Pro Andrmd
with Kotlin

Developing Modern Mobile Apps

Peter Spath

APress’

http://www.allitebooks.org

Pro Android with Kotlin

Peter Spath

Apress-

vww allitebooks.conl

http://www.allitebooks.org

Pro Android with Kotlin: Developing Modern Mobile Apps

Peter Spdth
Leipzig, Germany

ISBN-13 (pbk): 978-1-4842-3819-6 ISBN-13 (electronic): 978-1-4842-3820-2
https://doi.org/10.1007/978-1-4842-3820-2

Library of Congress Control Number: 2018955831
Copyright © 2018 by Peter Spith

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the
sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights,
please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales web
page atwww.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers
on GitHub via the book's product page, located at www. apress.com/9781484238196. For more detailed
information, please visit www.apress.com/source-code.

Printed on acid-free paper

vww allitebooks.conl

https://doi.org/10.1007/978-1-4842-3820-2
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:editorial@apress.com
mailto:bookpermissions@springernature.com
http://www.apress.com/bulk-sales
www.apress.com/9781484238196
http://www.apress.com/source-code
http://www.allitebooks.org

To Margret.

vww allitebooks.conl

http://www.allitebooks.org

Table of Contents

About the AUtROKccvimiismminmssnses s xvii
About the Technical REVIEWEI'Scccsssssmsssssnsssssnsssssnsssssnsssssnsssssnsssssanssssnnssssnnssssas Xix
INtroductioncccciiimmnimnnins s ———————————————————— XXi
Preface ..ocvcerisssssmsssnnmsssnnmsssnnmsssnnnsssnnssssnnssssnnnsssnnssssansnssansesssnnssssnnssssnnsnssnnnsssnnnssnns XXVii
[7oL =T gl Ty (] 1 1 1
The Android Operating SYStEM.......cccovcieeireren i 1
The Development SYSTEM.........ccccc e s 3
ANAFOI STUAIO ... ne e e e e ne e e s 3
VIFTUL DBVICES.....ceeeeeererieeese iRt 4

THE SDK .vvvurrveeessssressssssessesssssssssssssssessssssssesssssssssssssssssesssns 6
EChapter 2: Application..........ccvuunnnmmnenmmmmmmmmmssssssr e ————————— 7
L2531 9
The Application Manifest...........ccccvvrerircnirr s 9
BChapter 3: ACHVItieScuuuuirnnrrmsssnnmmssssnnnsmsssssnnssssssssssessssnnsssssssnnssessssnnnsssssnnnnssnss 13
Declaring ACHIVILIES........ccecevcerrererrerir s n e n e 14
STArtiNG ACTIVITIES ..vveerercerrer e sr e e n e e s 15
ACLIVItIeS aNd TASKS.......ccocerererrireresi st 16

v

vww allitebooks.conl

http://www.allitebooks.org

vi Table of Contents

Activities Returning Data............ccceeeeerenerenese e sss e sse e sse e sne s sn s snennennns 17
111 C=] LB] 3T 18
INEEIE ACHION ..o e e 19
1T =T 0 (=T 0] R 19
INEENE DALA........coie e ——————————— 20
INEENT FIAGS ... e cveirerieierer e s a e s e r e e e s e e e s e e e b e e e na e s e e e e R e e e e e e e nreneenrenen 21

3 L G LI TG L T (=T 3P 21
ACHIVItIES LIfECYCIE.....cueereeeecrecrerrerre e rse e e sa s e se s e s sr e sn e snssnennesnennennennnnnnnnns 22
Preserving State in ACHVITIESccvvevverrerierre e e e ene s 24
BChapter 4: SErVICEeS .uuccurrrmrssmmrssssnnnssssssnnssessssnsssessssnnnssssssnnsssssssnnnsssssnnnnsssssnnnnsssss 27
FOreground SEIVICESc.cvvererrerierieresser st se s e e e e e s sn e n s n s sn e sn e sn e nnnnnenas 28
BaCKGrouNd SEIVICESccvververrerieriirersersesses e s s e s e s e s ses e s e sss s snssnssnsssssssssssnssnssnsnns 28
DECIArNG SEIVICEScoveeerierrrirerirere st n s 29
SBIVICE ClASSEScoviereeererrersesisse et ss s se s sas s e s sr s sn s ns e s nn s snenn s 32
L T TR TCT (S 32
Binding 10 SEIVICESceciirirr s 33
Data Sent DY SEIVICESccvcierrieresrrers e 37
SEIVICE SUDCIASSEScvrvcucerereerese e 39
SErVICES LIfECYCIE ...uveeeeeeecee et n e sn e sn e sn e nn e nn e nr s 40
More Service CharaCteriStiCScuvuurirernneiesnseresrse s s ns 42
BChapter 5: Broadcastscccimmmsmmmmmmsssnnnmmssssnsnmmssssssnmssssssssssssssssnssssssnsnsssssnnnnsssss 43
EXPIICIt BrOQACASTS......cccercererersiresere st sn s s sn s nn e nn e nn e 44
Explicit Remote BroadCasts..........cccccvvrririrninir s 45
Explicit Broadcasts Sending to Other APPSccceeerevrierriererereereseresesesessesessesessesessesassessssesssssssssansens 46
IMPIICIt Bro@OCASES.......ccceereeeerrerrerrerse e e sse e ssesse e e s e e s snessesa e snesn e nennesnesnsnnenrennnnnnnnas 47
Intent Filter MatChingcoeoeeece e 48
Active Or ON-HOId LISTENINGcccererreererineeeeres e ssnsans 51
Sending IMpliCit Bro@tCASTS.........ceeeererrreerereseeseres e 52
Receiving IMpliCit BrOAACASTSccccveeeererreereririseeses s 53

Listening to SyStem BroadCastsccocvrererererinneneresisesesesss s se s ssssessssenes 54

Table of Contents vii

Adding Security 10 BroadCasts..........cccccrererererenesese e s e sse s ssssssssssesssssssssssssssssssnsnns 55
Securing EXpliCit BrOAACASES.........ceeerererreerireree s 55
Securing IMPlICit Bro@UCASTS.........ceoererrreerirer e 57

Sending Broadcasts from the Command Line..........ccoccvvrrrrrnrnnnensesses s ses s ses e 58

Random Notes 0n BroadCasts..........ccverrrrersersessessessesssssesses s s s sssssssnsssssessssssssssssssens 59

HChapter 6: Content Providerscccccrmmmnnmmmmmsssssnnnnnmmmmssssssssssssssssssssssssssssssssnsnss 01

The Content Provider FrameworkK........c.ccoucneninnnsssess s 61
Providing CONteNnt ..ot 63
INItialiZING the PrOVILENccoueeeece et 63
QUETYING DALA.......ccueveecceeireresesessse e s s s e s s s s s s s e e s s s e s s ee s a e ee e s s nens 63
MOGiIfYiNg CONTENT ... p s 65
Finishing the ContentProvider Class.........c.ccoerreeiererereeenesesiseseseses s sens 66
Registering the Content Provider ... e 67
DesSigning CONTENT URISco.eoeeeeerecere s re s ses e sae e s e se s e sessesas e sae e saesesaesesaesassesaesessenesasanaens 70
Building a Content Interface CONTIaCL...........cccceeeererererer et ae e ae e ae e saenannens 4l
A Cursor Class Based on AbstractCursor and Related Classes..........ounrmmmnnsnsnnsnnsnssssnes 73
A Cursor Class Based on the Cursor INTErface. ... 75
Dispatching URIs Inside the Provider COUE..........cvrrirrrrererererserereresreseesersesessesessessssessesessssesaesansens 76
Providing CONTENT FIlES......ccciueeereererererereeesre s e rer e ses e sae e s e ses e sassesas e saesesaesesaesassesassessssessenssasanaens 76
Informing Listeners of Data ChanQESccoeeceerererercerrseresere e s ses e sse s se e e sassesasesassesassesassanaens 79
Extending @ Content Provider.........c..cccueercrennicneninesnr e 79
Client Access Consistency by URI Canonicalization...........c.ccceecvrinneninnnnessnnssesesess s sesessssens 80
Consuming CONTENT.........coeeeeececer e e sr e sn e sr e sn e nn e nenas 80
USiNg the CONTENT RESOIVET ..ot 80
Accessing System Content PrOVIAEIScececeererererirnese s sessans 82
Batch-Accessing Content DALA...........cccoverueierererrnieserireese s 93
Securing CoNteNt.........ccccivirerrr s 93
Providing Content for the Search Frameworkccocvcveeniernsncsnscne s 95

DOCUMENES PrOVIAEEeeeiceee i eceeee e eccceee e e escee e s esssr e s ssssse e s ssane e s sessnr e e sasnneessnsnnsessnssnneessnn 95

viii Table of Contents

BChapter 7: PErmisSioNnscccuummssssssssssmsss 103

PermiSSiON TYPES.....ccecerrerrersersersessessessessessessesses e s e s e s ses e s sessessnsnssssssnsssssnnssnsssssnssnssansans 103
Defining PErmiSSIONSccccvcviriiriirsir s sn s sn e sn s sn s sn s sn s sn e snennnnans 104
USING PEIMISSIONS.....ccueiuireiriirerersessesee e ssessessesssssessesaessesasssesassassssssesassassssssssssssssasssnns 105
AcqUIriNG PErMISSIONSccceeeererrerrersersessessessessessessessessesssssessessesssssssssssssssssssssssssssssnnes 109
Acquiring Special PErmiSSioNS..........cceeeerereresesese e e sse e sss e ssesssssesssssssssssssssses 110
Feature Requirements and PErmiSSIiONScccevverreerierrersesresseesesssessesssessessssssssssssaes 112
Permissions Handling Using a Terminal............ccocversniessssssesses s sssssssessnssnsnnns 113

[To L G gt 1 o L ——— I |

DAADASEScerviiciriici e ———————————————— 115
Configuring Your ENVironment for ROOM..........covceverrenenereriersssessesessesessessssessssessssessssesssssssessssesssnenes 116
ROOM ArCRITECIUNE ...t ———————— 116
The DAtabaSE........cocvreriririsisisis s ———————————————————— 116
ENHIEIES...ciisccs i ———————————————— 117
LT[0] 1] 1SS 118
Loy (T 0 1= 120
USING INUEXES ...ttt sae s a e s s a e b bbb s a e e e e b e e e e e b e b e e e e e b e e e e e e e e et e s 121
Data ACCESS: DADS......cccuircrriireses iR 121
ODSErvable QUEKIEScceerreriisssririssss bbb 123
Database ClIENTS........ovecrriri s 125
TrANSACTIONS ... ——————————————— 127
Migrating DatabaSsES........cccuverereieiiie e e e p e e ne e p e na e s 127

SCREAUING ... sr e r e nr e r e snesn e nnennnan 128
JODSCREUUIET ..ot 130
Firebase JODDISPALCRET ... 133
LN U (T Ty o T SO RSTORPS 137

02 Lo [T 140

NOTIfICALIONSveceresci e ——————— 143
Creating and Showing NOTIfiCAtiONScccccvereverererre e sa e sa e 145
Adding DIrECT REPIY ...eeeveereerererirerre e e s e sss s ss e sss e se s e s e s e e s s sn e e nenesaens s e saenesnnnsnnas 147

NOTIfication ProgreSs Bar........ccceieiiiinininene e sse e sas s s st sas s s st s st s sas s sasssa s s 150

Table of Contents ix

Expandable NOTIfiCatiONS.......cccccereierie e a e r e sa e 150
Rectifying Activity Navigation ... s ssesne s 150
Grouping NOEIfICALIONScveereeereeere st rre e s s e e s e sae e sae e e e s e e e s ae e sae e naesaenenaenees 151
Notification ChanNEIS...........ovvcirrirnn i ———— 153
NOTIfiCAtion BAUGEScvevvevrerierieriere e s sa e sa e s a e bbb b e bbb e a e n e e e na e nn e 154
CONTACTES ..o ———————————— 155
Contacts Framework INTernals ... 155
ReAUING CONTACTS.......cccieieecerere et 156
WHEING CONTACTScveeeecitccirerir e e e e b e e e p et p e e n e nnn 158
Using Contacts SyStem ACHIVILIESccccerierriernrrr e e sa e s 162
Synchronizing CoONTACEScciirierrerr e e a e s r e e r e nrnae s 163
Using QUICK CONTACE BAUGES........ccciererueeeririeesiri e 163
SEArCh FrAMEBWOIKceeeereerrseriestse e sn s sns e s sresn s sse e s sns e ssesns s snsnnnens 165
The Searchable CoNfIgUrAtionc.cccceeereererneesessee s s e s 166
The Searchable ACHIVITYcoccueeerrreesessee e p e ne e nr s 166
THE SEArCH DIAI0OG......ccuereueerererseesererseesessssee e ss e e ss e sesss e se s s ss e e s s se e s s se e e s nre e e e nsennnnnensans 167
The SEArCH WItGEL.........cueeeeeerereeeserisrse s ses e e se s sn s e s s e p e nenp e e e nrans 168
SEANCH SUGGESTIONS......ceererteeeririee e b e e aa e e a e e e s nnn s 170
Location @and MapSccccuveiierriiierre e s n e n e ene e ene 175
Last KNOWN LOCALIONcocveirininisiniiisiinisiiissssssssssssssssssssssssssssss s 176
Tracking POSItion UPUAtesccuvererriiniiriisirsie s sss s ss s ss s s s st s s sas s sa s snssns s s nnnn 178

6T 0o T 180
Using ADB to Fetch Location INformationccceeevevinininnnnnsse s sssssssssssssee s 183

1 0L S S S SS 184
PrEferNCEScovieccre it 185
HChapter 9: User Interfacecoommnmmmssmismmimmsmmsmmsmssms s 191
Background TaSKSccoueeriininisns s 191
B W 001 TR T] T T 192
The ASYNCTASK ClASScueeierereeeiririecse st e n s 192
HANGIBES ..o b 193

02T (=T RS 193

X

Table of Contents
Supporting MUHIpPIE DEVICESceceevereerierrirrir s ses e s s e e snssn e snssrssnenas 193
T =TT I 194
PIXEl DENSILIES ... 194
Declare Restricted SCreen SUPPOITccourveierererreesesirieee s nens 195
Detect Device Capabilities.... ... e e 195
Programmatic Ul DeSIgN.........ccecerierrerierieriessersersesses s e se e se e s e s ssssessnsssssssnnns 196
Adapters and List CONtIOIS ... ssssesesesens 198
StYleS ANA THEMESeeceecerree et sr e s sa e s sne e e sn e s e e snesanenneens 201
FONES iN XIML.....ciieiecercsc i 203
2D ANIMALION ...cvci e ————————— 205
Auto-animating LAYOULSccceeeieiereriresire s se e n e n s n e sn s n e pe e nn s 205
ANIMALEd BitMAPS .. .ccveceeiecierie e sr s sa e e e a e e e e e e e e e nn e s 205
Property ANIMALioN.ccoceeiciiircsir e e r e e a e e e n e r s 206
View Property ANIMALOr..........ccceeieiererere s e se s e s s s sas e sn s s sn e s e nnas 207
SPIING PRYSICS ...veeiieirceieesre e sr e se e s as e b e e s s e R e e R e e ae e e e s e e ene e ene e nnenrnneas 207
TrANSITIONS .. ——————————————— 208
Start an Activity USing TranSitions ... 209
Fast Graphics OPenGL ES..........cocovriinrirsrir s e sn s e e snssnssnssnsnns 211
Showing an OpenGL Surface in YOUr ACHIVILY........cccovueererernieserireesesessse e sesssnens 212
Creating a Custom OpenGL View EIBMENT ..o 212
ATriangle With @ VErteX BUFTEK ... 214
A Quad with a Vertex Buffer and an Index BUFFEr ..o 216
Creating and USING @ RENAEIENcccerirreerererieee s sesse e se s sss s se s sssnnens 220
o (0] T (o] TSSOSO 221
10 10 232
1 ST 232
L= 0 T 235
USEE INPUL ...ttt e e b e e b e s se s e Re e e e se e e s e sennnnas 241
Ul Design with Movable EMS..........cccinnnn s 242
Menus and Action Bars ... 243

L0010 TS T 3L S 243

Table of Contents Xi

CONTEXE MENU....coceetticsscs bbb 245
Contextual ACHION MOUE ... s 246
POP-UD MEBINUS ...t s a bbb s a e b e e a e b e b e b e b e b e e e b e b e e e e et e e e es 246
Progress BarS........cci i e n e e e 247
Working With Fragments ..o ssssssssssssesssssssssssssssssssssssssens 248
Creating FragmMeNTS.........ccccereeeeserseeseses s s s e s e s e s se e nansesnnnnns 248
Handling Fragments from ACHVItIESccoreierenreese s 249
Communicating With FTAgMENTSccceeiiierererresesesisee s sassssssnens 250
LT 0 I T o T 250
Drag and Dropccoccecerceriererserses s s sn s nn e nn s nn e nn s nn e nn e nn e nn e nnennn 253
Defining Drag DAt ..o e e 254
Defining @ Drag SNAgOW ..o s 254
STArtiNG @ DrAQ ..ot s 255
Listening t0 Drag EVENTS........c.covvnnnnninininiiiisssss s 256
MURITOUCH ...t 258
Picture-in-Picture Mode.........ccevviiriniin e 259
TEXE 10 SPEECH......cceeecr e ————————— 259
EChapter 10: Developmentccocccumminsnnnmmmmsssnnmmmsssnnmmssssmmsssss———— 261
Writing Reusable Libraries in KOtin ... 261
Starting a Library MOAUIE ..o s r e e sn e sn e 261
Creating the LIDIary ... s a e e e 262
TeStING the LIDIary ..ot a e e s p e p e e e 263
USING the LIDFAIY ...ttt s e bbb e e e sn s p s 264
PUDBIiShiNg the LIDFAry.......ccoininesisesis s st s s sa s sa s s 264
Advanced Listeners USing KOtlin.........ccccoveenmiennnennnnnessssssssssesssss e sessessessssessssesnes 265
MUIIERrEAAING ... e s 266
Compatibility LIDFAriEsccoeeeeeeerereresessessessesssssessessssssssssssssesssssssssssssssssssssssssssnsans 268
KOtlin BEST PracCtiCeSccovierrerererrniiesissesesssse e s sesss s sss s ssssssssssssssssssssssssnssnes 270
FUNCLION@l PrOgrammingcoceeceeersesesesesssssessssssssesessssssessssssssssessssssssssssssssssssssssssssssssssssnsssssssssnens 271
Top-Level FUNCHONS @Nd DALAcooeeeerineerireriee s sss s ss s s sensns 272

ClaSS EXEBNSIONS.....ccceiiueiiririeisesssesssesesssessse s e sssesssesse s besbesse s besabesse s besbesse s be s b e se s besabesaeanbesasessnansens 273

xii Table of Contents
NAMEAd ArQUIMENTS ..o e s a e b e b e b e e e b e e e b e e e e e e e e e e e b e nne s 275
SCOPING FUNCLIONSc.ccveeeereerere s seserae e see e e sessesas e sse e saesessesessesassesassesassessessssessssesssnesssnsssensnsenansens 275
10 0SS 277
DA CIASSEScucuerercreeereresesesesesesese e e 277
DESTIUCTUNING ... e cveetecerer e s a e b a e b e e e e e e e A e e e e e b es 278
LT T =T (] T0 T =T 1 279
INNEr FUNCEIONS AN CIASSES......cocreecereererereesesesese e see s se s ss s s ss s s s s ssssssssnens 279
T TR C=T 010 =¥ 279
QUANITIEA “TRIS™ ...evreeeeererrre e e e b e bR e b e ae e e s ae e e nnnne e e e 280
DEIBGALION ...t 280
ReNAmMEd IMPOITS ..o 281
Kotlin on JavaScCript ... e 281
Creating @ JavaScCript MOUUIE...........c.oeceerereeeese e 281
Using the JavaSCript MOAUIE.........c.cou et 283
EChapter 11: BUilding........cccusmmmmssnnmmsssnsmsssnsssssnsssssnsssssnsssssnsssssnsssssnsssssnnssssnnssssas 285
Build-Related Filescccviririeriirersirseser s sn s sn s s snssn s snssnssnennanns 285
Module ConfigUIationcuceeeeiieresicrre e 286
Module Common Configuration...........c.cccoveeeeniernssesnsess e 288
Module Build Variants...........cccceerimririnsnsessessesses s ses e e e s s e s snssnssnssnssssnnnns 288
BUIIA TYPES .o 289
g 100 13T 0 290
SOUICE SBES ...vuvrrircririsisse bbb bR b R R bR bR R eE s 291
Running a Build from the CONSOIE..........cccrvrrerrerierserserser s ses e e e s sesnnns 293
£ [0 11 294
EChapter 12: Communicationuuveeeeemmmmnnmmmssssssssnnnes s ————————— 297
RESUIRECEIVET ClASSESccecereeereerreerserisesse e s sse s ss s s ss s s s e sne e snas 297
Firebase Cloud MeSSagingccccvrerrerrersessmssessessesssssessss s sesssssessssssssssssssssssssssssssssnsans 299
Communication With BaCKENS.........ccceeereererererire e s ssssss s ssssssssessssssssssssssssssssssenns 301
Communication with HttpSURLCONNECHION........cccoeveerrre e ee e e 302

Networking With VOIIRY.........cccecrcercrsr st sn s sn s sn s snn e 304

Table of Contents xili

Setting Up @ TESE SEIVEN ...t sn s 306
ANdroid and NFC ..o 308
TalKing 10 NFC TAQScovverrrirerererne e ssse e ses e sss e sss e ssesessesss s ssessssessssessessssssssnsssens 308
Peer-to-Peer NFC Data EXChange..........ccocueerenmrennnmsesnnsessssssesesss s sssssssssnssssnes 310
NFC Card EMUIAtioNcccovvreriiiicinin s 311
Android and BIUEtOOth...........cccviiir e ————— 317
A Bluetooth RFCOMM SEIVET ..o s sas e snes 317
An Android RFCOMM ClIENt ..o 320
BChapter 13: Hardwarecccciuuusssmmmmmssssssmmmssssssnmsssssssnmsssssssssssssssssssssssssssssssnnnnss 337
Programming with WearabIes..........cccvvrvrrrinrnserser s e ses e snssnenns 337
Wearables DEVEIOPMENL ..o s r e r s e r e r e r e nr e n e n e s 338
Wearables App USEr INTEITACEcoueeevuererererererrere et ses e sas e sae e ae e sae e s e sae e saenenaes 340
WEArables FACESc.coveviririnmsisisiisisisisss s 341
Adding Face COMPICALIONScccceerererererere st rere s re s e ree e ae e rae e sas e sas e saesesaesesaesassesaenesaenenans 341
Providing Complication Datacccceeererrererrerereresere s s eree e sse s e sessesassesas e ssesesaesesassessesassesssnenes 354
Notifications on Wearables ... ———— 357
Controlling App Visibility 0n WearabIes...........cceeeererererrerrsereerere s sesesesessssessesessesesaesessessssesssnenes 360
Authentication i WEAK ... s 361
Voice Capabilities iNWEATcccccvueeerererererereererrerereesesseres e raesessesesaesessesassesassesassessesessessssessenessenssaes 361
SPEaKErs 0N WEAIADIEScccceverererereeeree st sar s e ss e sae e s e sessesae e saesesae e saesassesaenesaenesaenasseanaens 363
LOCALION N WEAKcvviicrirriiss bbb 364
Data Communication in WEAK ... 365
Programming With ANAroid TV.........ccecrerrrsnsnsnsesses s se e s e e s s s snssnsnnnns 367
ANArOid TV USE CASEScuvurreriirsssisissssssssesesssssssesssss s ssss s s bbb 367
Starting an Android TV STUdI0 PrOJECTcccovieicrricicrcrin s ses s s 367
Android TV Hardware FEAtUrES ..o ssssssssnenes 368

Ul Development for ANArOit TVcoeviiiniinenenene e sse e ssesas s sasssesssssesassassssssssssssssssssssseses 368
Recommendation Channels for Content Search..........c.cocovvnininninnnnn 370

