable for the role as compared to a persistent one. Let's create a
dedicated test configuration instance of the application.properties file in the
src/test/resources directory at the root of our project with the following content:
spring.datasource.url = jdbc:h2:mem:testdb;DB_CLOSE_DELAY=-1;DB_
CLOSE_ON_EXIT=FALSE
spring.jpa.hibernate.ddl-auto=none

It is important to know that Spring Boot loads only one application.
properties from the classpath. When we created another
application.properties in src/test/resources, the previous
one from src/main/resources was no longer loaded and thus none
of the properties defined in here were merged in the environment. For this
reason, you should configure all of the property values that are needed.
In our case, we had to redefine the spring.jpa.hibernate.dll-
auto property, even though it was already declared in src/main/
resources/application.properties.

9.	 Execute the tests by running ./gradlew clean test and the tests should
continue to get passed.

How it works…
In this recipe, we relied on the facility that is provided by Spring to initialize and populate the
database in order to get our database populated with the data needed to run the tests and
assert on them; however, we also wanted to be able to use some data that is only relevant
to a particular test suite. For this, we turned to the ResourceDatabasePopulator and
DatabasePopulatorUtils classes to insert the desired data right before the test gets
executed. These are exactly the same classes that are used internally by Spring in order to
handle the schema.sql and data.sql files, except that now we are explicitly defining the
script files that we want to execute.

So, let's break up what we did step by step, as follows:

ff We created a setup method named loadDataFixtures(), which we annotated
with an @Before annotation to tell JUnit to run it before every test.

ff In this method, we obtained a resource handle to the classpath:/test-data.sql
data file that resides in our application's classpath and where we store our test data
and execute it against @Autowired DataSource ds.

Application Testing

78

ff As Spring can only autowire dependencies in the instances of the class and the
@Before annotated setup methods get executed for every test, we had to get a
little creative in order to avoid repopulating our database with the duplicate data
for every test instead of once per test suite/class. To achieve this, we created a
static boolean loadDataFixtures variable that retains its state for every
instance of the BookPubApplicationTests class, thus ensuring that we execute
DatabasePopulatorUtils only once. The reason that the variable has to be static
is as a new instance of the test class gets created for every test method that it runs in
the class, having the boolean flag at the instance level will not do the trick.

ff For a finishing touch, we decided to have a separate application.properties
file to be used for testing purposes. We added this to our src/test/resources
classpath with a testing configuration of the in-memory database instead of using
the file-based persistent one.

Unlike application.properties where only one file can be loaded
from the classpath, Spring supports a number of profile configurations,
which will get all merged together, during the application startup.
So, instead of declaring a completely separate application.
properties file, we could create an application-test.
properties file and set an active profile to test while running the tests.

Creating tests using Mockito to mock DB
Now that we are done with setting up the fixtures to use during the set up and population
of our database when it is used for testing purposes, let's examine how we can use the
power of Mockito so that we don't need to rely on the database at all. We will learn how to
elegantly mock the Repository instance objects using the Mockito framework and some
annotation cleverness.

We will create a special Spring Boot configuration class where we will define and replace the
Spring Beans that are necessary for testing purposes. We will use annotations to tell Spring
Boot when to add the testing configuration and when to exclude it. In the configuration class,
we will use Mockito to create some mock objects with preconfigured behavior, which will later
be injected by Spring Boot while executing the tests.

Chapter 5

79

How to do it…
1.	 First, we will create a special annotation that we will use in order to tag the

configuration classes that are designed to be loaded for testing purposes only.
To achieve this, we will enhance our BookPubApplication class with the
following content:
@Configuration
@EnableAutoConfiguration
@ComponentScan(excludeFilters=@ComponentScan.
Filter(UsedForTesting.class))
@EnableScheduling
@EnableDbCounting

public class BookPubApplication {

 public static void main(String[] args) {
 SpringApplication.run(BookPubApplication.class, args);
 }

 ...
}

@interface UsedForTesting {}

2.	 With this annotation defined, we are ready to create our TestMockBeansConfig
class in the src/test/java/org/test/bookpub directory at the root of our
project with the following content:
@Configuration
@UsedForTesting
public class TestMockBeansConfig {
 @Bean
 @Primary
 public PublisherRepository
 createMockPublisherRepository() {
 return Mockito.mock(PublisherRepository.class);
 }
}

Application Testing

80

3.	 We will also create a separate test suite class as we have too much going on already
in the BookPubApplicationTests. Let's create a separate test file named
PublisherRepositoryTests.java in the src/test/java/org/test/
bookpub directory at the root of our project with the following content:
@RunWith(SpringJUnit4ClassRunner.class)
@SpringApplicationConfiguration(classes = {BookPubApplication.class,
 TestMockBeansConfig.class})
@IntegrationTest
public class PublisherRepositoryTests {
 @Autowired
 private PublisherRepository repository;

 @Before
 public void setupPublisherRepositoryMock() {
 Mockito.when(repository.count()).thenReturn(1L);
 }

 @Test
 public void publishersExist() {
 assertEquals(1, repository.count());
 }

 @After
 public void resetPublisherRepositoryMock() {
 Mockito.reset(repository);
 }
}

4.	 Execute the tests by running ./gradlew clean test and the tests should
get passed.

Chapter 5

81

How it works…
There are a few magical things happening here. Let's start with the following modifications
that we made to the BookPubApplication class:

ff The @SpringBootApplication annotation was replaced with three
alternative annotations: @Configuration, @EnableAutoConfiguration,
and @ComponentScan(excludeFilters=@ComponentScan.
Filter(UsedForTesting.class)). The reason we had to do this was that we can
add the excludeFilters attributes to the @ComponentScan annotation. Otherwise,
the @SpringBootApplication meta/convenience annotation internally declared
the exact three annotations; we just unrolled them as the explicit annotations of our
application class. In our explicit declaration of the @ComponentScan annotation, we
told Spring to ignore any configuration classes that have been annotated with an
@UsedForTesting annotation.

ff The @UsedForTesting annotation is what we added as an additional outer
declaration to the BookPubApplication class. We used it in order to annotate
our TestMockBeansConfig class, thus letting Spring know not to include it when
the application is being booted in a regular, nontest mode.

With the application changes examined, let's now look at what we did in the
TestMockBeansConfig configuration class:

ff The @Configuration annotation tells Spring that this class contains the Application
Context configuration and @Bean declarations and if included, these should be added
to the created context.

ff The @UsedForTesting annotation marks this class as test-only. We discussed
this earlier.

ff The @Primary annotation on the createMockPublisherRepository() method
is how we will tell Spring to prefer this instance of the bean during an autowiring
selection if multiple instances of the class are available. In our application, we already
have the PublisherRepository instance created during the application startup
because we have this interface annotated with @RepositoryRestResource. Thus,
Spring already knows that it has to create an instance of this class and add it to the
context. As we don't want to use the real instance for our test but prefer to use the
Mockito mocked one, using the @Primary annotation allows us to accomplish
exactly this.

Application Testing

82

Now that we know how the mocked instance of PublisherRepository gets
injected into our tests, let's take a look at the newly created test class itself. The
two methods of particular interest are setupPublisherRepositoryMock()
and resetPublisherRepositoryMock(). They are described as follows:

ff The setupPublisherRepositoryMock() method is annotated with @Before,
which tells JUnit to execute this method before running every @Test method in the
class. In this, we will use the Mockito framework in order to configure the behavior
of our mocked instance. We will tell it that when repository.count() method
is called, return 1 as a result. The Mockito library provides us with many convenient
DLS-like methods, which we can use to define such rules with an English-like,
easy-to-read style.

ff The resetPublisherRepositoryMock() method is annotated with @After,
which tells JUnit to execute this method after running every @Test method in the
class. At the end of every test, we will need to reset the mocked behavior, so we will
use the Mockito.reset(…) method call to clear out all of our settings and get the
Mock ready for the next test, which can be used from another test suite altogether.

Writing tests using Cucumber
Unit testing has been an expected part of the software development lifecycle for quite some
time now and one can hardly imagine writing code without having unit tests along with it.
The art of testing does not stay the same and the advances in the testing philosophies have
extended the concept of unit testing even further, introducing things such as service testing,
integration testing, and lastly, what is known as Behavior Driven Development. Behavior
Driven Development proposes to create the test suites describing the application behavior at
large, and not getting down too much to the minute implementation details at the lower levels
of the code. One such framework, which has gained a lot of popularity first in the Ruby world
and later expanding to other languages including Java, is the Cucumber BDD.

For the purpose of this recipe, we will pick up from our previous example and continue
enhancing the testing suite by adding the Cucumber-JVM implementation, which will
provide us with the Java-based version of the original Ruby Cucumber framework and
create a few tests in order to demonstrate the capabilities and integration points with
the Spring Boot application.

This recipe is by no means intended to cover the entire set of
functionalities provided by the Cucumber testing framework and is mostly
focused on the integration points of Cucumber and Spring Boot. To learn
more about Cucumber-JVM, you can go to https://cukes.info/
docs#cucumber-implementations or https://github.com/
cucumber/cucumber-jvm for details.

https://cukes.info/docs#cucumber-implementations
https://cukes.info/docs#cucumber-implementations
https://github.com/cucumber/cucumber-jvm
https://github.com/cucumber/cucumber-jvm

Chapter 5

83

How to do it…
1.	 The first thing that we need to do is add the necessary dependencies for the

Cucumber libraries to our build.gradle file, as follows:
dependencies {
 compile("org.springframework.boot:spring-boot-starter-data-
 jpa")
 compile("org.springframework.boot:spring-boot-starter-jdbc")
 compile("org.springframework.boot:spring-boot-starter-web")
 compile("org.springframework.boot:spring-boot-starter-data-
 rest")
 compile project(':db-count-starter')
 runtime("com.h2database:h2")
 runtime("mysql:mysql-connector-java")
 testCompile("org.springframework.boot:spring-boot-starter-
 test")
 testCompile("info.cukes:cucumber-spring:1.2.2")
 testCompile("info.cukes:cucumber-java8:1.2.2")
 testCompile("info.cukes:cucumber-junit:1.2.2")
 testRuntime("com.jayway.jsonpath:json-path")
}

2.	 Next, we will need to create a test driver class to run Cucumber tests. Let's create a
RunCukeTests.java file in the src/test/java/org/test/bookpub directory
at the root of our project with the following content:
@RunWith(Cucumber.class)
@CucumberOptions(plugin={"pretty", "html:build/reports/cucumber"},
 glue = {"cucumber.api.spring",
 "classpath:org.test.bookpub"},
 monochrome = true)
public class RunCukeTests {
}

3.	 With the driver class created, we are ready to start writing what Cucumber refers
to as Step Definitions. I will talk briefly about what these are in the How it works…
section of this recipe For now, let's create a RepositoryStepdefs.java file in the
src/test/java/org/test/bookpub directory at the root of our project with the
following content:
@WebAppConfiguration
@ContextConfiguration(classes = {BookPubApplication.class,
 TestMockBeansConfig.class}, loader =
 SpringApplicationContextLoader.class)
public class RepositoryStepdefs {
 @Autowired

Application Testing

84

 private WebApplicationContext context;
 @Autowired
 private DataSource ds;
 @Autowired
 private BookRepository bookRepository;

 private Book loadedBook;

 @Given("^([^\\\"]*) fixture is loaded$")
 public void data_fixture_is_loaded(String fixtureName) throws
Throwable {
 ResourceDatabasePopulator populator = new ResourceData
basePopulator(context.getResource("classpath:/" + fixtureName +
".sql"));
 DatabasePopulatorUtils.execute(populator, ds);
 }

 @Given("^(\\d+) books available in the catalogue$")
 public void books_available_in_the_catalogue(int bookCount)
throws Throwable {
 assertEquals(bookCount, bookRepository.count());
 }

 @When("^searching for book by isbn ([\\d-]+)$")
 public void searching_for_book_by_isbn(String isbn) throws
Throwable {
 loadedBook = bookRepository.findBookByIsbn(isbn);
 assertNotNull(loadedBook);
 assertEquals(isbn, loadedBook.getIsbn());
 }

 @Then("^book title will be ([^\"]*)$")
 public void book_title_will_be(String bookTitle) throws
Throwable {
 assertNotNull(loadedBook);
 assertEquals(bookTitle, loadedBook.getTitle());
 }
}

Chapter 5

85

4.	 Now, we will need to create a corresponding testing feature definition file named
repositories.feature in the src/test/resources/org/test/bookpub
directory at the root of our project with the following content:
@txn
Feature: Finding a book by ISBN
 Background: Preload DB Mock Data
 Given packt-books fixture is loaded

 Scenario: Load one book
 Given 3 books available in the catalogue
 When searching for book by isbn 978-1-78398-478-7
 Then book title will be Orchestrating Docker

5.	 Lastly, we will create one more data SQL file named packt-books.sql in the
src/test/resources directory at the root of our project with the following content:
INSERT INTO author (id, first_name, last_name) VALUES (5,
'Shrikrishna', 'Holla')
INSERT INTO book (isbn, title, author_id, publisher_id) VALUES
('978-1-78398-478-7', 'Orchestrating Docker', 5, 1)

6.	 Execute the tests by running ./gradlew clean test and the tests should
get passed.

7.	 With the addition of Cucumber, we also get the results of the tests in both the JUnit
report and Cucumber-specific report HTML files. If we open build/reports/
tests/index.html in the browser and click the Classes button, we will see our
scenario in the table, as shown in the following screenshot:

Application Testing

86

8.	 Selecting the Scenario: Load one book link will take us to the detailed report page,
as shown:

9.	 As we can see, the descriptions are nicer than the class and method names that we
saw in the original JUnit-based test cases.

10.	 Cucumber also generates its own report, which can be viewed by opening
build/reports/cucumber/index.html in the browser.

11.	 Being a behavior-driven testing framework, the feature files allow us to define not
only individual conditions, but also declare entire scenario outlines, which make the
defining of multiple assertions of similar data easier. Let's create another feature file
named restful.feature in the src/test/resources/org/test/bookpub
directory at the root of our project with the following content:
@txn
Feature: Finding a book via REST API
 Background:
 Given packt-books fixture is loaded

 Scenario Outline: Using RESTful API to lookup books by ISBN
 Given catalogue with books
 When requesting url /books/<isbn>
 Then status code will be 200
 And response content contains <title>

 Examples:
 |isbn |title |
 |978-1-78398-478-7|Orchestrating Docker|
 |978-1-78528-415-1|Spring Boot Recipes |

Chapter 5

87

12.	 We will also create a corresponding RestfulStepdefs.java file in the
src/test/java/org/test/bookpub directory at the root of our project
with the following content:
import cucumber.api.java.Before;
import cucumber.api.java.en.Given;
import cucumber.api.java.en.Then;
import cucumber.api.java.en.When;

import static org.hamcrest.CoreMatchers.containsString;
import static org.junit.Assert.assertTrue;
import static org.springframework.test.web.servlet.request.
MockMvcRequestBuilders.get;
import static org.springframework.test.web.servlet.result.
MockMvcResultMatchers.status;
import static org.springframework.test.web.servlet.result.
MockMvcResultMatchers.content;

@WebAppConfiguration
@ContextConfiguration(classes = {BookPubApplication.class,
 TestMockBeansConfig.class}, loader =
 SpringApplicationContextLoader.class)
public class RestfulStepdefs {
 @Autowired
 private WebApplicationContext context;
 @Autowired
 private BookRepository bookRepository;

 private MockMvc mockMvc;
 private ResultActions result;

 @Before
 public void setup() throws IOException {
 mockMvc =
 MockMvcBuilders.webAppContextSetup(context).build();
 }

 @Given("^catalogue with books$")
 public void catalogue_with_books() {
 assertTrue(bookRepository.count() > 0);
 }

 @When("^requesting url ([^\"]*)$")
 public void requesting_url(String url) throws Exception {
 result = mockMvc.perform(get(url));
 }

Application Testing

88

 @Then("^status code will be ([\\d]*)$")
 public void status_code_will_be(int code) throws
 Throwable {
 result.andExpect(status().is(code));
 }

 @Then("^response content contains ([^\"]*)$")
 public void response_content_contains(String content)
 throws Throwable {
 result.andExpect(content().string(containsString(content)));
 }
}

13.	 Execute the tests by running ./gradlew clean test and the tests should
continue to get passed.

How it works…
If you feel a bit lost after looking at all this code and following along without having a full
understanding of what exactly is going on, here you will find the detailed breakdown of
everything that we did.

Let's start with a quick overview of what Step Definitions are. As the Cucumber framework
uses the Gherkin feature document files in order to describe the business rules that are to
be tested, which are represented in a form of English-like sentence statements, these need
to be translated into an executable code. This is the job of the Step Definition classes. Every
step in a defined feature scenario needs to be matched to a method in a Step Definition
class that will execute it. This matching is done by declaring a regular expression in the step
annotations, such as @Given, @When, or @Then, placed above the methods. The regex
contains the matching groups that Cucumber uses so as to extract the method arguments
and pass them to the executing method.

In RepositoryStepdefs, we can see this in the following method:

@Given("^([^\\\"]*) fixture is loaded$")
public void data_fixture_is_loaded(String fixtureName) {...}

Chapter 5

89

The @Given annotation contains the regex that matches the Given packt-books
fixture is loaded line from repositories.feature and extracts the packt-books
text from the pattern, which is then passed as a fixtureName argument to the method. The
@When and @Then annotations work on exactly the same principle. So, in effect, what the
Cucumber framework does is it matches the English-like worded rules from the feature files to
the matched patterns of the executing methods and extracts parts of the rules as arguments
to the matched methods.

More information on Gherkin and how to use it can be found at
https://cukes.info/docs/reference#gherkin.

With the basic Cucumber overview explained, let's shift our focus on how the tests integrate
with Spring Boot and are configured.

It all starts with the driver harness class, which in our case is RunCukeTests. This class
itself does not contain any tests but has two important annotations that stitch things
together: @RunWith(Cucumber.class) and @CucumberOptions.

ff @RunWith(Cucumber.class): This is a JUnit annotation that indicates that the
JUnit runner should use the Cucumber Feature files to execute the tests.

ff @CucumberOptions: This provides an additional configuration for Cucumber.

�� plugin={"pretty", "html:build/reports/cucumber"}: This tells
Cucumber to generate its reports in an html format in the build/reports/
cucumber directory.

�� glue = {"cucumber.api.spring", "classpath:org.test.
bookpub"}: This is a VERY important setting as it tells Cucumber which
packages to load and from where to load them during the execution of
the tests. The cucumber.api.spring package needs to be present in
order to take advantage of the cucumber-spring integration library and
the org.test.bookpub package is the location of our Step Definition
implementation classes.

�� monochrome = true: This tells Cucumber not to print the output with the
ANSI color as we integrate with JUnit and it will not look correct in the saved
console output files.

A complete list of the options can be found at https://cukes.info/
docs/reference/jvm#list-all-options.

https://cukes.info/docs/reference#gherkin
https://cukes.info/docs/reference/jvm#list-all-options
https://cukes.info/docs/reference/jvm#list-all-options

Application Testing

90

Now let's look at the RepositoryStepdefs class. It starts with the following annotations at
the class level:

ff @WebAppConfiguration tells Spring that this class needs
WebApplicationContext initialized and it will be used for testing purposes during
the execution

ff @ContextConfiguration(classes = {BookPubApplication.
class, TestMockBeansConfig.class}, loader =
SpringApplicationContextLoader.class) instruct Spring to use
the BookPubApplication and TestMockBeansConfig classes as
a configuration for the Spring application context as well as to use the
SpringApplicationContextLoader class from Spring Boot in order to bootstrap
the testing harness

As the Cucumber-Spring integration does not know about Spring Boot, but only knows about
Spring, we can't use the @SpringApplicationConfiguration meta-annotation. We
have to resort to using only the annotations available from Spring proper, in order to stitch
things together. Thankfully, we don't have to jump through many hoops, we just declare the
exact annotation that SpringApplicationConfiguration encapsulates, by passing the
desired configuration classes and loader to @ContextConfiguration.

Once the proper annotations are in place, Spring and Spring Boot will take over and
provide us with the same convenience of autowiring beans as dependencies of our
Step Definition classes.

One interesting characteristic of the Cucumber tests is the instantiation of a new instance
of the Step Definition class for every execution of a scenario. Even though the method
namespace is global—meaning that we can use the methods that are declared in the different
Step Definition classes—they operate on states defined in them and are not shared. As a new
instance gets created per scenario, the definition classes are stateful and rely on internal
variables to keep a state among transitions from assertion to assertion. For example, in the
@When annotated method, a particular state gets set and in the @Then annotated method, a
set of assertions on that state gets evaluated. In our example of the RepositoryStepdefs
class, we will internally set the state of the loadedBook class variable in its searching_
for_book_by_isbn(...) method, which later gets used to assert on so as to verify the
match of the book's title in the book_title_will_be method afterwards. Due to this, if we
mix the rules from the different definition classes in our feature files, the internal states would
not be accessible among the multiple classes.

With the integration with Spring, this problem can be solved using the injection of the mocked
objects—as we have seen in PublisherRepositoryTests from one of our previous
examples—and have the shared @Given annotated method be used to set up the particular
behavior of the mock for the given test. Then we can use the same dependency instance
and inject it into another definition class that can be used in order to evaluate the @Then
annotated assertion methods.

Chapter 5

91

Another approach is the one that we saw in the second definition class, RestfulStepdefs,
where we injected the BookRepository. However, in restful.feature, we will be using
the Given packt-books fixture is loaded directive that translates to the invocation
of data_fixture_is_loaded method from the RepositoryStepdefs class, which shares
the same instance of the injected BookRepository object, inserting packt-books.sql
data into it.

Another neat feature of the Cucumber and Spring integration is the use of the @txn
annotation in the feature files. This tells Spring to execute the tests in a transaction wrapper,
reset the database between the test executions, and guarantee a clean database state for
every test.

Due to the global method namespace among all the Step Definition classes and test behavior
defining feature files, we can use the power of the Spring injection to our advantage so as
to reuse the testing models and have a common setup logic for all of the tests, thus making
the tests behave similarly to how our application would function in the real production
environment.

Writing tests using Spock
Another, no less popular, testing framework is Spock, which is written in Groovy by Peter
Niederwieser. Being a Groovy-based framework, it is ideally suited to create testing suites for
a majority of the JVM-based languages, especially for Java and Groovy itself. The dynamic
language traits of Groovy make it well suited to write elegant, efficient, and expressive
specifications in the Groovy language itself without the need for translations, as it is done in
Cucumber with the help of the Gherkin library. As Spock is based on top of JUnit, integrating
with it through JUnit's @RunWith facility, just like Cucumber does, is an easy enhancement to
the traditional unit tests. It works well with all the existing tools, which have built-in support or
integration with JUnit.

In this recipe, we will pick up from the previous recipe and enhance our test collection with
a couple of Spock-based tests. In these tests, we will see how to set up MockMVC using the
Spring dependency injection and testing harnesses. These will be used by the Spock test
specifications in order to validate the fact that our data repository services will return the
data as expected.

Application Testing

92

How to do it…
1.	 In order to add the Spock tests to our application, we will need to make a few

changes to our build.gradle file first. As Spock tests are written in Groovy,
the first thing to do is add a groovy plugin to our build.gradle file, as follows:
apply plugin: 'java'
apply plugin: 'groovy'
apply plugin: 'eclipse'
apply plugin: 'idea'
apply plugin: 'spring-boot'

2.	 We will also need to add the necessary Spock framework dependencies to the
build.gradle dependencies block:
dependencies {
 ...
 testCompile('org.spockframework:spock-core:1.0-groovy-2.4')
 testCompile('org.spockframework:spock-spring:1.0-groovy-2.4')
 ...
}

3.	 As the tests will be in Groovy, we will need to create a new source directory for the
files. Let's create the src/test/groovy/org/test/bookpub directory in the
root of our project.

4.	 Now we are ready to write our first test. Create a
SpockBookRepositorySpecification.groovy file in the src/test/groovy/
org/test/bookpub directory at the root of our project with the following content:
@WebAppConfiguration
@ContextConfiguration(
 classes = [BookPubApplication.class,
 TestMockBeansConfig.class], loader =
 SpringApplicationContextLoader.class)
class SpockBookRepositorySpecification extends Specification {
 @Autowired
 private ConfigurableWebApplicationContext context

 @Shared
 boolean sharedSetupDone = false

 @Autowired
 private DataSource ds;

 @Autowired
 private BookRepository repository;

Chapter 5

93

 @Shared
 private MockMvc mockMvc;

 void setup() {
 if (!sharedSetupDone) {
 mockMvc =
 MockMvcBuilders.webAppContextSetup(context).build();

 sharedSetupDone = true
 }
 ResourceDatabasePopulator populator =
 new ResourceDatabasePopulator(
 context.getResource("classpath:/packt-books.sql"));
 DatabasePopulatorUtils.execute(populator, ds);
 }

 @Transactional
 def "Test RESTful GET"() {
 when:
 def result = mockMvc.perform(get("/books/${isbn}"));

 then:
 result.andExpect(status().isOk())
 result.andExpect(content().string(containsString(title)));

 where:
 isbn | title
 "978-1-78398-478-7"|"Orchestrating Docker"
 "978-1-78528-415-1"|"Spring Boot Recipes"
 }

 @Transactional
 def "Insert another book"() {
 setup:
 def existingBook = repository.findBookByIsbn("978-1-
 78528-415-1")
 def newBook = new Book("978-1-12345-678-9",
 "Some Future Book", existingBook.getAuthor(),
 existingBook.getPublisher())

Application Testing

94

 expect:
 repository.count() == 3

 when:
 def savedBook = repository.save(newBook)

 then:
 repository.count() == 4
 savedBook.id > -1
 }
}

5.	 Execute the tests by running ./gradlew clean test and the tests should
get passed.

6.	 As Spock integrates with JUnit, we can see the execution report of the Spock tests
together with the rest of our test suite. If we open build/reports/tests/index.
html in the browser and click the Classes button, we will see our specification in the
table, as shown in the following screenshot:

Chapter 5

95

7.	 Selecting the org.test.bookpub.SpockBookRespositorySpecification link will take
us to the detailed report page, which is as follows:

8.	 Next, we will take our tests a bit further and explore the mocking functionality of the
database repositories. Let's use the existing PublisherRepository—for which we
have already created a Mockito object mock in TestMockBeansConfig—and wire it
into the BookController class to provide a getBooksByPublisher functionality.
Let's add the following content to the BookController class in the src/main/
java/org/test/bookpub/controllers directory at the root of our project:
@Autowired
private PublisherRepository publisherRepository;

@RequestMapping(value = "/publisher/{id}", method = RequestMethod.
GET)
public List<Book> getBooksByPublisher(@PathVariable("id") Long id)
{
 Publisher publisher = publisherRepository.findOne(id);
 Assert.notNull(publisher);
 return publisher.getBooks();
}

Application Testing

96

9.	 We will also need to add another annotation to our Book and Publisher entity
classes. Let's add the following to the Book and Publisher classes in the src/
main/java/org/test/bookpub/entity directory at the root of our project:
@JsonIdentityInfo(generator=ObjectIdGenerators.PropertyGenerator.
class, property="id", scope=Book.class)
public class Book {...}

@JsonIdentityInfo(generator=ObjectIdGenerators.PropertyGenerator.
class, property="id", scope=Publisher.class)
public class Publisher {...}

10.	 Lastly, let's add a getter and setter for the books to the Publisher entity class
as well:
public List<Book> getBooks() {
 return books;
}

public void setBooks(List<Book> books) {
 this.books = books;
}

11.	 With all the code additions completed, we are ready to add another test to the
SpockBookRepositorySpecification.groovy file in the src/test/groovy/
org/test/bookpub directory at the root of our project with the following content:
...
class SpockBookRepositorySpecification extends Specification {
 ...
 @Autowired
 private PublisherRepository publisherRepository

 def "Test RESTful GET books by publisher"() {
 setup:
 Publisher publisher =
 new Publisher("Strange Books")
 publisher.setId(999)
 Book book = new Book("978-1-98765-432-1",
 "Mystery Book",
 new Author("John", "Doe"),
 publisher)
 publisher.setBooks([book])
 Mockito.when(publisherRepository.count()).
 thenReturn(1L)
 Mockito.when(publisherRepository.findOne(1L)).

Chapter 5

97

 thenReturn(publisher)

 when:
 def result =
 mockMvc.perform(get("/books/publisher/1"))

 then:
 result.andExpect(status().isOk())
 result.andExpect(content().
 string(containsString("Strange Books")))

 cleanup:
 Mockito.reset(publisherRepository)
 }
}

12.	 Execute the tests by running ./gradlew clean test and the tests should
continue to get passed.

How it works…
As you saw from this example, writing tests can be just as elaborate and sophisticated as the
production code being tested itself. Let's examine the steps that we took in order to get the
Spock tests integrated in our Spring Boot application.

The first thing that we did was to add a groovy plugin in order to make our build
Groovy-friendly and we also added the required Spock library dependencies of spock-core
and spock-spring, both of which are required to make Spock work with Spring's dependency
injection and contexts.

The next step was to create the SpockBookRepositorySpecification Spock
specification, which extends the Spock's Specification abstract base class. Extending
the Specification class is very important because this is how JUnit knows that our class
is the test class that needs to be executed. If we look in the Specification source, we will
see the @RunWith(Sputnik.class) annotation, similar to the one that we used in the
Cucumber recipe. In addition to the JUnit bootstrapping, the Specification class provides
us with many helpful methods and mocking support as well.

For more information about the detailed capabilities that are
offered by Spock, you can refer to the Spock documentation
that is available at http://spockframework.github.
io/spock/docs/1.0/index.html.

http://spockframework.github.io/spock/docs/1.0/index.html
http://spockframework.github.io/spock/docs/1.0/index.html

Application Testing

98

It is also worth mentioning that we used the same annotations for the
SpockBookRepositorySpecification class as we did for our Cucumber-based tests, as
shown in the following code:

@WebAppConfiguration
@ContextConfiguration(
 classes = [BookPubApplication.class,
 TestMockBeansConfig.class],
 loader = SpringApplicationContextLoader.class)

The reason that we had to resort to using these instead of just using
@SpringApplicationConfiguration is exactly the same as well. Neither the Spock
nor the Cucumber frameworks know about Spring Boot explicitly and thus are not capable
of recognizing its meta/convenience annotations. The good news is that we can always use
the same annotations as they are just regular Spring ones and annotate our classes directly,
which is exactly what we did.

Unlike Cucumber, Spock combines all the aspects of the test in one Specification class,
dividing it into multiple blocks, as follows:

ff setup: This block is used to configure the specific test with variables, populating
data, building mocks, and so on.

ff expect: This block is one of the stimulus blocks, as Spock defines it, designed to
contain simple expressions asserting a state or condition. Besides evaluating the
conditions, we can only define variables in this block and nothing else is allowed.

ff when: This block is another stimulus type block, which always goes together with
then. It can contain any arbitrary code and is designed to define the behavior that
we are trying to test.

ff then: This block is a response type block. It is similar to expect: and can only
contain conditions, exception checking, variable definition, and object interactions,
such as how many times a particular method has been called and so forth.

More information on interaction testing is available on Spock's website
at http://spockframework.github.io/spock/docs/1.0/
interaction_based_testing.html.

ff cleanup: This block is used to clean the state of the environment and potentially
undo whatever changes were done as part of the individual test execution. In our
recipe, this is where we will reset our publisherRepository mock object.

Spock provides us with the instance-based setup() and cleanup() methods as well,
which can be used to define the setup and cleanup behavior that is common to all the
tests in the specification.

http://spockframework.github.io/spock/docs/1.0/interaction_based_testing.html
http://spockframework.github.io/spock/docs/1.0/interaction_based_testing.html

Chapter 5

99

If we look at our setup() method, this is where we can configure the database population
with the test data and build the MockMvc object. An interesting and important nuance is
the use of the sharedSetupDone variable. In Spock, any field that is annotated with an
@Shared annotation means that the same object will be used for all the tests. The problem
is that Spring cannot inject the static fields with data, only the per-instance ones. So, we will
use the sharedSetupDone field to track if we already ran the setup() method and created
the mockMvc field, and so we don't end up starting a new container for the execution of every
single test, thus saving a significant amount of time during the test execution.

Another helpful annotation is the @Transactional annotation of the test methods. Just as
with the @txn tag in the Cucumber feature files, this annotation instructs Spock to execute
the annotated method and its corresponding setup() and cleanup() executions with a
transaction scope, which gets rolled back after the particular test method is finished. We rely
on this behavior to get a clean database state for every test so that we don't end up inserting
duplicate data during the execution of the setup() method every time each of our tests runs.

Most of you are probably wondering why we had to add the @JsonIdentityInfo(
generator=ObjectIdGenerators.PropertyGenerator.class, property="id")
annotation to our Book and Publisher entity classes. The answer has to do with the
Jackson JSON parser and how it handles circular dependency. In our model, we have a
Book belonging to a Publisher and each Publisher having multiple Books. When we created
our Publisher with the Books mock and assigned a publisher instance to a book—which
later got put in the publisher's book collection—we created a circular reference. During the
execution of the BookController.getBooksByPublisher(…) method, the Jackson
renderer would have thrown StackOverflowError while trying to write the object model to
JSON. By adding this annotation to the Book and Publisher classes, we told Jackson to use
the reference identifier instead of trying to write out the complete object, thus avoiding the
circular reference loop situation.

The last thing that is important to keep in mind is how Spring Boot handles and processes
the repository interfaces that are annotated with @RepositoryRestResource. Unlike the
BookRepository interface, which we have annotated with a plain @Repository annotation
and later explicitly declared as an autowire dependency of our BookController class, we
did not create an explicit controller to handle RESTful requests for the rest of our repository
interfaces such as the PublisherRepository and others. These interfaces get scanned by
Spring Boot and automatically wrapped with the mapped endpoints that trap the requests and
delegate the calls to the backing SimpleJpaRepository proxy. Due to this setup, we can
use only the @Primary mock object replacement approach for these objects that have been
explicitly injected as bean dependencies such as with our example of BookRepository. The
good news is that in these situations, where we don't explicitly expect beans to be wired and
only use some annotations to stereotype the interfaces for Spring Boot to do its magic, we can
rely on Spring Boot to do the job correctly and know that it has tested all the functionalities
behind it so that we don't have to test them.

101

6
Application Packaging

and Deployment

In this chapter, we will cover the following topics:

ff Creating a Spring Boot executable JAR

ff Creating Docker images

ff Building self-executing binaries

ff Spring Boot environment configuration hierarchy and precedence

ff Externalizing an environmental configuration using property files

ff Externalizing an environmental configuration using environment variables

ff Externalizing an environmental configuration using Java system properties

ff Setting up Consul

ff Externalizing an environmental configuration using Consul and envconsul

Introduction
What good is an application unless it is being used? In today's day and age—when DevOps
became the way of doing software development, when Cloud is the king, and when building
Microservices is considered as the thing to do—a lot of attention is being focused on how the
applications get packaged, distributed, and deployed in their designated environments.

Application Packaging and Deployment

102

The Twelve-Factor App methodology has played an instrumental role in defining how a
modern Software as a Service (SaaS) application is supposed to be built and deployed.
One of the key principles is the separation of environmental configuration definitions from
the application and storage of this in the environments. They also favor the isolation and
bundling of the dependencies, development versus production parity, and ease of deployment
and disposability of the applications, among others.

The Twelve-Factor App methodology can be found at
http://12factor.net/.

The DevOps model also encourages us to have complete ownership of our application,
starting from writing and testing the code all the way to building and deploying it. If we are to
assume this ownership, we need to ensure that the maintenance and overhead costs are not
excessive and won't take away much time from our primary task of developing new features.
This can be achieved by having clean, well-defined, and isolated deployable artifacts, which
are self-contained, self-executed, and can be deployed in any environment without having to
be rebuilt.

The following recipes will walk us through all the necessary steps to achieve the goals of
low-effort deployment and maintenance while having a clean and elegant code behind it.

Creating a Spring Boot executable JAR
The Spring Boot magic would not be complete without providing a nice way to package the
entire application including all of its dependencies, resources, and so on in one composite,
executable JAR. After the JAR file is created, it can simply be launched by running a
java –jar <name>.jar command.

We will continue with the application code that we built in the previous chapters and will add
the necessary functionalities to package it. Let's go ahead and take a look at how to create
the Spring Boot Uber JAR.

The Uber JAR is typically known as an application bundle encapsulated in
a single composite jar that internally contains a /lib directory with all the
dependent inner jars and optionally a /bin directory with the executables.

How to do it…
1.	 Let's go to our code directory from Chapter 5, Application Testing, and execute

./gradlew clean build.

2.	 With the Uber JAR built, let's launch the application by executing java -jar
build/libs/bookpub-0.0.1-SNAPSHOT.jar.

http://12factor.net/

Chapter 6

103

3.	 This will result in our application running in the jar with the following console output:
 . ____ _ __ _ _

 /\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \

(()___ | '_ | '_| | '_ \/ _` | \ \ \ \

 \\/ ___)| |_)| | | | | || (_| |))))

 ' |____| .__|_| |_|_| |___, | / / / /

 =========|_|==============|___/=/_/_/_/

 :: Spring Boot :: (v1.3.0.BUILD-SNAPSHOT)

...

(The rest is omitted for conciseness)

...

2015-05-08 INFO: Registering beans for JMX exposure on startup

2015-05-08 INFO: Tomcat started on port(s): 8080 (http) 8443
(https)

2015-05-08 INFO: Welcome to the Book Catalog System!

2015-05-08 INFO: BookRepository has 1 entries

2015-05-08 INFO: ReviewerRepository has 0 entries

2015-05-08 INFO: PublisherRepository has 1 entries

2015-05-08 INFO: AuthorRepository has 1 entries

2015-05-08 INFO: Started BookPubApplication in 12.156 seconds (JVM
running for 12.877)

2015-05-08 INFO: Number of books: 1

How it works…
As you can see, getting the packaged executable JAR is fairly straightforward. All the magic
is already coded and provided to us as part of the Spring Boot Gradle plugin. The addition
of the plugin adds a number of tasks, which allow us to package the Spring Boot application
together, run it, and build JAR, TAR, WAR files, and so on. For example, the bootRun task,
which we have been using throughout this book, is provided by Spring Boot Gradle plugin,
among others. We can see the complete list of the available Gradle tasks by executing
./gradlew tasks. When we run this command, we will get the following output:

--

All tasks runnable from root project

--

Application tasks

Application Packaging and Deployment

104

bootRun - Run the project with support for auto-detecting main class and
reloading static resources

installApp - Installs the project as a JVM application along with libs
and OS specific scripts.

run - Runs this project as a JVM application

Build tasks

assemble - Assembles the outputs of this project.

bootRepackage - Repackage existing JAR and WAR archives so that they can
be executed from the command line using 'java -jar'

build - Assembles and tests this project.

buildDependents - Assembles and tests this project and all projects that
depend on it.

buildNeeded - Assembles and tests this project and all projects it
depends on.

classes - Assembles classes 'main'.

clean - Deletes the build directory.

jar - Assembles a jar archive containing the main classes.

testClasses - Assembles classes 'test'.

Build Setup tasks

init - Initializes a new Gradle build. [incubating]

Distribution tasks

assembleMainDist - Assembles the main distributions

distTar - Bundles the project as a distribution.

distZip - Bundles the project as a distribution.

installDist - Installs the project as a distribution as-is.

Chapter 6

105

The preceding output is not complete; I've excluded the non relevant task groups such as
IDE, Documentation, and so on, but you will see them in your console. In the task list, we will
see tasks such as bootRun, bootRepackage, and others. These tasks have been added by
the Spring Boot Gradle plugin in order to enhance the build pipeline and produce the proper
Spring Boot application bundle or start it. You can see the actual task dependency if you
execute ./gradlew tasks --all, which will not only print the visible tasks, but also the
depended, internal tasks and the task dependencies. For example, when we were running the
build task, all the following depended tasks were executed as well:

build - Assembles and tests this project. [assemble, check]

assemble - Assembles the outputs of this project. [bootRepackage,
distTar, distZip, jar]

You can see that the build task will execute the assemble task, which in turn, will call
bootRepackage where the creation of the Uber JAR is actually taking place.

The plugin also provides a number of very useful configuration options. While I am not going to
go into detail on all of them, I'll mention the two that I find very useful:

First configuration allows us to specify the executable JAR file classifier, creating a regular JAR
containing just the application code and a separate executable JAR with the classifier in the
name, bookpub-0.0.1-SNAPSHOT-exec.jar.

bootBoot {
 classifier = 'exec'
}

Another useful configuration option allows us to specify which dependency JARs require
unpacking because, for some reason, they can't be included as nested inner JARs. This
comes in very handy when you need something to be available in System Classloader
such as setting a custom SecurityManager via the startup system properties:

springBoot {
 requiresUnpack = ['org.group.name:some-artifact']
}

In this example, the contents of the some-artifact JAR from the org.group dependency
will be inlined in the main JAR along with the Spring Boot bootstrap code and the application
code itself.

Application Packaging and Deployment

106

Creating Docker images
Docker, Docker, Docker! I hear this phrase more and more in all the conferences and tech
meetups that I attend. The arrival of Docker has been welcomed by the community with open
arms and it has instantly become a hit. The Docker ecosystem has been rapidly expanding with
many other companies providing services, support, and complimenting frameworks such as
Apache Mesos and Amazon Elastic Beanstalk, just to name a few. Even Microsoft has embraced
the technology and is working on providing Docker support in their Azure Cloud service.

The reason for Docker's overwhelming popularity lies behind the ability that it provides to
package and deploy applications in a form of self-contained containers. The containers are
more lightweight than the traditional full-blown virtual machines. Multiple numbers of them
can be run on top of a single OS instance, thus increasing the number of applications that can
be deployed on the same hardware as compared to traditional VMs.