A Recommendation Row for Content SEarch..........connnsnnn s 373

Android TV Content SEAICHccccciiei i s r e s a e s n s s n e n b s n s 376

xiv Table of Contents

ANArOid TV GAIMESvvisiecrssrisissssssse s 377
ANdroid TV ChANNEIS.......ccciuriiirinisissss s 378
Programming with Android AULOcceceversrsrsr s nns 378
Developing for ANAroid AULO ..o a e s e e sn e 379
Testing Android Auto for @ PRONE SCIEEN ..o 379
Testing Android AUt fOr @ Car SCIEEN.........ccceeeururereririee e 379
Develop Audio PIayDaCK 0N AULOc.coceereruiiiririeese e 381
Develop MeSSAGING ON AULOccceereieeereriee e se s s e e sesne e e 383
Playing and Recording SOUNG...........c.oceruriiniririeecne e 385
Short SOUNT SNIPPELS....cveieeccrer s e b e s r e e re e nanae s 386
Playing MEdIaccuiiciicctt s 388
RECOrdING AUAIOcoueeveereeeeserresesesse e sse e ss s e sre s nn s nn e nna e nnas 391
USING the CAMEIA........ceceereecereeriere e saesae e saesas s s sa e sae e saesaesassaesaenaenns 391
BLE L 0T W T (1SS 392
Recording @ VidO0........cocvvvrinmnnininniisiiisisss s s 395
Writing Your OWn Camera APPcccveevrernersessessessessessessesssssessessessssssssssssssssssssssssssssssnans 397
ANdroid and NFC ... s snn e 423
ANdroid @and BIUBLOOTNc.coeeeeeeecrerercrereresere e 423
ANAIOI SENSOIS ... e e e e e e e e e e ne e ne e e nenenenenenees 424
Retrieving Sensor CapabilitieS........cuueererrreieseserrsesesissesese s e se s sssss e ssssssnnens 424
LiStening t0 SENSOr EVENTScccceerrrrecreresisesesesssssesesss s sesessssesesessssssssesesssssssssssssssssssssssssnsssssssssnens 424
Interacting with Phone CallScocevererirrnrrerc e see e s e sas e e e sassssnnns 427
Monitoring Phone State ChAaNQEScccveveerereerereserereseresessssessesessesessessssessssessssesssssssssassessssessenenes 427
Initiate @ DialiNg PrOCESScccvivirerere e e b e a e s p e a e a e nr e r e nn e s 431
Create a Phone Call CUSIOM Ul.........ccouinininmssssssssssssssss s sssssssssens 431
Fingerprint Authentication..........c.cocvcrcrcecscs e 431
BChapter 14: TeStiNG....ccccrnnsmmmmmissnnnmmisssnnmssssssnessssssssessssssssssssssnnssssssnnnsesssnnnnnss 433
L [SRR 434
StANdard Unit TESES.....cuuiuiriririii 434
Unit Tests with Stubbed Android FrameworkK...........covnnnmninnmnssssssss s 435

Unit Tests with Simulated Android FrameWOrK..........c.couciimniininiiisisinnssssssssssssssesssssssssesssssssssess 436

Table of Contents XV

Unit TeSts With MOCKING.......cceoiriiecece e sa e sr e sr e a et nn s 437
INtEgration TESTS....cccicerir e ae 443
TESHING SEIVICEScviuereirerire st e e e p e b e e b e e p e e ne e nnis 443
Testing INTENE SEIVICEScuevvierercre e a e s p e s 444
Testing Content ProVIAErS........covciiienererine st se e sa s a s s sr st s p e e 446
Testing BroadCast RECEIVELSccoucrerererinernese e se e sas s s e st sae s snas 447
USEr INTErface TESTS.......cccrrrrerrrerresr s s 448
EChapter 15: Troubleshootingcccccceemmrnrnmsssssssssssnmmmeemssssss s —————————— 449
0T o 1 T RS R 449
DT 010 T T S 453
Performance MONItOriNgccccveeriersrsensesserses s se s sn s sn s sn s sr s snssn e nnennenns 453
Memory Usage MONITONINGccocevvernerrernersersessesses s sessesses e s sessessesssssessnssnsssssssssssssnsnns 457
EChapter 16: Distributing ApPPS «.couurseemeemmmrmnmmissssssssnsre s s 461
YOUr OWN APP STOTE......eiereririr ettt n e e 461
The GO0GIE Play STOTEccvcerverrerierrersersesser st se s e sn s s sn s sn s snssa s snssaesne s 462
EChapter 17: Instant APPS....ccccvviiemmmmmnissnmmmmsssnmmnssssnssss s 463
DevelopingInstant APPS......coce e s 463
Testing Instant Apps on an EMUIAtor...........cccvcrcrcercscscsses e 465
Building Deployment Artifacts........c.cccvveenrerennesnsesessssess s snssesnes 466
Preparing DEEP LiNKSccccveererrersessessensessessessessessessessessessssssssssssssssssssssssssssssssssssnsnns 466
Rolling Out INSTANT APPScoeierirerer s sn s sr s sn s s sn s nn s sn e snennenan 467
BChapter 18: CLI......ccoiccurinisnnnnmmssssssnmmssssssnesssssssssssssssssssssssnsnssssssnnssssssnnnsssssnnnnnss 469
The SDK BUII TOOIS......cccourerrrrrrneeesesesesessssssssssesesesssssssssssssesesssssssssssssssssssssssssssssssens 472
The SDK PIatform TOOIScccovrrerermrcirsce s 475

About the Author

Peter Spath, Ph. D. graduated in 2002 as a physicist and soon afterward became an IT
consultant, mainly for Java-related projects. In 2016 he decided to concentrate on writing
books on various subjects, with a primary focus on software development. With a wealth of
experience in Java-related languages, the release of Kotlin for building Android apps made
him enthusiastic about writing books for Kotlin development in the Android environment.

About the Technical
Reviewers

Marcos Placona is a developer evangelist at Twilio and a GDE.
He serves communities in London and all over Europe. He is
passionate about technology and security and spends a great
deal of his time building mobile and web apps and occasionally
connecting them to physical devices.

Marcos is a great believer in open source projects. When
he’s not writing open source code, he’s probably blogging
about code on https://androidsecurity.info, https://
androidthings.rocks, or https://realkotlin.com.

He’s also a great API enthusiast and believes they bring peace
to the software engineering world.

Massimo Nardone has a master of science degree in
computing science from the University of Salerno, Italy, and
has more than 24 years of experience in the areas of security,
web/mobile development, cloud, and IT architecture. His IT
passions are security and Android.

Specifically, he has worked as a project manager, software
engineer, research engineer, chief security architect, information
security manager, PCI/SCADA auditor, and senior lead IT
security/cloud/SCADA architect.

He has also worked as a visiting lecturer and supervisor

for exercises at the Networking Laboratory of the Helsinki
University of Technology (Aalto University), and he holds four
international patents (in the PKI, SIP, SAML, and proxy areas).

Xix

https://androidsecurity.info/
https://androidthings.rocks/
https://androidthings.rocks/
https://realkotlin.com/

XX About the Technical Reviewers

He currently works as the chief information security officer (CISO) for Cargotec Oyj and is a
member of the ISACA Finland Chapter board.

Massimo has reviewed more than 45 IT books for different publishing companies and is
the coauthor of Pro JPA 2 in Java EE 8 (Apress, 2018), Beginning EJB in Java EE 8 (Apress,
2018), and Pro Android Games (Apress, 2015).

Introduction

The programs explained in this book, despite their strong affinity to the Kotlin way of
thinking, will not be totally mysterious to Java developers or developers of other modern
computer languages. One of the design goals of Kotlin is expressiveness, so understanding
Kotlin programs requires little effort, even when the programs get shorter. But at some point,
you have to pay for maximum brevity with a loss of expressiveness and a loss of readability.

When it comes to deciding what is better, | favor expressiveness over brevity, but be assured
that a loquacious programming style is a no-go. In the end, professional developers want to
write concise apps because less code means lower costs when it comes to maintenance.

The Transition from Java to Kotlin

Just to whet your appetite, you will now take a look at a really simple app—one that lacks
a lot of features you would want to see in a more complex and professional app—and then
rewrite it from Java to Kotlin. The app consists of a single activity and presents an edit field,
a button, and a text field that reacts to button presses.

If you want to create it using Android Studio, you initiate a new project, disable Kotlin support,
and edit the layout to contain a TextView widget, a Button widget, and an EditText widget.
Then assign the IDs edit, btn, and text to them, respectively. The Java code is as follows:

package de.pspaeth.simplejava;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

import android.view.View;

import android.widget.*;

public class MainActivity extends AppCompatActivity {

@0verride

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity main);

xxii Introduction

final EditText et = findViewById(R.id.edit);
final Button btn = findViewById(R.id.btn);
final TextView text = findViewById(R.id.text);

btn.setOnClickListener(new View.OnClickListener() {
@0verride
public void onClick(View view) {
String entered = et.getText().toString();
text.setText("You entered '" + entered +
"' and pressed 'Go'");

};
}

Here are a few notes about the previous Java code:

The public in front of the class says that it is visible from everywhere.
It cannot be omitted here since otherwise the framework could not use
the class.

The setContentView() changes something by virtue of the “set,”
which is such a common construct that you might want to write it
more concisely as contentView = s.th.instead, even with a variable
of name "contentView" not actually existing or being private. A couple
of competitor languages allow for this type of syntax. In Groovy for
example, you can write contentView = s.th.and the language will
internally translate it to setContentView().

The final in front of the three declarations is necessary in Java up to
version 7 because the variables are going to be used in the anonymous
inner class that comes a little later.

Also, for the setOnClickListener() method, you might want to use
.onClickListener = s.th. instead. It’s the same for the .setText() a
little later.

The argument to setOnClick-Listener() is an object of an anonymous
inner class; it is already an abbreviation of first declaring and then
instantiating and using it. But you could be even more expressive with
syntax like btn -> do s.th. or similar, just not in the Java language
(well, at least not before Java 8).

For the et.getText() method, you could just as well write something
like et.text, which would express the same thing but is shorter.

A sister project that does the same thing but with Kotlin support is written in the Kotlin
language as follows:

package de.pspaeth.simplekotlin

import android.support.v7.app.AppCompatActivity
import android.os.Bundle
import kotlinx.android.synthetic.main.activity main.*

Introduction xxiii

class MainActivity : AppCompatActivity() {

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity main)
btn.setOnClickListener { view ->
val entered = edit.text.toString()
text.text = "You entered '" + entered +
"' and pressed 'Go'"

}

Looking at the Kotlin code more thoroughly, a couple of observations emerge:

You don’t need the semicolon delimiters. Kotlin checks at line breaks
whether the statement is finished or whether the following line needs to
be included.

You don’t need public in front of the class; public is standard in Kotlin.
Instead of extends, you just write :, improving the readability a little bit.

You don’t need to specify void as a return type if a function doesn’t
return anything. Kotlin can infer that.

Unfortunately, you cannot write contentView = s.th. as suggested
earlier. The Groovy language, for example, allows for that. The reason
why this can’t be done in Kotlin is that the construct contentView =
s.th. implies that there must be a class field named contentView, which
is not the case. The compiler could check for appropriately named
methods and then allow for that syntax, but the Kotlin developers
decided to impose this restriction and to prohibit the construct if the
field doesn’t exist. The same is true for setOnClickListener because a
field called onClickListener doesn’t exist either.

Instead of an anonymous inner class, you can use the functional
construct view -> ... This is always possible if the addressed class, the
listener in this case, just contains a single method, like void onClick(
View v) in the base interface used here. The Kotlin compiler knows that
it must use that particular single method of the listener class.

The EditText, Button, and TextView variables no longer need to be
declared. This is, however, not related to Kotlin but a mechanism
provided by Android Studio. The import kotlinx.android.synthetic.
main.activity main.* brings you those fields automatically, derived
from the resources.

To review, the Kotlin code with 559 characters does the same as the Java code with 861
characters. This is a savings of 35 percent, a percentage you can expect for more complex
classes as well.

Despite the syntax being different from Java, the Kotlin compiler translates its source code to
the same virtual machine bytecode as Java, so Kotlin can use the plethora of Java libraries that
are out there in the wild, and Java developers switching to or also using Kotlin won’t miss them.

XxXiv Introduction

This Book’s Audience

This book is for intermediate to experienced Android developers wanting to use the new
Kotlin features to address current Android versions and devices.

After reading this book, you will be able to use Android Studio and Kotlin to build advanced
apps targeting the Android platform.

Being a Kotlin expert is not absolutely necessary for using this book, but having read
introductory-level Kotlin books or studied online resources is surely helpful. The online
documentation of Kotlin provides valuable resources you can use as references while
reading this book.

Source

You can find all the code source shown or referred to in this book at https://github.com/
Apress/pro-android-with-kotlin.

Online Text Companion

Some lists and tables, as well as some class and interface details, are available as part of
the free source code download at https://github.com/Apress/pro-android-with-kotlin.
References to such online resources are marked appropriately.

How to Read This Book

This book can be read sequentially if you want to learn what can be done on the Android
platform, or you can read the chapters independently when the need arises while working

on your Android projects. In addition, you can use parts of the book as a reference for both
finding solutions to particular problems and determining how things can be done using
Kotlin instead of Java. This book includes a description of special Kotlin language constructs
that will help you make your code concise and reliable.

Specifically, Chapter 1 gives a short, bird’s-eye view of the Android system. If you already
have some experience with Android, you can skip it or just skim it.

Chapters 2 to 6 talk about the Android architecture’s corner blocks: an application as

a whole, activities, services, broadcasts, and content providers. If you are a pro-level
developer, some of the information provided in these chapters might seem a bit basic and
easy to find in the official Android developer documentation or elsewhere on the Web. The
reason why | have included these topics is that the information in other sources is of varying
quality —sometimes because of historical reasons, sometimes just because it is outdated.
So, | tried to rectify some of these peculiarities and also provide you with a consolidated,
fresh view on things. | hope | can save you some time when you get into the deeper-level
nuts and bolts of Android work. You can also use these chapters as a reference in case you
are in doubt about certain development issues while your Android project advances.

Chapter 7 briefly talks about the permission system. This is something you must of course
be acquainted with if you develop pro-level Android apps.

https://github.com/Apress/pro-android-with-kotlin
https://github.com/Apress/pro-android-with-kotlin
https://github.com/Apress/pro-android-with-kotlin
http://dx.doi.org/10.1007/978-1-4842-3820-2_1
http://dx.doi.org/10.1007/978-1-4842-3820-2_2
http://dx.doi.org/10.1007/978-1-4842-3820-2_6
http://dx.doi.org/10.1007/978-1-4842-3820-2_7

Introduction XXV

Chapters 8 and 9 deal with APIs you can use in your app and user interface issues. Because
both of these are big issues, it is not possible to mention everything that refers to these
topics. I, however, will give you a selection of useful and interesting solutions for various
tasks in these areas.

Chapters 10 and 11 take a deeper look at development and building strategies and describe
how things can best be done inside Kotlin. While in the previous chapters the Kotlin code is
presented in a more empirical way, in Chapter 10 | describe how to use Kotlin constructs to
produce more elegant and better-readable application code.

Chapter 12 describes some methods you can use to communicate between components
inside your app or between your app and other apps or the outside world.

Chapter 13 handles different devices from a hardware perspective, including smartphones,
wearables like smartwatches, Android TV, and Android Auto. Here | also talk about ways to
access the camera and sensors and how you can interface with phone calls.

Chapters 14 to 17 deal with testing, troubleshooting, and publishing your app, and Chapter
18 explains how to use the tools provided with the SDK installation (part of Android Studio).

Some Notes About the Code

While in general | try to follow a “clean code” approach for all the code presented in this
book, for simplicity | use two anti-patterns you shouldn’t follow in your production code.

| do not use localized string resources. So, whenever you see something
like this inside XML resources:

android:text = "Some message"

what instead you should do is create a string resource and let the
attribute refer to it, as shown here:

android:text = "@string/message"

For logging statements, | always use LOG as a tag, as shown here:
Log.e("LOG", "The message")

In your code, you instead should create a tag like this:

companion object {
val TAG="The class name"

}
and then use this:

Log.e(TAG, "The message")

http://dx.doi.org/10.1007/978-1-4842-3820-2_8
http://dx.doi.org/10.1007/978-1-4842-3820-2_9
http://dx.doi.org/10.1007/978-1-4842-3820-2_10
http://dx.doi.org/10.1007/978-1-4842-3820-2_11
http://dx.doi.org/10.1007/978-1-4842-3820-2_10
http://dx.doi.org/10.1007/978-1-4842-3820-2_12
http://dx.doi.org/10.1007/978-1-4842-3820-2_13
http://dx.doi.org/10.1007/978-1-4842-3820-2_14
http://dx.doi.org/10.1007/978-1-4842-3820-2_17
http://dx.doi.org/10.1007/978-1-4842-3820-2_18

Preface

Pro Android with Kotlin is an addition to the popular Apress series for Android development
targeting the Java platform. With Kotlin as a highly promising new official language in the
Android environment, it allows for more elegant programs compared to the Java standard.
This book deals with advanced aspects of a modern Android app. With a thorough
description of the important parts of Android system internals and professional-level APls,
advanced user interface topics, advanced development topics, in-depth communication
surveys, professional-level hardware topics including looking at devices other than
smartphones, a troubleshooting part with guidance on how to fix memory and performance
problems, and an introduction to app monetizing, the book is an invaluable resource for
developers wanting to build state-of-the-art professional apps for modern Android devices.

This book is not meant to be an introduction to the Kotlin language. For this aim, please take
a look at the Kotlin web site or any introductory-level book about Kotlin. What you will find
here is an attempt to use as many features of Kotlin to write elegant and stable apps using
less code compared to Java.

In 2017, Android versions 8.0 and 8.1 were introduced. In a professional environment, writing
apps that depend on new Android 8.x features is a bad idea since the worldwide distribution
of devices running an 8.x version is well below 10 percent as of the writing of this book.

But you can write code targeting versions 4.0 all the way up to 8.0 (thus covering almost

100 percent of Android devices) by introducing branches in your code. This is what you will
be doing in this book. | still concentrate on modern 8.x development, but if | use modern
features not available to older versions, | will tell you.

Note that this book does not pay much attention to Android versions older than 4.1 (API level
16). If you look at the online API documentation, you will find a lot of constructs targeting API
levels older than 16. Especially when it comes to support libraries, which were introduced

to improve backward compatibility, development gets unnecessarily complicated if you look
at API versions older than 16 because the distribution of such devices is less than 1 percent
nowadays. This book will just assume you are not interested in such old versions, making it
unnecessary to look at such support libraries in many cases and simplifying development
considerably.

xxvii

Chapter

System

The Android OS was born as the child of the Android Inc. company in 2003 and was later
acquired by Google LLC in 2005. The first device running Android came on the market

in 2008. Since then it has had numerous updates, with the latest version number at the
beginning of 2018 reading 8.1.

Ever since its first build, the market share of the Android OS has been constantly increasing,

and by 2018 it is said to be greater than 80 percent. Even though the numbers vary with the

sources you use, the success of the Android OS is surely undeniable. This victory partly has

its roots in Google LLC being a clever player in the worldwide smartphone market, but it also
comes from the Android OS carefully being tailored to match the needs of smartphones and

other handheld or handheld-like devices.

The majority of computer developers formerly or still working in the PC environment
would do a bad job utterly disregarding handheld device development, and this

book’s goal is to help you as a developer understand the Android OS and master the
development of its programs. The book also concentrates on using Kotlin as a language
to achieve development demands, but first we will be looking at the Android OS and
auxiliary development-related systems to give you an idea about the inner functioning of
Android.

The Android Operating System

Android is based on a specially tailored Linux kernel. This kernel provides all the low-level
drivers needed to address the hardware, the program execution environment, and low-level
communication channels.

On top of the kernel you will find the Android Runtime (ART) and a couple of low-level
libraries written in C. The latter serve as a glue between application-related libraries and the
kernel. The Android Runtime is the execution engine where Android programs run.

You as a developer hardly ever need to know about the details of how these low-level
libraries and the Android Runtime do their work, but you will be using them for basic
programming tasks such as addressing the audio subsystem or databases.

© Peter Spath 2018 1
P. Spath, Pro Android with Kotlin, https://doi.org/10.1007/978-1-4842-3820-2_1

http://dx.doi.org/10.1007/978-1-4842-3820-2_1

2 CHAPTER 1: System

Above the low-level libraries and the Android Runtime sits the application framework, which
defines the outer structure of any app you build for Android. It deals with activities, GUI
widgets, notifications, resources, and so on. While understanding the low-level libraries
certainly helps you to write good programs, knowing the application framework is essential
to writing any Android app at all.

On top of all that you will find the apps your users launch for tasks they have to accomplish.

' Android OS

APPS

Contacts Phone Browser

APPLICATION FRAMEWORK

Activity MANAGER Content MANAGER
Location MANAGER Notification MANAGER
Package MANAGER Resource MANAGER
Telephony MANAGER View MANAGER
Window MANAGER XMPP SERVICE

LIBRARIES

ART

Android
Runtime

LINUX KERNEL

Figure 1-1. The Android 0S

CHAPTER 1: System 3

You as a developer will create Android apps using Kotlin, Java, or C++ as a programming
language, or a combination of them. And you will be using the application framework and
the libraries to talk to the Android OS and the hardware. Using C++ as a programming
language on a lower level, addressing target architecture peculiarities, leads to incorporating
the Native Development Kit (NDK), which is an optional part of the Android SDK. While for
special purposes it might be necessary to use the NDK, in most cases the extra effort to
deal with yet another language and the special challenges it bears does not pay off. So in
this book, we will be mainly talking about Kotlin, and sometimes Java where appropriate.

The Development System

The operating system running on handhelds is one part of the story; you as a developer also
need a system for creating Android apps. The latter happens on a PC or laptop, and the
software suite you use for it is Android Studio.

Android Studio is the IDE you use for development, but while you install and operate it, the
software development kit (see the section “The SDK”) gets installed as well, and we will be
talking about both in the following sections. We will also cover virtual devices, which provide
an invaluable aid for testing your app on various target devices.

Android Studio

The Android Studio IDE is the dedicated development environment for creating and running
Android apps. Figure 1-2 shows its main window together with an emulator view.

Android Studio provides the following:
Managing program sources for Kotlin, Java, and C++ (NDK)
Managing program resources
The ability to test-run apps inside emulators or connected real devices
More testing tools
A debugging facility
Performance and memory profilers
Code inspection

Tools for building local or publishable apps

4 CHAPTER 1: System

i Mainactivity kt - | 5 Android | ardller java

MainActivity| onCreate() &7 (Build.VERSION.5.)

class Mainfctivity : ApplosmpatActivity(
Vo rid SimpleKotiin
override fun onCreatelsavedInstanceState: Bundle?) {
super.onCreate (savedInstanceState)
Log.el =LOG", “onCreate{)")

setContentView(R. layout.activity main)
btn.setOnClickListener { view -»
val entered = edit.text.toString()
text.fext = “You entered '* + entered +
“* and pressed 'Go'”

b

wal tent = Intent(kage «t: this, MyService::class.java)
it (Build.VERSION.5DK INT >= Build.VERSION_CODES.D) (

} olse |

b
e L

v | |verbose | «| A o @ Regex (sl

asl mssist data: 2388 bytes, cotaining | wirde, § view
eollection, codeaIThl, datieTakn

Figure 1-2. Android Studio

The help included in the studio and online resources provide enough information to master
Android Studio. In this book, we will be talking about it once in a while and in dedicated
chapters.

Virtual Devices

Developing software for computers always included the challenge to create one program
that is able to handle all possible target systems. With handheld devices coming in so many
different forms nowadays, this aspect has become more critical than ever before. You have
smartphone devices with sizes between 3.9” and 5.4” and more, tablets from 7” to 14” and
more, wearables, TVs at different sizes, and so on, all running with Android OS.

Of course, you as a developer cannot possibly buy all devices that are needed to cover all
possible sizes. This is where emulators come in handy. With emulators you don’t have to buy
hardware and you still can develop Android apps.

Android Studio makes it easy for you to use emulators for developing and testing apps, and
using the tools from the software development kit you can even operate the emulators from
outside Android Studio.

Caution You can develop apps without owning a single real device. This is, however, not
recommended. You should have at least one smartphone from the previous generation and maybe
also a tablet if you can afford it. The reason is that operating real devices feels different compared to
emulators. The physical handling is not 100 percent the same, and the performance differs as well.

CHAPTER 1: System 5

To manage virtual devices from inside Android Studio, open the Android Virtual Device
Manager via Tools » Android » AVD Manager. From here you can investigate, alter, create,
delete, and start virtual devices. See Figure 1-3.

Android Virtual Device Manager

£, ., Your Virtual Devices
Android Studio

Type |Name Play Sto... Resolution API Target CPU/... Sizeo... Actions a
ED Nexus 6 API 26 1440 = 2560: 560dpi ‘ 26 Android 8.0... | x86 3GB | Y 44
ED Nexus 5X API 24 E- 1080 = 1920: 420dpi ‘ 24 Android 7.0... ‘ Xx86 1GB [I A 4
ED Nexus 10 API 26 2560 = 1600: xhdpi l 26 Android 8.0... | x86 1GB | Y A4
+ Create Virtual Device... G| ?