In this recipe, we will take a look at what it would take to package our Spring Boot application
as a Docker image and how to deploy and run it.

Building a Docker image and just running it on your development machine is doable, but not
as much fun as being able to share it with the world. You will need to publish it somewhere for
it to be deployable, especially if you are thinking of doing it in Amazon or some other cloud-like
environment. Luckily, Docker provides us with not only the Container solution, but also with a
repository service, DockerHub, located at https://hub.docker.com where we can create
repositories and publish our Docker images. So think of it like Maven Central for Docker.

How to do it…
1.	 The first step will be to create an account on DockerHub so that we can publish our

images. Go to https://hub.docker.com and create an account. You can also use
your GitHub account and log in using it if you have one.

2.	 Once you have an account, we will need to create a repository named
springbootcookbook.

3.	 With this account created, now is the time to build the image. For this, we will use one
of the Gradle Docker plugins. We will start by changing build.gradle to modify the
buildscript block with the following change:
buildscript {
 dependencies {
 classpath("org.springframework.boot:spring-boot-gradle-
 plugin:${springBootVersion}")
 classpath("se.transmode.gradle:gradle-docker:1.2")
 }
}

https://hub.docker.com
https://hub.docker.com

Chapter 6

107

4.	 We will also need to apply this plugin by adding the apply plugin: 'docker'
directive to the build.gradle file.

5.	 Lastly, we will need to add the following Docker configuration to the build.gradle
file as well:
distDocker {
 exposePort 8080
 exposePort 8443
 addFile
 file("${System.properties['user.home']}/.keystore"),
 "/root/"
}

6.	 Assuming that you already have Docker installed on your machine, we can proceed to
create the image by executing ./gradlew clean distDocker.

For Docker installation instructions, please visit the tutorial that is located
at https://docs.docker.com/installation/#installation.

7.	 If everything has worked out correctly, you should see the following output:
$./gradlew distDocker

…

:compileGroovy UP-TO-DATE

:processResources UP-TO-DATE

:classes UP-TO-DATE

:jar UP-TO-DATE

:findMainClass

:startScripts UP-TO-DATE

:distTar UP-TO-DATE

:distDocker

Sending build context to Docker daemon 30.46 MB

Sending build context to Docker daemon

Step 0 : FROM aglover/java8-pier

 ---> 69f4574a230e

Step 1 : EXPOSE 8080

 ---> Using cache

 ---> 725f1fd8c808

Step 2 : EXPOSE 8443

 ---> Using cache

https://docs.docker.com/installation/#installation

Application Packaging and Deployment

108

 ---> d552630db9d5

Step 3 : ADD .keystore /root/

 ---> d0684cbd7fac

Removing intermediate container ef2dffe243f4

Step 4 : ADD ch6.tar /

 ---> a0963c837391

Removing intermediate container fb140e526e29

Step 5 : ENTRYPOINT /ch6/bin/ch6

 ---> Running in a769b6d6b40b

 ---> 778da2170839

Removing intermediate container a769b6d6b40b

Successfully built 778da2170839

BUILD SUCCESSFUL

Total time: 1 mins 0.009 secs

8.	 We can also execute docker images command to see the newly created image:
$ docker images

REPOSITORY TAG IMAGE ID
CREATED VIRTUAL SIZE

ch6 latest 778da2170839
17 minutes ago 1.04 GB

aglover/java8-pier latest 69f4574a230e 11
months ago 1.01 GB

9.	 With the image built successfully, we are now ready to start it by executing the
following command:
docker run -d -P ch6.

10.	 After the container has started, we can query the Docker registry for the port bindings
so that we can access the HTTP endpoints for our service. This can be done by the
docker ps command. If the container is running successfully, we should see the
following result (names and ports will vary):
CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS
NAMES

Chapter 6

109

37b37e411b9e ch6:latest "/ch6/bin/ch6" 10
minutes ago Up 10 minutes 0.0.0.0:32778->8080/tcp,
0.0.0.0:32779->8443/tcp drunk_carson

11.	 From this output, we can tell that the port mapping for the internal port 8080
has been set up to be 32778 (your port will vary for every run). Let's open
http://localhost:32778/books in the browser to see our application
in action, as shown in the following screenshot:

If you are using a Mac OS X, you will be using boot2docker and thus won't
be running the Docker container locally. In this scenario, you will be using
boot2docker ip instead of the local host to connect to the application.
For more good tips on how to make the boot2docker integration easier,
please visit http://viget.com/extend/how-to-use-docker-
on-os-x-the-missing-guide.
One can also use a nice Docker façade, generously created by Ian Sinnott,
which would automatically start boot2docker and handle the environment
variables as well. To get the wrapper, go to https://gist.github.
com/iansinnott/0a0c212260386bdbfafb.

http://viget.com/extend/how-to-use-docker-on-os-x-the-missing-guide
http://viget.com/extend/how-to-use-docker-on-os-x-the-missing-guide
https://gist.github.com/iansinnott/0a0c212260386bdbfafb
https://gist.github.com/iansinnott/0a0c212260386bdbfafb

Application Packaging and Deployment

110

How it works…
In the preceding example, we have seen how easy it is to have our build package the
application in a Docker container. The additional Gradle-Docker plugin does the bulk of the
work of image building and publishing; all we have to do is give it some instructions on what
and how we want the image to be. These are defined in the distDocker configuration block.
Let's examine these instructions in detail:

ff The exposePort directive tells the plugin to add an EXPOSE <port> instruction to
the Dockerfile so that when our container is started, it will expose these internal
ports to the outside via port mapping. We have seen this mapping while running the
docker ps command.

ff The addFile directive tells the plugin to add an ADD <src> <dest> instruction
to the Dockerfile so that when the container is being built, we will copy the file
from the source filesystem in the filesystem in the container image. In our case, we
will need to copy the .keystore certificate file that we configured in one of our
previous recipes for the HTTPS connector, which we instructed in tomcat.https.
properties to be loaded from ${user.home}/.keystore. Now, we need it to
be in the /root/ directory as, in the container, our application will be executed
under root. (This can be changed with more configurations.)

The Gradle-Docker plugin uses the project name as a name for the image
by default. The project name, in turn, is being inferred by Gradle from the
project's directory name, unless an explicit property value is configured. As
in the code example for Chapter 6, the project directory is named ch6, thus
the name of the image. The project name can be explicitly configured by
adding name='some_project_name' in gradle.properties.

If you look at the resulting Dockerfile, which can be found in the build/docker/
directory at the root of the project, you will see the following two instructions:

ADD ch6.tar /
ENTRYPOINT ["/ch6/bin/ch6"]

The ADD instruction adds the TAR application archive that was produced by the distTar
task and contains our application bundled up as a tarball. We can even see the contents of
the produced tarball by executing tar tvf build/distributions/ch6.tar. During the
building of the container, the contents of the TAR file will be extracted in the / directory in the
container and later used to launch the application.

It is followed by the ENTRYPOINT instruction. This tells Docker to execute /ch6/bin/
ch6—which we saw to be a part of the tarball content—once the container is started, thus
automatically launching our application.

Chapter 6

111

The first line in the Dockerfile, which is FROM aglover/java8-pier, is the instruction to
use the aglover/java8-pier image, which contains the Ubuntu OS with Java 8 installed,
as a base image for our container, on which we will install our application. This image comes
from the Docker Hub Repository and is automatically used by the plugin, but can be changed
via the configuration settings, if so desired.

If you created an account on Docker Hub, we can also publish the created Docker image to
the registry. In fair warning, the resulting image could be many hundreds of megabytes in size
so uploading it could take some time. To publish this image, we will need to add the following
two configuration settings to the distDocker configuration block in build.gradle:

distDocker {
 tag "<docker hub username>/<docker hub repository name>"
 push true
 exposePort 8080
 exposePort 8443
 addFile file("${System.properties['user.home']}/.keystore"),
 "/root/"
}

The tag property sets up the created image tag and by default, the plugin assumes that it
is residing in the Docker Hub Repository; so this is where it will be publishing it if the push
configuration is set to true, as it is in our case.

For a complete list of all the Gradle-Docker plugin configuration
options, take a look at the https://github.com/
Transmode/gradle-docker Github project page.

When launching a Docker image, we used the –d and –P command-line arguments. Their
uses are as follows:

ff -d: This indicates the desire to run the container in a detached mode where the
process starts in the background

ff -P: This instructs Docker to publish all the internally exposed ports to the outside so
that we can access them

For a detailed explanation of all the possible command-line options, refer
to https://docs.docker.com/reference/commandline/cli/.

https://github.com/Transmode/gradle-docker
https://github.com/Transmode/gradle-docker
https://docs.docker.com/reference/commandline/cli/

Application Packaging and Deployment

112

Building self-executing binaries
Starting with Spring Boot version 1.3, the Gradle and Maven plugins support an option of
generating true executable binaries, which look like normal JAR files, but have the content
of JAR fused together with the launch script that contains the command-building logic and
is capable of self-starting itself without the need to execute the java -jar file.jar
command explicitly. This capability comes in very handy as it allows the easy configuration
of the Linux autostart services such as init.d or systemd and launchd on OS X.

Getting ready
For this recipe, we will use our existing application build. We will examine how the self-starting
executable JAR files get created and how to modify the default launch script to add support for
the custom JVM start up arguments, such as the -D startup system properties, JVM memory,
GC, and other settings.

For this recipe, make sure that build.gradle is using Spring Boot version 1.3 or above. If it
is not, then change the following setting in the buildscript configuration block, as follows:

ext {
 springBootVersion = '1.3.0.BUILD-SNAPSHOT'
}

The same upgrade of the Spring Boot version should be done in the db-counter-starter/
build.gradle file as well.

We need to explicitly add the application plugin to build.gradle as it is no
longer automatically included by the Spring Boot Gradle plugin. Add apply plugin:
'application' to the list of plugins in the build.gradle file.

How to do it…
1.	 Building a default self-executing JAR file is very easy; actually it is done automatically

once we execute the ./gradlew clean bootRepackage command.

2.	 We can proceed to the launching of the created application simply by invoking
./build/libs/bookpub-0.0.1-SNAPSHOT.jar.

Chapter 6

113

3.	 For the enterprise environment, it is rare that we are satisfied with the default JVM
launch arguments as we often need to tweak the memory settings, GC configurations,
and even pass the start up system properties in order to ensure that we are using the
desired version of the XML parser or a proprietary implementation of Class Loader
or Security Manager. To accomplish this, we will modify the default launch.script
file to add support for the JVM options. Let's start by copying the default launch.
script file from the https://github.com/spring-projects/spring-boot/
blob/master/spring-boot-tools/spring-boot-loader-tools/src/
main/resources/org/springframework/boot/loader/tools/launch.
script Spring Boot GitHub repository in the root of our project.

The launch.script file is supported only on the Linux and OS X
environments. If you are looking to make the self-executing JARs for
Windows, you will need to provide your own launch.script file that
is tailored for the Windows shell command execution. The good news is
that it is the only special thing that is required; all the instructions and
concepts in this recipe will work just fine on Windows as well, provided
that the compliant launch.script template is being used.

4.	 We will modify the copied launch.script file and add the following content right
above the line 90 mark: (This is showing only the relevant part of the script in order
to condense the space usage.)
...
Find Java
if [[-n "$JAVA_HOME"]] && [[-x "$JAVA_HOME/bin/java"]]; then
 javaexe="$JAVA_HOME/bin/java"
elif type -p java 2>&1> /dev/null; then
 javaexe=java
elif [[-x "/usr/bin/java"]]; then
 javaexe="/usr/bin/java"
else
 echo "Unable to find Java"
 exit 1
fi

Configure JVM Options
jvmopts="{{jvm_options:}}"
if [[-n "JAVA_OPTS"]]; then
 jvmopts="$jvmopts $JAVA_OPTS"
fi
Build actual command to execute

https://github.com/spring-projects/spring-boot/blob/master/spring-boot-tools/spring-boot-loader-tools/src/main/resources/org/springframework/boot/loader/tools/launch.script
https://github.com/spring-projects/spring-boot/blob/master/spring-boot-tools/spring-boot-loader-tools/src/main/resources/org/springframework/boot/loader/tools/launch.script
https://github.com/spring-projects/spring-boot/blob/master/spring-boot-tools/spring-boot-loader-tools/src/main/resources/org/springframework/boot/loader/tools/launch.script
https://github.com/spring-projects/spring-boot/blob/master/spring-boot-tools/spring-boot-loader-tools/src/main/resources/org/springframework/boot/loader/tools/launch.script

Application Packaging and Deployment

114

command="$javaexe $jvmopts -jar -Dsun.misc.URLClassPath.
disableJarChecking=true $jarfile $@"

Action functions
start() {
...

5.	 With the custom launch.script file in place, we will need to add the options
setting to our build.gradle file with the following content:
applicationDefaultJvmArgs = [
 "-Xms128m",
 "-Xmx256m"
]

springBoot {
 classifier = 'exec'
 embeddedLaunchScript = file('launch.script')
 embeddedLaunchScriptProperties = ['jvm_options' :
applicationDefaultJvmArgs.join(' ')]
}

6.	 We are now ready to launch our application. First, let's use the ./gradlew clean
bootRun command, and if we look at the JConsole VM Summary tab, we will see that
our arguments indeed have been passed to the JVM, as follows:

7.	 We can also build the self-starting executable JAR by running the ./gradlew clean
bootRepackage command and then executing ./build/libs/bookpub-0.0.1-
SNAPSHOT-exec.jar in order to launch our application and we should expect to
see a similar result in JConsole.

Chapter 6

115

8.	 Alternatively, we can also use the JAVA_OPTS environment variable to override some
of the JVM arguments. Say we want to change the minimum memory heap size to
128 megabytes. We can launch our application using the JAVA_OPTS=-Xmx128m
./build/libs/bookpub-0.0.1-SNAPSHOT-exec.jar command and this would
show us the following effect in JConsole:

How it works…
With a small customization to launch.script, we were able to create a self-executing
deployable application, packaged as a self-contained JAR file, which on top of all the things,
can also be configured in order to be launched using the various OS-specific autostarting
frameworks.

The Spring Boot Gradle and Maven plugins provide us with lots of options for parameter
customization and even an ability to embed mustache-like template placeholders
in launch.script, which can later be replaced with values during build time. We
have leveraged this capability to inject our JVM arguments into the file using the
embeddedLaunchScriptProperties configuration setting.

In our custom version of launch.script, we added the jvmopts="{{jvm_options:}}"
line, which will be replaced with the value of the jvm_options parameter during the build
and packaging time. This parameter is declared in our build.gradle file as a value of the
embeddedLaunchScriptProperties argument: embeddedLaunchScriptProperties
= ['jvm_options' : applicationDefaultJvmArgs.join(' ')].

The JVM arguments can be hardcoded, but it is much better to maintain the consistency
between how our application starts using the bootRun task and how it starts
when launched from the self-executing JAR. To achieve this, we will use the same
applicationDefaultJvmArgs collection of arguments that we will define for the bootRun
execution purpose, only with all the different arguments collapsed in a single line of text
separated by white spaces. Using this approach, we have to define the JVM arguments only
once and use them in both the modes of execution.

Application Packaging and Deployment

116

It is important to notice that this reuse also applies to the application
distributions that are built using the distZip and distTar tasks
defined by Gradle's application plugin.

We can modify the build to create the Docker image by launching our self-executing JAR
instead of the contents of the TAR file produced by the distTar task by default. To do this,
we will need to replace our distDocker configuration block with the following code:

task distDocker(type: Docker, overwrite: true, dependsOn:
 bootRepackage) {
 group = 'docker'
 description = "Packs the project's JVM application as a Docker
 image."
 inputs.files project.bootRepackage
 doFirst {
 tag "aantono/springbootcookbook"
 push false
 exposePort 8080
 exposePort 8443
 addFile file("${System.properties['user.home']}/.keystore"),
 "/root/"
 applicationName = project.applicationName
 addFile project.bootRepackage.outputs.files.singleFile

 def executableName = "/" +
 project.bootRepackage.outputs.files.singleFile.name
 entryPoint = ["$executableName"]
 }
}

This will effectively overwrite the existing distDocker task and replace it with ours.

Spring Boot environment config hierarchy
and precedence

In the previous few recipes, we have seen how to package our application in a variety of ways
and how it can be deployed. The next logical step is the need to configure the application in
order to provide some behavioral control as well as some environment-specific configuration
values, which could and most likely will vary from environment to environment.

Chapter 6

117

A common example of such an environmental configuration difference is the database setup.
We certainly don't want to connect to a production environment database with an application
running on our development machine. There are also cases when we want an application to
run in different modes or use a different set of profiles, as they are referred to by Spring. An
example could be running an application in live or simulator mode.

For this recipe, we will pick up from the previous state of the codebase and add the
support for different configuration profiles as well as examine how to use the property
values as placeholders in other property definitions and how to add your own
PropertySource implementation.

How to do it…
1.	 We will start by adding an @Profile annotation to the @Bean creation of

schedulerRunner by changing the definition of the schedulerRunner(…)
method in BookPubApplication.java located in the src/main/java/org/
test/bookpub directory at the root of our project to the following content:
@Bean
@Profile("logger")
public StartupRunner schedulerRunner() {
 return new StartupRunner();
}

2.	 Start the application by running ./gradlew clean bootRun.
3.	 Once the application is running, we should no longer see the previous log output from

the StartupRunner class, which looked as follows:
2015-05-29 --- org.test.bookpub.StartupRunner : Number
of books: 1

4.	 Now, let's build the application by running ./gradlew clean bootRepackage
and start it by running ./build/libs/bookpub-0.0.1-SNAPSHOT-exec.jar
--spring.profiles.active=logger and we will see the log output line showing
up again.

5.	 Another functionality that is enabled by the Profile selector is the ability to add
Profile-specific property files. Let's create an application-inmemorydb.
properties file in the src/main/resources directory at the root of our
project with the following content:
spring.datasource.url = jdbc:h2:mem:testdb;DB_CLOSE_DELAY=-1;DB_
CLOSE_ON_EXIT=FALSE

6.	 Let's build the application by running ./gradlew clean bootRepackage
and start it by running ./build/libs/bookpub-0.0.1-SNAPSHOT-exec.
jar --spring.profiles.active=logger,inmemorydb, which will use the
inmemorydb Profile configuration in order to use the in-memory database instead of
the file-based one.

Application Packaging and Deployment

118

In the cases where the enterprise is already using a particular configuration system, custom
written or off the shelf, Spring Boot provides us with a facility to integrate this into the
application via the creation of a custom PropertySource implementation.

Let's imagine that we have an existing configuration setup that uses a popular Apache
Commons Configuration framework and stores the configuration data in XML files.

1.	 To mimic our supposed pre-existing configuration system, add the following content to
the dependencies section in the build.gradle file:
dependencies {
 ...
 compile project(':db-count-starter')
 compile("commons-configuration:commons-configuration:1.10")
 compile("commons-codec:commons-codec:1.6")
 compile("commons-jxpath:commons-jxpath:1.3")
 compile("commons-collections:commons-collections:3.2.1")
 runtime("com.h2database:h2")
 ...
}

2.	 Follow this up by creating a simple configuration file named commons-config.xml
in the src/main/resources directory at the root of our project with the following
content:
<?xml version="1.0" encoding="ISO-8859-1" ?>
<config>
 <book>
 <counter>
 <delay>1000</delay>
 <rate>${book.counter.delay}0</rate>
 </counter>
 </book>
</config>

3.	 Next, we will create the PropertySource implementation file named
ApacheCommonsConfigurationPropertySource.java in the src/main/java/
org/test/bookpub directory at the root of our project with the following content:
public class ApacheCommonsConfigurationPropertySource
 extends EnumerablePropertySource<XMLConfiguration> {
 private static final Log logger = LogFactory.getLog(
 ApacheCommonsConfigurationPropertySource.class);

 public static final String
 COMMONS_CONFIG_PROPERTY_SOURCE_NAME = "commonsConfig";

 public ApacheCommonsConfigurationPropertySource(String name,

Chapter 6

119

 XMLConfiguration source) {
 super(name, source);
 }

 @Override
 public String[] getPropertyNames() {
 ArrayList<String> keys =
 Lists.newArrayList(this.source.getKeys());
 return keys.toArray(new String[keys.size()]);
 }

 @Override
 public Object getProperty(String name) {
 return this.source.getString(name);
 }

 public static void addToEnvironment(
 ConfigurableEnvironment environment, XMLConfiguration
 xmlConfiguration) {
 environment.getPropertySources().addAfter(
 StandardEnvironment.
 SYSTEM_ENVIRONMENT_PROPERTY_SOURCE_NAME,
 new ApacheCommonsConfigurationPropertySource(
 COMMONS_CONFIG_PROPERTY_SOURCE_NAME,
 xmlConfiguration));
 logger.trace("ApacheCommonsConfigurationPropertySource
 add to Environment");
 }
}

4.	 We will now create the SpringApplicationRunListener
implementation class so as to bootstrap our PropertySource named
ApacheCommonsConfigurationApplicationRunListener.java in the src/
main/java/org/test/bookpub directory at the root of our project with the
following content:
public class
 ApacheCommonsConfigurationApplicationRunListener
 implements SpringApplicationRunListener{

 public
 ApacheCommonsConfigurationApplicationRunListener(
 SpringApplication application, String[] args) {
 }

 @Override

Application Packaging and Deployment

120

 public void started() {

 }

 @Override
 public void environmentPrepared(
 ConfigurableEnvironment environment) {
 try {
 ApacheCommonsConfigurationPropertySource.
 addToEnvironment(environment,
 new XMLConfiguration("commons-config.xml"));
 }
 catch (ConfigurationException e) {
 throw new RuntimeException("Unable to load
 commons-config.xml", e);
 }
 }

 @Override
 public void
 contextPrepared(ConfigurableApplicationContext
 context) {

 }

 @Override
 public void contextLoaded(ConfigurableApplicationContext
 context) {

 }

 @Override
 public void finished(ConfigurableApplicationContext
 context, Throwable exception) {
 }
}

5.	 Finally, we will need to create a new directory named META-INF in the src/main/
resources directory at the root of our project and create a file named spring.
factories in it with the following content:
Run Listeners
org.springframework.boot.SpringApplicationRunListener=\
org.test.bookpub.ApacheCommonsConfigurationApplicationRunListener

Chapter 6

121

6.	 With all the setup done, we are now ready to use our new properties in our
application. Let's change the configuration of the @Scheduled annotation for our
StartupRunner class located in the src/main/java/org/test/bookpub
directory at the root of our project, as follows:
@Scheduled(initialDelayString = "${book.counter.delay}",
 fixedRateString = "${book.counter.rate}")

7.	 Let's build the application by running ./gradlew clean bootRepackage
and start it by running ./build/libs/bookpub-0.0.1-SNAPSHOT-exec.
jar --spring.profiles.active=logger in order to ensure that our
StartupRunner class is still logging the book count every ten seconds, as expected.

How it works…
In this recipe, we experimented with the using of Profiles, applying additional configuration
settings based on the active profiles, and adding our own custom PropertySource that
allowed us to bridge the existing system in the Spring Boot environment. We will examine
each of these in detail starting with the notion of Spring Profiles.

Profiles were first introduced in the Spring Framework 3.2 and used to conditionally configure
the beans in context based on which profiles were active. In Spring Boot, this facility was
extended even further to allow configuration separation as well.

By placing an @Profile("logger") annotation on our StartupRunner @Bean creation
method, we told Spring to create the bean only if the logger profile has been activated.
Conventionally, this is done by passing the --spring.profiles.active option in the
command line during the application startup. In the tests, another way that this can be done
is using the @ActiveProfiles("profile") annotation on the test class, but it is not
supported for the execution of a normal application. It is also possible to negate profiles such
as @Profile("!production"). When such an annotation is used (with ! marking the
negation), the bean will be created only if no profile production is active.

During the startup, Spring Boot treats all the options that get passed via the command line
as application properties, and thus anything that gets passed during the startup, ends up as
a property value that is capable of being used. This same mechanism not only works for new
properties but can be used as a way to override the already existing properties as well. Let's
imagine a situation where we already have an active profile defined in our application.
properties file that looks like this: spring.profiles.active=basic. By passing the
--spring.profiles.active=logger option via the command line, we will replace the
active profile from basic to logger. If we want to include some profiles regardless of the active
configuration, Spring Boot gives us a spring.profiles.include option to configure. Any
profiles that are set up this way will be added to the list of active profiles.

Application Packaging and Deployment

122

As these options are nothing more than regular Spring Boot application properties, they all
follow the same hierarchy for override precedence. The options have been outlined as follows:

ff Command Line Arguments: These values supersede every other property source in
the list and you can always be rest assured that anything passed via --property.
name=value will take precedence over the other means.

ff JNDI Attributes: They are the next in seniority. If you are using an application
container that provides data via a JNDI java:comp/env namespace, these values
will override all the other settings from below.

ff Java System Properties: These values are another way to pass the properties to the
application either via the –Dproperty=name command line arguments or by calling
System.setProperty(…) in the code. They provide another way to replace the
existing properties. Anything coming from System.getProperty(…) will win over
the others in the list below.

ff OS Environment Variables: Either from Windows, Linux, OS X, or any other,
they are a common way to specify a configuration, especially for locations and values.
The most notable one is JAVA_HOME, which is a common way to indicate where
the JVM location resides in the filesystem. If neither of the preceding settings are
present, the ENV variables will be used for the property values instead of the ones
mentioned as follows:

As the OS Environment Variables typically don't support dots (.)
or dashes (-), Spring Boot provides an automatic remapping
mechanism that replaces the underscores (_) with dots (.) during
the property evaluation as well as handles the case conversion.
Thus, JAVA_HOME becomes synonymous to java.home.

ff random.*: This provides a special support for the random values of primitive types
that can be used as placeholders in configuration properties. For example, we can
define a property named some.number=${random.int} where ${random.int}
will be replaced by some random integer value. The same goes for ${random.
value} for textual values and ${random.long} for longs.

Chapter 6

123

ff application-{profile}.properties: These are the Profile-specific files that
get applied only if a corresponding Profile gets activated.

ff application.properties: These are the main property files that contain the
base/default application configuration. Similar to the Profile-specific, these values
can be loaded from the following list of locations, with the top one taking priority over
the lower entries:

�� file:config/: This represents a /config directory located in the
current directory

�� file:: This represents the current directory

�� classpath:/config: This represents a /config package in
the classpath

�� classpath:: This represents a root of the classpath

ff @Configuration annotated classes which are also annotated with @PropertySource:
These are any in-code property sources that have been configured using annotations.
We have seen an example of such a usage in our recipe from Chapter 3, Web
Framework Behavior Tuning in the Adding custom connectors section. They are very
low in the precedence chain and are only preceded by the default properties.

ff Default properties: They are configured via the SpringApplication.
setDefaultProperties(…) call and are seldom used, as it feels very much
like hard coding values in code instead of externalizing them in configuration files.

Now that we know how the different configuration definitions stack up and which rules
are used to overlay them on top of each other, let's look at the last part of our recipe:
the bridging of Apache Commons Configuration using a custom PropertySource
implementation. (This should not be confused with an @PropertySource annotation!)

In Chapter 4, Writing Custom Spring Boot Starters we learned about the use of spring.
factories, and so we already know that this file serves to define the classes that should
automatically be incorporated by Spring Boot during the application startup. The only
difference this time is that instead of configuring the EnableAutoConfiguration settings,
we will configure the SpringApplicationRunListener ones.

Application Packaging and Deployment

124

We created the following two classes to support our needs:

ff ApacheCommonsConfigurationPropertySource: This is the extension
of the EnumerablePropertySource base class that provides you with the
internal functionality in order to bridge XMLConfiguration from Apache
Commons Configuration to the world of Spring Boot by providing transformation
to get the specific property values by name via the getProperty(String
name) implementation and the list of all the supported property names via the
getPropertyNames() implementation. In situations where you are dealing with the
use case when the complete list of the available property names is not known or is
very expensive to compute, we can just extend the PropertySource abstract class
instead of using EnumerablePropertySource.

ff ApacheCommonsConfigurationApplicationRunListener; This is the
implementation of the SpringApplicationRunListener interface that gets
instantiated by Spring Boot during the application startup and receives notification
callbacks during the various stages of the application startup lifecycle. This class is
configured in spring.factories and is automatically created by Spring Boot.

It is VERY important to note that all the implementations of the
SpringApplicationRunListener interface must define a public
constructor with the exact signature of (SpringApplication
application, String[] args) as this is what Spring Boot expects
to be available when instantiating the class.

In our listener, we are interested in the environmentPrepared(
ConfigurableEnvironment environment) callback, which gives us access to the
ConfigurableEnvironment instance. By the time this callback is invoked, we will
get an environment instance that has already been populated with all of the properties
from the preceding hierarchy. However, we will get an opportunity to inject our own
PropertySource implementation anywhere in the list, which we will successfully do in the
ApacheCommonsConfigurationPropertySource.addToEnvironment(…) method.

In our case, we will choose to insert our source right below systemEnvironment in the order
of precedence but if need be, we can alter this order to whatever highest precedence that
we desire. Just be careful not to place it so high that your properties become impossible to
override via the command-line arguments, system properties, or environment variables.

Chapter 6

125

Externalizing environmental config using
property files

The previous recipe taught us about the application properties and how they are provisioned.
As was mentioned in the beginning of this chapter, during application deployment, it is
almost inevitable to have some property values that are environment dependant. They can
be database configurations, service topologies, or even simple feature configurations where
something might be enabled in development but not quite ready for production just yet.

In this recipe, we will learn how to use an externally residing properties file for an
environment-specific configuration, which might reside in the local filesystem or out
in the wild on the Internet.

In this recipe, we will use the same application with all the existing configurations as we did
in the previous recipe. We will use it to see how to consume external properties when we
launch our application using the external configuration properties that are living in the local
filesystem and from an Internet URL, such as GitHub or any other.

How to do it…
1.	 Let's start by adding a bit of code to log the value of our particular configuration

property so that we can easily see the change in it as we do different things. Add
an @Bean method to the BookPubApplication class located in the src/main/
java/org/test/bookpub directory at the root of our project with the following
content:
@Bean
public CommandLineRunner configValuePrinter(
 @Value("${my.config.value:}") String configValue) {
 return args -> LogFactory.getLog(getClass()).
 info("Value of my.config.value property is: " +
 configValue);
}

2.	 Let's build the application by running ./gradlew clean bootRepackage and
start it by running ./build/libs/bookpub-0.0.1-SNAPSHOT-exec.jar
--spring.profiles.active=logger so as to see the following log output:
2015-05-31 --- ication$$EnhancerBySpringCGLIB$$b123df6a : Value of
my.config.value property is:

3.	 The value is empty as we expected. Next, we will create a file named external.
properties in our home directly with the following content:
my.config.value=From Home Directory Config

Application Packaging and Deployment

126

4.	 Let's run our application by executing ./build/libs/bookpub-0.0.1-
SNAPSHOT-exec.jar --spring.profiles.active=logger --spring.
config.location=file:/home/<username>/external.properties
in order to see the following output in the logs:
2015-05-31 --- ication$$EnhancerBySpringCGLIB$$b123df6a : Value of
my.config.value property is: From Home Directory Config

For OS X users, the home directories can be found in the
/Users/<username> folder.

5.	 We can also load the file as an HTTP resource and not from the local filesystem.
So, place a file named external.properties with the content of my.config.
value=From HTTP Config somewhere on the web. It can even be checked
in a GitHub or BitBucket repository, as long as it is accessible without any need
for authentication.

6.	 Let's run our application by executing ./build/libs/bookpub-0.0.1-
SNAPSHOT-exec.jar --spring.profiles.active=logger --spring.
config.location=http://<your file location path>/external.
properties in order to see the following output in the logs:
2015-05-31 --- ication$$EnhancerBySpringCGLIB$$b123df6a : Value of
my.config.value property is: From HTTP Config

How it works…
Before delving into the details of an external configuration setup, let's quickly look at the code
that was added in order to print the property value in the log. The element of focus is the
@Value annotation that can be used on class fields or method arguments; it also instructs
Spring to automatically inject the annotated variable with the value defined in the annotation.
If the value is positioned in the wrapping curly braces prefixed with a dollar sign, (${ }),
Spring will replace this with the value from the corresponding application property or with the
default value if it is provided by adding the textual data after the colon (:).

In our case, we defined it as @Value("${my.config.value:}") String configValue;
so unless an application property named my.config.value exists, the default value of an
empty String will be assigned to the configValue method argument. This construct is quite
handy and eliminates the need to explicitly wire in the instance of an Environment object
just to get a specific property value out of it as well as simplifies the code during the testing
with less objects to mock.

The support for being able to specify the location of the application properties configuration
file is geared towards supporting the dynamic multitude of environmental topologies,
especially in cloud environments. This is often the case when the compiled application gets
bundled into different cloud images that are destined for different environments and are
being specially assembled by deployment tools such as Packer, Vagrant, and others.

Chapter 6

127

In this scenario, it is very common to drop a configuration file in the image filesystem
while making the image, depending on which environment it should be destined for.
Spring Boot provides a very convenient ability to specify via the command-line arguments
where the configuration properties file that should be added to the Application Configuration
bundle resides.

Using the --spring.config.location start up option, we can specify a location of one
or multiple files, which would then be separated by a comma (,), to be added to the default
ones. The file designations can be either files from a local filesystem, a classpath, or a remote
URL. The locations will be resolved either by the DefaultResourceLoader class or, if
configured via a SpringApplication constructor or setter, by the implementation that is
provided by the SpringApplication instance.

If the location contains directories, the names should end with a (/) so as to let Spring Boot
know that it should look for the application.properties file in these directories.

If you want to change the default name of the file, Spring Boot provides us with this ability as
well. Just set the --spring.config.name option to whatever file name that you want.

It is important to remember that the default search paths for the configuration
of classpath:,classpath:/config,file:,file:config/ will
always be used regardless of the presence of the --spring.config.
location setting. This way, you can always retain your default configuration
in application.properties and just override the ones that you need
via the start up settings.

Externalizing environmental config using
environment variables

In the previous recipes, we have a number of times eluded to the fact that the configuration
values to a Spring Boot application can be passed and overridden by using OS Environment
Variables. Operating Systems rely on these variables to store information about various things.
We probably have come across having to set JAVA_HOME or PATH a few times and these
would be the examples of environment variables. It is also a very important feature in case
one deploys their application using a PaaS Platform such as Heroku or Amazon AWS. In these
environments, configuration values such as database access credentials and various API
tokens are all provided over the environment variables.

Their power comes from the ability to completely externalize the configuration of simple
key-value data pairs without the need to rely on placing a property or some other files in a
particular location and having this hard-coded in the application codebase. These variables are
also agnostic to the particular operating system and can be consumed in the Java program in
the same way, System.getenv(), regardless of which OS the program is running on.

Application Packaging and Deployment

128

In this recipe, we will explore how this power can be leveraged to pass the configuration
properties to our Spring Boot applications. We will continue to use the codebase from the
previous recipe and experiment with a few different ways of starting the application and using
the OS environment variables in order to change the configuration values of some properties.

How to do it…
1.	 In the previous recipe, we added a configuration property named my.config.

value. Let's build the application by running ./gradlew clean bootRepackage
and start it by running MY_CONFIG_VALUE="From ENV Config" ./build/
libs/bookpub-0.0.1-SNAPSHOT-exec.jar --spring.profiles.
active=logger so as to see the following output in the logs:
2015-05-31 --- ication$$EnhancerBySpringCGLIB$$b123df6a : Value of
my.config.value property is: From ENV Config

2.	 If we want to use the environment variables while running our application via the
Gradle bootRun task, the command line will be MY_CONFIG_VALUE="From ENV
Config" ./gradlew clean bootRun and should produce the same output as in
the preceding step.

3.	 Conveniently enough, we can even mix and match how we set the configurations.
We can use the environment variable to configure the spring.config.location
property and use it to load other property values from the external properties
file as we did in the previous recipe. Let's try this by launching our application by
executing SPRING_CONFIG_LOCATION=file:/home/<username>/external.
properties ./gradlew bootRun. We should see the following in the logs:
2015-05-31 --- ication$$EnhancerBySpringCGLIB$$b123df6a : Value of
my.config.value property is: From Home Directory Config

While using environment variables is very convenient, it does have a
maintenance overhead if the number of these variables gets too many.
To help deal with this issue, it is good practice to use the method of
delegation by setting the SPRING_CONFIG_LOCATION variable
to configure the location of the environment-specific properties file,
typically by loading them from some URL location.

Chapter 6

129

How it works…
As you learned from the section on Spring Boot environment config hierarchy and precedence
in this chapter. Spring Boot offers multiple ways of providing the configuration properties.
Each of these is managed via an appropriate PropertySource implementation. We
have seen how to create a custom implementation of PropertySource when we were
implementing ApacheCommonsConfigurationPropertySource. Spring Boot already
provides a SystemEnvironmentPropertySource implementation for us to use out of
the box. This even gets automatically registered with the default implementation of the
environment interface: the SystemEnvironment.

As the SystemEnvironment implementation provides a composite façade on top of a
multitude of different PropertySource implementations, the overriding takes place
seamlessly, simply because the SystemEnvironmentPropertySource class sits
higher up in the list than the application.properties file one.

An important aspect that you should notice is the use of ALL_CAPS with underscore (_)
in order to separate the words instead of the traditional conventional all.lower.cased
format with dots (.) separating the words used in Spring Boot to name the configuration
properties. This is due to the nature of some Operating Systems, namely Linux and OS X, that
prevents the use of dots (.) in the names and instead encourages the use of the ALL_CAPS
underscore-separated notation

In situations where the usage of environment variables to specify or override the configuration
properties is not desired, Spring Boot provides us with ‑Dspring.getenv.ignore system
property, which can be set to true, and prevents the usage of environment variables. One
might want to change this setting to true if you see errors or exceptions in the log due to the
running of your code on some application servers, or a particular security policy configuration
that might not allow access to environment variables.

Externalizing environmental config using
Java system properties

While environment variables could, on a rare occasion, be a hit or miss, the good old
Java system properties can always be trusted to be there for you. In addition to using the
Environment Variables and command-line arguments represented by the property names
prefixed with a double dash (--), Spring Boot provides you with the ability to use the plain
Java System Properties to set or override the configuration properties.

Application Packaging and Deployment

130

This could be useful in a number of situations, particularly if your application is running in a
container that sets certain values during the startup via the system properties that you want
to get access to or if a property value is not set via a command-line –D argument, but rather
in some library via a code by calling System.setProperty(…), especially if this resides in a
static method of sorts. While arguably these cases are rare, it takes only one to have you bend
backwards in an effort to try and integrate this value into your application.

In this recipe, we will use the same application executable binary as we have done in the
previous recipe, with the only difference of using Java System Properties instead of the
command-line arguments or Environment Variables to set our configuration properties
at runtime.

How to do it…
1.	 Let's continue our experiments by setting the my.config.value configuration

property. Build the application by running ./gradlew clean bootRepackage and
start it by running java -Dmy.config.value="From System Config" -jar
./build/libs/bookpub-0.0.1-SNAPSHOT-exec.jar so as to see the following
in the logs:
2015-05-31 --- ication$$EnhancerBySpringCGLIB$$b123df6a : Value of
my.config.value property is: From System Config

2.	 If we want to be able to set the Java System Property while running our
app using the Gradle's bootRun task, we will need to add this to the
applicationDefaultJvmArgs configuration in the build.gradle file. Let's add
-Dmy.config.value=Gradle to this list and start the application by running
./gradlew clean bootRun and we should see the following in the logs:
2015-05-31 --- ication$$EnhancerBySpringCGLIB$$b123df6a : Value of
my.config.value property is: Gradle

3.	 As we made the applicationDefaultJvmArgs setting to be shared with
launch.script, rebuilding the application by running ./gradlew clean
bootRepackage and starting it by running ./build/libs/bookpub-0.0.1-
SNAPSHOT-exec.jar should yield us the same output in the logs as in the
preceding step.

How it works…
You might have already guessed that Java System Properties are consumed by a similar
mechanism that is used for environment variables, and you would be correct. The only
real difference is the implementation of PropertySource. This time, a more generic
MapPropertySource implementation is used by StandardEnvironment.

Chapter 6

131

What you have also probably noticed is the need to launch our application using
the java -Dmy.config.value="From System Config" -jar ./build/libs/
bookpub-0.0.1-SNAPSHOT-exec.jar command instead of just simply invoking the
self-executing packaged jar by itself. This is because, unlike the Environment Variables and
command-line arguments, Java System Properties have to be set on the java executable
ahead of everything else.

We did manage to work around this need by effectively hard-coding the values in our build.
gradle file, which, combined with the enhancements that we made to launch.script,
allowed us embed the my.config.value property in the command line in the self-executing
jar as well as use it with the Gradle's bootRun task.

The risk of using this approach with the configuration properties is that it will always override
the values that we set in the higher layers of the configuration, such as application.
properties and others. Unless you are explicitly constructing the java executable
command line and not using the self-launching capabilities of the packaged JAR, it is best
not to use Java System Properties and consider using the command-line arguments or
environment variables instead.

Setting up Consul
So far, everything that we have been doing with the configuration was connected to the local
set of data. In a real large-scale enterprise environment, this is not always the case and quite
frequently, there is a desire to be able to make the configuration changes at large—across
hundreds or even thousands of instances or machines.

There are a number of tools that exist to help you with this task, and in this recipe, we will take
a look at one that—in my opinion—stands out from the group, giving you the ability to cleanly
and elegantly configure the environment variables for a starting application using a distributed
data store. The tool's name is Consul. It is an open source product from Hashicorp and is
designed to discover and configure the services in a large, distributed infrastructure.

In this recipe, we will take a look at how to install and do the basic configuration of Consul,
and experiment with some key functionalities that it provides. This will give us the necessary
familiarity for our next recipe, where we will be using Consul to provide the configuration
values that are needed to start our application.