Figure 1-3 AVD Manager

When creating a new virtual device, you will be able to choose from a TV, wear, phone, or
tablet device; you can select the API level to use (and download new API levels); and in the
settings you can specify things like this:

B Graphics performance

B Camera mode (advanced settings)
B Network speed (advanced settings)
[

Boot option (advanced settings; quick boot considerably improves
bootup speed once the device has been booted for the first time)

B Number of simulated CPUs (advanced settings)
B Memory and storage settings (advanced settings)
The virtual device base images and skins used for creating virtual images can be found here:

SDK_INST/system-images
SDK_INST/skins

The actual virtual devices with installed apps and user data are in the following location:

~/.android/avd

6 CHAPTER 1: System

Caution Virtual devices do not emulate all hardware supported by real devices. Namely, in the
first quarter of 2018, the following are not supported:

WiFi before API level 25

Bluetooth

NFC

SD card eject and insert
Headphones attached to the device
uUsSB

You must thus take precautions inside your app for these not to be present if you want to use the
emulator.

Handling running virtual devices can also be done by various command-line tools; see
Chapter 18 for more information.

The SDK

The software development kit (SDK) is, in contrast to Android Studio, a loosely coupled
selection of tools that are either essential for Android development and as such directly
used by Android Studio or at least helpful for a couple of development tasks. They can all be
started from within a shell and come with or without their own GUI.

In case you don’t know where the SDK was installed during the installation of Android
Studio, you can easily ask Android Studio: select File » Project Structure » SDK location
from the menu.

The command-line tools that are part of the SDK are described in Chapter 18.

http://dx.doi.org/10.1007/978-1-4842-3820-2_18
http://dx.doi.org/10.1007/978-1-4842-3820-2_18

Chapter

Application

An Android app consists of components such as activities, services, broadcast receivers,
and content providers, as shown in Figure 2-1. Activities are for interacting with device
users, services are for program parts that run without a dedicated user interface, broadcast
receivers listen for standardized messages from other apps and components, and content
providers allow other apps and components to access a certain amount and kind of data
provided by a component.

App
Activities Services

Broadcast Content
Receivers Providers

Figure 2-1. An app in the Android 0S

Components get started by the Android Runtime, or execution engine if you like, either
by itself or on behalf of other components that create start triggers. When a component
gets started depends on its type and the meta-information given to it. At the end of the
lifecycle, all running components are subject to removal from the process execution list
either because they have finished their work or because the Android OS has decided that

© Peter Spath 2018
P. Spéth, Pro Android with Kotlin, https://doi.org/10.1007/978-1-4842-3820-2_2

http://dx.doi.org/10.1007/978-1-4842-3820-2_2

8 CHAPTER 2: Application

a component can be removed because it is ho longer needed or that it must be removed
because of a device resource shortage.

To make your app or component run as stable as possible and give your users a good
feeling about its reliability, a deeper knowledge of the lifecycle of Android components is
helpful. We will be looking at system characteristics of components and their lifecycles in
this chapter.

Simple apps and Android components are easy to build; just refer to one of the tutorials on
the official Android web site or one of the thousand other tutorials elsewhere on the Web.
A simple app is not necessarily a professional-level stable app, though, because Android
state handling as far as the app is concerned is not the same as for a desktop application.
The reason for this is that your Android device might decide to kill your app to save system
resources, especially when you temporarily suspend the app in question because you use
one or more other apps for some time.

Of course, Android will most likely never kill apps you are currently working with, but you
have to take precautions. Any app that was killed by Android can be restarted in a defined
data and processing state, including most currently entered data by the user and possibly
interfering in the least possible amount with the user’s current workflow.

From a file perspective, an Android app is a single zip archive file with the suffix .apk.

It contains your complete app including all meta-information, which is necessary to run the app
on an Android device. The most important control artifact inside is the file AndroidManifest.xml
describing the application and the components an application consists of.

We do not in detail cover this archive file structure here, since in most cases Android Studio
will be taking care of creating the archive correctly for you, so you usually don’t need to
know about its intrinsic functioning. But you can easily look inside. Just open any *.apk file;
for example, take a sample app you’ve already built using Android Studio, as shown here:

AndroidStudioProject/[YOUR-APP]/release/app-release.apk

B assets

E=) META-INF

B res
AndroidManifest.xml

7] classes.dex

2] resources.arsc

Figure 2-2. An APK file unzipped

Then unzip it. APK files are just normal zip files. You might have to temporarily change the
suffix to .zip so your unzip program can recognize it. Figure 2-2 shows an example of an
unzipped APK file.

CHAPTER 2: Application 9

This .dex file contains the compiled classes in Dalvik Executable format, something that is
similar to a JAR file in Java.

We will be talking about app-related artifacts shortly, but first we will be looking at the more
conceptual idea of what tasks are.

Tasks

A task is a group of activities interacting with each other in such a way that the end user
considers them as the elements of an application. A user starts an app and sees the main
activity, does some work there, opens and closes subactivities, maybe switches to another
app, comes back, and eventually closes the app.

Going a bit more in-depth, the main structure a task exhibits is its back stack, or simply
stack, where activities of an app pile up. The standard behavior for simple apps in this stack
is that the first activity when you launch an app builds the root of this stack, the next activity
launched from inside the app lands on top of it, another subactivity lands on top of both, and
so on. Whenever an activity gets closed because you navigate back (that is where the name
back stack comes from), the activity gets removed from the stack. When the root activity
gets removed, the stack gets closed as a whole, and your app is considered shut down.

Inside the <application> element of the AndroidManifest.xml file, in more detail described
in section “The Application Declaration” of the online text companion, we can see several
settings altering the standard behavior of the task stack, and we will see more in Chapter

3. This way, a tailored task stack can become a powerful means to help your end users to
understand and fluently use your app. Keep in mind that a complicated stack behavior might
be hard to understand for users beginning to use your app, so it should be your aim to find a
good balance between power and ease of use.

The Application Manifest

An important central app configuration file you can see in any Android app is the file
AndroidManifest.xml. It describes the app and declares all the components that are part of
the app. The outline of such a manifest file might look like this:

<manifest xmlns:android=
"http://schemas.android.com/apk/res/android"
xmlns:tools=
"http://schemas.android.com/tools"
package="de.pspaeth.tinqly">

<application
android:allowBackup="true"
android:icon="@mipmap/my_icon"x
android:label="@string/app_name"
android:roundIcon="@mipmap/my_round_icon"
android:supportsRtl="true"
android:theme="@style/AppTheme">
<activity ... />

</application>

</manifest>

http://dx.doi.org/10.1007/978-1-4842-3820-2_3

10 CHAPTER 2: Application

The most important attribute of the root entry <manifest> is called package. It declares the ID
of your app, and if you plan to publish your app, this must be a worldwide unique ID for it.
A good idea is to use your domain (or your company’s domain) reversed and then an unique
application identifier, as shown in the previous code.

Table 2-1 describes all the possible attributes of <manifest>. Note that for the simplest apps,
all you need is the package attribute and a single <application> child.

Table 2-1. Manifest Main Attributes

Name Description

android: installlocation Defines the installation location. Use internalOnly for installing
only in the internal storage, auto for letting the OS decide with
affinity toward using the internal storage (the user can switch
later in the system settings), or preferExternal for letting the OS
decide with affinity toward using the external storage. The default
is internalOnly. Note that a couple of restrictions apply to using
external storage for that aim; see the online documentation for
<manifest>. For modern devices with lots of free internal storage, you
should never need to specify preferExternal here.

package Defines the worldwide unique ID of your app and is a string like abc.
def.ghi.[...] where the nondot characters may contain the letters
A-Z and a-z, the numbers 0-9, and underscores. Don’t use a number
after a dot! This is also the default process name and the default
task affinity; see the online text companion to learn what those
mean. Note that once your app is published, you cannot change this
package name in the Google Play Store. There is no default; you
must set this attribute.

android: sharedUserId Defines the name of the Android OS user ID assigned to the app. You
can prior to Android 8.0 or API level 26 do things such as assigning
the same user ID to different apps, which lets them freely interchange
data. The apps must then be signed with the same certificate.
However, you normally don’t have to set this attribute, but if you set
it, make sure you know what you are doing.

android: sharedUserlLabel If you also set sharedUserId, you can set a user-readable label for
the shared user ID here. The value must be a reference to a string
resource (for example, @string/myUserLabel).

android: Serves as a security level and is either 1 or 2. Starting with Android

targetSandboxVersion 8.0 or API level 26, you must set it to 2. With 2, the user ID can no
longer be shared between different apps, and the default value for
usesClearTextTraffic (see the online text companion) is set to false.

android: versionCode Defines an internal version number of your app. This is not shown to
users and used only for comparing versions. Use an integer number
here. This defaults to undefined.

android: versionName Defines a user-visible version string. This is either the string itself or
a pointer to a string resource ("@string/..."). This is not used for
anything else but informing the user.

CHAPTER 2: Application

All elements possible as children to the <manifest> element are listed in the section
“Manifest Top Level Entries” of the online text companion. The most important one,
<application>, describes the application and gets covered in detail in the section
“The Application Declaration” of the online text companion.

1

Chapter

Activities

Activities represent user interface entry points of your app. Any app that needs to interact
functionally with the user in a direct way, by letting the user enter things or telling the
user graphically about the functional state of an app, will expose at least one activity to
the system. | say functionally because telling the user about events can also happen via
notifications through toasts or the status bar, for which an activity is not needed.

Apps can have zero, one, or more activities, and they get started in one of two ways:

The main activity, as declared inside AndroidManifest.xml, gets started
by launching the app. This is kind of similar to the main() function of
traditional applications.

All activities can be configured to be started by an explicit or implicit
intent, as configured inside AndroidManifest.xml. Intents are both
objects of a class and a new concept in Android. With explicit intents,
by triggering an intent, a component specifies that it needs something
to be done by a dedicated component of a dedicated app. For implicit
intents, the component just tells what needs to be done without
specifying which component is supposed to do it. The Android OS or
the user decides which app or component is capable of fulfilling such an
implicit request.

From a user perspective, activities show up as things that can be started from inside an
application launcher, be it the standard launcher or a specialized third-party launcher app.
As soon as they are running, they show up in a task stack as well, and users will see them
when using the Back button.

© Peter Spath 2018
P. Spath, Pro Android with Kotlin, https://doi.org/10.1007/978-1-4842-3820-2_3

13

http://dx.doi.org/10.1007/978-1-4842-3820-2_3

14 CHAPTER 3: Activities

Declaring Activities

To declare an activity, you can write the following inside AndroidManifest.xml, for example:

<?xml version="1.0" encoding="utf-8"?>
<manifest ...
package="com.example.myapp">
<application ... >
<activity android:name=".ExampleActivity" />

</application ... >
</manifest >

As shown in this particular example, you can start the name with a dot, which leads
to prepending the app’s package name. In this case, the full name of the activity is
com.example.myapp.ExampleActivity. Or you can write the full name, as shown here:

<?xml version="1.0" encoding="utf-8"?>
<manifest ... package="com.example.myapp" ...>
<application ... >
<activity android:name=
"com.example.myapp.ExampleActivity" />

</application ... >
</manifest>
All attributes you can add to the <activity> element are listed in the section “Activity
Related Manifest Entries” in the online text companion.
The following are elements that can be child elements inside the activity element:
<intent-filter>

This is an intent filter. For details, see the online text companion at “Activity-
Related Manifest Entries”. You can specify zero, one, or many intent filters.

<layout>

Starting with Android 7.0, you can specify layout attributes in multiwindow
modes as follows, where you of course can use your own numbers:

<layout android:defaultHeight="500dp"
android:defaultWidth="600dp"
android:gravity="top|end"
android:minHeight="450dp"
android:minWidth="300dp" />

The attributes defaultWidth and defaultHeight specify the default dimensions, the attribute
gravity specifies the initial placement of the activity in freeform modes, and the attributes
minHeight and maxHeight signify minimum dimensions.

CHAPTER 3: Activities 15

<meta-data>

This is an arbitrary name-value pair in the form <meta-data
android:name="..." android:resource="..." android:value="..." />.
You can have several of them, and they go into an android.os.Bundle
element available as PackageItemInfo.metaData.

Caution Writing an app without any activity is possible. The app can still provide services,
broadcast receivers, and data content as a content provider. One thing you as an app developer
need to bear in mind is that users do not necessarily understand what such components without
user interfaces actually do. In most cases, providing a simple main activity just to give information
is recommended and improves the user experience. In a corporate environment, though, providing
apps without activities is acceptable.

Starting Activities

Activities can be started in one of two ways. First, if the activity is marked as the launchable
main activity of an app, the activity can be started from the app launcher. To declare an
activity as a launchable main activity, inside the AndroidManifest.xml file you’d write the
following:

<activity android:name=
"com.example.myapp.ExampleActivity">
<intent-filter>
<action android:name=
"android.intent.action.MAIN" />
<category android:name=
"android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

android.intent.action.MAIN tells Android that it is the main activity and will go to the
bottom of a task, and the android.intent.category.LAUNCHER specifies that it must be listed
inside the launcher.

Second, an activity can be started by an intent from the same app or any other app. For this
to be possible, inside the manifest you declare an intent filter, as shown here:

<activity android:name=
"com.example.myapp.ExampleActivity">
<intent-filter>
<action android:name=
"com.example.myapp.ExampleActivity.START ME" />
<category android:name=
"android.intent.category.DEFAULT"/>
</intent-filter>
</activity>

16 CHAPTER 3: Activities

The corresponding code to address this intent filter and actually launch the activity now
looks like this:

val intent = Intent()

intent.action =
"com.example.myapp.ExampleActivity.START ME"

startActivity(intent)

The flag exported="false" must be set for calls from other apps. The category specification
android.intent.category.DEFAULT inside the filter takes care of the activity being launchable
even with no category set in the launching code.

In the previous example, we used an explicit intent to call an activity. We precisely told
Android which activity to call, and we even expect there to be precisely one activity, which
gets addressed this way through its intent filter. The other type of intent is called an implicit
intent, and what it does, contrary to calling precisely one activity, is tell the system what we
actually want to do without specifying which app or which component to use. Such implicit
calls, for example, look like this:

val intent = Intent(Intent.ACTION SEND)

intent.type = "text/plain”
intent.putExtra(Intent.EXTRA_TEXT, "Give me a Quote")
startActivity(intent)

This snippet calls an activity that is able to handle Intent.ACTION SEND actions, receive texts
in the MIME type text/plain, and pass over the text “Give me a quote.” The Android OS
will then present the user with a list of activities from this or other apps that are capable of
receiving this kind of intent.

Activities can have data associated with them. Just use one of the overloaded
putExtra(...) methods of the intent class.

Activities and Tasks

What actually happens with a launched activity concerning the task stack gets determined
by the attributes, listed here, as given in the <activity> element’s attributes:

taskAffinity
launchMode
allowTaskReparenting
clearTaskOnLaunch
alwaysRetainTaskState
finishOnTaskLaunch

and by the intent calling flags, listed here:
FLAG_ACTIVITY_NEW TASK
FLAG_ACTIVITY CLEAR_TOP
FLAG_ACTIVITY SINGLE_TOP

CHAPTER 3: Activities 17

You can specify Intent.flags = Intent.<FLAG>, where <FLAG> is one from the list. In case
the activity attributes and caller flags contradict, the caller flags win.

Activities Returning Data

If you start an activity by using this:
startActivityForResult(intent:Intent, requestCode:Int)

it means you expect the called activity to give something back while it returns. The construct
you use in the called activity reads as follows:

val intent = Intent()
intent.putExtra(...)
intent.putExtra(...)
setResult(Activity.RESULT OK, intent)
finish()

where inside the .putExtra(...) method calls you can add whatever data is to be returned
from the activity. You can, for example, add these lines to the onBackPressed() event handler
method.

For setResult()’s first argument, you can use any of the following:

Activity.RESULT OK if you want to tell the caller the called activity
successfully finished its job.

Activity.RESULT CANCELED if you want to tell the caller the called activity
did not successfully finish its job. You still can put extra information via
.putExtra(...) to specify what went wrong.

Activity.RESULT FIRST USER + N, with N being any number from 0, 1, 2,
..., for any custom result code you want to define. There is practically no
limit for N (the maximum value reads 2%' — 1).

Note that you need to take care of also handling back-press events if you have a toolbar.
One possibility is to add to the onCreate() method lines as follows:

setSupportActionBar(toolbar)
supportActionBar!!.setDisplayHomeAsUpEnabled(true)

// The navigation button from the toolbar does not

// do the same as the BACK button, more precisely

// it does not call the onBackPressed() method.

// We add a listener to do it ourselves
toolbar.setNavigationOnClickListener { onBackPressed() }

18 CHAPTER 3: Activities

When the called intent returns the way described earlier, the calling component needs to be
informed of that event. This is done asynchronously since the startActivityForResult()
method immediately returns and does not wait for the called activity to finish. The way this event
gets caught nevertheless is by overriding the onActivityResult() method, as shown here:

override
fun onActivityResult(requestCode:Int, resultCode:Int,
data:Intent) {
// do something with 'requestCode' and 'resultCode’
// returned data is inside 'data’

}

requestCode is whatever you set inside startActivityForResult() as requestCode, and
resultCode is what you wrote as the first argument in setResult() in the called activity.

Caution On some devices, requestCode has its most significant bit set to 1, no matter
what was set before. To be on the safe side, you can use the Kotlin construct inside
onActivityResult() as follows:

val requestCodeFixed = requestCode and OxFFFF

Intent Filters

Intents are objects to tell Android that something needs to be done, and they can be explicit
by exactly specifying which component needs to be called or implicit if we don’t specify the
called component but let Android decide which app and which component can answer the
request. In case there is some ambiguity and Android cannot decide which component to
call for implicit intents, Android will ask the user.

For implicit intents to work, a possible intent receiver needs to declare which intents it is able
to receive. For example, an activity might be able to show the contents of a text file, and a
caller saying “I need an activity that can show me text files” possibly connects to exactly this
activity. Now the way the intent receiver declares its ability to answer intent requests is by
specifying one or more intent filters in its app’s AndroidManifest.xml file. The syntax of such
a declaration is as follows:

<intent-filter android:icon="drawable resource"
android:label="string resource"
android:priority="integer" >

</intent-filter>

Here, icon points to a drawable resource ID for an icon, and label points to a string
resource ID for a label. If unspecified, the icon or label from the parent element will be used.
The priority attribute is a number between -999 and 999 and for intents specifies its ability
to handle such intent request, and for receivers specifies the execution order for several
receivers. Higher priorities come before lower priorities.

CHAPTER 3: Activities 19

Caution The priority attribute should be used with caution. A component cannot possibly
know what priorities other components from other apps can have. So, you introduce some kind of
dependency between apps, which is not intended by design.

This <intent-filter> element can be a child of the following:

<activity> and <activity-alias>

<service>

<receiver>
So, intents can be used to launch activities and services and to fire broadcast messages.
The element must contain children elements as follows:

<action> (obligatory)

<category> (optional)

<data> (optional)

Intent Action

The <action> child of the filter (or children, because you can have more than one) specifies
the action to perform. The syntax is as follows:

<action android:name="string" />

This will be something expressing an action such as View, Pick, Edit, Dial, and so on. The
complete list of generic actions is specified by constants with names like ACTION_* inside the
class android.content.Intent; you can find a list in the section “Intent Constituent Parts” in
the online text companion. Besides those generic actions, you can define your own actions.

Note Using any of the standard actions does not necessarily mean there is any app on your
device that is able to respond to a corresponding intent.

Intent Category

The <category> child of the filter specifies a category for the filter. The syntax is as follows:
<category android:name="string" />

This attribute may be used to specify the type of component that an intent should address.
You can specify several categories, but the category is not used for all intents, and you can
omit it as well. The filter will match the intent only if all required categories are present.

20 CHAPTER 3: Activities

When an intent is used on the invoker side, you can add categories by writing the following,
for example:

val intent:Intent = Intent(...)
intent.addCategory("android. intent.category.ALTERNATIVE")

Standard categories correspond to constants with names like CATEGORY_* inside the
android.content.Intent class. You can find them listed in the section “Intent Constituent
Parts” in the online text companion.

Caution For implicit intents, you must use the DEFAULT category inside the filter. This is
because the methods startActivity() and startActivityForResult() use this category
by default.

Intent Data

The <data> child of the filter is a data type specification for the filter. The syntax is as follows:

<data android:scheme="string"
android:host="string"
android:port="string"
android:path="string"
android:pathPattern="string"
android:pathPrefix="string"
android:mimeType="string" />

You can specify either of the following or both of the following:

A data type specified by only the mimeType element, for example, text/
plain or text/html. So, you can write the following:

<data android:mimeType="text/html" />

A data type specified by scheme, host, port, and some path
specification: <scheme>://<host>:<port>[<path>|<pathPrefix> |<path
Pattern>]. Here <path> means the full path, <pathPrefix> is the start

of a path, and <pathPattern> is like a path but with wildcards: X* is

zero or more occurrences of the character X, and .* is zero or more
occurrences of any character. Because of escaping rules, write * for an
asterisk and \\\\ for a backslash.

On the caller side, you can use setType(), setData(), and setDataAndType() to set any data
type combination.

CHAPTER 3: Activities 21

Caution For implicit intent filters, if the caller specifies a URI data part as in intent.data

= <some URI>, it might not be sufficient to specify just the scheme/host/port/path inside the

filter declaration. Under these circumstances, you also have to specify the MIME type, as in
mimeType="*/*". Otherwise, the filter possibly won’t match. This generally happens in a content
provider environment since the content provider’s getType () method gets called for the
specified URI and the result gets set as the intent’s MIME type.

Intent Extra Data

Any intent can have extra data added to it that you can use to send data with it other than
specified by the <data> subelement.

While you can use one of the various putExtra(...) methods to add any kind of extra data,
there are also a couple of standard extra data strings sent by putExtra(String,Bundle). You
can find the keys in the section “Intent Constituent Parts” in the online text companion.

Intent Flags

You can set special intent handling flags by invoking the following:
intent.flags = Intent.<FLAG1> or Intent.<FLAG2> or ...

Most of these flags specify how the intent gets handled by the Android OS. Specifically, flags
of the form FLAG_ACTIVITY * are aimed at activities called by Context.startActivity(..),
and flags like FLAG_RECEIVER * are for use with Context.sendBroadCast(...). The tables in
the section “Intent Constituent Parts” in the online text companion show the details.

System Intent Filters

The system apps (that is, the apps already installed when you buy a smartphone) have intent
filters you can use to call them from your app. Unfortunately, it is not that easy to guess how
to call the activities from system apps, and relevant documentation is hard to find. A way out
is to extract this information from their APK files. This is done for you for API level 26, and
the result is listed in the online text companion in the section “The System Intent Filters.”

As an example, suppose you want to send an e-mail. Looking at the system intent table in
the online text companion, you can find a lot of actions for PrebuiltGmail. Which one do

we use? Well, first a general-purpose interface should not have too many input parameters.
Second, we can also look at the action name to find something that seems appropriate.

A promising candidate is the SEND_TO action; all that it apparently needs is a mailto: data
specification. And as it happens, this is the action we actually need. Using an elaborated
mailto:... URL allows us to specify more recipients, CC and BCC recipients, a subject, and
even the mail body. However, you can also just use "mailto:master@universe.com" and add
recipients, body, and so on, by using extra fields. So to send an e-mail, while possibly letting
the user choose among several e-mail apps installed on a device, write the following:

val emailIntent:Intent = Intent(Intent.ACTION_SENDTO,
Uri.fromParts("mailto","abc@gmail.com", null))

22 CHAPTER 3: Activities

emailIntent.putExtra(Intent.EXTRA_SUBJECT, "Subject")
emaillntent.putExtra(Intent.EXTRA TEXT, "Body")
startActivity(Intent.createChooser(

emailIntent, "Send email..."))
// or startActivity(emailIntent) if you want to use
// the standard chooser (or none, if there is only
// one possible receiver).

Caution It is at the receiving app’s discretion how to exactly handle intent URIs and extra data. A
poorly designed e-mailer might not allow you to specify e-mail header data at all. To be on the safe
side, you may want to add all header data in both the mailto: URI and as extra data.

Activities Lifecycle

Activities have a lifecycle, and contrary to traditional desktop applications, they are
intentionally subject to being killed whenever the Android OS decides to do so. So, you as
a developer need to take special precautions to make an app stable. More precisely, an
activity finds itself in one of the following states:

Shut down: The activity is not visible and not processing anything. Still,
the app containing the activity might be alive because it has some other
components running.

Created: Either the activity is the main activity and was started by the
user or some other component or it is an activity regardless of whether
it is main activity and it was started by some other component, from
inside the same app or another app if security considerations permit it.
Also, activity creation happens when you, for example, flip the screen
and the app needs to be built up with different screen characteristics.
During the creation process, the callback method onCreate() gets
called. You must implement this method since there the GUI needs to
be built up. You can also use this callback method to start or connect to
services or provide content provider data. And you can use the APIs to
prepare playing music, operating the camera, or doing anything else the
app is made for. This is also a good place to initially set up a database
or other data storage your app needs.

Started: Once done with the creation (and also in case of a restart after
a stop), the activity goes into the started state. Here the activity is about
to become visible to the user. During the start process, the callback
method onStart() gets called. This is a good place to start broadcast
receivers, start services, and rebuild internal state and processes you
quit while the activity went to the stopped state.

Resumed: Shortly before actually becoming visible to the user, the
activity goes through the resuming process. During that process the
callback onResume() gets called.

Running: The activity is fully visible, and the user can interact with it.
This state immediately follows the resuming process.

CHAPTER 3: Activities

Paused: The activity loses focus but is still at least partly visible. Losing
the focus, for example, happens when the user taps the Back or
Recents button. The activity may continue to send updates to the Ul

or continue to produce sound, but in the majority of cases the activity
will proceed to the stopped state. During the pausing, the onPause()
callback gets called. The paused state is followed by the stopped state
or the resumed state.

Stopped: The activity is invisible to the user. It later might be restarted,
destroyed, and expunged from the active process list. During stopping,

the onStop() callback gets called. After stopping, either destruction
or starting happens. Here you can, for example, stop the service you
started in onStart().

Destroyed: The activity is removed. The callback onDestroy() gets
called, and you should implement it and do everything there to release
resources and do other cleanup actions.

Table 3-1 lists the possible transitions between an activity’s states, which are illustrated in

Figure 3-1

Table 3-1. Activity State Transitions

23

From To Description Implement

Shut Down Created An activity gets called the first time or onCreate(): Call super.onCreate(),
after a destruction. prepare the Ul, start services.

Created Started An activity starts after creation. onStart(): You can start services
here that are needed only while the
activity is visible.

Started Resumed The resumed state automatically Use onResume.

follows a started state.

Resumed Running The running state automatically The activity’s functioning including
follows a resumed state. Ul activity happens here.

Running Paused The activity loses focus because the Use onPause.
user tapped the Back or Recents button.

Paused Resumed The activity has not stopped yet, Use onResume().
and the user navigates back to the
activity.

Paused Stopped The activity is invisible to the user, for onStop(): You can stop services
example, because another activity here that are needed only while the
gets started. activity is visible.

Stopped Started A stopped activity gets started again. onStart(): You can start services
here that are needed only while the
activity is visible.

Stopped Destroyed A stopped activity gets removed. onDestroy(): Release all resources,

do a cleanup, and stop services
that were started in onCreate.

24 CHAPTER 3: Activities

Activity Startup

v

SetUp GUI onCreate
Start Important Services

AUTO

Start Services & onStart Activity Exists
Broadcast Receivers <+

Ul Input, App Works

Activity Partly
No More GUI Input onPausen vl
*BACKGROUI\ DED
Stop Services & onSto
Broadcast Receivers

¢ AUTO, OS DECIDES

Free Resources onDestroy()
Clean Up

Stop Important Services
Activity Gone

Figure 3-1. Activity state transitions

Preserving State in Activities

| have stressed the need for you to take precautions to make sure your app restarts in a
well-behaving manner when it forcibly gets stopped by the Android OS. Here | give you
some advice how that can be done.

Looking at the lifecycle of an activity, we can see that an activity about to be killed by the
Android OS calls the method onStop(). But there are two more callbacks we haven’t talked
about yet. They have the names onSaveInstanceState() and onRestoreInstanceState(),
and they get called whenever Android decides that an activity’s data need to be saved

or restored. This is not the same as onStart() and onStop() because it is sometimes not

CHAPTER 3: Activities 25

necessary to preserve the state of an app. For example, if an activity will not be destroyed
but just suspended, the state is going to be kept anyway, and onSaveInstanceState() and
onRestoreInstanceState() will not be invoked.

Android helps us here: the default implementations of onSaveInstanceState() and
onRestoreInstanceState() already save and restore Ul elements that have an ID. So, if
that is all you need, you don’t have to do anything. Of course, your activity might be more
complex and may contain other fields you need to preserve. In this case, you can override
both onSaveInstanceState() and onRestoreInstanceState(). Just make sure you call the
superclass’s methods; otherwise, you must take care of all Ul elements yourself.

override

fun onSavelInstanceState(outState:Bundle?) {
super.onSaveInstanceState(outState)
// add your own data to the Bundle here...
// you can use one of the put* methods here
// or write your own Parcelable types

}

override

fun onRestoreInstanceState(savedInstanceState: Bundle?) {
super.onRestoreInstanceState(savedInstanceState)
// restore your own data from the Bundle here...
// use one of the get* methods here

}

Note that the saved state goes to the onCreate() callback as well, so it is up to you whether
you want to use the onRestoreInstanceState() or onCreate() method for restoring the state.

Under these circumstances, the standard mechanism for saving and restoring state might
not suit your needs. For example, it can’t preserve data when you stop your app. In this
case, the onSaveInstanceState() method is not getting called. If you need to preserve data
in such cases, you can use onDestroy() to save your app’s data in a database and read the
database during the onCreate() callback. See Chapter 8 for more information.

http://dx.doi.org/10.1007/978-1-4842-3820-2_8

Chapter

Services

Services are components running without a user interface and with a conceptual affinity
toward long-running processes. They are separate from notifications in the status bar or a
Toast. Services can be started by apps, or they can be bound to by apps, or both.

Services come in two flavors: foreground services and background services. While at first
glance it seems to be a contradiction to speak of “foreground” services since so many
people tend to say that “services run in the background,” foreground services do actually
exist. The distinction between foreground and background services is crucial because their
behaviors are different.

Caution Do not misinterpret services as constructs for running anything that needs to be
calculated in the background, in other words, not disturbing GUI activities. If you need a process
that does not interfere with the GUI but is otherwise not eligible to run while your app is inactive
and also not subject to being used from outside your app, consider using a thread instead. See
Chapter 10 for more information.

© Peter Spath 2018
P. Spath, Pro Android with Kotlin, https://doi.org/10.1007/978-1-4842-3820-2_4

27

http://dx.doi.org/10.1007/978-1-4842-3820-2_4
http://dx.doi.org/10.1007/978-1-4842-3820-2_10

28 CHAPTER 4: Services

Foreground Services

The intrinsic functioning of foreground services differs with different Android versions. While
foreground services prior to Android 8.0 (API level 26) were just background services with
an entry inside the status bar and otherwise no stringent influence on how the Android OS
handles them, with Android 8.0 (API level 26), foreground services follow a special notation
and receive improved attention from the Android OS, making them less likely to be killed
because of resource shortages. Here are some details:

Foreground services before Android 8.0 (API level 26) are services
that just present a notification entry in the status bar. The client
component that needs to use a service doesn’t know whether the
service that started is a foreground service or not; it just starts the
service via startService(intent). See Chapter 12.

Foreground services starting with Android 8.0 (API level 26) run

with the user being made aware of them. They must interfere with the
operating system by notifications in the status bar. A client component
explicitly starts a foreground service by invoking startForeroundService
(intent), and the service itself must readily tell the Android OS within a
few seconds that it wants to run as a foreground service by calling start
Foreground(notificationId, notification).

One noticeable lifetime characteristics of a foreground service is it is less likely to be killed
by Android because of an available resource shortage. The documentation is, however, not
precise about that. Sometimes you’ll read “will not be killed” and sometimes “less likely to
be killed.” Also, the way Android handles such things is subject to change with new Android
versions. As a general rule of thumb, you should be conservative and expect the worst. In
this case, read “less likely to be killed” and take precautions if the service ceases functioning
while your app is performing some work.

Background Services

Background services run in the background; that is, they will not show an entry in the status
bar. They are, however, allowed to use Toasts to send short notification messages to the
user. Background services are more brittle compared to foreground services since Android
expects them to be more loosely connected to user activities and thus more readily decides
to kill them when there is a resource shortage.

http://dx.doi.org/10.1007/978-1-4842-3820-2_12

CHAPTER 4: Services 29

Starting with Android 8.0 (API level 26), a couple of limitations hold if you are instantiating
background services the old way, and a shift toward using the JobScheduler methodology
is recommended. Apps running on Android 8.0 or newer are considered to run in the
background, if none of the following is true:

The app has a visible activity, currently active or paused.

The app has a foreground service, in other words, a service has called
startForegound() during its operation.

Another foreground app is connected to it, either by using one of its
services or by using it as a content provider.

Once an Android 8.0 app starts its life as a background app or is switched to being a
background app, it has a window of a couple of minutes before it is considered idle. Once
idle, the background services of an app get stopped. As an exception to this, a background
app will go on a whitelist and is allowed to execute background services if it handles tasks
visible to the user. Examples include handling a “Firebase Cloud Messaging” message,
receiving a broadcast such as an SMS or MMS message, executing a PendingIntent

from a notification (an intent to be executed by a different app with the originating app’s
permission), or starting a VpnService.

Most things that were formerly accomplished by executing background jobs as of
Android 8.0 are considered to be eligible to be handled by the JobScheduler API;
see Chapter 8 for more information.

Declaring Services

Services get declared inside the app’s AndroidManifest.xml file as follows:

<?xml version="1.0" encoding="utf-8"?>
<manifest ...>
<application ...>
<activity ...>
</activity>
<service
android:name=".MyService"
android:enabled="true"
android:exported="true">
</service>
</application>
</manifest>

See Table 4-1 for the flags available.

http://dx.doi.org/10.1007/978-1-4842-3820-2_8

30 CHAPTER 4: Services

Table 4-1. Manifest Flags for Services

Name

Description

android:

android:

android:

android:

android:

android:

android:

android:

android:

android:

description

directBootAware

enabled

exported

icon

isolatedProcess

label

name

permission

service

This is a resource ID pointing to a description of the service. You should
use it because users can Kill services, but if you tell them what your
service does, this is less likely to happen.

This can be true or false. The default is false. If true, the service can
run even if the device is not yet unlocked after a restart. The Direct
Boot mode was introduced in Android 7.0 (API level 24). Note that a
Direct Boot—aware service must store its data in the device’s protected
storage.

This can be true or false. The default is true. If false, the service
is effectively disabled. You wouldn’t normally set it to false for a
production service.

This can be true or false. This specifies whether other applications can
use the service. The default is false if there are no intent filters and true
otherwise. The presence of intent filters implies external usage, thus this
distinction.

This is the icon resource ID. The default is the app’s icon.

This can be true or false. The default is false. If true, the service has
no means to communicate with the system, only through the service
methods. It is actually a good idea to use this flag, but in most cases
your service will need to talk to the system, so you have to leave it false
unless the service is really self-contained.

This is a label for the service displayed to the user. The default is the
app’s label.

This is the name of the service’s class. If you use a dot as the first
character, it automatically gets prepended with the name of the package
specified in the manifest element.

This is the permission name adjoint to this service. The default is the
permission attribute in the application element. If not specified and a
default does not apply, the service will not be protected.

This is the name of the service’s process. If specified, the service will run
in its own process. If it starts with a colon (:), the process will be private
to the app. If it starts with a lowercase letter, the process spawned will
be a global process. Security restrictions might apply.

The <service> element allows for the following child elements:

<intent-filter>

This can be zero, one, or many intent filters. They are described in

Chapter 3.

http://dx.doi.org/10.1007/978-1-4842-3820-2_3

CHAPTER 4: Services 31

<meta-data>

This is an arbitrary name-value pair in the form <meta-data
android:name="..." android:resource="..." android:value="..." />.
You can have several of them, and they go into an android.os.Bundle
element available as PackageItemInfo.metaData.

For you as a professional developer, understanding what a process actually is and how

it gets treated by the Android OS is quite important; see the android:service flag in the
manifest for process control. It can be tricky because process internals tend to change with
new Android versions, and they seem to change on a minute-by-minute basis if you read
blogs. As a matter of fact, a process is a computational unit that gets started by the Android
OS to perform computational tasks. Also, it gets stopped when Android decides it has

run out of system resources. If you decide to stop working with a particular app, it doesn’t
automatically mean the corresponding process or processes get killed. Whenever you start
an app for the first time and you don’t explicitly tell the app to use another app’s process, a
new process gets created and started, and with subsequent computational tasks existing,
processes get used or new processes get started, depending on their settings and relations
to each other.

Unless you explicitly specify service characteristics in the manifest file, a service started by
an app will run in the app’s process. This means the services possibly live and inevitably

die with the app. A process needs to be started to actually live, but when it runs in the

app’s main process, it will die when the app dies. This means a service’s resources needs
matter to the app’s resources needs. In former times when resources were scarcer, this was
more important than nowadays with stronger devices, but it is still good to know about. If a
service needs a lot of resources and there is a shortage of resources, it makes a difference if
the whole app or just that greedy service needs to be killed to free resources.

If you, however, tell the service to use its own process by virtue of the android:service
manifest entry, the service’s lifecycle can be treated independently by the Android OS.
You have to decide: either let it use its own process and accept a possible proliferation of
processes for just one app or let them run in one process and couple the lifecycles more
closely.

Letting several computation units run in one process has another consequence: they do
not run concurrently! This is crucial for GUI activities and processes because we know GUI
activities must be fast to not obstruct user interactions, and services are conceptionally
bound to longer-running computations. A way out of this dilemma is to use asynchronous
tasks or threads. Chapter 10 will be talking more about concurrency.

If the service needs to address the device protected storage, as in the Direct Boot mode
triggered by the android:directBootAware flag in the manifest, it needs to access a special
context.

val directBootContext:Context =
appContext.createDeviceProtectedStorageContext()

// For example open a file from there:

val inStream:FileInputStream =
directBootContext.openFileInput(filename)

http://dx.doi.org/10.1007/978-1-4842-3820-2_10

32 CHAPTER 4: Services

You should not use this context normally, only for special services that need to be active
directly after the boot process.

Service Classes

Services must extend the following class or one of its subclasses:

android.app.Service

They must be declared inside the app’s AndroidManifest.xml file, as described earlier.

The interface methods from android.app.Service are described in the section “Intent
Constituent Parts” in the online text companion.

Note that there are two ways to stop a service that was explicitly started via
startService() or startForeroundService: the service stops itself by calling stopSelf() or
stopSelfResult() or by calling stopService() from outside.

Starting Services

A service can be explicitly started from any component that is a subclass of android.
content.Context or has access to a Context. This is the case for activities, other services,
broadcast receivers, and content providers.

To explicitly start a service, you need an appropriate intent. We basically have two cases:
first, if the service lives in the same app as the client (invoker) of the service, you can write
the following for a foreground service as defined starting at Android 8.0 (API level 26):

val intent = Intent(this, TheService::class.java)
startService(intent)

for a normal service, or

val intent = Intent(this, TheService::class.java)
if (Build.VERSION.SDK INT >= Build.VERSION CODES.0) {
startForegroundService(intent)

} else {
startService(intent)
}

So, we can directly refer to the service class. The TheService: :class.java notation might
look strange at first glance if you are a new Kotlin developer; that is just the Kotlin way of
providing Java classes as an argument. (For versions prior to Android 8.0 (API level 26), you
start it the normal way.)

CHAPTER 4: Services 33

Note Since intents allow general-purpose exira attributes by using one of the various
putExtra() methods, we can also pass data to the service.

The second case is given if the service we want to start is part of another app and thus is an
external service. You then have to add an intent filter inside the service declaration. Here’s an
example:

<service
android:name=".MyService"
android:enabled="true"
android:exported="true">
<intent-filter>
<action android:name="<PCKG_NAME>.START SERVICE" />
</intent-filter>
</service>

In this example, <PCKG_NAME> is the name of app’s package, and instead of START_SERVICE,
you can write a different identifier if you like. Now, inside the service client, you can write the
following to start and stop the external service, where inside the intent constructor you have
to write the same string as in the intent filter declaration of the service:

val intent = Intent("<PCKG_NAME>.START SERVICE")
intent.setPackage("<PCKG_NAME>")
startService(intent)

// ... do something ...
stopService(intent)

The setPackage() statement is important here (of course you have to substitute the service’s
package name); otherwise, a security restriction applies, and you get an error message.

Binding to Services

Starting a service is one part of the story. The other part is using them while they are
running. This is what the binding of services is used for.

To create a service that can be bound to or from the same app, write something like this:

/**
* (Class used for binding locally, i.e. in the same App.
*/
class MyBinder(val servc:MyService) : Binder() {
fun getService():MyService {
return servc
}

34 CHAPTER 4: Services

class MyService : Service() {
// Binder given to clients
private val binder: IBinder = MyBinder(this)

// Random number generator
private val generator: Random = Random()

override

fun onBind(intent: Intent):IBinder {
return binder

}

/** method for clients */

fun getRandomNumber():Int {
return generator.nextInt(100)

}

}

To bind to this service internally, from the same app, inside the service using the client, write
the following:

val servcConn = object : ServiceConnection {
override
fun onServiceDisconnected(compName: ComponentName?) {
Log.e("LOG","onServiceDisconnected: " + compName)

override
fun onServiceConnected(compName: ComponentName?,
binder: IBinder?) {
Log.e("LOG","onServiceConnected: " + compName)
val servc = (binder as MyBinder).getService()

Log.i("LOG", "Next random number from service: " +
servc.getRandomNumber ())

}

override
fun onBindingDied(compName:ComponentName) {
Log.e("LOG", "onBindingDied: " + compName)
}
}

val intent = Intent(this, MyService::class.java)
val flags = BIND AUTO_CREATE
bindService(intent, servcConn, flags)

Here, the object: ServiceConnection {...} construct is the Kotlin way of implementing an
interface by creating an object of an anonymous inner class, like new ServiceConnection()
{...} in Java. The construct is called an object expression in Kotlin. The this inside the
intent constructor in this case refers to a Context object. You can use it like this inside an
activity. If you have the Context in a variable instead, use that variable’s name here.

Of course, instead of the logging, you should do more meaningful things. Especially inside
the onSeviceConnected() method you can save the binder or service in a variable for further
use. Just make sure, having said all that, that you appropriately react to a died binding or a
killed service connection. You could, for example, try to bind the service again, tell the user,
or both.

CHAPTER 4: Services

The previous code starts the service automatically once you bind to it and it doesn’t exist

yet. This happens by virtue of this statement:

val flags
[...

]

= BIND_AUTO_CREATE

If you don’t need it because you are sure the service is running, you can omit it. In most
cases, it is however better to include that flag. The following are the other flags you can use
for setting binding characteristics:

BIND_AUTO_CREATE: We just used that; it means the service gets started
automatically if it hasn’t started yet. You’ll sometimes read that explicitly
starting a service is unnecessary if you bind to it, but this is true only if
you set this flag.

BIND_DEBUG_UNBIND: This leads to saving the callstack of a following
unbindService(), just in case subsequent unbind commands are
wrong. If this happens, a more verbose diagnostic output will be shown.
Since this imposes a memory leak, this feature should be used only for
debugging purposes.

BIND_NOT_FOREGROUND: This is applicable only if the client runs in a
foreground process and the target service runs in a background
process. With this flag, the binding process will not raise the service to a
foreground scheduling priority.

BIND ABOVE_CLIENT: With this flag, we specify that the service is more
important than the client (i.e., service invoker). In case of a resource
shortage, the system will kill the client prior to the service invoked.

BIND_ALLOW_OOM_MANAGEMENT: This flags tell the Android OS that you are
willing to accept Android treating the binding as noncritical and killing
the service under low memory circumstances.

BIND_WAIVE_PRIORITY: This flags leads to leaving the scheduling of the
service invocation up to the process where the service runs in.

Just add them in a combination that suits your needs.

Note Binding is not possible from inside a BroadcastReceiver component, unless

the BroadcastReceiver has been registered via registerReceiver(receiver.
intentfilter). In the latter case, the lifetime of the receiver is tied to the registering component.
You can, however, from broadcast receivers pass instruction strings inside the intent you used for
starting (in other words, not binding) the service.

35

36 CHAPTER 4: Services

To bind to an external service, in other words, a service belonging to another app, you
cannot use the same binding technique as described for internal services. The reason for
this is the IBinder interface we are using cannot directly access the service class since

the class is not visible across process boundaries. We can, however, wrap data to be
transported between the service and the service client into an android.os.Handler object
and use this object to send data from the service client to the service. To achieve this, for the
service we first need to define a Handler for receiving messages. Here’s an example:

internal class InHandler(val ctx: Context) : Handler() {
override
fun handleMessage(msg: Message) {
val s = msg.data.getString("MyString")
Toast.makeText(ctx, s, Toast.LENGTH_SHORT).show()
}
}
[...]
class MyService : Service() {
val myMessg:Messenger = Messenger(InHandler(this))
[...]
}

Instead of just creating a Toast message, you can of course do more interesting things
when a message arrives. Now in the service’s onBind() method, we return the binder object
provided by the messenger.

override

fun onBind(intent:Intent):IBinder {
return myMessg.binder

}

As for the entries inside the AndroidManifest.xml file, we can write the same as when
starting remote services.

In the service client, you’d add a Messenger attribute and a ServiceConnection object. Here’s
an example:

var remoteSrvc:Messenger? = null
private val myConnection = object : ServiceConnection {
override
fun onServiceConnected(className: ComponentName,
service: IBinder) {
remoteSrvc = Messenger(service)
}
override
fun onServiceDisconnected(className: ComponentName) {
remoteSrvc = null
}

CHAPTER 4: Services 37

To actually perform the binding, you can proceed like for internal services. For example,
inside an activity’s onCreate() method, you could write the following:

val intent:Intent = Intent("<PCKG_NAME>.START SERVICE")
intent.setPackage("<PCKG_NAME>")
bindService(intent, myConnection, Context.BIND_AUTO_CREATE)

Here, substitute the service package’s name for <PCKG_NAME> appropriately.

Now to send a message from the client to the service across the process boundary, you can
write the following:

val msg = Message.obtain()

val bundle = Bundle()

bundle.putString("MyString", "A message to be sent")
msg.data = bundle

remoteSrvc?.send(msg)

Note that for this example you cannot add these lines into the activity’s onCreate()

method after the bindService() statement because remoteSrvc gets a value only after the
connection fires up. But you could, for example, add it to the onServiceConnected() method
of the ServiceConnection class.

Note In the previous code, no precautions were taken to ensure connection sanity. You should add
sanity checks for productive code. Also, unbind from the service inside the onStop () method.

Data Sent by Services

Up to now we were talking of messages sent from the service client to the service. Sending
data in the opposite direction, from the service to the service client, is possible as well; it can
best be achieved by using an extra Messenger inside the client, a broadcast message, or a
ResultReceiver class.

For the first method, provide another Handler and Messenger in the service client, and once
the client receives an onServiceConnected() callback, send a Message to the service with the
second Messenger passed by the replyTo parameter.

internal class InHandler(val ctx: Context) : Handler() {
override
fun handleMessage(msg: Message) {
// do something with the message from the service
}

}

class MainActivity : AppCompatActivity() {
private var remoteSrvc:Messenger? = null
private var backData:Messenger? = null

38 CHAPTER 4: Services

private val myConn = object : ServiceConnection {
override
fun onServiceConnected(className: ComponentName,
service: IBinder) {
remoteSrvc = Messenger(service)
backData = Messenger(
InHandler(this@MainActivity))

// establish backchannel
val msgo = Message.obtain()
msg0.replyTo = backData
remoteSrvc?.send(msgo)

// handle forward (client -> service)
// connectivity...