Application Packaging and Deployment

132

How to do it…
1.	 Go to https://consul.io/downloads.html and download the appropriate

archive, depending on the operating system that you are using. Consul supports
Windows, OS X, and Linux, so it should work for the majority of the readers.

If you are an OS X user, you can install Consul using Homebrew
by running brew install caskroom/cask/brew-cask
followed by brew cask install consul.

2.	 After the installation, we should be able to run consul --version and see the
following output:
Consul v0.5.2

Consul Protocol: 2 (Understands back to: 1)

3.	 With Consul successfully installed, we should be able to start it by running consul
agent -server -bootstrap-expect 1 -data-dir /tmp/consul and our
terminal window will display the following:
==> WARNING: BootstrapExpect Mode is specified as 1; this is the
same as Bootstrap mode.

==> WARNING: Bootstrap mode enabled! Do not enable unless
necessary

==> WARNING: It is highly recommended to set GOMAXPROCS higher
than 1

==> Starting Consul agent...

==> Starting Consul agent RPC...

==> Consul agent running!

 Node name: <your machine name>'

 Datacenter: 'dc1'

 Server: true (bootstrap: true)

 Client Addr: 127.0.0.1 (HTTP: 8500, HTTPS: -1, DNS: 8600,
RPC: 8400)

 Cluster Addr: 192.168.1.227 (LAN: 8301, WAN: 8302)

 Gossip encrypt: false, RPC-TLS: false, TLS-Incoming: false

 Atlas: <disabled>

==> Log data will now stream in as it occurs:

 2015/06/10 20:34:43 [INFO] serf: EventMemberJoin: <your
machine name> 192.168.1.227

https://consul.io/downloads.html

Chapter 6

133

 2015/06/10 20:34:43 [INFO] serf: EventMemberJoin: <your
machine name>.dc1 192.168.1.227

 2015/06/10 20:34:43 [INFO] raft: Node at 192.168.1.227:8300
[Follower] entering Follower state

 2015/06/10 20:34:43 [INFO] consul: adding server <your machine
name> (Addr: 192.168.1.227:8300) (DC: dc1)

 2015/06/10 20:34:43 [INFO] consul: adding server <your machine
name>.dc1 (Addr: 192.168.1.227:8300) (DC: dc1)

 2015/06/10 20:34:43 [ERR] agent: failed to sync remote state:
No cluster leader

 2015/06/10 20:34:45 [WARN] raft: Heartbeat timeout reached,
starting election

 2015/06/10 20:34:45 [INFO] raft: Node at 192.168.1.227:8300
[Candidate] entering Candidate state

 2015/06/10 20:34:45 [INFO] raft: Election won. Tally: 1

 2015/06/10 20:34:45 [INFO] raft: Node at 192.168.1.227:8300
[Leader] entering Leader state

 2015/06/10 20:34:45 [INFO] consul: cluster leadership acquired

 2015/06/10 20:34:45 [INFO] consul: New leader elected: <your
machine name>

 2015/06/10 20:34:45 [INFO] raft: Disabling EnableSingleNode
(bootstrap)

 2015/06/10 20:34:45 [INFO] consul: member '<your machine
name>' joined, marking health alive

 2015/06/10 20:34:47 [INFO] agent: Synced service 'consul'

4.	 With the Consul service running, we can verify that it contains one member by
running consul members command and should see the following result:
Node Address Status Type Build Protocol
DC

<your_machine_name> 192.168.1.227:8301 alive server 0.5.2 2
dc1

5.	 While Consul can also provide discovery for services, health checks, distributed locks,
and more, we are going to focus on the Key/Value service as this is what will be used
to provide the configuration in the next recipe. So, let's put the From Consul Config
value in the KV store by executing curl -X PUT -d 'From Consul Config'
http://localhost:8500/v1/kv/bookpub/my/config/value.

Application Packaging and Deployment

134

If you are using Windows, you can get cURL from
http://curl.haxx.se/download.html.

6.	 We can also retrieve the data by running curl http://localhost:8500/v1/kv/
bookpub/my/config/value and should see the following output:
[{"CreateIndex":20,"ModifyIndex":20,"LockIndex":0,"Key":"bookpub/
my/config/value","Flags":0,"Value":"RnJvbSBDb25zdWwgQ29uZmln"}]

7.	 We can delete this value by running curl -X DELETE http://
localhost:8500/v1/kv/bookpub/my/config/value.

8.	 In order to modify the existing value for something else, execute curl -X PUT
-d 'newval' http://localhost:8500/v1/kv/bookpub/my/config/
value?cas=20.

How it works…
The detailed explanation about how Consul works or about all the possible options for
its Key/Value service would take a book of its own, so here we will look only at the basic
pieces and it is strongly recommended that you read the Consul's documentation at
https://consul.io/intro/getting-started/services.html.

In Step 3, we started the Consul agent in a server mode. It acts as a main master node and
in the real deployment, the local agents running on the individual instances will be using the
server node to connect to and retrieve data from. For our test purpose, we will just use this
server node as if it were a local agent one.

The information displayed upon the startup shows us that our node has started as a server
node, establishing an HTTP service on port 8500 as well as the DNS and RPC services, in
case that's how one chooses to connect to it. We can also see that there is only one node in
the cluster—ours—and we are the elected leader running in a healthy state.

As we will be using the convenient RESTful HTTP API via cURL, all of our requests will be using
localhost on port 8500. Being a RESTful API, it fully adheres to a CRUD verb terminology
and to insert the data, we will use a PUT method on a /v1/kv endpoint in order to set the
bookpub/my/config/value key.

Retrieving the data is even more straightforward: we just make a GET request to the same
/v1/kv service using the desired key. The same goes for DELETE, with the only difference
being the method name.

The update operation requires a bit more information in the URL, namely the cas parameter.
The value of this parameter should be ModifyIndex of the desired key, which can be
obtained from the GET request. In our case, it has a value of 20.

http://curl.haxx.se/download.html
https://consul.io/intro/getting-started/services.html

Chapter 6

135

Externalizing environmental config using
Consul and envconsul

In the previous recipe, we had our Consul service installed and experimented with its
Key/Value capabilities to learn how we can manipulate the data in it. Next step would be
to integrate Consul with our application and make the data extraction process seamless
and non-invasive from the application's stand point.

As we don't want our application to know anything about Consul and have to explicitly connect
to it—even though such a possibility exists—we will employ another utility, also created and
open-sourced by Hashicorp, called envconsul to connect to the Consul service for us, extract
the specified configuration key/value tree, and expose it as the environment variables to be
used while also launching our application. Pretty cool, right?!

Getting ready
Before we get started with launching our application that was created in the previous recipes,
we need to install the envconsul utility.

Let's download the binary for your respective operating system from https://github.
com/hashicorp/envconsul/releases and extract the executable to any directory of your
choice; though it is better to put it somewhere that is in the PATH.

Once envconsul is extracted from the downloaded archive, we are ready to start using it so as
to configure our application.

How to do it…
1.	 If you have not already added the value for the my/config/value key to Consul,

let's add it by running curl -X PUT -d 'From Consul Config' http://
localhost:8500/v1/kv/bookpub/my/config/value.

2.	 The first step is to make sure envconsul can connect to the Consul server and that it
extracts the correct data based on our configuration key. Let's execute a simple test
by running envconsul --once --sanitize --upcase --prefix bookpub
env and we should see the following in the output:
…

TERM=xterm-256color

SHELL=/bin/bash

LANG=en_US.UTF-8

HOME=/Users/<your_user_name>

…

MY_CONFIG_VALUE=From Consul Config

https://github.com/hashicorp/envconsul/releases
https://github.com/hashicorp/envconsul/releases

Application Packaging and Deployment

136

3.	 After we have verified that envconsul is returning the correct data to us, we will use it
to launch our BookPub application by running envconsul --once --sanitize
--upcase --prefix bookpub ./gradlew clean bootRun and once the
application has started, we should see the following output in the logs:
2015-05-31 --- ication$$EnhancerBySpringCGLIB$$b123df6a : Value of
my.config.value property is: From Consul Config

4.	 We can do the same thing by building the self-starting executable JAR by running
./gradlew clean bootRepackage and start it by running envconsul --once
--sanitize --upcase --prefix bookpub ./build/libs/bookpub-
0.0.1-SNAPSHOT-exec.jar to make sure we see the same output in the logs as
in the preceding step. If you see Gradle instead of From Consul Config, make
sure the applicationDefaultJvmArgs configuration in build.gradle does not
have -Dmy.config.value=Gradle in it.

5.	 Another marvelous ability of envconsul is not only to export the configuration key
values as environment variables, but also monitor for any changes and restart the
application if the values in Consul change. Let's launch our application by running
envconsul --sanitize --upcase --prefix bookpub ./build/libs/
bookpub-0.0.1-SNAPSHOT-exec.jar and we should see the following value in
the log:
2015-05-31 --- ication$$EnhancerBySpringCGLIB$$b123df6a : Value of
my.config.value property is: From Consul Config

6.	 We will now use the curl command to get the current ModifyIndex of our key and
update its value to From UpdatedConsul Config by opening another terminal
window and executing curl http://localhost:8500/v1/kv/bookpub/my/
config/value, grabbing the ModifyIndex value, and using it to execute curl -X
PUT -d 'From UpdatedConsul Config' http://localhost:8500/v1/kv/
bookpub/my/config/value?cas=<ModifyIndex Value>. We should see our
running application magically restart itself and our newly updated value displayed in
the log at the end:
2015-05-31 --- ication$$EnhancerBySpringCGLIB$$b123df6a : Value of
my.config.value property is: From UpdatedConsul Config

How it works…
What we just did was pretty sweet, right!? Let's examine the magic behind the scenes
in more detail. We will start by dissecting the command line and explaining what each
argument control option does.

Chapter 6

137

Our first execution command line was envconsul --once --sanitize --upcase
--prefix bookpub ./gradlew clean bootRun, so let's take a look at exactly
what we did, as follows:

ff First, one might notice that there is no indication as to which Consul node we
should be connecting to. This is because there is an implicit understanding or an
assumption that you already have a Consul agent running locally on localhost:8500.
If this is not the case for whatever reason, you can always explicitly specify the Consul
instance to connect via the --consul localhost:8500 argument added to the
command line.

ff The --prefix option specifies the starting configuration key segment in
which to look for the different values. When we were adding keys to Consul, we
used the following key: bookpub/my/config/value. By specifying the --prefix
bookpub option, we tell envconsul to strip the bookpub part of the key and use all
the internal tree elements in bookpub to construct the environment variables. Thus,
my/config/value becomes the environment variable.

ff The --sanitize option tells envconsul to replace all the invalid characters with
underscores (_). So, if we were to only use --sanitize, we would end up with
my_config_value as an environment variable.

ff The --upcase option, as you might already have guessed, makes the environment
variable key to all upper cased characters; so, when combined with the --sanitize,
my/config/value key, it gets transformed into the MY_CONFIG_VALUE
environment variable.

ff The --once option indicates that we only want to externalize the keys as
environment variables once and do not want to continuously monitor for changes in
the Consul cluster, and if a key in our prefix tree has changed its value, re-externalize
the keys as environment variables and restart the application.

This last option, --once, provides a very useful choice of functionalities. If you are interested
only in the initial bootstrap of your application via the use of a Consul-shared configuration,
then the keys will be set as environment variables, application will be launched, and
envconsul will consider its job done. However, if you would like to monitor the Consul cluster
for changes to key/values and after the change has taken place, restart your application
reflecting the new change, then by removing the --once option, envconsul will restart the
application once the change has occurred.

Such a behavior can be very useful and handy for things such as a near-instantaneous change
to the database connection configuration. Imagine that you need to do a quick failover from
one database to another and JDBC URL is configured via Consul. All you need to do is push
a new JDBC URL value and envconsul will almost immediately detect this change and restart
the application telling it to connect to a new database node.

Application Packaging and Deployment

138

Currently, this functionality is implemented by sending a traditional SIGTERM signal to an
application running process telling it to terminate and once the process exited, restart the
application. This might not always be the desired behavior, especially if it takes some time for
an application to start up and be capable of taking traffic. You don't want your entire cluster of
web applications to be shut down, even if it will be only for a few minutes.

To provide a better handling of this scenario, envconsul was enhanced to be able to send
a number of standard signals that can be configured via a newly added --kill-signal
option. Using this option, we can specify any of the SIGHUP, SIGTERM, SIGINT, SIGQUIT,
SIGUSR1, or SIGUSR2 signals to be used instead of the default SIGTERM to be sent to
a running application process once the key/value changes have been detected. This
functionality should become available as of version 0.5.1 or 0.6, whichever's release
comes first.

The process signal handling in Java is not as clear and straightforward due to most of the
behavior being very specific to a particular operating system and the JVM that is run atop.
Some of the signals in the list will terminate the application anyways or, in the case of
SIGQUIT, the JVM will print Core Dump into the standard output. However, there are ways to
configure the JVM, depending on the operating system, to let us use SIGUSR1 and SIGUSR2
instead of acting on those signals itself, but unfortunately that topic falls outside the scope of
this book.

Here is a sample example of how to deal with Signal Handlers:
https://github.com/spotify/daemon-java or see
Oracle Java documentation at https://docs.oracle.com/
javase/8/docs/technotes/guides/troubleshoot/
signals.html for a detailed explanation.

https://github.com/spotify/daemon-java
https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/signals.html
https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/signals.html
https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/signals.html

139

7
Health Monitoring and

Data Visualization

In this chapter, you will learn about the following topics:

ff Writing custom health indicators

ff Emitting metrics

ff Monitoring Spring Boot via JMX

ff Management of Spring Boot via CRaSH and writing custom remote shell commands

ff Integrating Codahale/Dropwizard metrics with Graphite

ff Integrating Codahale/Dropwizard metrics with Dashing

Introduction
In the previous chapter, you learned a few techniques about how to efficiently package and
get the application ready for deployment, as well as a number of techniques to provide an
environmental configuration without changing the code. With the deployment and configuration
woes behind us, the last but not least, important step remains: ensuring that we have complete
visibility, monitoring, and management control of our application, as it is running in the
production environment and is exposed to the harsh environment of customers' (ab)use.

Health Monitoring and Data Visualization

140

Just as airline pilots don't like to fly blind, neither do developers get excited if they can't see
how their beloved and hard-worked-on application performs in production. We want to know,
at any given time, how the CPU utilization is doing, how much memory we are consuming, is
our connection to the database up and available, how many customers use the system in any
given time interval, and so on and so forth. Not only do we want to know all these things, but
we also want to be able to see it in pretty charts, graphs, and visual dashboards. These come
in very handy to put on the big Plasma displays to monitor as well as impress your boss so as
to show that you are on top of things and have everything under control.

This chapter will help us learn the necessary techniques to enhance our application in order
to expose custom metrics, health status, and so on, as well as how to get the monitoring data
out of our application and either store it in Graphite for historical reference or use this data
to create real-time monitoring dashboards using the Dashing and Grafana frameworks. We
will also take a look at the capabilities to connect to running instances and perform various
management tasks using the powerful CRaSH framework integration.

While this chapter was being written, various changes to the
1.3.0-SNAPSHOT version of Spring Boot have been added; one of them
is the rendering output of JSON to be more HATEOAS compliant.

Writing custom health indicators
Knowing the state of the application that is running in the production, especially in a
large-scale distributed system, is just as—if not more—important than having things such as
automated testing and deployment. In today's fast paced IT world, we can't really afford much
downtime, so we need to have the information about the health of the application at our
fingertips, ready to go at a minute's notice. If the all-so-important database connections go
down, we want to see it right away and be able to quickly remedy the situation; the customers
are not going to be waiting around for long before they go to another site.

We will resume working on our BookPub application in the state as we left it in the previous
chapter. In this recipe, we will add the necessary Spring Boot starters to enable the monitoring
and instrumentation of our application and will even write our own health indicator.

How to do it…
1.	 The first thing that we need to do is add a dependency on the Spring Boot Actuator

starter in our build.gradle file with the following content:
dependencies {
 ...
 compile("org.springframework.boot:spring-boot-starter-data-
rest")

Chapter 7

141

 // compile("org.springframework.boot:spring-boot-starter-
jetty") // Need to use Jetty instead of Tomcat
 compile("org.springframework.boot:spring-boot-starter-
actuator")
 compile project(':db-count-starter')
 ...
}

2.	 Adding this dependency alone already gives us an ability to access the Spring
management endpoints, such as /env, /info, /metrics, /health, and so on.
So, let's start our application by executing ./gradlew clean bootRun and then
we can access the newly available /health endpoint by opening our browser and
going to http://localhost:8080/health in the browser so as to see the new
endpoint in action, as shown in the following screenshot:

3.	 With the Actuator dependency added, we can now add and perform all kinds of
monitoring functions on our application. Let's go ahead and populate the /info
endpoint with some data by adding the property placeholders to application.
properties located in the src/main/resources directory at the root of our
project with the following content:
info.build.name=${name}
info.build.description=${description}
info.build.version=${version}

4.	 Next, we will create a new properties file named gradle.properties in the root
directory of our project with the following content:
version=0.0.1-SNAPSHOT
description=BookPub Catalog Application

Health Monitoring and Data Visualization

142

5.	 We will also add rootProject.name='BookPub' to the settings.gradle file
located in the root directory of our project.

6.	 To stitch things together, we will enhance build.gradle with the following
configuration:
bootRun {
 addResources = false
}

processResources {
 filesMatching("**/application.properties") {
 expand(project.properties)
 }
}

7.	 Now, let's start our application by executing ./gradlew clean bootRun and then
we can access the newly available /info endpoint by opening our browser and going
to http://localhost:8080/info in the browser to see the new endpoint in
action, as follows:

8.	 As we have got the hang of how things work, let's go ahead and make our custom
health indicator, which will be accessible via the /health endpoint, in order to
report the count status of the entries for each of our repositories. If they are greater
or equal to 0, we are UP, otherwise we are not really sure what's going on. Obviously,
if an exception has occurred, we would be reporting DOWN. Let's start by relaxing
the getRepositoryName(…) method visibility from private to protected in
DbCountRunner.java located in the db-count-starter/src/main/java/
org/test/bookpubstarter/dbcount directory at the root of our project.

Chapter 7

143

9.	 Next, we will add the same dependency on the compile("org.springframework.
boot:spring-boot-starter-actuator") library to build.gradle in the
db-count-starter directory at the root of our project.

10.	 Now, we will create a new file named DbCountHealthIndicator.java in the
db-count-starter/src/main/java/org/test/bookpubstarter/dbcount
directory at the root of our project with the following content:
public class DbCountHealthIndicator implements HealthIndicator {
 private CrudRepository repository;

 public DbCountHealthIndicator(CrudRepository repository) {
 this.repository = repository;
 }

 @Override
 public Health health() {
 try {
 long count = repository.count();
 if (count >= 0) {
 return Health.up().
 withDetail("count", count).build();
 } else {
 return Health.unknown().
 withDetail("count", count).build();
 }
 } catch (Exception e) {
 return Health.down(e).build();
 }
 }
}

11.	 Finally, for the automatic registration of our HealthIndicator, we will enhance
DbCountAutoConfiguration.java located in the db-count-starter/src/
main/java/org/test/bookpubstarter/dbcount directory at the root of our
project with the following content:
@Autowired
private HealthAggregator healthAggregator;
@Bean
public HealthIndicator dbCountHealthIndicator(
 Collection<CrudRepository> repositories) {
 CompositeHealthIndicator compositeHealthIndicator =
 new CompositeHealthIndicator(healthAggregator);
 for (CrudRepository repository : repositories) {
 String name = DbCountRunner.getRepositoryName(repository.
getClass());

Health Monitoring and Data Visualization

144

 compositeHealthIndicator.addHealthIndicator(name,
 new DbCountHealthIndicator(repository));
 }
 return compositeHealthIndicator;
}

12.	 So, let's start our application by executing ./gradlew clean bootRun
and then we can access the /health endpoint by opening our browser and
going to http://localhost:8080/health in the browser to see our new
HealthIndicator in action, as follows:

How it works…
The Spring Boot Actuator starter adds a number of important features that give insight into
the runtime state of the application. The library contains a number of AutoConfigurations
that add and configure the various endpoints to access the runtime monitoring data and
health of the application. The following endpoints are available to aid us in getting insight
into the application runtime state and configuration:

ff The /env endpoint provides us with the ability to query the application about all of
the environment variables that the application has access to via the environment
implementation, which we have seen earlier. It is very useful when you need to debug
a particular issue and want to know a value of any given configuration property.
If we access the endpoint by going to http://localhost:8080/env, we will
see a number of different configuration sections, for example, class path resource
[tomcat.https.properties], applicationConfig: [classpath:/
application.properties], commonsConfig, systemEnvironment,
systemProperties, and others.