}

override

fun onServiceDisconnected(clazz: ComponentName) {
remoteSrvc = null

}

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity main)

// bind to the service, use ID from the manifest!
val intent = Intent("<PCKG>.START SERVICE")
intent.setPackage("<PCKG>")

val flags = Context.BIND_AUTO_CREATE
bindService(intent, myConn, flags)

}

The service can then use this message, extract the replyTo attribute, and use it to send
messages to the service client.

internal class IncomingHandler(val ctx: Context) :

Handler() {

override

fun handleMessage(msg: Message) {
val s = msg.data.getString("MyString")
val repl = msg.replyTo
Toast.makeText(ctx, s, Toast.LENGTH_SHORT).show()
Log.e("IncomingHandler", "Il " + s)
Log.e("IncomingHandler", "!!! replyTo = " + repl)

// If not null, we can now use the 'repl' to send
// messages to the client. Of course we can save
// it elsewhere and use it later as well
if(repl != null) {

val thr = Thread(object : Runnable {

CHAPTER 4: Services

}
}

override fun run() {
Thread.sleep(3000)
val msg = Message.obtain()
val bundle = Bundle()
bundle.putString("MyString",
"A reply message to be sent")
msg.data = bundle
repl?.send(msg)

}
1)
thr.start()

39

The other two methods, using a broadcast message or a ResultReceiver class, get handled
in Chapters 5 and 12.

Service Subclasses

Up to now we were always using android.app.Service as a base class for services we
described. There are other classes supplied by Android that are usable as base classes,
though, with different semantics. For Android 8.0, there are no less than 20 service classes

or base classes you can use. You can see them all in the Android APl documentation in the
“Known Direct Subclasses” section.

Note At the time of writing this book, you can find this documentation at https://developer.

android.com/reference/android/app/Service.html.

The most important service classes are the following three:

android.app.Service: This is the one we’ve been using so far. This

is the most basic service class. Unless you use multithreading inside
the service class or the service is explicitly configured to execute in
another process, the service will be running inside the service caller’s
main thread. If this is the GUI thread and you don’t expect the service
invocation to run really fast, it is strongly recommended you send
service activities to a background thread.

android.app.IntentService: While a service by design does not
naturally handle incoming start requests simultaneously to the

main thread, an IntentService uses a dedicated worker thread

to receive multiple start messages. Still, it uses just one thread to
work with start requests, so they get executed one after the other.
IntentService classes take care of correctly stopping services, so
you don’t need to care about this yourself. You have to provide the
service’s work to be done for each start request inside an overwritten

http://dx.doi.org/10.1007/978-1-4842-3820-2_5
http://dx.doi.org/10.1007/978-1-4842-3820-2_12
https://developer.android.com/reference/android/app/Service.html
https://developer.android.com/reference/android/app/Service.html

40

CHAPTER 4: Services

onHandleIntent() method. Since basically you don’t need anything else,
the IntentService service is easy to implement. Note that starting with
Android 8.0 (API level 26), restrictions apply to background processes,
so under appropriate circumstances, consider using JobIntentService
classes instead.

android.support.v4.app.JobIntentService: This uses a JobScheduler
to enqueue service execution requests. Starting with Android 8.0 (API
level 26), consider using this service base class for background services.
To implement such a service, you basically have to create a subclass

of JobIntentService and override the method onHandleWork(intent:
Intent): Unit to contain the service’s workload.

Services Lifecycle

Having described various service characteristics in the preceding sections, the actual
lifecycle of a service from a bird’s-view perspective is arguably easier than that of an activity.
However, be careful of services being able to run in the background. Also, because services

are more readily subject to stops forced by the Android OS, they may require special

attention in correspondence with service clients.

In your service implementation, you can overwrite any the lifecycle callbacks listed here, for
example, to log service invocation information while developing or debugging:

onCreate()
onStartCommand()
onBind()
onUnbind()
onRebind()
onDestroy()

CHAPTER 4: Services

Figure 4-1 shows an overview of the lifecycle of a service

Start Bind
Service Service
onCreate() onCreate()
¢ Service Active ¢
onStartCommand() onBind()
Service Clients
Running Bound

v v

Service Stopped All Clients
by Itself or a Client Unbind

v

onUnbind()
v v
onDestroy() onDestroy()
Service Shutdown

Figure 4-1. Service lifecycle

L

42

CHAPTER 4: Services

More Service Characteristics

The following are more observations about services:

Services get declared alongside activities inside AndroidManifest.xml.
A common question is how they interact with each other. Somebody
needs to invoke services to use them, but this can also be done from
other services, other activities, or even other apps.

Do not bind or unbind during an activity’s onResume () and onPause()
methods for performance and stability reasons. Do bind and unbind
instead inside the onStart() and onStop() methods, if you need to
interact with services only when an activity is visible. If you need service
connections also when activities are stopped and in the background, do
bind and unbind in the onCreate() and onRestore() methods.

In remote connection operations (the service lives in another app), catch
and handle DeadObjectException exceptions.

If you overwrite a service’s onStartCommand(intent: Intent, flags:
Int, startId: Int) method, first make sure to also call the method
super.onStartCommand() unless you have good reasons not to do that.
Next, appropriately react on the incoming flags parameter, which tells
whether this is an automatic follow-up start request because a previous
start attempt failed. Eventually this method returns an integer describing
the service’s state after leaving the onStartCommand() method; see the
API| documentation for details.

Calling stopService() from outside a service or stopSelf() from inside
a service does not guarantee that the service gets stopped immediately.
Expect the service to hang around for a little while until Android really
stops it.

If a service is not designed to react on binding requests and you
overwrite the onBind() method of the service, it should return null.

While not forbidden explicitly, for a service that is designed for
communicating with service clients via binding, consider disallowing the
service to be started by startService(). In this case, you must provide
the Context.BIND AUTO_ CREATE flag in the bindService() method call.

Chapter

Broadcasts

Android broadcasts are messages following the publish-subscribe pattern. They are sent
across the Android OS, with the internals hidden by the Android OS, so both publishers and
subscribers see only a lean asynchronous interface for sending and receiving messages.
Broadcasts can be published by the Android OS itself, by standard apps, and by any other
app installed on the system. Likewise, any app can be configured or programmed to receive
the broadcast messages they are interested in. Like activities, broadcasts can be explicitly
or implicitly routed, which is the responsibility of the broadcast sender to decide.

Broadcast receivers are declared either in the AndroidManifest.xml file or programmatically.
Starting with Android 8.0 (API level 26), the developers of Android have abandoned the usual
symmetry between XML and programmatic declaration of broadcast receivers for implicit
intents. The reason is that the general idea of imposing restrictions on processes running in
background mode, especially related to broadcasts, resulted in a high load on the Android
OS, slowing devices down considerably and leading to a bad user experience. For that
reason, the declaration of broadcast receivers inside AndroidManifest.xml is now limited to
a smaller set of use cases.

Note You will want to write modern apps that are runnable in Android 8.0 and newer. For that
reason, take this broadcast limit for implicit intents seriously and make your app live within that
limitation.

© Peter Spath 2018 43
P. Spath, Pro Android with Kotlin, https://doi.org/10.1007/978-1-4842-3820-2_5

http://dx.doi.org/10.1007/978-1-4842-3820-2_5

44 CHAPTER 5: Broadcasts

Explicit Broadcasts

An explicit broadcast is a broadcast published in such a way that there is exactly one
receiver addressed by it. This usually makes sense only if both broadcast publishers and
subscribers are part of the same app or, less frequently, part of the same app collection if
there is a strong functional dependency among them.

There are differences between local and remote broadcasts: local broadcast receivers

must reside in the same app, they run fast, and receivers cannot be declared inside
AndroidManifest.xml. Instead, a programmatical registration method must be used for local
broadcast receivers. Also, you must use the following to send local broadcast messages:

// send local broadcast
LocalBroadcastManager.getInstance(Context).
sendBroadcast(...)

Remote broadcast receivers, on the other hand, can reside in the same app, they are slower,
and it is possible to use AndroidManifest.xml to declare them. To send remote broadcasts,
you write the following:

// send remote broadcast (this App or other Apps)
sendBroadcast(...)

Note Local broadcasts should be favored over remote broadcasts for performance reasons. The
apparent disadvantage of not being able to use AndroidManifest.xml to declare local receivers
does not matter too much, since starting with Android 8.0 (API level 26) the use cases of declaring
broadcast receivers inside the manifest files are limited anyway.

Explicit Local Broadcasts

To send a local broadcast message to a local broadcast receiver inside the same app, you
write the following:

val intent = Intent(this, MyReceiver::class.java)

intent.action = "de.pspaeth.simplebroadcast.DO_STH"

intent.putExtra("myExtra", "myExtraval")

Log.e("LOG", "Sending broadcast")

LocalBroadcastManager.getInstance(this).
sendBroadcast (intent)

Log.e("LOG", "Broadcast sent")

Here, MyReceiver is the receiver class.

class MyReceiver : BroadcastReceiver() {
override
fun onReceive(context: Context?, intent: Intent?) {
Toast.makeText(context, "Intent Detected."”,
Toast.LENGTH_LONG).show()
Log.e("LOG", "Received broadcast")

CHAPTER 5: Broadcasts

Thread.sleep(3000)
// or real work of course...
Log.e("LOG", "Broadcast done")
}
}

For local broadcasts, the receiver must be declared inside the code. To avoid a resource
leakage, we create and register the receiver inside onCreate() and unregister it inside
onDestroy().

class MainActivity : AppCompatActivity() {
private var bcReceiver:BroadcastReceiver? = null

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
/1 ...

bcReceiver = MyReceiver()

val ifi:IntentFilter =
IntentFilter("de.pspaeth.myapp.DO_STH")

LocalBroadcastManager.getInstance(this).
registerReceiver(bcReceiver, ifi)

}

override fun onDestroy() {
super.onDestroy()
/...

LocalBroadcastManager.getInstance(this).
unregisterReceiver(bcReceiver)

Explicit Remote Broadcasts

We already pointed out that we can send broadcast messages of the remote type to other

apps or to the same app where the receivers live. The difference is in how the data is sent.

For remote messages, the data goes through an IPC channel. Now to send such remote
broadcast messages to the same app, you write the following:

val intent = Intent(this, MyReceiver::class.java)
intent.action = "de.pspaeth.myapp.DO_STH"
intent.putExtra("myExtra", "myExtraval")
sendBroadcast(intent)

45

46 CHAPTER 5: Broadcasts

On the receiving side, for remote messages, the receiver must be declared inside the
manifest file.

<application ...>

<receiver android:name=".MyReceiver">
<intent-filter>
<action android:name=
"de.pspaeth.myapp.DO_STH">
</action>
</intent-filter>
</receiver>
</application>

Looking at the differences between local and remote broadcasts, it is helpful to keep the
following in mind:

Local explicit broadcasts:

The sender uses an explicit receiver class, the receiver must be
declared programmatically, and both the sender and receiver use
LocalBroadcastManager to send messages and to register the receiver.

Remote explicit broadcasts:

The sender uses explicit receiver class, and the receiver must be declared
in AndroidManifest.xml.

For the class that is responsible for handling received broadcasts, there is no difference
compared to the explicit local broadcasts.

class MyReceiver : BroadcastReceiver() {
override
fun onReceive(context: Context?, intent: Intent?) {
// handle incoming broadcasts...
}
}

Explicit Broadcasts Sending to Other Apps

The senders and receivers of explicit broadcasts can live in different apps. For this to work,
you can no longer use the intent constructor we used earlier.

val intent = Intent(this, MyReceiver::class.java)
intent.action = "de.pspaeth.myapp.DO_STH"

// add other coords...

sendBroadcast(intent)

CHAPTER 5: Broadcasts 47

This is because the receiving class, here MyReceiver, is not part of the classpath. There is,
however, another construct we can use instead.

val intent = Intent()

intent.component = ComponentName("de.pspaeth.xyz",
"de.pspaeth.xyz.MyReceiver")

intent.action = "de.pspaeth.simplebroadcast.DO STH"

// add other coords...

sendBroadcast(intent)

Here, the first argument to ComponentName is the package string of the receiving package,
and the second argument is the class name.

Caution Unless you are broadcasting to apps that have been built by yourself, this way of
sending explicit broadcasts is of limited use only. The developer of the other app may easily decide
to change class names, and then your communication to the other app using broadcasts will be
broken.

Implicit Broadcasts

Implicit broadcasts are broadcasts with an undefined number of possible receivers. For
explicit broadcasts, you learned that we had to build the corresponding intents by using
the constructor that points to the recipient component: val intent = Intent(this,
TheReceiverClass::class.java). Contrary to that, for implicit broadcast we no longer
specify the recipient but instead give hints on which components might be interested in
receiving it. Here’s an example:

val intent = Intent()
intent.action = "de.pspaeth.myapp.DO_STH"
sendBroadcast(intent)

Here, we actually express the following: “Send a broadcast message to all receivers that
are interested in action de.pspaeth.myapp.DO_STH.” The Android OS determines which
components are eligible to receive such broadcast messages then; this might result in zero,
one, or many actual recipients.

There are three decisions you must make before you start programming implicit broadcasts.
Do we want to listen to system broadcasts?

A large number of predefined broadcast message types exist for Android.
Inside the Android SDK that you installed with Android Studio, at SDK
INST_DIR/platforms/VERSION/data/broadcast actions.txt, you can find
a list of system broadcast actions. If we want to listen to such messages,
we just need to program the appropriate broadcast receivers as described
later in the chapter. In the “System Broadcasts” section of the online text
companion, you’ll find a comprehensive list of the system broadcasts.

48 CHAPTER 5: Broadcasts

How do we classify broadcast message types?

Broadcast senders and broadcast receivers join by intent filter matches,
just like activities do. As discussed in Chapter 3 when describing the intent
filters for activities, the classification is threefold for broadcasts: first you
have an obligatory action specifier, second a category, and third a data-
and-type specifier that you can use to define filters. We describe this
matching procedure later in this chapter.

Are we heading for local or remote broadcasts?

If all the broadcasting happens completely inside your app, you should

use local broadcasting for sending and receiving messages. For implicit
broadcasts, this will probably not be the case too often, but for large
complex apps, this is totally acceptable. If system broadcasts or
broadcasts from other apps are involved, you must use remote broadcasts.
The latter is the default case in most examples, so you will see this pattern
quite often.

Intent Filter Matching

Broadcast receivers express their accepting broadcasts by means of declaring action,
category, and data specifiers.

Let’s first talk about actions. These are just strings without any syntax restriction. Looking
more thoroughly at them, you see that we first have a more or less stringently defined set

of predefined action names. We listed them all in Chapter 3. In addition, you can define

your own actions. A convention is to use your package name plus a dot and then an action
specifier. You are not forced to follow this convention, but it is strongly recommended to do
it that way so your apps do not get messed up with other apps. Without specifying any other
filter criteria, a sender specifying that particular action you specified in the filter will reach all
matching receivers.

For an intent filter to match, the action specified on the receiver side
must match the action specified on the sender side. For implicit
broadcasts, zero, one, or many receivers might be addressed by one
broadcast.

A receiver may specify more than one filter. If one of the filters contains
the specified action, this particular filter will match the broadcast.

http://dx.doi.org/10.1007/978-1-4842-3820-2_3
http://dx.doi.org/10.1007/978-1-4842-3820-2_3

CHAPTER 5: Broadcasts

Table 5-1 shows some examples.

Table 5-1. Action Matches

49

Receiver Sender Match
One filter action = "com.xyz.ACTION1" Yes
action = "com.xyz.ACTION1"

One filter action = "com.xyz.ACTION2" No
action = "com.xyz.ACTION1"

Two filters action = "com.xyz.ACTION1" Yes
action = "com.xyz.ACTION1"

action = "com.xyz.ACTION2"

Two filters action = "com.xyz.ACTION3" No
action = "com.xyz.ACTION1"

action = "com.xyz.ACTION2"

Besides actions, a category specifier can be used to restrict an intent filter. We have a couple

of predefined categories listed in Chapter 3, but again you can define your own categories.

Like for actions, for your own categories you should follow the naming convention of
prepending your app’s package name to your category name. Once during the intent
matching process a match in the action is found, all the categories that were declared by the

sender must be present as well in the receiver’s intent filter for the match to further prevail.

B Once an action inside an intent filter matches a broadcast and the filter
also contains a list of categories, only such broadcasts will match the
filter for which the categories specified by the sender are all contained in
the receiver’s category list.

http://dx.doi.org/10.1007/978-1-4842-3820-2_3

CHAPTER 5: Broadcasts

Table 5-2 shows some examples (one filter only; if there are several filters, the matching
happens on an “or” basis).

Table 5-2. Category Matches

Receiver Action Receiver Category Sender Match
com.xyz.ACT1 com.xyz.catel action = "com.xyz.ACT1" Yes
com.xyz.ACT1 action = "com.xyz.ACT1" No
categ = "com.xyz.cate1l"
com.xyz.ACT1 com.xyz.catel action = "com.xyz.ACT1" Yes
categ = "com.xyz.cate1l"
com.xyz.ACT1 com.xyz.catel action = "com.xyz.ACT1" No
categ = "com.xyz.cate1"
categ = "com.xyz.cate2"
com.xyz.ACT1 com.xyz.cate1 action = "com.xyz.ACT1" Yes
com.xyz.cate2 categ = "com.xyz.cate1l"
categ = "com.xyz.cate2"
com.xyz.ACT1 com.xyz.catel action = "com.xyz.ACT1" Yes
com.xyz.cate2 categ = "com.xyz.cate1l"
com.xyz.ACT1 any action = "com.xyz.ACT2" No

categ = any

Third, a data-and-type specifier allows for filtering data types. Such a specifier is one of the
following:

type: The MIME type, for example "text/html" or "text/plain”

data: A data URI, for example "http://xyz.com/type1"
data and type: Both of them

Here, the data element allows for wildcard matching.

Presumed action and category match: A type filter element matches
if the sender’s specified MIME type is contained in the receiver’s list of

allowed MIME types.

Presumed action and category match: A data filter element matches
if the sender’s specified data URI matches any of the receiver’s list of
allowed data URlIs (wildcard matching might apply).

Presumed action and category match: A data-and-type filter element
matches if both the MIME type and the data URI match, i.e., are
contained within the receiver’s specified list.

http://xyz.com/type1

CHAPTER 5: Broadcasts 51

Table 5-3 shows some examples (one filter only; if there are several filters, the matching
happens on an “or” basis).

Table 5-3. Data Matches

Receiver Type Receiver URI Sender Match
¥ = any string

text/html type = "text/html" Yes

text/html type = "text/html" Yes

text/plain

text/html type = "image/jpeg" No

text/plain
http://a.b.c/xyz data = "http://a.b.c/xyz" Yes
http://a.b.c/xyz data = "http://a.b.c/qrs" No
http://a.b.c/xyz/.* data = "http://a.b.c/xyz/3" Yes
http://.*/xyz data = "http://a.b.c/xyz" Yes
http://.*/xyz data = "http://a.b.c/qrs" No

text/html http://a.b.c/xyz/.* type = "text/html" Yes

data = "http://a.b.c/xyz/1"
text/html http://a.b.c/xyz/.* type = "image/jpeg" No
data = "http://a.b.c/xyz/1"

Active or On-Hold Listening

Which state must an app be in to be able to receive implicit broadcasts? If we want a
broadcast receiver to be just registered in the system and fired up only on demand when

a matching broadcast arrives, the listener must be specified in the manifest file of the app.
However, for implicit broadcasts, this cannot be freely done. It is only for predefined system
broadcasts, as listed in section “System Broadcasts” of the online text companion.

Note This restriction for implicit intent filters specified in the manifest was introduced in Android 8.0
(APl level 26). Before that, any implicit filters could be specified inside the manifest file.

52 CHAPTER 5: Broadcasts

If, however, you start your broadcast listeners programmatically from inside an app and this
app is running, you can define as many implicit broadcast listeners as you want, and there
is no restriction on whether the broadcasts come from the system, your app, or other apps.
Likewise, there is no restriction on usable action or category names.

Since listening for booting-completed events is included in the list for allowed listeners
inside the manifest file, you are free to start apps there as activities or services, and inside
those apps you can register any implicit listener. But that means you can legally work around
the restrictions imposed starting with Android 8.0. Just be aware that such apps may be
killed by the Android OS if resource shortages occur, so you have to take appropriate
precautions.

Sending Implicit Broadcasts

To prepare to send an implicit broadcast, you specify actions, categories, data, and extra
data as follows:

val intent = Intent()

intent.action = "de.pspaeth.myapp.DO_STH"
intent.addCategory("de.pspaeth.myapp.CATEG1")
intent.addCategory("de.pspaeth.myapp.CATEG2")
// ... more categories

intent.type = "text/html"

intent.data = Uri.parse("content://myContent")
intent.putExtra("EXTRA KEY", "extraVal")
intent.flags = ..

Only the action is mandatory; all the others are optional. Now to send the broadcast, you’d
write the following for a remote broadcast:
sendBroadcast(intent)
For a local broadcast, you’d write this:
LocalBroadcastManager.getInstance(this).
sendBroadcast (intent)
The this must be a Context or a subclass thereof; it will work exactly like shown here if the

code is from inside an activity or a service class.

For remote messages, there is also a variant sending a broadcast to applicable receivers one
at a time.

sendOrderedBroadcast(...)

This makes the receivers get the message sequentially, and each receiver may cancel,
forwarding the message to the next receiver in the line by using BroadcastReceiver.
abortBroadcast().

CHAPTER 5: Broadcasts 53

Receiving Implicit Broadcasts

To receive an implicit broadcast, for a limited set of broadcast types (see the section “The
System Intent Filters” of the online text companion) you can specify a BroadcastListener
inside AndroidManifest.xml as follows:

<application ...>

<receiver android:name=".MyReceiver">
<intent-filter>
<action android:name=
"com.xyz.myapp.DO_STH" />
<category android:name=
"android.intent.category.DEFAULT"/>
<category android:name=
"com.xyz.myapp.MY_CATEG"/>
<data android:scheme="http"
android:port="80"
android:host="com.xyz"
android:path="items/7"
android:mimeType="text/html" />
</intent-filter>
</receiver>
</application>

The <data> element shown here is just an example; see Chapter 3 for all the possibilities.

In contrast to that, adding a programmatic listener for implicit broadcasts to your code is
unrestricted.

class MainActivity : AppCompatActivity() {
private var bcReceiver:BroadcastReceiver? = null

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
/] ...
bcReceiver = MyReceiver()
val ifi:IntentFilter =
IntentFilter("de.pspaeth.myapp.DO_STH")
registerReceiver(bcReceiver, ifi)

}

override fun onDestroy() {
super.onDestroy()
/] ...
unregisterReceiver(bcReceiver)
}
}

The MyReceiver is an implementation of class android.content.BroadcastReceiver.

http://dx.doi.org/10.1007/978-1-4842-3820-2_3

54 CHAPTER 5: Broadcasts

Listening to System Broadcasts

To listen to system broadcasts, see the list in the online text companion’s “System
Broadcasts” section. You can just use a programmatic registration as shown earlier. For
most of them, you cannot use the manifest registration method for background execution
limits imposed since Android 8.0 (API level 26). However, for a number of them, you can also
use the manifest file to specify listeners.

ACTION LOCKED BOOT COMPLETED, ACTION BOOT COMPLETED:
Apps may need those to schedule jobs, alarms, and so on.

ACTION USER INITIALIZE, "android.intent.action.USER_ADDED",
"android.intent.action.USER REMOVED":

These are protected by privileged permissions, so the use cases are
limited.

"android.intent.action.TIME_SET", ACTION TIMEZONE_ CHANGED, ACTION
NEXT_ALARM_CLOCK_CHANGED:

These are needed by clock apps.
ACTION LOCALE CHANGED:

The locale changed, and apps might need to update their data when this
happens.

ACTION USB_ACCESSORY ATTACHED, ACTION USB_ACCESSORY DETACHED,
ACTION USB DEVICE ATTACHED, ACTION USB DEVICE DETACHED:

These are USB-related events.

ACTION CONNECTION STATE CHANGED, ACTION ACL_ CONNECTED,
ACTION ACL _DISCONNECTED:

These are Bluetooth events.

ACTION_CARRIER CONFIG_CHANGED, TelephonyIntents.
ACTION * SUBSCRIPTION CHANGED,"TelephonyIntents.
SECRET _CODE_ACTION":

OEM telephony apps may need to receive these broadcasts.
LOGIN ACCOUNTS CHANGED ACTION:

This is needed by some apps to set up scheduled operations for new
and changed accounts.

ACTION PACKAGE DATA CLEARED:

Data is cleared by the OS Settings app; a running app likely is interested
in that.

ACTION PACKAGE FULLY REMOVED:

Related apps might need to be informed if some apps get uninstalled
and their data is removed.

CHAPTER 5: Broadcasts

ACTION_NEW OUTGOING CALL:
This intercepts outgoing calls.
ACTION DEVICE _OWNER CHANGED:

Some apps might need to receive this so that they know the device’s
security status has changed.

ACTION EVENT REMINDER:

This is sent by the calendar provider to post an event reminder to the
calendar app.