Chapter 7

145

They all represent an instance of an individual PropertySource implementation
that is available in the Environment instance and depending on their place
in the hierarchy, may or may not be used to provide the value resolution at the
runtime. To find out exactly which entry is used to resolve a particular value, for
example, for the book.count.rate property, we can query it by going to the
http://localhost:8080/env/book.counter.rate URL and by default,
should get 10000 as a result, unless of course, a different value was set via the
system environment or command-line arguments as an override. If you really
want to dig deep in the code, the EnvironmentEndpoint class is responsible
for handling the logic behind this capability.

ff The /configprops endpoint provides you with an insight into the
settings of the various configuration property objects, such as our
WebConfiguration.TomcatSslConnectorProperties one. It is slightly
different from the /env endpoint as it provides insight into the configuration
object bindings. If we open the browser to go to http://localhost:8080/
configprops and search for custom.tomcat.https, we will see the entry for our
configuration property object that we will use to configure TomcatSslConnector,
which was automatically populated and bound for us by Spring Boot.

ff The /autoconfig endpoint serves as a web-based analog to AutoConfiguration
Report, which we have seen in Chapter 4, Writing Custom Spring Boot Starters. This
way, we can get the report using the browser at any time without having to start the
application with the specific flags to get it printed.

ff The /beans endpoint is designed to list all the beans that have been created by
Spring Boot and are available in Application Context.

ff The /mappings endpoint exposes a list of all the URL mappings that are
supported by the application as well as a reference to the HandlerMapping bean
implementation. This is very useful to answer a question of where would a specific
URL get routed to. Try going to http://localhost:8080/mappings to see the list
of all the routes that our application can handle.

ff The /info endpoint shows the basic description and application information
that we added and we've seen this in action, so it should be familiar to us as
of now. The nice support in the build tools gives us the ability to replace the
data placeholders in application.properties with the real values using
the processResources directive, which expands the project properties to
application.properties, thus allowing us to automatically populate the
placeholders with the current data at all times.

Any properties that start with info. will be displayed while accessing the /info
endpoint, so you are definitely not limited to only the three endpoints that we
used previously. Configuring this specific endpoint in order to return the relevant
information can be very helpful when building various automated discovery and
monitoring tools as it is a great way to expose application-specific information in
the form of a nice JSON RESTful API.

Health Monitoring and Data Visualization

146

ff The /health endpoint provides information about the general application
health status as well as a detailed breakdown and health status of the
individual components.

ff The /metrics endpoint gives an overview of all the various data points that are
emitted by the Metrics subsystem. You can experiment with it by accessing it via the
http://localhost:8080/metrics URL in the browser. We will cover this in more
detail in the next recipe.

Now that we know in general what is being provided for us by Spring Boot Actuator, we can
move on to take a look at the details of what we did to get our custom HealthIndicator
working and how the whole Health monitoring subsystem in Spring Boot functions.

As you saw, getting the basic HealthIndicator to work is very easy: all we have to do is
create an implementing class that will return a Health object upon a call to the health()
method. All you have to do is expose the instance of the HealthIndicator as @Bean for
Spring Boot to pick it up and add it to the /health endpoint.

In our case, we went a step further because we had to deal with the need to create a
HealthIndicator for each CrudRepository instance. To accomplish this, we created
an instance of CompositeHealthIndicator to which we added all the instances of
DbHealthIndicator for each CrudRepository. We then returned this as @Bean and
this is what was used by Spring Boot to represent the health status. Being a composite, it
preserved the inner hierarchy as is evident from the returned JSON data representing the
health status. We also added some extra data element to provide the indication of the entry
count as well as the name of each particular repository so that we can tell them apart.

Looking at the code, you are probably wondering: what is this HealthAggregator instance
that we've wired in. The reason that we needed a HealthAggregator instance is because
CompositeHealthIndicator needs to know how to decide if the inner composition of all
the nested HeathIndicators represents good or bad health as a whole. Imagine that all
the repositories, but one, return UP, except for one, which returns DOWN. What does this mean:
is the composite indicator healthy as a whole or should it also report DOWN because one inner
repository is having issues?

By default, Spring Boot already creates and uses an instance of HealthAggregator,
so we just @Autowired it and used it in our use case as well. Even though the default
implementation is an instance of OrderedHealthAggregator, which just collects all
the inner Status responses and chooses the lowest on the priority level out of DOWN,
OUT_OF_SERVICE, UP, and UNKNOWN, it doesn't always have to be that way. For example,
if the composite indicator consists of the indicators for redundant service connections,
your combined result could be UP as long as at least one of the connections is healthy.
Creating a custom HealthAggregator is very easy: all one has to do is either extend
AbstractHealthAggregator or implement a HealthAggregator interface itself.

Chapter 7

147

Before we continue with the next recipe, I wanted to touch briefly on the topic of the Spring
Boot Actuator endpoints and Security. The data that is exposed by the various management
endpoints, especially the ones from sensitive ones such as /health, /env, and others, can
be a very lucrative prize for malicious people on the outside. To prevent this from happening,
Spring Boot provides us with an ability to configure if we want the endpoints to be available via
endpoints.enabled=false. We can specify which individual endpoints we want to disable
by setting an appropriate endpoints.<name>.enabled=false property as well.

Alternatively, we can set management.port=-1 to disable the HTTP exposure of these
endpoints or use a different port number in order to have the management endpoints and live
services on different ports. If we want to enable access via only a localhost, we can achieve
this by configuring management.address=127.0.0.1 to prevent external access. Even
the context URL path can be configured to something else, say /admin, via management.
context-path=/admin. This way, to get access to a /health endpoint, we would go to
http://127.0.0.1/admin/health instead. This can be useful if you want to control and
restrict access via the firewall rules, so you can just add a filter to block external access to
anything, /admin/*, for all the applications from the outside. With the addition of Spring
Security, an authentication can also be configured to require a user login to get access to
the endpoints.

Emitting metrics
The previous recipe has provided us with an overview of the capabilities provided by Spring
Boot Actuators. We played with the different management endpoints such as /info, /health,
and so on and even created our own health metrics to add to the default set. However, besides
the health status there are a number of things that we, as developers and operations folks,
want to be able to see and monitor on an ongoing basis, and just knowing that the uplink
is functional is not good enough. We also would like to see the number of open sessions,
concurrent requests to the application, latency, and so on and so forth. In this recipe, we will
learn about the metric reporting facilities in Spring Boot as well as how to add our own metrics
and some quick and simple ways of visualizing them.

Getting ready
To help us visualize the metrics better, we will be using a great open source project,
spring-boot-admin, located at https://github.com/codecentric/spring-boot-
admin. It provides a simple web UI on top of the Spring Boot Actuators to give a nicer
view of the various data.

https://github.com/codecentric/spring-boot-admin
https://github.com/codecentric/spring-boot-admin

Health Monitoring and Data Visualization

148

We will create a simple admin application in Gradle using the instructions from
https://github.com/codecentric/spring-boot-admin#server-application
following these simple steps:

1.	 Go to start.spring.io and create a new application template with the
following fields:

�� Group: org.sample.admin

�� Artifact: spring-boot-admin-web

�� Name: Spring Boot Admin Web

�� Description: Spring Boot Admin Web Application

�� Package Name: org.sample.admin

�� Type: Gradle Project

�� Packaging: Jar

�� Java Version: 1.8

�� Language: Java

�� Spring Boot Version: 1.2.5

2.	 Select the Actuator option in the Ops group.

3.	 Click Generate Project to download the application template archive.

4.	 Extract the contents in the directory of your choice.

5.	 In the extracted directory, execute gradle wrapper to generate a gradlew script.

6.	 In the build.gradle file, add the following dependencies to the dependencies
block:
compile("de.codecentric:spring-boot-admin-server:1.2.1")
compile("de.codecentric:spring-boot-admin-server-ui:1.2.1")

7.	 Open SpringBootAdminWebApplication.java located in the src/main/
java/spring-boot-admin-web directory and add the following annotations
to the SpringBootAdminWebApplication class:
@SpringBootApplication
@EnableAdminServer
public class SpringBootAdminWebApplication {

 public static void main(String[] args) {
 SpringApplication.run(SpringBootAdminWebApplication.class,
 args);
 }
}

https://github.com/codecentric/spring-boot-admin#server-application
start.spring.io

Chapter 7

149

8.	 Open application.properties located in the src/main/resources directory
and add the following settings:
server.port: 8090
spring.application.name: Spring Boot Admin Web
spring.boot.admin.url: http://localhost:${server.port}
spring.cloud.config.enabled: false
spring.jackson.serialization.indent_output: true
endpoints.health.sensitive: false

9.	 We are now ready to start our Admin Web Console by running ./gradlew bootRun
and open the browser to http://localhost:8090 to see the following screenshot:

Health Monitoring and Data Visualization

150

How to do it…
1.	 With the Admin Web up and running, we are now ready to start adding various

metrics to our BookPub application. Let's expose the same information about our
data repositories as we did in HealthIndicators, but this time, we will expose the
counts data as Metric. We will continue to add code to our db-count-starter
subproject. So, let's create a new file named DbCountMetrics.java in the db-
count-starter/src/main/java/org/test/bookpubstarter/dbcount
directory at the root of our project with the following content:
public class DbCountMetrics implements PublicMetrics {
 private Collection<CrudRepository> repositories;

 public DbCountMetrics(Collection<CrudRepository> repositories) {
 this.repositories = repositories;
 }

 @Override
 public Collection<Metric<?>> metrics() {
 List<Metric<?>> metrics = new LinkedList<>();
 for (CrudRepository repository : repositories) {
 String name =
 DbCountRunner.getRepositoryName(repository.getClass());
 String metricName = "counter.datasource." + name;
 metrics.add(new Metric(metricName,
 repository.count()));

 }
 return metrics;
 }
}

2.	 Next, for the automatic registration of DbCountMetrics, we will enhance
DbCountAutoConfiguration.java located in the db-count-starter/src/
main/java/org/test/bookpubstarter/dbcount directory at the root of our
project with the following content:
@Bean
public PublicMetrics
 dbCountMetrics(Collection<CrudRepository> repositories) {
 return new DbCountMetrics(repositories);
}

Chapter 7

151

3.	 So, let's start our application by executing ./gradlew clean bootRun
and then we can access the /metrics endpoint by opening our browser and
going to http://localhost:8080/metrics in the browser to see our new
DbCountMetrics added to the existing metrics list, as follows:

4.	 Our next step would be to get our application to appear in the Spring Boot Admin
Web, which we created earlier. To make this happen, we will need to add a
dependency on the compile("de.codecentric:spring-boot-admin-
starter-client:1.2.1") library to build.gradle in the db-count-starter
directory at the root of our project.

5.	 Additionally, application.properties located in the src/main/resources
directory in the root of our project needs to be enhanced with the following entries:
spring.application.name=${description}
server.port=8080
spring.boot.admin.url=http://localhost:8090

Health Monitoring and Data Visualization

152

6.	 Once again, let's start our application by executing ./gradlew clean bootRun
and if we now go to Spring Boot Admin Web by directing our browser to http://
localhost:8090, we should see a new entry for our application named BookPub
Catalog Application appear in the list. If we click on the Details button to the right
and scroll down to the Metrics section, we will see our metrics along with the others,
reported in a form of nicer looking horizontal green bars, as follows:

How it works…
A few words about Spring Boot Admin Web before we delve into the details of creating and
emitting metrics. It is a simple web GUI that, in the backend, uses the same endpoints
exposed by Spring Boot Actuator, which we learned about in the previous recipe. The data is
extracted from the application as we click the various links in Admin Web and displayed in a
nice graphical way—no magic!

Chapter 7

153

We only had to configure a few properties in addition to adding the client library dependency
in order to get our application to connect and register with Admin Web.

ff spring.application.name=${description}: This configures the name
of the application that we have chosen to take from the description property
defined in gradle.properties. Admin Web uses this value when displaying
the application list.

ff spring.boot.admin.url=http://localhost:8090: This configures
the location of the Admin Web application so that our application knows where to
go in order to register itself. As we are running on port 8080, we chose to configure
Admin Web to listen on port 8090, but any port can be chosen as desired. You can
see more configuration options by visiting https://github.com/codecentric/
spring-boot-admin/blob/master/spring-boot-admin-starter-client/
README.md.

If we also want to enable the Logging Level control through the UI, we will need to add
a Jolokia JMX library to our build dependency—compile("org.jolokia:jolokia-
core:+")—as well as a logback.xml file in the src/main/resources directory
in the root of the project with the following content:

<configuration>
 <include
 resource="org/springframework/boot/logging/logback/base.xml"/>
 <jmxConfigurator/>
</configuration>

The metrics facility in Spring Boot is very powerful and extendable, offering a number of
different approaches to emit and consume metrics. Out of the box, Spring Boot already
configures a number of data metrics that monitor the system resources, such as heap
memory, thread counts, system uptime, and many others as well as the database usage and
http session counts. The MVC endpoints are also instrumented to gauge the request latency,
which is measured in milliseconds, as well as counter for each endpoint request status.

The gauge and counter metrics are emitted via the GaugeService and CounterService
implementations that are provided by Spring Boot at runtime. These services can be easily
autowired into any Spring-managed object and be used to emit metrics.

For example, we can easily count the number of times a particular method gets invoked by
autowiring CounterService and placing the following line at the beginning of the method:
counterService.increment("objectName.methodName.invoked");. Each time the
method gets called, the particular metric count will get incremented.

https://github.com/codecentric/spring-boot-admin/blob/master/spring-boot-admin-starter-client/README.md
https://github.com/codecentric/spring-boot-admin/blob/master/spring-boot-admin-starter-client/README.md
https://github.com/codecentric/spring-boot-admin/blob/master/spring-boot-admin-starter-client/README.md

Health Monitoring and Data Visualization

154

This approach will give us the counts that we can increment, decrement, or reset, but if we
want to measure latency or any other arbitrary value, we will need to use GaugeService
to submit our metrics. To measure how long it will take for our method to execute, we can
autowire GaugeService and at the beginning of the method, record the time: long start
= System.currentTimeMillis();. We will then place our code and before the return,
capture the time again: long end = System.currentTimeMillis();. Then we will emit
the metric: gaugeService.submit("objectName.methodName.latency", end -
start);, which will update the given metric with the latest value.

These services cover most of the simple use cases and are especially handy when we operate
in our own code and have the flexibility to add them where we need to. However, it is not
always the case and in these cases, we will need to resort to wrapping whatever it is we want
to monitor by creating a custom implementation of PublicMetrics. In our case, we will
use it to expose the counts for each of the repositories in the database as we can't insert any
monitoring code into the CrudRepository proxy implementations.

The interface has only one method defined: Collection<Metric<?>> metrics();,
which the implementer needs to code with the definition of what exactly is being monitored.
The implementation class needs to be exposed as @Bean and it will automatically be picked
up and registered with the MetricsEndpoint handler, which will execute the metrics()
method every time the /metrics endpoint is being accessed.

Monitoring Spring Boot via JMX
In today's day and age, the RESTful HTTP JSON services are a de facto way of accessing data but
this is not the only way to do so. Another quite popular and common way of managing systems
in real time is via JMX. The good news is that Spring Boot already comes with the same level of
support to expose the management endpoints over JMX as it does over HTTP. Actually, these are
exactly the same endpoints; they are just wrapped around the MBean container.

In this recipe, we will take a look at how to retrieve the same information via JMX as we did
via HTTP as well as how to expose some MBeans, which are provided by third-party libraries
through HTTP using the Jolokia JMX library.

Getting ready
If you haven't done so already for the previous recipe, then please add the Jolokia JMX library
to our compile("org.jolokia:jolokia-core:+") build dependency as we will need it
to expose MBeans via HTTP.

Chapter 7

155

How to do it…
1.	 After we add the Jolokia JMX dependency, all we need to do is build and start

our application by executing ./gradlew clean bootRun and now we can
simply execute jconsole to see the the various endpoints exposed under
the org.springframework.boot domain. The following is the screenshot:

2.	 After the Jolokia JMX library is added to the classpath, Spring Boot also enables the
accessing of all the registered MBeans via HTTP API using the /jolokia endpoint.
To find out the maxThreads setting for our Tomcat HTTP port 8080 connector, we
can either look it up using jConsole by selecting the maxThreads attribute on To
mcat:type=ThreadPool,name="http-nio-8080" MBean to get the value of
200 or we can use Jolokia JMX HTTP by opening our browser and going to http://
localhost:8080/jolokia/read/Tomcat:type=ThreadPool,name=%22ht
tp-nio-8080%22/maxThreads and we should see the following JSON response:
{"request":
 {"mbean":"Tomcat:name=\"http-nio-8080\",type=ThreadPool",
 "attribute":"maxThreads",
 "type":"read"
 },
 "value":200,"timestamp":1436740537,"status":200}

Health Monitoring and Data Visualization

156

How it works…
By default, the Spring Boot Actuator, when added to the application, comes with all the
endpoints and management services enabled. This includes the JMX access as well. If, for
some reason, one would like to disable the exposing endpoints via JMX, this can easily be
configured by adding endpoints.jmx.enabled=false or in order to disable the exporting
of all the Spring MBeans, we can configure the spring.jmx.enabled=false setting in
application.properties.

The presence of the Jolokia library in the classpath triggers Spring Boot
JolokiaAutoConfiguration, which would automatically configure
JolokiaMvcEndpoint accepting requests on /jolokia URL path. It is also possible to
set various Jolokia-specific configuration options via jolokia.config.* set of properties.
Complete list is available at https://jolokia.org/reference/html/agents.
html#agent-war-init-params. In case you would like to use Jolokia, but want to
manually set it up, we can tell Spring Boot to ignore it's presence by adding endpoints.
jolokia.enabled=false setting in application.properties.

Management of Spring Boot via CRaSH and
writing custom remote shell commands

Some of you are probably reminiscing about the good old days where all the administration
was done via SSH directly on the machine, where one has complete flexibility and control,
or even using a Telnet to connect to a management port and apply whatever the changes
needed directly to a running application. For you, Spring Boot provides integration with the
CRaSH Java Shell.

For this recipe, we will use the health indicator and management endpoint, which we
created earlier in this chapter. We will expose the same capabilities via the SSH and
Telnet console access.

How to do it…
1.	 The first step to get CRaSH to work is add the necessary dependency starters to our

build.gradle file, as follows:
dependencies {
 ...
 compile("org.springframework.boot:spring-boot-starter-
actuator")
 compile("org.springframework.boot:spring-boot-starter-remote-
shell")
 compile("org.crashub:crash.connectors.telnet:1.3.1")

https://jolokia.org/reference/html/agents.html#agent-war-init-params
https://jolokia.org/reference/html/agents.html#agent-war-init-params

Chapter 7

157

 compile("de.codecentric:spring-boot-admin-starter-
 client:1.2.1")
 compile("org.jolokia:jolokia-core:+")
 ...
}

2.	 Now, let's start our application by executing ./gradlew clean bootRun and then
connect to it via SSH by executing ssh -p 2000 user@localhost.

3.	 We will be prompted for a password so let's find the autogenerated hash key in the
application startup log, which would look as follows:
Using default password for shell access: 40c50992-ab6b-45f4-b17c-
f8c8e5e94677

4.	 If the password is entered correctly, we will be greeted by the following
welcome banner:
 . ____ _ __ _ _

 /\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \

(()___ | '_ | '_| | '_ \/ _` | \ \ \ \

 \\/ ___)| |_)| | | | | || (_| |))))

 ' |____| .__|_| |_|_| |___, | / / / /

 =========|_|==============|___/=/_/_/_/

 :: Spring Boot :: (v1.3.0.BUILD-SNAPSHOT)

5.	 Next, we will invoke our existing Health endpoint by typing endpoint invoke
healthEndpoint and we should get the following result:
{status=UP, dbCount={status=UP, PublisherRepository={status=UP,
count=1}, ReviewerRepository={status=UP, count=0},
AuthorRepository={status=UP, count=1}, BookRepository={status=UP,
count=1}}, diskSpace={status=UP, total=249804886016,
free=2491744256, threshold=10485760}, db={status=UP, database=H2,
hello=1}}

6.	 Typing help will show the list of all the existing commands so you can play with
some of them to see what they do and then we will proceed with adding our own
CRaSH command, which will enable us to add new publishers to the system via the
command line.