ACTION_MEDIA MOUNTED,
ACTION_MEDIA CHECKING, ACTION MEDIA UNMOUNTED, ACTION MEDIA EJECT,
ACTION_MEDIA UNMOUNTABLE,ACTION MEDIA REMOVED, ACTION MEDIA BAD
REMOVAL:

Apps might need to know about the user’s physical interactions with the
device.

SMS_RECEIVED ACTION, WAP_PUSH RECEIVED ACTION:
These are needed by SMS recipient apps.

Adding Security to Broadcasts

Security in broadcasting messages is handled by the permission system, which gets
handled in more detail in Chapter 7.

In the following sections, we distinguish between explicit and implicit broadcasts.

Securing Explicit Broadcasts

For nonlocal broadcasting (i.e., not using the LocalBroadcastManager), permissions can be
specified on both sides, the receiver and the sender. For the latter, the broadcast-sending
methods have overloaded versions, including a permission specifier:

val intent = Intent(this, MyReceiver::class.java)
sendBroadcast(intent, "com.xyz.theapp.PERMISSION1")
This expresses sending a broadcast to a receiver that is protected by com.xyz.theapp.

PERMISSION1. Of course, you should write your own package names here and use
appropriate permission names.

http://dx.doi.org/10.1007/978-1-4842-3820-2_7

56 CHAPTER 5: Broadcasts

Instead, sending a broadcast without a permission specification may address receivers with
and without permission protection:

val intent = Intent(this, MyReceiver::class.java)

sendBroadcast(intent)

This means that specifying permissions on the sender side is not supposed to tell the
receiver that the sender is protected in any way.

For adding permissions to the receiver side, we first need to declare using it inside
AndroidManifest.xml on an app level.

<manifest ...>
<uses-permission android:name=
"com.xyz.theapp.PERMISSION1"/>

<application ...

Next we explicitly add it to the receiver element inside the same manifest file.

<receiver android:name=".MyReceiver"
android:permission="com.xyz.theapp.PERMISSION1">
<intent-filter>
<action android:name=
"com.xyz.theapp.DO_STH" />
</intent-filter>
</receiver>

Here, MyReceiver is an implementation of android.content.BroadcastReceiver.

Third, since this is a custom permission, you have to declare itself in the manifest file.

<manifest ...»>
<permission android:name=
"com.xyz.theapp.PERMISSION1"/>

The <permission> allows for a couple of more attributes; see the section “Manifest Top Level
Entries” in the online text companion to learn more about the protection level. The details for
and implications of it are explained thoroughly in Chapter 7.

For noncustom permissions, you don’t need to use the <permission> element.

Caution Specifying a permission on the sender side without having a matching permission on the
receiver side silently fails when you try to send a broadcast. There are also no logging entries, so be
careful with sender-side permissions.

http://dx.doi.org/10.1007/978-1-4842-3820-2_7

CHAPTER 5: Broadcasts 57

If you use local broadcasts with the LocalBroadcastManager, you cannot specify permissions
on the sender or the receiver side.

Securing Implicit Broadcasts

Like nonlocal explicit broadcasts, the permissions in implicit broadcasts can be specified on
both the broadcast sender and the receiver side. On the sender side, you would write the
following:

val intent = Intent()

intent.action = "de.pspaeth.myapp.DO_STH"

// ... more intent coordinates
sendBroadcast(intent, "com.xyz.theapp.PERMISSION1")

This expresses sending a broadcast to all matching receivers that are additionally protected
by com.xyz.theapp.PERMISSION1. Of course, you should write your own package names
here and use the appropriate permission names. As for the usual sender-receiver matching
procedure for implicit broadcasts, adding a permission kind of serves as an additional
matching criterion, so if there are several receiver candidates looking at the intent filters, for
actually receiving this broadcast, only those will be picked out that additionally provide this
permission flag.

One more thing that needs to be taken care of for implicit broadcasts is specifying the
permission usage in AndroidManifest.xml. So, for this sender to be able to use the
permission, add the following to the manifest file:

<uses-permission android:name="com.xyz.theapp.
PERMISSION1"/>

It’s the same as for explicit broadcasts. Sending a broadcast without a permission
specification may address receivers with and without permission protection.

sendBroadcast(intent)

This means specifying permissions on the sender side is not supposed to tell the receiver
that the sender is protected in any way.

For a receiver to be able to get hold of such a broadcast, the permission must be added to
the code like this:

private var bcReceiver: BroadcastReceiver? = null
override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)

bcReceiver = object : BroadcastReceiver() {
override fun onReceive(context: Context?,
intent: Intent?) {

58 CHAPTER 5: Broadcasts

// do s.th. when receiving...

}

}
val ifi: IntentFilter =

IntentFilter("de.pspaeth.myapp.DO_STH")
registerReceiver(bcReceiver, ifi,
"com.xyz.theapp.PERMISSION1", null)
}

override fun onDestroy() {
super.onDestroy()
unregisterReceiver(bcReceiver)

}

In addition, you must both define the permission and declare using it in the receiver’s
manifest file.

<uses-permission android:name=
"com.xyz.theapp.PERMISSION1" />

<permission android:name=
"com.xyz.theapp.PERMISSION1" />

Again, for noncustom permissions, you don’t need to use the <permission> element. For
more about permissions, see Chapter 7.

Note As an additional means to improve security, in applicable cases you can use
Intent.setPackage() to restrict possible receivers.

Sending Broadcasts from the Command Line

For devices you can connect to via the Android Debug Bridge (ADB), you can use a shell
command on your development PC to send a broadcast message (see Chapter 18). Here’s
an example of sending an action de.pspaeth.myapp.DO_STH to the dedicated receiver
MyReceiver of the package de.pspaeth.simplebroadcast (this is an explicit broadcast
message):
./adb shell am broadcast -a de.pspaeth.myapp.DO_STH \

de.pspaeth.simplebroadcast MyReceiver

To get a complete synopsis of sending broadcasts in this way, you can use the shell as follows:

./adb shell am

This command will show you all the possibilities to create broadcast messages and do other

things using that am command.

http://dx.doi.org/10.1007/978-1-4842-3820-2_7
http://dx.doi.org/10.1007/978-1-4842-3820-2_18

CHAPTER 5: Broadcasts 59

Random Notes on Broadcasts

Here is some additional information about broadcasts:

You can register and unregister programmatically managed receivers
also in the callback methods onPause() and onResume(). Obviously,
registering and unregistering will then happen more often compared to
using the onCreate() / onDestroy() pair.

A currently executing onReceive () method will upgrade the process
priority to “foreground” level, preventing the Android OS from killing the
receiving process. It would then happen only under extreme resource
shortage conditions.

If you have long-running processes inside onReceive(), you might think
of running them on a background thread, finishing onReceive() early.
However, since the process priority will be reverted to the normal level
after finishing onReceive(), your background process is more likely to
be killed, breaking your app. You can prevent this by using Context.
goAsync() and then starting an AsyncTask (inside at the end you must
call finish() on the PendingResult object you got from goAsync() to
eventually free resources), or you can use a JobScheduler.

Custom permissions, like we used in the “Securing Implicit Broadcasts”
section, get registered when the app gets installed. Because of that, the
app defining the custom permissions must be installed prior to the apps
using them.

Be cautious with sending sensitive information through implicit
broadcasts. Potentially malicious apps may try to receive them as well.
At the least, you can secure the broadcast by specifying permissions on
the sender side.

For clarity and to not mess up with other apps, always use namespaces
for broadcast action and permission names.

Avoid starting activities from broadcasts. This contradicts Android
usability principles.

Chapter

Content Providers

This chapter will cover content providers.

The Content Provider Framework

The content provider framework allows for the following:
Using (structured) data provided by other apps
Providing (structured) data for use by other apps
Copying data from one app to another
Providing data to the search framework
Providing data to special data-related Ul widgets
Doing all that by virtue of a well-defined standardized interface

The data communicated can have a strictly defined structure, such as the rows from a
database with defined column names and types, but it can also be files or byte arrays
without any semantics associated.

If the requirements of your app concerning data storage do not fit in any of the previous
cases, you don’t need to implement content provider components. Use the normal data
storage options instead.

Note It is not strictly forbidden for an app to provide data to its own components or use its own
data provider for accessing content; however, when looking at content providers, you usually think
of inter-app data exchange. But if you need it, you always can consider intra-app data exchange
patterns as a straightforward special case of inter-app communication.

© Peter Spath 2018
P. Spath, Pro Android with Kotlin, https://doi.org/10.1007/978-1-4842-3820-2_6

61

http://dx.doi.org/10.1007/978-1-4842-3820-2_6

62 CHAPTER 6: Content Providers

If we want to create content-aware apps, both looking at providing and consuming content,
these are the main questions:

B How do apps provide content?

B How do apps access content provided by other apps?
B How do apps handle content provided by other apps?
B How do we secure the provided data?

We will be looking at these topics in the following sections. Figure 6-1 shows an outline.

Content
Provider

Framework
content://xyz.com/items
Uri class
Use Tfr;(is to
File - Shea
Data Coord
Streams MOdIfy Query ata Loords

Clients .. Cursor
Use This .- Class
" UseThis to
Navigate
in Query

Result Set

Server
Implements This

Figure 6-1. Content provider framework

CHAPTER 6: Content Providers 63

Providing Content

Content can be provided by your app as well as by system apps. Think of the pictures taken
by the camera or contacts in your contacts list. The content provider framework is a little
easier to grasp if we first look at the content-providing side. In later sections, we will also
look at the consumers and other topics.

First we need to know where the data lives. However, the content provider framework makes
no assumptions on where the data actually comes from. It can reside in files, databases, in-
memory storages, or any other place you might think of. This improves the maintenance of
your app. For example, in an early stage, data may come from files, but later you may switch
to a database or cloud storage, and the possible consumers don’t have to care about those
changes because they don’t have to change how they access your content. The content
provider framework thus provides an abstraction layer for your data.

The single interface you need to implement to provide content is the following abstract class:
android.content.ContentProvider

In the following sections, we will be looking at the implementation of this class from a use
case perspective.

Initializing the Provider

You have to implement the following method:
ContentProvider.onCreate()

This method gets called by the Android OS when the content provider is being instantiated.
Here you can initialize the content provider. You should, however, avoid putting time-
consuming initialization processes here since instantiation does not necessarily mean the
content provider will be actually used.

If you don’t have anything interesting to do here, just implement it as an empty method.

To find out more about the environment your content provider is running in when
instantiated, you can overwrite its attachInfo() method. There you will be told about the
context the content provider is running in and also get a ProviderInfo object. Just don’t
forget to also call super.attachInfo() from inside.

Querying Data

For querying database-like data sets, there is one method you must implement and two
more you can optionally implement.

abstract fun query(VVAEEEES Variant A -----
uri:Uri,
projection:Array<String>,
selection:String,
selectionArgs:Array<String>,
sortOrder:String) : Cursor

64 CHAPTER 6: Content Providers

//----- Variant B -----

// You don't have to implement this. The default
// implementation calls variant A, but disregards the
// 'cancellationSignal' argument.
fun query(

uri:Uri,

projection:Array<String>,

selection:String,

selectionArgs:Array<String>,

String sortOrder:String,

cancellationSignal:CancellationSignal) : Cursor

/] -==-- Variant C -----

// You don't have to implement this. The default
// implementation converts the bundle argument to
// appropriate arguments for calling variant B.
// The bundle keys used are:
// ContentResolver.QUERY_ ARG SQL SELECTION
// ContentResolver.QUERY_ARG_SQL SELECTION_ARGS
// ContentResolver.QUERY_ARG_SQL_SORT_ORDER -or-
// ContentResolver.QUERY_ARG_SORT_COLUMNS
// (this being a String array)
fun query(

uri:Uri,

projection:Array<String>,

queryArgs:Bundle,

cancellationSignal:CancellationSignal) : Cursor

These methods are not intended to present file data such as images and sound. Returning
links or identifiers to file data is acceptable, though.

In the following list, | describe all the parameters by nhame and variant:

uri: This is an important parameter specifying the type coordinates of
the query in the data space. Content consumers will tell what kind of
data they are interested in by appropriately specifying this parameter.
Since URIs are so important, we describe them in their own section; see
“Designing Content URIs” in the “Providing Content” section below. This
parameter has the same meaning for variants A, B, and C.

projection: This will tell the implementation which columns the
requester is interested in. Looking at the SQL database type of storing
data, this lists the column names that should be included in the result.
There is, however, no strict requirement for a one-to-one mapping.

A requester might ask for a selection parameter X, and the values for X
might be calculated any way you might possibly think of. If null, return
all fields. This parameter has the same meaning for variants A, B, and C.

selection: This is only for variants A and B. This specifies a selection
for the data to be returned. The content provider framework makes no
assumptions how this selection parameter must look. It is completely
up to the implementation, and content requesters must yield to what
the implementation defines. In many cases, you will, however, have
something like a SQL selection string like name = Jean AND age < 45
here. If null, return all data sets.

CHAPTER 6: Content Providers 65

selectionArgs: The selection parameter may contain placeholders like ?.
If so, the values to be inserted for the placeholders are specified in this
array. Again, the framework makes no strict assumptions here, but in
most cases the ? serves as a placeholder, as in name = ? AND age < ?,
like in SQL. This may be null if there are no selection placeholders.

sortOrder: This is only for variants A and B. This specifies a sort order
for the data to be returned. The content provider framework does not
prescribe a syntax here, but for SQL-like access, this will usually be
something like name DESC, or ASC.

queryArgs: This is only for variant C. All three selections, selection
arguments, and sort order may or may not be specified using an
android.os.Bundle object. By convention, for SQL-like queries, the
bundle keys are as follows:

ContentResolver.QUERY ARG SQL SELECTION
ContentResolver.QUERY_ ARG _SQL_SELECTION_ ARGS
ContentResolver.QUERY ARG _SQL SORT_ORDER

cancellationSignal: This is only for variants B and C. If this is not null,
you can use it to cancel the current operation. The Android OS will then
appropriately inform the requesters.

All the query methods are supposed to return an android.database.Cursor object. This
allows you to iterate over the data sets, with the convention that each data set contains

an _id keyed technical ID. See “A Cursor Class Basing on AbstractCursor” and “Designing
Content URIs” in the “Providing Content” section below to learn how to design appropriate
cursor objects.

Modifying Content

Content providers do not just allow you to read content, they also allow you to alter content.
For this aim, the following methods exist:

abstract fun insert(
Uri uri:Uri,
values:ContentValues) : Uri

// You don't have to overwrite this, the default
// implementation correctly iterates over the input
// array and calls insert(...) on each element.
fun bulkInsert(
uri:Uri,
values:Array<ContentValues>) : Int

abstract fun update(
uri:Uri,
values:ContentValues,
selection:String,
selectionArgs:Array<String>) : Int

66 CHAPTER 6: Content Providers

abstract fun delete(
uri:Uri,
selection:String,
selectionArgs:Array<String>) : Int

These are the parameters and their meanings:

uri: This specifies the type coordinates of the data in the data space.
Content consumers will tell what kind of data they are targeting by
appropriately specifying this parameter. Note that for deleting or
updating single data sets, it is generally assumed that the URI contains
the (technical) ID of the datum at the end of the URI path, for example,
content://com.android.contacts/contact/42.

values: These are the values to be inserted or updated. You use the
various get*() methods of this class to access the values.

selection: This specifies a selection for the data to be updated or
deleted. The content provider framework makes no assumptions

how this selection parameter must look. It is completely up to the
implementation, and content requesters must yield to what the
implementation defines. In many cases, you will, however, have
something like a SQL selection string such as name = Jean AND age <
45 here. If null, all items of the data set will be addressed.

selectionArgs: The selection parameter may contain placeholders like ?.
If so, the values to be inserted for the placeholders are specified in this
array. Again, the framework makes no strict assumptions here, but in
most cases the ? serves as a placeholder, as in name = ? AND age < ?,
like for SQL. It may be null if there are no selection placeholders.

The insert() method is supposed to return the URI specifying the inserted data. This return
value may be null, so there is no strict requirement to return something here. If it returns
something, this should contain the technical ID. All the Int-returning methods are supposed
to return the number of affected data sets.

If you don’t want the content provider to be able to alter any data, you can just provide empty
implementations to all the insert, update, and delete methods, and let them return 0 or null.

Finishing the ContentProvider Class

To finish the implementation of your ContentProvider class, you must implement one more
method in addition to the query, insert, update, and delete methods.

abstract getType(uri:Uri) : String

This maps any usable URI to the appropriate MIME type. For a possible implementation, you
can, for example, use URIs as follows:

ContentResolver.CURSOR_DIR_BASE_TYPE + "/vnd.<name>.<type>"
ContentResolver.CURSOR_ITEM BASE_TYPE + "/vnd.<name>.< type>"

CHAPTER 6: Content Providers 67

The URlIs refer to
a globally unique

possibly many items, or at most one item, respectively. For <name>, use
name, either the reverse company domain or the package name, or a

prominent part of it. For <type>, use an identifier defining the table name or the data domain.

Registerin

g the Content Provider

Once you finish the ContentProvider implementation, you must register it inside the

AndroidManifest

<provider android:
android:
android:
android:
android:
android:
android:
android:
android:
android:

android

android:
android:
android:
android:

</provider>

.xml file as follows:

authorities="1list"

directBootAware=["true" | "false"]
enabled=["true" | "false"]
exported=["true" | "false"]
grantUriPermissions=["true" | "false"]

icon="drawable resource"
initOrder="integer"
label="string resource"
multiprocess=["true" | "false"]
name="string"
:permission="string"
process="string"
readPermission="string"
syncable=["true" | "false"]
writePermission="string" >

Table 6-1 describes the attributes.

Table 6-1. The <provider> Element

Attribute (Prepend android: Description

to Each)

authorities This is a semicolon-separated list of authorities. In many cases, this
will be just one, and you usually use the app (package) name or the
full class name of the ContentProvider implementation. There is no
default, and you must have at least one.

directBootAware This specifies whether the content provider can run before the user
unlocks the device. The default is false.

enabled This specifies whether the content provider is enabled. The default is
true.

exported This specifies whether other apps can access contents here.

Depending on the architecture of your app, access might be
restricted to components from the same app, but usually you want
other apps to access the content and thus set this to true. Starting
with API level 17, the default is false. Prior to that, the flag doesn’t
exist and apps behave like this is set to true.

(continued)

68 CHAPTER 6: Content Providers

Table 6-1. (continued)

Attribute (Prepend android:
to Each)

Description

grantUriPermissions

icon

initOrder

label

multiprocess

name

permission

process

readPermission

syncable

readPermission

This specifies whether permission to other apps accessing content
from this provider by URI can be temporarily granted. Temporarily
granted means a permission denial as defined by <permission>,
<readPermission>, or writePermission gets overridden temporarily if
the content accessing client was invoked by an intent with intent.
addFlags(Intent.FLAG_GRANT * URI_PERMISSION). If you set this
attribute to false, a more fine-grained temporary permission can

still be granted by setting one or more <grant-uri-permission>
subelements. The default is false.

This specifies the resource ID of an icon to use for the provider. The
default is to use the parent component’s icon.

Here you can impose some order for content providers of the same
app to be instantiated. Higher numbers get instantiated first. Use this
with care, since startup order dependencies might indicate a bad
application design.

This specifies a string resource ID for a label to use. The default is the
app’s label.

If set to true, an app running in more than one processes possibly
will have multiple instances of the content provider running.
Otherwise, at most one instance of the content provider will exist. The
default is false.

This specifies the fully qualified class name of the ContentProvider
implementation.

This is a convenient way of setting both readPermission and
writePermission. Specifying one of the latter has precedence.

Specify a process name if you want the content provider to run in
another process than the app itself. If it starts with a colon (:), the
process will be private to the app; if it starts with a lowercase letter,
a global process will be used (permission to do so required). The
default is to run in the app’s process.

This is a permission a client must have to read content of the content
provider. You can have a client without that permission still access
the content by virtue of the grantUriPermissions attribute.

This specifies whether data of the content provider should be
synchronized with a server.

This is a permission a client must have to write to content of the
content provider. You can have a client without that permission still
access the content by virtue of the grantUriPermissions attribute.

CHAPTER 6: Content Providers 69

If you use grantUriPermissions to temporarily give the URI permissions to components from
other apps called by an implicit intent, you have to carefully tailor such an intent. First add
the flag Intent.FLAG_GRANT READ URI_PERMISSION, and then add the URI you want to allow
access for inside the intent’s data field. Here’s an example:

intent.action =
"com.example.app.VIEW" // SET INTENT ACTION
intent.flags =
Intent.FLAG ACTIVITY NEW_TASK
intent.addFlags(Intent.FLAG_GRANT READ URI PERMISSION)
// GRANT TEMPORARY READ PERMISSION
intent.data = Uri.parse("content://<AUTHORITY>/<PATH>")
// USE YOUR OWN!
startActivity(intent)

Inside the intent filter of the called component, you then must specify a <data> element, and
it must contain an appropriate URI and a MIME type. The reason why a MIME type must be
specified, although we didn’t explicitly state one, is that the Android OS uses the content
provider’s getType(Uri) method to automatically add the MIME type while the intent gets
resolved. Here’s an example:

<intent-filter>
<action android:name=
"de.pspaeth.crcons.VIEW"/>
<category android:name=
"android.intent.category.DEFAULT"/>
<data android:mimeType="*/*"
android:scheme="content"
android:host="*"
android:pathPattern=".*"/>
</intent-filter>

The called component is then granted access to this URI in the specified way. After it
finishes its work, it is supposed to call revokeUriPermission(String, Uri, Int) to revoke
the temporary permission it had been given.

revokePermission(getPackageName(), uri,
Intent.FLAG_GRANT_READ_URI_PERMISSION
and Intent.FLAG_GRANT WRITE URI_PERMISSION)

Inside the <provider> element, there are a couple of child elements you can add, listed here:

meta-data:

<meta-data android:name="string"
android:resource="resource specification”
android:value="string" />

This is where either resource or value must be specified. If you use resource, a resource ID
such as @string/someString will assign the resource ID itself to the meta-entry, while using
value and @string/someString will assign the contents of the resource to the meta-entry.

70 CHAPTER 6: Content Providers

grant-uri-permission:

<grant-uri-permission android:path="string"
android:pathPattern="string"
android:pathPrefix="string" />

This grants a specific URI permission (use zero to many instances of that child). Only if the
parent’s attribute grantUriPermissions is set to false will this child allow the access to
specific URIs. Use exactly one of these attributes: path is for the complete URI, pathPrefix
is for URls starting with that value, and pathPattern allows for wildcards (X* is for zero to
many repetitions of any character X, and . * is for zero to many repetitions of any character).

path-permission:

<path-permission android:path="string"
android:pathPrefix="string"
android:pathPattern="string"
android:permission="string"
android:readPermission="string"
android:writePermission="string" />

To define a subset of data a content provider can serve, you can use this element to

specify a path and a required permission. The path attribute specifies a complete path,

the pathPrefix attribute allows matching the initial part of a path, and pathPattern is a
complete path, but with wildcards (* matches zero to many occurrences of the preceding
character, and .* matches zero to many occurrences of any character). The permission
attribute specifies both a read and a write permission, and the attributes readPermission and
writePermission draw a distinction between read and write permission. If one of the latter
two is specified, it takes precedence over the permission attribute.

Designing Content URIs

URIs describe the domain of the data a content requester is interested in. Thinking of SQL,
this would be the table name. URIs can do more, however. The official syntax of a URl is as
follows:

scheme: [//[user[:password]@]host[:port]]
[/path][?query][#fragment]

You can see that the user, password, and port parts are optional, and in fact you usually
wouldn’t specify them in an Android environment. They are not forbidden, though, and

make sense under certain circumstances. The host part, however, is interpreted in the

most general way as something that provides something, and this is exactly the way it is
interpreted here, with “something” being the data. To make that notion somewhat clearer,
the host part for Android is commonly referred to as the authority. For example, in the
Contacts system app, the authority would be com.android.contacts. (Don’t use strings; use
class constant fields instead. See the “Contract” section for more information.) The scheme is
by convention normally content. So, a general contacts URI starts with the following:

content://com.android.contacts

CHAPTER 6: Content Providers 7

The path part of the URI specifies the data domain, or table in SQL. The user profile data
inside the contacts, for example, gets addressed by the following:

content://com.android.contacts/profile

In this example, the path has just one element, but in can be more complex like pathpart1/
pathpart2/pathparts.

A URI may also have a query part specifying a selection. Looking at the query methods
from the class android.content.ContentProvider, we already have the ability to specify
a selection on an API basis, but it is totally acceptable, although not mandatory, to

also allow query parameters inside the URI. If you need to put several elements into

the query parameter, you can follow the usual convention to use & as a separator, as in
name=John&age=37.