7.	 Make a new directory named commands in src/main/resources at the root of
our project.

8.	 Add a file named publishers.groovy in the src/main/resources/commands
directory at the root of our project with the following content:
package commands

import org.crsh.cli.Option

Health Monitoring and Data Visualization

158

import org.crsh.cli.Usage
import org.crsh.cli.Command
import org.crsh.command.InvocationContext
import org.springframework.beans.factory.BeanFactory
import org.test.bookpub.entity.Publisher
import org.test.bookpub.repository.PublisherRepository

@Usage("Publisher management")
class publishers {

 @Usage("Lists all publishers")
 @Command
 def list(InvocationContext context) {
 PublisherRepository repository =
 getPublisherRepository(context)
 if (repository) {
 repository.findAll().each{publisher ->
 context.provide([id:publisher.id, name:publisher.
name])
 }
 } else {
 return "PublisherRepository is not found!"
 }
 }

 @Usage("Add new publisher")
 @Command
 def add(@Usage("publisher name") @Option(names=["n","name"])
String name, InvocationContext context) {
 PublisherRepository repository =
 getPublisherRepository(context)
 if (repository) {
 publisher = new Publisher(name)
 try {
 publisher = repository.save(publisher)
 return "Added new publisher ${publisher.id} ->
${publisher.name}"
 } catch (Exception e) {

Chapter 7

159

 return "Unable to add new publisher named ${name}\
n${e.getMessage()}"
 }
 } else {
 return "PublisherRepository is not found!"
 }
 }

 @Usage("Remove existing publisher")
 @Command
 def remove(@Usage("publisher id") @Option(names=["i","id"])
String id, InvocationContext context) {
 PublisherRepository repository =
 getPublisherRepository(context)
 if (repository) {
 try {
 repository.delete(Long.parseLong(id))
 return "Removed publisher ${id}"
 } catch (Exception e) {
 return "Unable to remove publisher with id ${id}\
n${e.getMessage()}"
 }
 } else {
 return "PublisherRepository is not found!"
 }
 }

 def getPublisherRepository(InvocationContext context) {
 BeanFactory bf =
 context.getAttributes().get("spring.beanfactory")
 PublisherRepository repository =
 bf.getBean(PublisherRepository)
 return repository
 }

}

9.	 With the commands built up, now let's start our application by executing ./gradlew
clean bootRun and then connect to it via SSH by executing ssh -p 2000 user@
localhost and log in using the generated password hash.

Health Monitoring and Data Visualization

160

10.	 When we type publishers, we will see the list of all the possible commands,
as follows:
> publishers

usage: publishers [-h | --help] COMMAND [ARGS]

The most commonly used publishers commands are:

 add Add new publisher

 remove Remove existing publisher

 list Lists all publishers

11.	 Let's add a publisher by typing publishers add --name "Fictitious Books"
and we should see a message: Added new publisher 2 -> Fictitious Books.

12.	 If we will now type publishers list, we will get a list of all the books:
id name

1 Packt

2 Fictitious Books

13.	 Removing a publisher is a simple command: publishers remove --id 2 that
should respond with a message: Removed publisher 2.

14.	 Just to confirm that the publisher is really gone, execute publishers list and we
should see the following:
Available Publishers: id -> name

1 -> Packt

How it works…
The Spring Boot integration with CRaSH provides you with many commands out of the box. We
can invoke the same management end points that were available to us over HTTP and JMX.
We can get access to the JVM information, make changes to the logging configuration, and
even interact with the JMX server and all the registered MBeans. The list of all the possibilities
is really impressive and very rich in functionalities, so I would definitely advise you to read
the reference documentation on CRaSH by going to http://www.crashub.org/1.3/
reference.html.

In Spring Boot, the expectation is that any groovy file placed in the classpath of
/commands/** or /crash/commands/** will be automatically picked up and
registered as a CRaSH command. The name of the class translates into the main command
name. In our case, we called the class publishers and it became the top-level command
name in the CRaSH console.

http://www.crashub.org/1.3/reference.html
http://www.crashub.org/1.3/reference.html

Chapter 7

161

Until version 1.3, CRaSH only supported Groovy to write the commands but later versions
gained the support to do it in pure Java as well; so though Groovy is more convenient
for writing these type of scripts, one can do it in plain Java as well. The following are
the annotations that we've used in our command definition:

ff The @Usage annotation can be used to annotate the class and command methods
and parameters to provide a description of the intended usage for the given
component. It is a good idea to provide as much description and documentation as
possible as in the shell, one would like to clearly educate the users of what needs
to happen and how to call the command. The Man pages are great so keep the
documentation top notch.

ff The @Command annotation indicates that a given method represents a command that
is to be executed. If a class has only one method, it is conventional to name it main
and it will become the only command for a given class that would be executed when
the class name is typed. If we want multiple subcommands to reside in the class
command, as we did with publishers, the name of the method will translate into the
name of the command.

ff The @Option annotation goes in the method argument and provides the short and
long option names that would be translated into the argument value, which has to be
of the String, Integer, Boolean, or a few other basic types.

ff The @Argument annotation also goes in the method argument and indicates that an
annotated method argument should be populated from the command-line argument
entry. If it is required, an @Required annotation can be used as well.

ff InvocationContext is a special object that can be defined as a method argument
and it can be used to retrieve the various context-bound elements. Spring Boot
registers a number of arguments that can be extracted from the context, as follows:

�� spring.boot.version: This provides a version of Spring Boot.

�� spring.version: This provides a version of Spring.

�� spring.beanfactory: This provides a reference to the Bean Factory
instance, which can be used to get access to any of the beans registered
in it. We used this to get a reference to the PublisherRepository in
our example.

�� spring.environment: This provides a reference to the Spring
Environment instance, which can be used to get access to any
of the environment properties and configurations.

Each command can be queried for its usage by using --help, just like in most Linux-based
command-line tools. Similarly, CRaSH has a notion of man-pages, so typing man <command>
will display the detailed instructions, which can be defined by using the @Man annotation so
that it can be used in conjunction with @Usage.

Health Monitoring and Data Visualization

162

While CRaSH comes with many built-in commands, Spring Boot, via remote-shell-starter, adds
a few more Spring Boot-specific ones, which are as follows:

ff The autoconfig command displays the AutoConfiguration report, which we have
seen earlier, showing which conditions have matched and which ones did not.

ff The beans command shows all the Spring Beans that exist in the
ApplicationContext.

ff The endpoint command provides a list of all the available endpoints as well as an
ability to invoke any of them and get their results. We have seen this in action when
we invoked the healthEndpoint.

ff The metrics command simply prints out all the metrics information on a screen in a
nice table layout.

Looking at the code, one might have noticed the different handling of results between the
list and add/remove commands. This is because for the list command we wanted to
support the Pipe functionality, which is a very powerful facility that provides you with the
ability to stack commands in CRaSH, piping results of one command, as an input to the
other, just like in Linux process pipe functionality.

We can chain different commands together so as to help process the output and filter out
the necessary data when the amount of information tends to get overwhelming. Imagine that
our publishers list command returns not two, but two thousand publishers. From this list, we
want to find the ones that start with Pa. Using the Pipe functionality, we can easily chain the
publishers list command with the filter command in the following way:

publishers list | filter -p name:Pa*

In our example, this should return us only one record, as follows:

id name

1 Packt

While not every command—for one reason or other—supports piping, we can easily find out if it
does by running the man command. For example, if we run man publishers list, we will
get all the information about the list command:

NAME

 publishers list - Lists all publishers

SYNOPSIS

 publishers [-h | --help] list

STREAM

Chapter 7

163

 publishers list <java.lang.Void, java.util.Map>

PARAMETERS

 [-h | --help]

 Display this help message

The STREAM section gives us the necessary information about what the expected pipe inputs
and outputs are. In this case, Void is the expected input, meaning that this command does
not accept anything to be piped into it but it does return Map as an output, which can be piped
into another command such as filter as an input for processing.

Running man filter will tell us that the filter command accepts Map as a pipe input and will
return filtered Map as an output containing the entries that match the provided pattern.

While adding the CRaSH dependencies, we added a compile("org.crashub:crash.
connectors.telnet:1.3.1") dependency, which enabled us to connect not only via SSH,
but also using the Telnet protocol. The Telnet connection can be established by invoking the
telnet localhost 5000 command.

The CRaSH Spring Boot integration comes with a number of configuration options allowing us
to disable certain commands or connection methods, configure the authentication settings,
and specify usernames, passwords, and even key certificates. For example, if we want to use
a specific username and password, we can do so by configuring the following properties:

shell.auth.simple.user.name=remote

shell.auth.simple.user.password=shell

In a real-world enterprise environment, it is more common to use the shared keys for
restricted access and these can be configured using the shell.ssh.key-path=<key
path> property.

Integrating Codahale/Dropwizard metrics
with Graphite

Earlier in this chapter, we learned about the monitoring capabilities that are provided by
Spring Boot. We saw examples of writing custom HealthIndicators implementations,
creating Metrics, and using GaugeService and CounterService to emit data. The
simple Spring Boot Admin Web framework gave us some nice graphical UI to visualize the
data, but all of these metrics were in-the-moment, with no long-term retention and historical
access. Not being able to observe the trends, detect the deviations from the baseline, and
compare today with last week is not a very good strategy, especially for an enterprise complex
system. We all want to be able to have access to the time series data going weeks, if not
months, back and set up alarms and thresholds, if something goes unplanned.

Health Monitoring and Data Visualization

164

This recipe will introduce us to an amazing time series graphical tool: Graphite. Graphite is a
two-part system. It provides storage for numeric time series data as well as a service to render
this data in a form of on-demand graphs or expose the graph data as a JSON stream. We will
learn how to utilize another great framework: Codahale/Dropwizard Metrics, in order to send
the monitoring data from a Spring Boot application to Graphite and play a bit with Graphite to
visualize the different statistics that we've gathered.

Getting ready
Graphite is an application that is written in Python and is thus capable of running on virtually
any system supporting Python and its libraries. There are multiple ways of installing Graphite
on any given system, ranging from compilation from a source, using pip all the way, or to
prebuilt RPMs for various Linux distributions.

For all the different installation strategies, take a look at the Graphite
documentation by visiting http://graphite.readthedocs.org/en/
latest/install.html. OS X users should read a very good step-by-step
guide located at https://gist.github.com/relaxdiego/7539911.

For the purposes of this recipe, we will use a premade Docker container containing Graphite
as well as its counterpart Grafana. While there is an abundance of various prebuilt variants
of Docker images containing combinations of Graphite and Grafana, we will use the one from
https://registry.hub.docker.com/u/alexmercer/graphite-grafana/ as it
contains all the right configurations that will make it easy for us to get started quickly.

1.	 The first step will be to download the desired Docker container image. We will do this
by executing docker pull alexmercer/graphite-grafana. The container
size is about 500 MB; so the download might take a few minutes, depending on your
connection speed.

2.	 Both Graphite and Grafana store their data in the database files. We will need to
create external directories, which will reside outside the container, and we will
connect them to a running instance via Docker Data Volumes in a following way:

�� Make a directory for the Graphite data anywhere in your system, for example,
in <user_home>/data/graphite

�� Make a directory for the Grafana data, for example, in <user_home>/
data/grafana

http://graphite.readthedocs.org/en/latest/install.html
http://graphite.readthedocs.org/en/latest/install.html
https://gist.github.com/relaxdiego/7539911
https://registry.hub.docker.com/u/alexmercer/graphite-grafana/

Chapter 7

165

3.	 In this container, the Graphite data will go to /var/lib/graphite/storage/
whisper, while Grafana stores its data in /usr/share/grafana/data. So, we will
use these paths as internal volume mount destinations when starting the container.

4.	 Run the container by executing docker run -v <user_home>/data/
graphite:/var/lib/graphite/storage/whisper -v <user_home>/data/
grafana:/usr/share/grafana/data -p 2003:2003 -p 3000:3000 -p
8888:80 -d alexmercer/graphite-grafana.

�� In Docker, the -v option configures a volume mount binding. In our example,
we configured the external <user_home>/data/graphite directory
to be the same as the /var/lib/graphite/storage/whisper
directory reference in the container. The same goes for the <user_home>/
data/grafana mapping. We can even look in the <user_home>/
data/graphite or data/grafana directories to see them contain the
subdirectories and files.

�� The -p option configures the port mappings similar to the directory volumes.
In our example, we mapped three different ports to be accessible from
outside the container to the internal ports to which the various services
are bound.

The 2003:2003 port mapping externalizes the Graphite data stream listener
known as Carbon-Cache Line Receiver, to which we will connect in order to
send the metrics data.

The 3000:3000 port mapping externalizes the Grafana Web Dashboard UI,
which we will use to create visual dashboards on top of the Graphite data.

The 8888:80 port mapping externalizes the Graphite Web UI. Though it is
running on port 80 in the container, it is unlikely that on our development
machine, port 80 is open; so it is better to map it to some other higher
number port such as 8080 or 8888 in our case, as 8080 is already taken by
our BookPub application.

Health Monitoring and Data Visualization

166

5.	 If everything has gone according to plan, Graphite and Grafana should be
up and running and thus, we can access Graphite by pointing our browser
to http://localhost:8888 and we should see the following screen:

6.	 To see Grafana, point the browser to http://localhost:3000 so as to see the
following screen:

Chapter 7

167

7.	 The default login and password for Grafana are admin/admin and can be changed
via the web UI admin.

For the OS X users who use boot2docker, the IP would not be
of the localhost, but rather a result of the boot2docker ip call.

8.	 Once we are in Grafana, we will need to add our Graphite instance as a Data
Source entry, so click on the icon, go to Data Sources, and add a new source
of Type: Graphite, Url: http://localhost:80, Access: proxy.

How to do it…
With Graphite and Grafana up and running, we are now ready to start configuring our
application in order to send the metrics to the Graphite listener on port 2003. To do this, we
will use the Codahale/Dropwizard Metrics library, which is fully supported by Spring Boot and
thus requires a minimum amount of configuration.

1.	 The first thing on our list is to add the necessary library dependencies. Extend the
dependencies block in build.gradle with the following content:
compile("io.dropwizard.metrics:metrics-core:3.1.0")
compile("io.dropwizard.metrics:metrics-jvm:3.1.0")
compile("io.dropwizard.metrics:metrics-graphite:3.1.0")

2.	 We will also add the following dependency to build.gradle located in the
db-count-starter directory at the root of our project:
compile("io.dropwizard.metrics:metrics-core:3.1.0")

3.	 Create a file named MonitoringConfiguration.java in the src/main/java/
org/test/bookpub directory at the root of our project with the following content:
@Configuration
class MonitoringConfiguration {

 @Bean
 public Graphite graphite(@Value("${graphite.host}")
 String graphiteHost,
 @Value("${graphite.port}")
 int graphitePort) {
 return new Graphite(
 new InetSocketAddress(graphiteHost, graphitePort));
 }

 @Bean

Health Monitoring and Data Visualization

168

 public GraphiteReporter graphiteReporter(Graphite graphite,
 MetricRegistry
registry) {
 GraphiteReporter reporter =
 GraphiteReporter.forRegistry(registry)
 .prefixedWith("bookpub.app")
 .convertRatesTo(TimeUnit.SECONDS)
 .convertDurationsTo(TimeUnit.MILLISECONDS)
 .filter(MetricFilter.ALL)
 .build(graphite);
 reporter.start(1, TimeUnit.MINUTES);

 return reporter;
 }

 @Bean
 public MemoryUsageGaugeSet memoryUsageGaugeSet(MetricRegistry
registry) {
 MemoryUsageGaugeSet memoryUsageGaugeSet =
 new MemoryUsageGaugeSet();
 registry.register("memory", memoryUsageGaugeSet);
 return memoryUsageGaugeSet;
 }
 @Bean
 public ThreadStatesGaugeSet
 threadStatesGaugeSet(MetricRegistry registry) {
 ThreadStatesGaugeSet threadStatesGaugeSet =
 new ThreadStatesGaugeSet();
 registry.register("threads", threadStatesGaugeSet);
 return threadStatesGaugeSet;
 }
}

4.	 We will also need to add the configuration property settings for our Graphite instance
to the application.properties file in the src/main/resources directory at
the root of our project:
graphite.host=localhost
graphite.port=2003

Chapter 7

169

5.	 To complete the changes, we will make small changes to the DbCountMetrics.
java file in db-count-starter/src/main/java/org/test/
bookpubstarter/dbcount with the following content:
public class DbCountMetrics implements PublicMetrics, MetricSet {
 ...

 @Override
 public Map<String, com.codahale.metrics.Metric> getMetrics() {
 final Map<String, com.codahale.metrics.Metric> gauges =
 new HashMap<String, com.codahale.metrics.Metric>();
 for (Metric springMetric : metrics()) {
 gauges.put(springMetric.getName(),
 (Gauge<Number>) springMetric::getValue);
 }
 return gauges;
 }
}

6.	 We will make another small change to the dbCountMetrics method in the
DbCountAutoConfiguration.java file, also in db-count-starter/src/
main/java/org/test/bookpubstarter/dbcount, with the following changes:
@Configuration
public class DbCountAutoConfiguration {
 ...

 @Bean
 public PublicMetrics dbCountMetrics(
 Collection<CrudRepository>
 repositories,
 MetricRegistry registry) {
 DbCountMetrics dbCountMetrics = new
 DbCountMetrics(repositories);
 registry.registerAll(dbCountMetrics);
 return dbCountMetrics;
 }
}

7.	 Now, let's build and run our application by executing ./gradlew clean bootRun
and if we have configured everything correctly, it should start without any issues.

Health Monitoring and Data Visualization

170

8.	 With the application up and running, we should start seeing some data appearing
in the Graphite and, and we will see bookpub data nodes getting added to the tree
under Metrics. To add some more realism, let's open our browser and load a book
URL, http://localhost:8080/books/978-1-78528-415-1/, a few dozen
times to generate some metrics.

9.	 Let's go ahead and look at some of the metrics in Graphite and set the data time
range to 15 minutes in order to get some close-look graphs, which is as follows:

10.	 We can also create some fancy looking dashboards using this data in Grafana
by creating a new Dashboard and adding a Graph panel, as shown in the
following screenshot:

Chapter 7

171

11.	 The newly created Graph panel will appear as follows:

12.	 Click on the no title (click here) label, choose edit, and enter the metric name
bookpub.app.counter.status.200.books.isbn.root.count in the
text field:

13.	 Clicking Back to dashboard will take you out of the edit mode.

For a more detailed tutorial, see http://docs.grafana.org/
guides/gettingstarted/.

How it works…
To add the Dropwizard metrics, we will add the following three new dependencies to our
build file:

ff core: This adds the basic Dropwizard functionality, the MetricsRegistry,
common API interfaces, and base classes. This is the bare minimum that is required
to get Dropwizard working and integrated into Spring Boot to handle the metrics.

ff jvm: This adds a number of GaugeSets that expose the various JVM-related metrics
and can be registered with MetricsRegistry. We used MemoryUsageGuageSet
and ThreadStatesGaugeSet to demonstrate how the JVM runtime data can
be sent to Graphite. These metrics expose the Heap and Non-Heap memory pool
statistics and the Thread information, such as how many threads are created, which
ones are active, waiting, blocked, and so on.

ff graphite: This adds support for GraphiteReporter and is needed in
order to configure Dropwizard to send the monitoring data that it collects
to our Graphite instance.

http://docs.grafana.org/guides/gettingstarted/
http://docs.grafana.org/guides/gettingstarted/

Health Monitoring and Data Visualization

172

In order to keep things clean and nicely separated, we created a separate configuration
class with all the monitoring-related beans and settings: MonitoringConfiguration. In
this class, we configured four @Bean instances: first was the Graphite instance, which has a
dependency on two configuration values, defined in application.properties, specifying
the host/ip and port of our Graphite instance.

Second was the GraphiteReporter, which is dependent on Graphite and
MetricsRegistry, and configured so as to send the data to the Graphite instance every
one minute, use bookpub.app as a base tree node hierarchy, and translate all the time
duration intervals, such as the latency measurements, into milliseconds and all the variable
rates, such as the number of requests per some time frame, into seconds. These values are
the default configuration settings for Graphite but can be changed, if desired.

The other two beans are the MemoryUsageGuageSet and ThreadStatesGaugeSet
instances, which are registered with MetricsRegistry, and expose the memory and thread
metrics to Graphite in the memory and threads data nodes. They can be found in Metrics/
bookpub/app/memory or Metrics/bookpub/app/threads nodes in the Graphite tree.

You have probably noticed that we added the metrics-core dependency to our db-count-
starter subproject as well. This was done so that we can expose our DbCountMetrics
data not only via the HTTP /metrics endpoint, but see it in Graphite as well. The reason
for this change is the fact that the PublicMetrics implementations are being exposed
only via the /metrics endpoint and they don't get registered with the GaugeService or
CoutnerService providers. Luckily for us, the Dropwizard Metrics provide a very rich API in
the form of MetricSet, which allows us to wrap anything and expose it as an encapsulated
set of metrics, register this wrapper with the MetricRegistry and this will automatically
expose the data to all the configured reporters. The MemoryUsageGuageSet and
ThreadStatesGaugeSet implementations are a good example. They wrap the various JVM
system data and provide it as a set of metrics to the MetricRegistry.

Having implemented MetricSet, DbCountMetrics now implements the getMetrics()
method, which just translates the result of the existing metrics() call, returns a map
of simple values that are implemented as the Java 8 Lambda expressions for the Gauge
interface, thus returning a result of the springMetric::getValue method call.

With this small enhancement, we will add MetricRegistry as an argument to the
dbCountMetrics(…) bean creating method in the DbCountAutoConfiguration
class that in addition to creating the DbCountMetrics instance, registers it with
MetricRegistry before returning it.

The running application will gather all the metrics registered with MetricRegistry and
every configured reporter—in our case: GraphiteReporter—reports all these metrics at a
timed interval to its destination. The proper Reporter implementations run in a separate
ThreadPool, thus outside of the main application threads and not interfering with them.
However, this should be kept in mind in case the Metric implementations use some
ThreadLocal data internally, which would not be available to Reporters.