The fragment specifies a secondary resource and is not used often for content providers.
But you can use it, if it helps you.

Since a URlI is such a generic construct and guessing correct URIs for accessing content
provided by some apps is almost impossible, a content provider app usually provides a
contract class that helps in building correct URlIs for the task at hand.

Building a Content Interface Contract

The URIs a client has to use to access data represent the interface to the contents. It is
therefore a good idea to have a central place where a client can look to find out which
URIs to use. The Android documentation suggests using a content contract class for that
purpose. The outline of such a class will look like this:

class MyContentContract {
companion object {
// The authority and the base URI

@JvmField

val AUTHORITY = "com.xyz.whatitis"
@JvmField

val CONTENT URI = Uri.parse("content://" +

AUTHORITY)

// Selection for ID bases query
@JvmField

val SELECTION_ID BASED = BaseColumns._ ID +
n = ? n

// For various tables (or item types) it is
// recommended to use inner classes to specify
// them. This is just an example
class Items {
companion object {
// The name of the item.
@JvmField
val NAME = "item_name"

72 CHAPTER 6: Content Providers

// The content URI for items

@JvmField

val CONTENT URI = Uri.withAppendedPath(
MyContentContract.CONTENT URI, "items")

// The MIME type of a directory of items

@JvmField

val CONTENT_TYPE =
ContentResolver.CURSOR_DIR BASE_TYPE +
"/vnd." + MyContentContract.AUTHORITY +
".items"

// The mime type of a single item.

@JvmField

val CONTENT_ITEM_TYPE =
ContentResolver.CURSOR_ITEM BASE_TYPE +
"/vnd." + MyContentContract.AUTHORITY +
".items"

// You could add database column names or
// projection specifications here, or sort
// order specifications, and more

/7 ...

}

Of course, part of your interface design must be using meaningful names for the classes,
field names, and field values.

Note The interface described in the contract class does not have to correspond to actual
database tables. It is completely feasible and beneficial to conceptually decouple the interface from
the actual implementation and also provide table joins or other item types here derived in any way
you might think of.

Here are a couple of notes about this construct:

If you can make sure clients will be using only Kotlin as a platform, this
can be written in a much shorter way without any boilerplate code.

object MyContentContract2 {
val AUTHORITY = "com.xyz.whatitis"
val CONTENT URI = Uri.parse("content://"
+ AUTHORITY)
val SELECTION_ID BASED =
BaseColumns. ID + " = 2 "
object Items {
val NAME = "item_name"
val CONTENT URI =
Uri.withAppendedPath(
MyContentContract.CONTENT URI, "items")

CHAPTER 6: Content Providers 73

val CONTENT TYPE =
ContentResolver.CURSOR_DIR BASE_TYPE +
"/vnd." + MyContentContract.AUTHORITY +
".items"

val CONTENT_ITEM TYPE =
ContentResolver.CURSOR_ITEM BASE TYPE +
"/vnd." + MyContentContract.AUTHORITY +
".items"

However, if we want Java clients to use the interface as well, we have to
use all those companion object and @JvmObject declarations and modifiers.

Using companion objects and JvmObject annotations allows for writing
TheClass.THE_FIELD like for static fields in Java.

You might consider providing an equivalent Java construct to your
clients so they don’t have to learn the Kotlin syntax if they use only Java.

The Uri.parse() and Uri.withAppendedPath() method calls are just
two examples of using the Uri class. The class contains a couple more
methods that help to manage constructing correct URls.

You can also provide helper methods inside the contract class. If you
do so, make sure the interface class does not depend on other classes
and add a modifier JvmStatic to the fun function declaration to make it
callable from Java.

You would then provide this contract class (or classes, if you want to document the interface
using both Kotlin and Java) publicly to any possible clients that are supposed to use your
content provider app.

A Cursor Class Based on AbstractCursor and Related Classes

All the query*() methods from ContentProvider return an android.database.Cursor object. From
the package you can see that this is a database-centric class, which is actually a small design
flaw of Android since the content interface should have been access methodology agnostic.

In addition, the Cursor interface is a random access interface for clients wanting to scan
through result sets. You can use the base implementation android.database.AbstractCursor
for your cursor class; it already implements a couple of the interface methods. To do

so, write class MyCursor : AbstractCursor { ... } orval myCursor = object :
AbstractCursor { ... } andimplement all abstract methods and overwrite some of the
other methods for the class to do meaningful things.

override fun getCount(): Int
This specifies the number of data sets available.
override fun getColumnNames(): Array<String>

This specifies the ordered array of column names.

74 CHAPTER 6: Content Providers

override fun getInt(column: Int): Int

This gets a long value (the column index is zero based).
override fun getLong(column: Int): Long

This gets a long value (the column index is zero based).
override fun getShort(column: Int): Short

This gets a short value (the column index is zero based).
override fun getFloat(column: Int): Float

This gets a float value (the column index is zero based).
override fun getDouble(column: Int): Double

This gets a double value (the column index is zero based).
override fun getString(column: Int): String

This gets a string value (the column index is zero based).
override fun isNull(column: Int): Boolean

This tells whether the value is null (the column index is zero based).
override fun getType(column: Int): Int

You don’t have to overwrite this, but if you don't, it will always return
Cursor.FIELD TYPE_STRING, assuming that getString() will always return
something meaningful. For more fine-grained control, let it return one of
FIELD TYPE NULL, FIELD TYPE INTEGER, FIELD TYPE FLOAT, FIELD TYPE_
STRING, or FIELD_TYPE_BLOB. The column index is zero based.

override fun getBlob(column: Int): ByteArray

Overwrite this, if you want to support blobs. Otherwise, an
UnsupportedOperationException will be thrown.

override fun onMove(oldPosition: Int, newPosition: Int): Boolean

Although not marked as abstract, you must overwrite this. Your
implementation must move the cursor to the corresponding position in the
result set. Possible values range from -1 (before the first position; not a
valid position) to count (after the last position; not a valid position). Let it
return true if the move was successful. If you don’t overwrite it, nothing will
happen, and the function returns always true.

AbstractCursor also provides a method called fillWindow(position: Int, window:
CursoriWindow?): Unit that you can use to fill an android.database.CursoriWindow object
based on the result set from the query. See the online APl documentation of CursoriWindow to
proceed with this approach.

Besides AbstractCursor, the Cursor interface has a couple more (abstract) implementations
you can use, as summarized in Table 6-2.

CHAPTER 6: Content Providers

Table 6-2. More Cursor Implementations

75

Name Inside android.database

Description

AbstractWindowedCursor

CrossProcessCursor

CrossProcessCursorWrapper

CursorWrapper

MatrixCursor

MergeCursor

sqlite.SQLiteCursor

This inherits from AbstractCursor and owns a CursorWindow
object holding the data. Subclasses are responsible for filling
the cursor window with data during their onMove (Int, Int)
operation, allocating a new cursor window if necessary. It’s
easier to implement compared to AbstractCursor, but you have
to add a lot of functionality to onMove().

This is a cursor implementation that allows using it from
remote processes. It is just an extension of the android.
database.Cursor interface, containing three more methods:
fillWindow(Int, CursorWindow), getWindow(): CursorWindow,
and onMove(Int, Int): Boolean. It does not provide any own
implementation; you have to overwrite all the methods defined
in Cursor.

This is a cursor implementation that allows using it from remote
processes. It implements CrossProcessCursor and holds a
Cursor delegate, which can also be a CrossProcessCursor.

This holds a Cursor delegate that all method calls are
forwarded to.

This is a full implementation of Cursor, with in-memory storage
of data as an Object array. You have to use addRow(...) to add
data. The inner class MatrixCursor.RowBuilder can be used to

build rows to be used by MatrixCursor.addRow(Array<Object>).

Use this to transparently merge, or concatenate, cursor objects.

This is an implementation of Cursor with the data backed by
a SQLite database. Use one of the constructors to connect the
cursor with a SQLite database object.

A Gursor Class Based on the Cursor Interface

A more low-level approach of implementing a cursor is not relying on AbstractCursor but
instead implementing all the interface methods yourself.

You can then use subclassing as in class MyCursor :
object as in val myCursor = object :

online text companion describes all the interface methods.

Cursor { ... } or use an anonymous
Cursor { ... }. The section “Cursor Interface” in the

76 CHAPTER 6: Content Providers

Dispatching URIs Inside the Provider Code

To simplify dispatching incoming URls, the class android.content.UriMatcher comes in
handy. If you have query-related URIs like, for example, this:

people #list all people from a directory
people/37 #inquire a person with ID 37
people/37/phone #get phone info of person with ID 37

and want to use an easy switch statement, you can write the following inside your class or
object:

val PEOPLE DIR AUTHORITY = "directory"
val PEOPLE = 1
val PEOPLE_ID = 2
val PEOPLE_PHONES = 3
val uriMatcher = UriMatcher(UriMatcher.NO MATCH)
init {
uriMatcher.addURI(PEOPLE_DIR_AUTHORITY,
"people", PEOPLE)
uriMatcher.addURI(PEOPLE_DIR AUTHORITY,
"people/#", PEOPLE_ID)
uriMatcher.addURI(PEOPLE_DIR AUTHORITY,
"people/#/phone", PEOPLE_PHONES)

}

Here, # stands for any number, and * matches any string.

In your ContentProvider implementation, you can then use the following construct to
dispatch incoming string URLs:

when(uriMatcher.match(url)) {
PEOPLE ->
// incoming path = people, do s.th. with that...
PEOPLE_ID ->
// incoming path = people/#, do s.th. with that...
PEOPLE_PHONES ->
// incoming path
else ->
// do something else

people/#/phone, ...

Providing Content Files

Content providers not only can give access to database-like content, they may also expose
methods for retrieving file-like data, such as image or sound files. For this aim, the following
methods are provided:

CHAPTER 6: Content Providers

override fun getStreamTypes(uri:Uri, mimeTypeFilter:String) :
Array<String>

If your content provider offers files, overwrite this method to allow clients
to determine supported MIME types given a URI. The mimeTypeFilter
should not be null, and you can use it to filter the output. It supports
wildcards, so if a client wants to retrieve all values, it will write */*

here, and your provider code needs to correctly handle this. The output
must also contain all those types that may be the result of suitable type
conversions performed by the provider. This may return null to indicate
an empty result set. Examples are image/png or audio/mpeg.

override fun openFile(uri:Uri, mode:String): ParcelFileDescriptor

Override this to handle requests to open a file blob. The parameter mode
must be one of the following (there is no default):

1 for read-only access

w for write-only access (first erasing if data is already present)
wa, which is like w but possibly appends data

1w for reading and appending writing

rwt, which is like rw but truncates existing data

To learn what to do with the returned ParcelFileDescriptor, see the
text after the list.

override fun openFile(uri:Uri, mode:String,
signal:CancellationSignal): ParcelFileDescriptor

This is the same as openFile(Uri, String), but additionally the client
may signal a cancellation while reading the file is in progress. The
provider can save the signal object and catch the client’s cancellation
request by periodically calling throwIfCancelled() on the signal object.

override fun openAssetFile(uri:Uri, mode:String):
AssetFileDescriptor

This is like openFile(Uri, String), but it can be implemented by
providers that need to be able to return subsections of files, often assets
inside of their APK. For implementing this, you probably want to use the
android.content.res.AssetManager class. You have it in the asset field
of a context, so for example in an activity you can directly use asset to
address the AssetManager.

override fun openAssetFile(uri:Uri, mode:String,
signal:CancellationSignal): AssetFileDescriptor

This is the same as openAssetFile(Uri, String) but allows for cancellation
from the client side. The provider can save the signal object and catch the
client’s cancellation request by periodically calling throwIfCancelled() on
the signal object.

77

78 CHAPTER 6: Content Providers

override fun : openTypedAssetFile(uri:Uri, mimeTypeFilter:String,
opts:Bundle): AssetFileDescriptor

Implement this if you want clients to be able to read (not write!)
asset data by MIME type. The default implementation compares the
mimeTypeFilter with whatever it gets from getType(Uri), and if they
match, it simply forwards to openAssetFile(...).

override fun : openTypedAssetFile(uri:Uri, mimeTypeFilter:String,
opts:Bundle, signal:CancellationSignal): AssetFileDescriptor

This is the same as openTypedAssetFile(Uri, String, Bundle) but
allows for cancellation from the client side. The provider can save the
signal object and catch the client’s cancellation request by periodically
calling throwIfCancelled() on the signal object.

override fun <T : Any?> openPipeHelper(uri: Uri?, mimeType:
String?, opts: Bundle?, args: T, func: PipeDataWriter<T>?):
ParcelFileDescriptor

This is a helper function for implementing openTypedAssetFile(Uri,
String, Bundle). It creates a data pipe and a background thread
allowing you to stream generated data back to the client. This function
returns a new ParcelFileDescriptor. After work is done, the caller must
close it.

override fun openFileHelper(uri:Uri, mode:String):
ParcelFileDescriptor

This is a convenience method for subclasses. The default implementation
opens a file whose path is given by the result of a query() method using
the URI provided. For the file path, the data member gets extracted
from the query result, and the result set count must be 1.

Those methods that return a ParcelFileDescriptor object can invoke appropriate
constructors as follows to build input and output streams for the files:

val fd = ... // get the ParcelFileDescriptor

val inpStream =
ParcelFileDescriptor.AutoCloseInputStream(fd)

val outpStream =
ParcelFileDescriptor.AutoCloseOutputStream(fd)

You must use the close() method on the stream once its work is done. The Auto means the
ParcelFileDescriptor gets closed for you automatically when you close the streams.

Similarly, those methods that return an AssetFileDescriptor object can invoke appropriate
constructors as follows to build input and output streams for the files:

val fd = ... // get the AssetFileDescriptor

val inpStream =
AssetFileDescriptor.AutoCloseInputStream(fd)

val outpStream =
AssetFileDescriptor.AutoCloseOutputStream(fd)

CHAPTER 6: Content Providers 79

Here again, you must use the close() method on the stream once its work is done; only the
AssetFileDescriptor gets closed for you automatically when you close the streams.

Informing Listeners of Data Changes

A client addressing a content provider via its ContentResolver field (e.g., Activity.
contentResolver) can register to be notified of content changes by calling the following:

val uri = ... // a content uri
contentResolver.registerContentObserver(uri, true,
object : ContentObserver(null) {
override fun onChange(selfChange: Boolean) {
// do s.th.

}
override fun onChange(selfChange: Boolean,
uri: Uri?) {
// do s.th.

}
}
)

The second argument to registerContentObserver() specifies whether sub-URlIs (the URI
plus any other path elements) will lead to a notification as well. The constructor argument to
ContentObserver can also be a Handler object for receiving onChange messages in a different
thread.

For this to work, on the content provider side you may need to take care that the event gets
correctly emitted. For example, inside any data modification method, you should add the
following:

context.contentResolver.notifyChange(uri, null)

Also, to make change listening bullet-proof, you might want to inform any Cursor objects
returned by the query() methods. For this aim, a cursor has a registerContentObserver()
method that you can use to collect cursor-based content observers. The content provider
may then send messages to those content observers as well.

Extending a Content Provider

We have seen that a content provider allows for accessing database-like content and files.
If you don’t like the way this is done too much or have your own ideas about what a content
provider should be able to do, you can implement the call() method as follows:

override call(method:String, arg:String, extras:Bundle):
Bundle {

super.call(method, arg, extras)

// do your own stuff...

80 CHAPTER 6: Content Providers

This way you can design your own content access framework. Of course, you should inform
possible clients of how to use the interface, for example, inside the contract class.

Caution No security checks apply to calling this method. You have to implement appropriate
security checks yourself, for example by using checkSelfPermission() on the context.

Client Access Consistency by URI Canonicalization

Quite often query results contain IDs or list index numbers or other information that depends
on some short-term database context. For example, a query may return item IDs like 23,

67, or 56, and if you need to get the details for an item, you query again using another URI
containing this ID, for example content://com.xyz/people/23. The problem with such URIs
is that a client usually wouldn’t save them for later retrievals. The ID might have changed
meanwhile, and the URI is thus not very reliable.

To overcome this problem, a content provider may implement a UR/I canonicalization. To do
S0, your content provider class has to implement these two methods:

canonicalize(url:Uri): Uri:

Let this method return a canonicalized URI, for example, by adding some
domain-specific query parameters as follows:

content://com.xyz/people/23 ->

content://com.xyz/people?
firstName=John&
lastName=Bird&
Birthday=200105348&
SSN=123-99-1624

uncanonicalize(url:Uri): Uri:

This does the exact opposite of canonicalize(). Let it return null if the
item gets lost and the uncanonicalization cannot be performed.

Consuming Content

To consume content, content provider clients use an android.content.ContentResolver
object. Any Context object that includes activities, services, and more provides one
called getContentResolver(), or with Kotlin more concisely addressed by just writing
contentResolver.

Using the Content Resolver
To access database-like content, you use one of the following ContentProvider methods:
insert(url: Uri, values: ContentValues): Int

This inserts a record.

CHAPTER 6: Content Providers 81

delete(url: Uri, where: String, selectionArgs: Array<String>): Int
This deletes records.

update(uri: Uri, values: ContentValues, where: String,
selectionArgs: Array<String>): Int

This updates records.

query(uri: Uri, projection: Array<String>, queryArgs: Bundle,
cancellationSignal: CancellationSignal): Cursor

This queries content according to the parameters given.

query(uri: Uri, projection: Array<String>, selection:
String, selectionArgs: Array<String>, sortOrder: String,
cancellationSignal: CancellationSignal): Cursor

This queries content according to the parameters given.

query(uri: Uri, projection: Array<String>, selection: String,
selectionArgs: Array<String>, sortOrder: String): Cursor

This queries content according to the parameters given.

Their signatures and meanings closely relate to the corresponding ContentProvider
methods, as covered earlier. Also, take a look at the online API reference.

To instead access file content, you can use one of the following methods:

openAssetFileDescriptor(uri: Uri, mode: String,
cancellationSignal: CancellationSignal): AssetFileDescriptor

This opens the inner (asset) file.

openAssetFileDescriptor(uri: Uri, mode: String):
AssetFileDescriptor

This opens the inner (asset) file, with no cancellation signal.

openTypedAssetFileDescriptor(uri: Uri, mimeType: String,
opts: Bundle, cancellationSignal: CancellationSignal):
AssetFileDescriptor

This opens the typed inner (asset) file.

openTypedAssetFileDescriptor(uri: Uri, mimeType: String, opts:
Bundle): AssetFileDescriptor

This opens the typed inner (asset) file, with no cancellation signal.

openFileDescriptor(uri: Uri, mode: String, cancellationSignal:
CancellationSignal): ParcelFileDescriptor

This opens the file.
openFileDescriptor(uri: Uri, mode: String): ParcelFileDescriptor

This opens the file, with no cancellation signal.

82 CHAPTER 6: Content Providers

openInputStream(uri: Uri): InputStream

This opens an input stream.

openOutputStream(uri: Uri, mode: String): OutputStream
This opens an output stream.

openOutputStream(uri: Uri): OutputStream

This opens an output stream, in w mode.

The open*Descriptor() methods again closely relate to the corresponding ContentProvider
methods from the “Providing Content” section. The two others, openInputStream() and
openOutputStream(), are convenience methods to more readily access file (stream) data.

To register content observers for asynchronously being signaled when content changes, as
covered earlier, use one of these:

registerContentObserver(uri: Uri, notifyForDescendants: Boolean,
observer: ContentObserver)

unregisterContentObserver(observer: ContentObserver)

To use a content provider that exhibits an extension by virtue of an implementation of its
call() method, you use the corresponding call() method of the content resolver

call(uri: Uri, method: String, arg: String, extras: Bundle)

Accessing System Content Providers

The Android OS and its preinstalled apps provide several content provider components.
Inside the online APl documentation, you can find the content provider contract classes in
the “android.provider/Classes” section. The following sections summarize what they are and
how they can be accessed.

BlockedNumberContract

This exposes a table containing blocked numbers. Only the system, the default

phone app, the default SMS app, and carrier apps can access this table, except for
canCurrentUserBlockNumbers(), which can be called by any app. To use it, you, for example,
write this:

val values = ContentValues()

values.put(BlockedNumbers.COLUMN ORIGINAL NUMBER,
"1234567890")

Uri uri = contentResolver.insert(
BlockedNumbers.CONTENT URI, values)

CHAPTER 6: Content Providers

CalendarContract

This is a rather complex content provider with many tables. As an example, we are
accessing the calendars list and adding an event here:

val havePermissions =
ContextCompat.checkSelfPermission(this,
Manifest.permission.WRITE_CALENDAR)
== PackageManager.PERMISSION_GRANTED
88 ContextCompat.checkSelfPermission(this,
Manifest.permission.READ CALENDAR)
== PackageManager.PERMISSION_ GRANTED
if(!havePermissions) {
// Acquire permissions...
telse{
data class CalEntry(val name: String, val id: String)
val calendars = HashMap<String, CalEntry>()
val uri = CalendarContract.Calendars.CONTENT URI
val cursor = contentResolver.query(
uri, null, null, null, null)
cursor.moveToFirst()
while (!cursor.isAfterlLast) {
val calName = cursor.getString(
cursor.getColumnIndex(
CalendarContract.Calendars.NAME))
val calld = cursor.getString(
cursor.getColumnIndex(
CalendarContract.Calendars. ID))
calendars[calName] = CalEntry(calName, calld)
cursor.moveToNext()

}
Log.e("LOG", calendars.toString())

val calld = "4" // You should instead fetch an

// appropriate entry from the map!
val year = 2018
val month = Calendar.AUGUST

val dayInt = 27
val hour = 8
val minute = 30

val beginTime = Calendar.getInstance()
beginTime.set(year, month, dayInt, hour, minute)
val event = ContentValues()
event.put(CalendarContract.Events.CALENDAR ID,
calld)
event.put(CalendarContract.Events.TITLE,
"MyEvent")
event.put(CalendarContract.Events.DESCRIPTION,
"This is test event")
event.put(CalendarContract.Events.EVENT LOCATION,
"School™)

83

84 CHAPTER 6: Content Providers

event.put(CalendarContract.Events.DTSTART,
beginTime.getTimeInMillis())
event.put(CalendarContract.Events.DTEND,
beginTime.getTimeInMillis())
event.put(CalendarContract.Events.ALL_DAY,0)
event.put(CalendarContract.Events.RRULE,
"FREQ=YEARLY")
event.put(CalendarContract.Events.EVENT TIMEZONE,
"Germany")
val retUri = contentResolver.insert(
CalendarContract.Events.CONTENT URI, event)
Log.e("LOG", retUri.toString())

}

We didn’t implement the permission inquiry; permissions are described in detail in Chapter 7.

CallLog

This is a table listing placed and received calls. Here’s an example to list the table:

val havePermissions =
ContextCompat.checkSelfPermission(this,
Manifest.permission.READ CALL LOG)
== PackageManager.PERMISSION_GRANTED
88 ContextCompat.checkSelfPermission(this,
Manifest.permission.WRITE_CALL_LOG)
== PackageManager .PERMISSION_GRANTED
if('havePermissions) {
// Acquire permissions...
}else {
val uri = Calllog.Calls.CONTENT_URI
val cursor = contentResolver.query(
uri, null, null, null, null)
cursor.moveToFirst()
while (!cursor.isAfterlast) {
Log.e("LOG", "New entry:")
for(name in cursor.columnNames) {
val v = cursor.getString(
cursor.getColumnIndex(name))
Log.e("LOG"," > " + name + " = " + v)

}

cursor.moveToNext ()

}

We didn’t implement the permission inquiry; permissions are described in detail in Chapter 7.
Table 6-3 describes the table columns.

http://dx.doi.org/10.1007/978-1-4842-3820-2_7
http://dx.doi.org/10.1007/978-1-4842-3820-2_7

CHAPTER 6: Content Providers 85

Table 6-3. CallLog Table Columns

Name Description

date The date of the call, in milliseconds since the epoch.

transcription Transcription of the call or voicemail entry.

photo_id The cached photo ID of an associated photo.
subscription_component_ The component name of the account used to place or receive the call.
name

type The type of the call. One of (constant names in CallLog.Calls):

geocoded_location

presentation

duration
subscription_id

is_read

number

features

voicemail uri
normalized number

via number

INCOMING_TYPE

OUTGOING_TYPE

MISSED TYPE

VOICEMAIL TYPE

REJECTED_TYPE

BLOCKED TYPE

ANSWERED_EXTERNALLY_TYPE

A geocoded location for the number associated with this call.