Chapter 7

173

Integrating Codahale/Dropwizard metrics
with Dashing

The previous recipe has given us a glimpse of how we can collect the various metrics from our
application during its runtime We've also seen how powerful the ability to visualize this data
as a set of graphs of historical trends can be.

While Grafana and Graphite offers us a very powerful capability of manipulating the data
in the form of graphs and building elaborate dashboards that are full of thresholds, applied
data functions, and much more. Sometimes we want something simpler, more readable,
and something widgetty. This is exactly the kind of dashboard experience that is provided
by Dashing.

Dashing is a popular dashboard framework developed by Shopify and written in Ruby/Sinatra.
It provides you with an ability to create an assortment of dashboards that are comprised of
different types of widgets. We can have things such as Graphs, Meters, Lists, Numeric values,
or just plain Text to display the information.

In this recipe, we will install the Dashing framework, learn how to create dashboards, send
and consume the data to report from an application directly as well as fetching it from
Graphite, and using Dashing API to push the data to the Dashing instance.

Getting ready
In order to get Dashing to run, we will need to have an environment that has a Ruby 1.9+
installed with Ruby Gems.

Typically, Ruby should be available on any common distribution of
Linux and OS X. If you are running Windows, I would suggest using
http://rubyinstaller.org in order to get the installation bundle.

Once you have such an environment available, we will install Dashing and create a new
dashboard application for our use, as follows:

1.	 Installing Dashing is very easy; simply execute the gem install dashing
command to install Dashing Ruby Gem in your system.

2.	 With the gem successfully installed, we will create the new dashboard named
bookpub_dashboard by executing the dashing new bookpub_dashboard
command in the directory where you want the dashboard application to be created.

3.	 Once the dashboard application has been generated, go to the bookpub_dashboard
directory and execute the bundle command to install the needed dependency gems.

http://rubyinstaller.org

Health Monitoring and Data Visualization

174

4.	 After the gems bundle has been installed, we can start the dashboard application
by executing the dashing start command and then pointing our browser to
http://localhost:3030 to see the following result:

How to do it…
If you look carefully at the URL of our shiny new dashboard, you will see that it actually
says http://localhost:3030/sample and displays a sample dashboard that was
automatically generated. We will use this sample dashboard to make some changes in order
to display some metrics from our application directly as well as get some raw metrics from the
Graphite data API endpoint.

To demonstrate how to connect the data from the application /metrics endpoint so as
to display it in the Dashing dashboard, we will change the Buzzwords widget to display the
counts of our data repositories, as follows:

1.	 Before we start, we will need to add the gem 'httparty', '>= 0.13.3' gem to
Gemfile located in the bookpub_dashboard directory, which will enable us to use
an HTTP client in order to extract the monitoring metrics from the HTTP endpoints.

2.	 After adding the gem, run the bundle command one more time to install the newly
added gem.

Chapter 7

175

3.	 Next, we will need to modify the sample.erb dashboard definition located in
the bookpub_dashboard/dashboards directory, replacing <div data-
id="buzzwords" data-view="List" data-unordered="true" data-
title="Buzzwords" data-moreinfo="# of times said around the
office"></div> with <div data-id="repositories" data-view="List"
data-unordered="true" data-title="Repositories Count" data-
moreinfo="# of entries in data repositories"></div>.

4.	 With the widget replaced, we will create a new data provisioning job file named
repo_counters.rb in the bookpub_dashboard/jobs directory with the
following content:
require 'httparty'

repos = ['AuthorRepository', 'ReviewerRepository',
'BookRepository', 'PublisherRepository']

SCHEDULER.every '10s' do
 data = JSON.parse(HTTParty.get("http://localhost:8080/metrics").
body)
 repo_counts = []

 repos.each do |repo|
 current_count = data["counter.datasource.#{repo}"]
 repo_counts << { label: repo, value: current_count }
 end

 send_event('repositories', { items: repo_counts })
end

5.	 With all the code changes in place, let's start our dashboard by executing the
dashing start command. Go to http://localhost:3030/sample in the
browser to see our new widget displaying the data as shown in the following image:

Health Monitoring and Data Visualization

176

6.	 If we use the remote shell to log in to the application, as we did earlier in this chapter,
and add a publisher, we would see the counter on the dashboard increase.

7.	 Another way to push the data to the dashboard is to use their RESTful API. Let's
update the text in the top left text widget by executing curl -d '{ "auth_
token": "YOUR_AUTH_TOKEN", "text": "My RESTful dashboard
update!" }' http://localhost:3030/widgets/welcome.

8.	 If everything has worked correctly, we should see the text updated to our new value,
My RESTful dashboard update!, under the Hello title.

9.	 In an environment where multiple instances of the same application kind are running,
it is probably not a good idea to directly pull the data from each node, especially if
they are very dynamic and can come and go as they please. It is advised that you
consume the data from a more static and well-known location, such as a Graphite
instance. To get a demonstration of volatile data metrics, we will consume the
memory pool data for the Eden, Survivor, and OldGen spaces and display them
instead of the Convergence, Synergy, and Valuation graph dashboards.
We will start by replacing the content of the sample.rb job file located in the
bookpub_dashboard/jobs directory with the following content:
require 'httparty'
require 'date'

eden_key = "bookpub.app.memory.pools.PS-Eden-Space.usage"
survivor_key = "bookpub.app.memory.pools.PS-Survivor-Space.usage"
oldgen_key = "bookpub.app.memory.pools.PS-Old-Gen.usage"

SCHEDULER.every '60s' do

data = JSON.parse(HTTParty.get("http://localhost:8888/
render/?from=-11minutes&target=bookpub.app.memory.pools.PS-Eden-
Space.usage&target=bookpub.app.memory.pools.PS-Survivor-Space.
usage&target=bookpub.app.memory.pools.PS-Old-Gen.usage&format=json
&maxDataPoints=11").body)

 data.each do |metric|
 target = metric["target"]
 # Remove the last data point, which typically has empty value
 data_points = metric["datapoints"][0...-1]
 if target == eden_key
 points = []
 data_points.each_with_index do |entry, idx|
 value = 100 * entry[0] rescue 0

Chapter 7

177

 points << { x: entry[1], y: value.round(0)}
 end
 send_event('heap_eden', points: points)
 elsif target == survivor_key
 current_survivor = 100 * data_points.last[0] rescue 0
 send_event("heap_survivor", { value: current_survivor.
round(2)})
 elsif target == oldgen_key
 current_oldgen = 100 * data_points.last[0] rescue 0
 last_oldgen = 100 * data_points[-2][0] rescue 0
 send_event("heap_oldgen", { current: current_oldgen.
round(2), last: last_oldgen.round(2)})
 end
 end
end

10.	 In the sample.erb template located in the bookpub_dashboard/dashboards
directory, we will replace the synergy, valuation, and convergence graphs with
the following alternatives:

�� <div data-id="synergy" data-view="Meter" data-
title="Synergy" data-min="0" data-max="100"></div> gets
replaced with <div data-id="heap_survivor" data-view="Meter"
data-title="Heap: Survivor" data-min="0" data-
max="100"></div>

�� <div data-id="valuation" data-view="Number" data-
title="Current Valuation" data-moreinfo="In billions"
data-prefix="$"></div> gets replaced with <div data-id="heap_
oldgen" data-view="Number" data-title="Heap: OldGen"
data-moreinfo="In %" data-suffix="%"></div>

�� <div data-id="convergence" data-view="Graph" data-
title="Convergence" style="background-color:#ff9618"></
div> gets replaced with <div data-id="heap_eden" data-
view="Graph" data-title="Heap: Eden" style="background-
color:#ff9618"></div>

Health Monitoring and Data Visualization

178

11.	 After all the changes are made, we can restart the dashboard application and reload
our browser to http://localhost:3030 to see the following result:

How it works…
In this recipe, we have seen how to extract the data directly from our application and via
Graphite and render it using the Dashing dashboard as well as pushing information directly
to Dashing using their RESTful API. It is no secret that it is better to see something once than
hear about it seven times. This is true when it comes to trying to get a holistic picture of the
key metrics that represent how the systems behave at runtime and to be able to act on the
data quickly.

Without going in great detail about the internals of Dashing, it is still important to mention a
few things about how data gets in Dashing. This can happen in the following two ways:

ff Scheduled Jobs: This is used to pull data from the external sources

ff RESTful API: This is used to push data to Dashing from outside

The scheduled jobs are defined in the jobs directory in the generated dashboard application.
Each file has a piece of ruby code wrapped in the SCHEDULER.every block, which computes
the data points and sends an event to an appropriate widget with the new data for an update.

Chapter 7

179

In our recipe, we created a new job named repo_counters.rb where we used the httparty
library in order to make a direct call to our application instance's /metrics endpoint and
extracted the counters for each of the predefined repositories. Looping over the metrics, we
created a repo_counts collection with data for each repository containing a label display and
a value count. The resulting collection was sent to the repositories widget for an update in the
form of an event: send_event('repositories', { items: repo_counts }).

We configured this job to get executed every ten seconds, but if the rate of data change is
not very frequent, the number can be changed to a few minutes or even hours. Every time
the scheduler runs our job, the repositories widget gets updated via the client-side
websockets communication with the new data. Looking in dashboards/sample.erb,
we can find the widget's definition using data-id="repositories".

Besides adding our own new job, we also changed the existing sample.rb job to pull data
from Graphite using Graphite's RESTful API to populate the different types of widgets in order
to display the memory heap data. As we were not pulling data directly from the application
instance, it was a good idea not to put the code in the same job because the jobs could—and
in our case, do—have different time intervals. As we send data to Graphite only once every
minute, it does not make sense to pull it any less frequently than this.

To get the data out of Graphite, we used the following API call:

/render/?from=-11minutes&target=bookpub.app.memory.pools.PS-Eden-
Space.usage&target=bookpub.app.memory.pools.PS-Survivor-Space.
usage&target=bookpub.app.memory.pools.PS-Old-Gen.usage&format=json&maxDat
aPoints=11

It translates into the following components:

ff target: This parameter is a repeated value that defines a list of all the different
metrics that we want to retrieve.

ff from: This parameter specifies the time range; in our case, we asked for data going
back to 11 minutes back.

ff format: This parameter configures the desired output format. We chose JSON but
many others are available. Refer to http://graphite.readthedocs.org/en/
latest/render_api.html#format.

ff maxDataPoints: This parameter indicates how many entries we want to get.

The reason we asked for eleven entries and not ten is due to a frequent occurrence where
the last entry of short-ranged requests, which consist of only a few minutes, sometimes get
returned as empty. We just use the first ten entries and ignore the most recent ones to avoid
weird data visualization.

http://graphite.readthedocs.org/en/latest/render_api.html#format
http://graphite.readthedocs.org/en/latest/render_api.html#format

Health Monitoring and Data Visualization

180

Iterating over the target data, we will populate the appropriate widgets, heap_eden,
heap_survivor, and heap_oldgen, with their designated data, as follows:

ff heap_eden: This is a Graph widget, as defined in the sample.erb template in the
form of a data-view="Graph" attribute, so it wants a data input in the form of the
points collection containing a value for x and y. The x value represents a timestamp,
which conveniently gets returned to us by Graphite and is automatically converted to
the minutes display value by the Graph widget. The y value represents the memory
pool utilization in percent. As the value from Graphite is in the form of a decimal
number, we will need to convert it to a whole number so as to make it look better.

ff heap_survivor: This is a Meter widget, as defined in the sample.erb template
in the form of a data-view="Meter" attribute, so it wants a data input as a simple
value number between a template configured range. In our case, the range is set as
the data-min="0" data-max="100" attributes. Even though we chose to round
the number to two decimal positions, it could probably just be an integer as it is
precise enough for the purpose of a dashboard display.

ff heap_oldgen: This is a Number widget, as defined in the sample.erb template in
the form of a data-view="Number" attribute, so it wants a data input as a current
value and optionally a last value; in which case, a percentage change with the change
direction will be displayed as well. As we get the last ten entries, we have no issues in
retrieving both the current and last values so we can easily satisfy this requirement.

In this recipe, we also experimented with Dashing's RESTful API by trying to use a curl
command to update the value of the welcome widget. This was a push operation and
can be used in situations where there is no data API exposed, but you have a capability
of creating some sort of a script or piece of code that could send the data to Dashing
instead. To achieve this, we used the following command: curl -d '{ "auth_token":
"YOUR_AUTH_TOKEN", "text": "My RESTful dashboard update!" }' http://
localhost:3030/widgets/welcome.

The Dashing API accepts data in a JSON format, sent via a POST request that contains
the parameters needed for the widgets as well as the widget ID which is a part of the
URL path itself. The following are the accepted URL parameters:

ff auth_token: This allows for a secure data update and can be configured in the
dashboard root directory in the config.ru file.

ff text: This is a widget property that is being changed. As we are updating a
Text widget, as defined in the sample.erb template in the form of a data-
view="Text" attribute, we need to send it the text attribute for an update.

ff /widgets/<widget id>: This URL path identifies the particular widget where
the update is destined to. This id corresponds to a declaration in the sample.erb
template. In our case, it looks like data-id="welcome".

Chapter 7

181

The definition of the various widgets can also be manipulated and a very rich
collection of the various widgets has been created by the community, which is available at
https://github.com/Shopify/dashing/wiki/Additional-Widgets. The widgets
get installed in the widgets directory in the dashboard and can be installed by simply
running dashing install GIST where GIST is the hash of the GitHub Gist entry.

The dashboard template files, similar to our sample.erb, can be modified in order to create
the desired layout for each particular dashboard as well as multiple dashboard templates,
which can be rotated or directly loaded manually.

Each dashboard represents a grid in which the various widgets get placed. Each widget is
defined by a <div> entry with the appropriate configuration attributes and it should be nested
in the grid element. We can use the following data element attributes to control the
positioning of each widget in the grid:

ff data-row: This represents the row number where the widget should be positioned

ff data-col: This represents the column number where the widget should
be positioned

ff data-sizex: This defines the number of columns the widget will span horizontally

ff data-sizey: This defines the number of rows the widget will span vertically

The existing widgets can be modified to change their look and feel as well as extend their
functionality; so the sky is the limit for what kind of information display we can have. You
should definitely check out http://dashing.io for more details.

https://github.com/Shopify/dashing/wiki/Additional-Widgets
http://dashing.io

183

Index
A
application

@ComponentScan annotation 6
@Configuration annotation 6
@EnableAutoConfiguration annotation 6
creating 4-6
launching, Gradle used 7, 8

autoconfiguration
about 50-52
custom Spring Boot autoconfiguration starter,

creating 52-56

B
Behavior Driven Development 82
binaries

self-executing binaries, building 112-116
boot2docker integration

URL 109

C
certificate keystore

URL 43
Codahale metric

integrating, with Dashing 173-180
integrating, with Graphite 163-172

command-line options
URL 111

command-line runners
using 9, 10

configuration options
URL 153

Consul
setting up 131-134
URL 132
used, for externalizing environmental

config 135-137
CRaSH

URL 160
Cucumber

URL 89
used, for writing tests 82-90

Cucumber-JVM
URL 82

cURL
URL 134

custom conditional bean instantiations
configuring 56-58

custom connectors
adding 43-47

custom @Enable* annotations
using, to toggle configuration 58-61

custom HttpMessageConverters
configuring 27, 28

custom interceptors
configuring 25, 26

custom PropertyEditors
configuring 29-31

custom remote shell commands
writing 156

custom servlet filters
configuring 24, 25

custom static path mappings
configuring 38, 39

custom type formatters
configuring 31-34

184

D
Dashing

used, for integrating
Codahale metric 173-181

used, for integrating Dropwizard
metric 173-181

database
connection, setting up 10-13
initializing, with Spring JDBC 73, 74
initializing, with Spring JPA and Hibernate 73
schema, automatic configuration 70-72

data repository service
@Entity annotation 16
@GeneratedValue annotation 17
@Id annotation 17
@ManyToMany annotation 17
@ManyToOne annotation 17
@Repository annotation 16
CrudRepository interface 17
setting up 13-16

Docker
images, creating 106-111
URL 107

DockerHub
URL 106

Dropwizard metric
integrating, with Dashing 173-180
integrating, with Graphite 163-172

E
EmbeddedServletContainerCustomizer

used, for tuning Tomcat 39-41
embedded servlet containers

selecting 41, 42
environmental config

externalizing, Consul used 135-138
externalizing, envconsul used 135-138
externalizing, environment

variables used 127-129
externalizing, Java system

properties used 129-131
externalizing, property files used 125-127
hierarchy 116-124
precedence 116-124

executors
scheduling 17, 18

F
Flyway framework

URL 72

G
Gherkin

URL 89
Gradle

multi-project builds, URL 55
URL 7
used, for launching application 7, 8

Gradle-Docker plugin configuration options
URL 111

Grafana
URL 164

Graphite
URL 164
used, for integrating

Codahale metric 163-172
used, for integrating Dropwizard

metric 163-172

H
Hibernate

database, initializing with 73

I
in-memory database

with data fixtures, used for
creating tests 74-78

Integration testing 64

J
JAR

executable JAR, creating 102-105
Java system properties

used, for externalizing
environmental config 129-131

Jolokia
URL 156

185

L
Liquidbase framework

URL 72

M
metrics

emitting 147-154
Mockito

used, for creating tests 78-82
MockMvc

URL 69
MVC Controllers

tests, creating 64-69

O
Oracle Java documentation

URL 138

P
property files

used, for externalizing
environmental config 125-127

R
RESTful application

creating 19-21
route matching patterns

configuring 35-37
Ruby

URL 173

S
Service Testing 64
Signal Handlers

URL 138
skeleton project

creating 2
Software as a Service (SaaS) application

URL 102
Spock

URL 97
used, for writing tests 91-99

Spring Boot
autoconfiguration 50-52
managing, CRaSH used 156-163
monitoring, JMX used 154-156
reference documentation, URL 46

spring-boot-admin
URL 147

spring-boot-starter-test definition
URL 2

Spring Data
URL 17

Spring Data REST service
creating 21-23

Spring JDBC
database, initializing with 73, 74

Spring JPA
database, initializing with 73

starters
spring-boot-starter 3
spring-boot-starter-actuator 3
spring-boot-starter-data-* 3
spring-boot-starter-data-jpa 3
spring-boot-starter-jdbc 3
spring-boot-starter-security 3
spring-boot-starter-social-* 3
spring-boot-starter-test 3
spring-boot-starter-web 3
URL 1
using 2, 3

T
template

using 2, 3
tests

creating, for MVC Controllers 64-69
creating, in-memory database with data fix-

tures used 74-78
creating, Mockito to mock DB used 78-82
writing, Cucumber used 82-90
writing, Spock used 91-99

Tomcat
tuning, via EmbeddedServletContainerCus-

tomizer 39-41
Twelve-Factor App methodology

URL 102

186

U
Unit Testing 64

W
widgets

URL 181

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgment
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Spring Boot
	Introduction
	Using a Spring Boot template and starters
	Creating a simple application
	Launching an application using Gradle
	Using the command-line runners
	Setting up a database connection
	Setting up a data repository service
	Scheduling executors

	Chapter 2: Configuring Web Applications
	Creating a basic RESTful application
	Creating a Spring Data REST service
	Configuring custom servlet filters
	Configuring custom interceptors
	Configuring custom HttpMessageConverters
	Configuring custom PropertyEditors
	Configuring custom type Formatters

	Chapter 3: Web Framework Behavior Tuning
	Introduction
	Configuring route matching patterns
	Configuring custom static path mappings
	Tuning Tomcat via EmbeddedServletContainerCustomizer
	Choosing embedded servlet containers
	Adding custom connectors

	Chapter 4: Writing Custom Spring Boot Starters
	Introduction
	Understanding Spring Boot autoconfiguration
	Creating a custom Spring Boot autoconfiguration starter
	Configuring custom conditional bean instantiations
	Using custom @Enable* annotations to toggle configurations

	Chapter 5: Application Testing
	Introduction
	Creating tests for Spring MVC Controllers
	Automatically configuring the database schema and populating it with data
	Creating tests using in-memory database with data fixtures
	Creating tests using Mockito to mock DB
	Writing tests using Cucumber
	Writing tests using Spock

	Chapter 6: Application Packaging and Deployment
	Introduction
	Creating a Spring Boot executable JAR
	Creating Docker images
	Building self-executing binaries
	Spring Boot environment config hierarchy and precedence
	Externalizing environmental config using property files
	Externalizing environmental config using environment variables
	Externalizing environmental config using Java system properties
	Setting up Consul
	Externalizing environmental config using Consul and envconsul

	Chapter 7: Health Monitoring and Data Visualization
	Introduction
	Writing custom health indicators
	Emitting metrics
	Monitoring Spring Boot via JMX
	Management of Spring Boot via CRaSH and writing custom remote shell commands
	Integrating Codahale/Dropwizard metrics with Graphite
	Integrating Codahale/Dropwizard metrics with Dashing

	Index