The number presenting rules set by the network. One of (constant
names in Calllog.Calls): PRESENTATION ALLOWED

PRESENTATION RESTRICTED

PRESENTATION_UNKNOWN

PRESENTATION PAYPHONE

The duration of the call in seconds.

The identifier for the account used to place or receive the call.

Whether this item has been read or otherwise consumed by the user
(O=false, 1=true).

The phone number as the user entered it.

Bitmask describing features of the call, built of (constant names in
CalllLog.Calls):FEATURES_HD CALL: Call was HD.

FEATURES_PULLED EXTERNALLY: Call was pulled externally.
FEATURES_VIDEO: Call had video.

FEATURES_WIFI: Call was WIFI call.

URI of the voicemail entry, if applicable.

The cached normalized (E164) version of the phone number, if it exists.

For an incoming call, the secondary line number the call was received
via. When a SIM card has multiple phone numbers associated with it,
this value indicates which of the numbers associated with the SIM was
called.

(continued)

86 CHAPTER 6: Content Providers

Table 6-3. (continued)

Name

Description

matched_number

last_modified

new

numberlabel

lookup_uri

photo_uri

data_usage
phone_account_address

formatted number

add_for_all users

numbertype

countryiso

name
post_dial_digits

transcription_state_id

The cached phone number of the contact that matches this entry, if it
exists.

The date the row is last inserted, updated, or marked as deleted. In
milliseconds since the epoch. Read only.

Whether the call has been acknowledged (0=false, 1=tzrue).

The cached number label for a custom number type, associated with
the phone number, if it exists.

The cached URI to look up the contact associated with the phone
number, if it exists.

The cached photo URI of the picture associated with the phone number,
if it exists.

The data usage of the call in bytes.
Undocumented.

The cached phone number, formatted with rules based on the country
the user was in when the call was made or received.

Undocumented.

The cached number type associated with the phone number, if
applicable. One of (constant names in CalllLog.Calls):

INCOMING TYPE

OUTGOING_TYPE

MISSED_TYPE

VOICEMAIL TYPE

REJECTED_TYPE

BLOCKED_TYPE ANSWERED EXTERNALLY TYPE

The ISO 3166-1 two-letter country code of the country where the user
received or made the call.

The cached name associated with the phone number, if it exists.
The post-dial portion of a dialed number.

Undocumented.

The (technical) ID of the table entry.

ContactsContract

This is a complex contract describing the phone contacts. Contact information is stored in a

three-tier data model.

ContactsContract.Data:

Any kind of personal data.

CHAPTER 6: Content Providers 87

ContactsContract.RawContacts:
A set of data describing a person.
ContactsContract.Contacts:

An aggregated view on a person, possibly related to several rows inside
the RawContacts table. Because of its aggregating nature, it is writable
only in parts.

There are more contract-related tables described as inner classes of ContactsContract.
Instead of explaining all the possible use cases for the contact’s content provider, to

get you started, we just present code to list the contents of the three main tables listed
previously, show what a single new contact writes there, and otherwise refer to the online
documentation of the ContactsContract class. To list the contents of the three tables, use
the following:

fun showTable(tbl:Uri) {
Log.e("LOG", "HHHHHHHHHHHHHHHHHHHHHHHHIEHHHIIHH")
Log.e("LOG", tbl.toString())
val cursor = contentResolver.query(
tbl, null, null, null, null)
cursor.moveToFirst()
while (!cursor.isAfterlast) {
Log.e("LOG", "New entry:")
for(name in cursor.columnNames) {
val v = cursor.getString(
cursor.getColumnIndex(name))

Log.e("LOG"," > " + name + " =" + v)

cursor.moveToNext ()

}
}

showTable(ContactsContract.Contacts.CONTENT URI)
showTable(ContactsContract.RawContacts.CONTENT_URI)
showTable(ContactsContract.Data.CONTENT URI)

If you create a new contact using Android’s pre-installed Contacts app, inside the Contacts
view table you will find the following new entry (here only the important columns):

_id =1

display name_alt = Mayer, Hugo

sort_key alt = Mayer, Hugo

has_phone_number = 1
contact_last_updated_timestamp = 1518451432615
display name = Hugo Mayer

sort_key = Hugo Mayer

times_contacted = 0

name_raw_contact_id = 1

88 CHAPTER 6: Content Providers

As an associated entry inside the table RawContacts, you will find among others the
following:

_id =1

account_type = com.google

contact_id = 1

display name_alt = Mayer, Hugo
sort_key alt = Mayer, Hugo
account_name = pmspaeth1111@gmail.com
display name = Hugo Mayer

sort_key = Hugo Mayer

times_contacted = 0

account_type _and_data_set = com.google

Obviously, you find many of these entries also inside the Contacts view listed earlier.
Associated are zero to many entries inside the Data table (with only the most important
shown).

Entry:
_id =3
mimetype = vnd.android.cursor.item/phone_v2
raw_contact_id = 1
contact_id = 1
data1l = (012) 345-6789

Entry:
_id =4
mimetype = vnd.android.cursor.item/phone_v2
raw_contact id = 1
contact_id = 1
datal = (098) 765-4321

Entry:
_id =5
mimetype = vnd.android.cursor.item/email v2
raw_contact id = 1
contact_id = 1
datal = null

Entry:
id =6
mimetype = vnd.android.cursor.item/name
raw_contact _id = 1
contact_id = 1
data3 = Mayer
data2 = Hugo
datal = Hugo Mayer

Entry:
_id =7
mimetype = vnd.android.cursor.item/nickname
raw_contact id = 1
contact_id = 1
datal = null

CHAPTER 6: Content Providers 89

Entry:
_id = 8
mimetype = vnd.android.cursor.item/note
raw_contact_id = 1
contact_id = 1
datal = null

You can see that the rows inside the Data table correspond to edit fields inside the GUI. You
see two phone numbers, a first and second name, no nickname, and no e-mail address.

DocumentsContract

This is not a contents contract in the same sense as the other contracts we see here. It
corresponds to android.provider.DocumentsProvider, which is a subclass of android.
content.ContentProvider. We will be dealing with document providers later in the chapter.

FontsContract

This is a contract that deals with downloadable fonts and does not correspond to content
providers.

MediaStore

The media store handles metadata for all media-related files on both internal and external
storage devices. This includes audio files, images, and videos. In addition, it handles files in
a usage-agnostic manner. That means media and nonmedia files relate to media files. The
root class android.provider.MediaStore itself does not contain content provider—specific
assets, but the following inner classes do:

MediaStore.Audio

Audio files. Contains more inner classes for music albums, artists, the
audio files themselves, genres, and play lists.

MediaStore.Images
Images.
MediaStore.Videos
Videos.
MediaStore.Files
Files in general.

You can investigate any of the media store tables by scanning through the online API
documentation. For your own experiments, you can start with the tables as a whole by
watching out for constants EXTERNAL_CONTENT URI and INTERNAL CONTENT URI, or methods
getContentUri(), and then sending them through the same code we already used earlier.

90 CHAPTER 6: Content Providers

showTable(MediaStore.Audio.Media.getContentUri(
"internal")) // <- other option: "external"

fun showTable(tbl:Uri) {
Log.e("LOG", "HHttHHHHHHHHHHHHHIHHHHHHHAHHHHHHRAHEIE)

Log.e("LOG", tbl.toString())
val cursor = contentResolver.query(
tbl, null, null, null, null)
cursor.moveToFirst()
while (!cursor.isAfterlast) {
Log.e("LOG", "New entry:")
for(name in cursor.columnNames) {
val v = cursor.getString(
cursor.getColumnIndex(name))

Log.e("LOG"," > " + name + " = " + v)

cursor.moveToNext ()

}
}

Settings

This is a content provider that deals with various global and system-level settings. The
following are the main URlIs as constants from the contract class:

Settings.Global.CONTENT_URI

Global settings. All entries are triples of the following:
_id
android.provider.Settings.NameValueTable.NAME
android.provider.Settings.NameValueTable.VALUE

Settings.System.CONTENT URI

Global system-level settings. All entries are triples of the following:
_id
android.provider.Settings.NameValueTable.NAME
android.provider.Settings.NameValueTable.VALUE

Settings.Secure.CONTENT_URI

This is a secured system setting. Apps are not allowed to alter it. All entries are triples of the
following:

_id
android.provider.Settings.NameValueTable.NAME
android.provider.Settings.NameValueTable.VALUE

CHAPTER 6: Content Providers 91

To investigate these tables, take a look at the online APl documentation of android.
provider.Settings. It describes all possible settings. To list the complete settings, you can
use the same function as earlier for the ContactsContract contract class.

showTable(Settings.Global.CONTENT URI)
showTable(Settings.System.CONTENT URI)
showTable(Settings.Secure.CONTENT URI)

fun showTable(tbl:Uri) {
Log.e("LOG", "HttHHHHHHHHHHHHHHHHHHHHHHHHHHHHIE)
Log.e("LOG", tbl.toString())
val cursor = contentResolver.query(
tbl, null, null, null, null)
cursor.moveToFirst()
while (!cursor.isAfterlLast) {
Log.e("LOG", "New entry:")
for(name in cursor.columnNames) {
val v = cursor.getString(
cursor.getColumnIndex(name))

Log.e("LOG"," > " + name + " = " + v)

cursor.moveToNext ()

}
}

Your app don’t need special permission to read the settings. However, writing is possible
only for the Global and System tables, and you also need a special construct to acquire
permission.

if(!Settings.System.canWrite(this)) {
val intent = Intent(
Settings.ACTION MANAGE WRITE SETTINGS)
intent.data = Uri.parse(
"package:" + getPackageName())
startActivity(intent)

}

Usually you acquire permissions by calling the following:

ActivityCompat.requestPermissions(this,
arrayOf(Manifest.permission.WRITE_SETTINGS), 42)

However, when setting permissions, this request gets denied immediately by current Android
versions. So, you cannot use it and need to call the intent as shown earlier instead.

To access a certain entry, you can again use constants and methods from the contract class.

val uri = Settings.System.getUriFor(
Settings.System.HAPTIC_ FEEDBACK_ENABLED)
Log.e("LOG", uri.toString())
val feedbackEnabled = Settings.System.getInt(
contentResolver,
Settings.System.HAPTIC FEEDBACK ENABLED)
Log.e("LOG", Integer.toString(feedbackEnabled))

92 CHAPTER 6: Content Providers

Settings.System.putInt(contentResolver,
Settings.System.HAPTIC FEEDBACK_ENABLED, 0)

Caution While it is possible to acquire an individual URI for a certain setting, you should not use
the ContentResolver.update(), ContentResolver.insert(), and ContentResolver.
delete() methods to alter values. Instead, use the methods provided by the contract class.

SyncStateContract

This contract is used by the browser app, the contacts app, and the calendar app to help
synchronize user data with external servers.

UserDictionary

This refers to a content provider that allows you to administer and use predictive input based
on a word dictionary. As of API level 23, the user dictionary can be used only from input
method editors or the spelling checking framework. For modern apps you should not try to
use it from another place. This contract thus plays only an informational role.

VoicemailCGontract

This contract allows for accessing information referring to voicemail providers. It primarily
consists of two tables described by inner classes.

VoicemailContract.Status

A voicemail source app uses this contract to tell the system about its state.
VoicemailContract.Voicemails
This contains the actual voicemails.

You can list the contents of these tables. For example, for the Voicemails table, write the
following:

val uri = VoicemailContract.Voicemails.CONTENT_URI.
buildUpon().
appendQueryParameter(
VoicemailContract.PARAM_KEY_SOURCE_PACKAGE,
packageName)
.build()
showTable(uri)

fun showTable(tbl:Uri) {
Log.e("LOG", "HHttHHHHHHHHHHHHHHHHHHHHHAHHRAHHRS)
Log.e("LOG", tbl.toString())
val cursor = contentResolver.query(
tbl, null, null, null, null)

CHAPTER 6: Content Providers 93

cursor.moveToFirst()
while (!cursor.isAfterlast) {
Log.e("LOG", "New entry:")
for(name in cursor.columnNames) {
val v = cursor.getString(
cursor.getColumnIndex(name))
Log.e("LOG"," > " + name + " =" + v)

cursor.moveToNext ()

}
}

Adding the VoicemailContract.PARAM_KEY_SOURCE_PACKAGE URI parameter is important;
otherwise, you’ll get a security exception.

Batch-Accessing Content Data

The android.content.ContentProvider class allows your implementation to use the
following:

applyBatch(
operations: ArraylList<ContentProviderOperation>):
Array<ContentProviderResult>

The default implementation iterates through the list and performs each operation in turn,
but you can also override the method to use your own logic. The ContentProviderOperation
objects provided in the parameter describes the operation to perform. It can be one of
update, delete, and insert.

For your convenience, that class provides a builder, which you can use for example as
follows:

val oper:ContentProviderOperation =
ContentProviderOperation.newInsert(uri)
.withvValue("key1", "val1")
.withValue("key2", 42)
.build()

Securing Content

From the moment you declare a content provider inside AndroidManifest.xml and export
it by setting its exported attribute to true, other apps are allowed to access the complete
contents exposed by the provider.

This might not be what you want for sensitive information. As a remedy, to impose
restrictions on the content or part of the content, you add permission-related attributes to
the <provider> element or its subelements.

94

CHAPTER 6: Content Providers

You basically have the following options:

1. Securing all content by one criterion

To do so, use the permission attribute of <provider> as follows:

<provider ...
android:permission="PERMISSION-NAME"
.

</provider>

Here, PERMISSION-NAME is a system permission or a permission you defined in the
<permission> element of the app. If you do it that way, the complete content of the provider
is accessible only to such clients that successfully acquired exactly this permission. More
precisely, any read or write access requires clients to have this permission. If you need

to distinguish between read permission and write permission, you can instead use the
readPermission and writePermission attributes. If you use a mixture, the more specific
attributes win.

A
A,

permission = A — writePermission = A, readPermission

permission = A, readPermission = B — writePermission
readPermission = B

permission = A, writePermission = B — writePermission = B,
readPermission = A

permission = A, writePermission = B, readPermission = C —
writePermission = B, readPermission = C

2. Securing specific URI paths

By using the <path-permission> subelement of <provider>, you can impose
restrictions on specific URI paths.

<path-permission android:path="string"
android:pathPrefix="string"
android:pathPattern="string"
android:permission="string"
android:readPermission="string"
android:writePermission="string" />

In the *permission attributes, you specify the permission name and permission
scope, just as described earlier for securing all content by one criterion. For the
path specification, you use exactly one of the three possible attributes: path is
for an exact path match, path- Prefix is for matching the start of a path, and
pathPattern allows for wildcards (X* is for zero to many occurrences of any
character X, and .* is for zero to many occurrences of any character). Since
you can use several <path-permission> elements, you can build a fine-grained
permission structure in your content provider.

CHAPTER 6: Content Providers

3. Permission exemptions

By using the grantUriPermission attribute of the <provider> element, you can temporarily
grant permissions to components called by intent from the app that owns the content
provider. If you set grantUriPermission to true and the intent for calling the other
component gets constructed using the help of this:

intent.addFlags(
Intent.FLAG_GRANT READ URI_PERMISSION)
/*or*/
intent.addFlags(
Intent.FLAG_GRANT WRITE_URI_PERMISSION)
/*or*/
intent.addFlags(
Intent.FLAG_GRANT_WRITE_URI_PERMISSION and
Intent.FLAG _GRANT READ URI_PERMISSION)

then the called component will have full access to all content of the provider. You can
instead set grantUriPermission to false and add subelements.

<grant-uri-permission android:path="string"
android:pathPattern="string"
android:pathPrefix="string" />

You then control the exemptions in a more fine-grained way. For both to make sense, you
obviously must have restrictions set by *permission attributes in effect; otherwise, there is
nothing you can have exemptions for. The rules for the <grant-uri-permission> element’s
attributes are as explained earlier: path is for an exact path match, pathPrefix is for
matching the start of a path, and pathPattern allows for wildcards (X* is for zero to many
occurrences of any character X, and .* is for zero to many occurrences of any character).

Providing Content for the Search Framework

The Android search framework provides a feature to users to search any data that is
available to them by whatever means and using whatever data source. We will be talking
about the search framework in Chapter 8; for now it is important to know that content
providers play a role for the following:

Recent query suggestions
Custom suggestions

For both of them you provide special content provider subclasses and add them to
AndroidManifest.xml as any other content provider.

Documents Provider

The documents provider is part of the Storage Access Framework (SAF). It allows for a
document-centric view of data access, and it also exhibits a hierarchical super-structure of
document directories.

http://dx.doi.org/10.1007/978-1-4842-3820-2_8

96 CHAPTER 6: Content Providers

Note The SAF was included in API level 19. As of February 2018, this is the version used for more
than 90 percent of active Android devices. You cannot use SAF for devices prior to that, but if you
really need to cover the remaining 10 percent, you still can provide documents as normal content
mediated by content providers and factor out code that can be used by both the SAF and the legacy
provider.

The main idea of a documents provider is that your app provides access to documents,
wherever the corresponding data are stored, and otherwise doesn’t care about how the
documents and the documents structure get presented to the user or other apps. The
documents provider data model consists of one to many trees starting at root nodes,
with subnodes being either documents or directories spanning subtrees, again with other
directories and documents. It thus resembles the structure of data in a file system.

To start with a documents provider, you create a class implementing android.provider.
DocumentsProvider, which itself is a specialized subclass of android.content.
ContentProvider. At a bare minimum, you have to implement these methods:

override fun onCreate(): Boolean:

Use this to initialize the documents provider. Since this runs on the app’s main thread, you
must not perform lengthy operations here. But you can prepare the data access to the
provider. This returns true if the provider was successfully loaded and false otherwise.

override fun queryRoots(projection: Array<out String>?): Cursor:

This is supposed to query the roots of the provider’s data structure. In
many cases, the data will fit into one tree, and you thus need to provide
just one root, but you can have as many roots as makes sense for your
requirements. The projection argument may present a list of columns

to be included in the result set. The names are the same as the COLUMN_*
constants inside DocumentsContract.Root. It may be null, which means
return all columns. The method must return cursors with at a maximum the
following fields (shown are the constant names from DocumentsContract.
Root):

COLUMN_AVAILABLE BYTES (long): Available bytes under the root. Optional, and
may be null to indicate unknown.

COLUMN_CAPACITY_BYTES (long): The capacity of the tree at that root, in bytes.
Think of a file system capacity. Optional, and may be null to indicate unknown.

COLUMN_DOCUMENT_ID: The ID (string) of the directory corresponding to that
root. Required.

COLUMN_FLAGS: Flags that apply to a root (int). A combination of (constants in
DocumentsContract.Root):

FLAG_LOCAL_ONLY (local to the device, no network access),

FLAG_SUPPORTS_CREATE (at least one document under the root supports
creating content)

CHAPTER 6: Content Providers

FLAG_SUPPORTS_RECENTS (root can be queried to show recently changed
documents)

FLAG_SUPPORTS_SEARCH (the tree allows for searching documents)
COLUMN_ICON (int): Icon resource ID for a root. Required.

COLUMN_MIME_TYPES (string): Supported MIME types. If more than one, use a
newline \n as a separator. Optional, and may be null to indicate support for
all MIME types.

COLUMN_ROOT _ID (string): A unique ID of the root. Required.

COLUMN_SUMMARY (string): Summary for this root; might be shown to a user.
Optional, and may be null to indicate “unknown.”

COLUMN_TITLE (string): Title for the root, might be shown to a user. Required.

If this set of roots changes, you must call ContentResolver.notifyChange with
DocumentsContract.buildRootsUri to notify the system.

override fun queryChildDocuments(parentDocumentId: String?,
projection: Array<out String>?, sortOrder: String?): Cursor:

Return the immediate children documents and subdirectories contained in the requested
directory. Apps targeting at API level 26 or higher should instead implement fun queryChil
dDocuments (parentDocumentId: String?, projection: Array<out String>?, queryArgs:
Bundle?): Cursor and in this method use the following:

override fun queryChildDocuments(
parentDocumentId: String?,
projection: Array<out String>?,
sortOrder: String?): Cursor {
val bndl = Bundle()
bndl.putString(
ContentResolver.QUERY_ARG_SQL_SORT_ORDER,
sortOrder)
return queryChildDocuments(
parentDocumentId, projection, bndl)

override fun queryChildDocuments(parentDocumentId: String?,
projection: Array<out String>?, queryArgs: Bundle?): Cursor:

Return the immediate children documents and subdirectories contained in the requested
directory. The bundle argument contains query parameters as keys.

ContentResolver.QUERY_ARG_SQL_SELECTION

ContentResolver.QUERY_ARG_SQL_SELECTION_ARGS

ContentResolver.QUERY_ARG_SQL_SORT_ORDER -or-
ContentResolver.QUERY_ARG_SORT_COLUMNS
(this being a String array)

97

98 CHAPTER 6: Content Providers

The parentDocumentId is the ID of the directory we want to have listed, and inside
projection you can specify the columns that should be returned. Use a list of constants
COLUMN_* from DocumentsContract.Document. Or write null to return all columns. The
resulting Cursor at a maximum returns the following fields (keys are constants from
DocumentsContract.Document):

COLUMN_DISPLAY_NAME (string): The display name of a document, used as the
primary title displayed to a user. Required.

COLUMN_DOCUMENT _1ID (string): The unique ID of a document. Required.

COLUMN_FLAGS: Flags for the document. A combination of (constant names
from DocumentsContract.Document):

FLAG_SUPPORTS_WRITE (writing supported)

FLAG_SUPPORTS DELETE (deleting supported)

FLAG_SUPPORTS_THUMBNAIL (representation as thumbnail supported)

FLAG DIR PREFERS_GRID (for directories, if they should be shown as a grid)

FLAG DIR PREFERS_LAST MODIFIED (for directories, sorting by
“last modified” preferred)

FLAG_VIRTUAL DOCUMENT (a virtual document without MIME type)
FLAG_SUPPORTS_COPY (copying supported)
FLAG_SUPPORTS_MOVE (moving, inside the tree, supported)

FLAG_SUPPORTS_REMOVE (removing from the hierarchical structure, not
deleting, supported)

COLUMN_ICON (int) : A specific icon resource ID for a document. May be null to
use the system default.

COLUMN_LAST MODIFIED (long): The timestamp when a document was last
modified, in milliseconds since January 1, 1970 00:00:00.0 UTC. Required,
but may be null if undefined.

COLUMN_MIME_TYPE (string): The MIME type of a document. Required.

COLUMN_SIZE (long): Size of a document, in bytes, or null if unknown.
Required.

COLUMN_SUMMARY (string): The summary of a document; may be shown to a
user. Optional and may be null.

For network-related operations, you might return data partly and set DocumentsContract.
EXTRA_LOADING on the Cursor to indicate you are still fetching additional data. Then,

when the network data is available, you can send a change notification to trigger a
requery and return the complete contents. To support change notifications, you must

fire Cursor.setNotificationUri() with a relevant URI, maybe from DocumentsContract.
buildChildDocumentsUri(). Then you can call ContentResolver.notifyChange() with that
URI to send change notifications.

CHAPTER 6: Content Providers 99

fun openDocument(documentId: String?, mode: String?, signal:
CancellationSignal?): ParcelFileDescriptor:

Open and return the requested document. This should return a reliable
ParcelFileDescriptor to detect when the remote caller has finished reading or writing
the document. If you block while downloading content, you should periodically check
CancellationSignal.isCanceled() to abort abandoned open requests. The parameters
are documentId for the document to return. The mode specifies the “open” mode,

such as 1, w, or rw. Mode 1 should always be supported. The provider should throw
UnsupportedOperationException if the passing mode is not supported. You may return a
pipe or socket pair if the mode is exclusively r or w, but complex modes like rw imply a
normal file on disk that supports seeking. The signal may be used from the caller if the
request should be canceled. May be null.

override fun queryDocument(documentId: String?, projection:
Array<out String>?): Cursor:

Return metadata for a single requested document. The parameters are documentId for the ID
of the document to return and projection for a list of columns to put into the cursor. Use the
constants from DocumentsContract.Document. For a list, see the description of the method
queryChildDocuments(). If you use null here, all columns are to be returned.

Inside the file AndroidManifest.xml, you register the documents provider almost like any
other provider.

<provider
android:name="com.example.YourDocumentProvider"
android:authorities="com.example.documents"
android:exported="true"
android:grantUriPermissions="true"
android:permission=
"android.permission.MANAGE_DOCUMENTS">
<intent-filter>
<action android:name=
"android.content.action.DOCUMENTS_PROVIDER"/>
</intent-filter>
</provider>

In the previous queries, we have seen that the Cursor object returns flags to indicate that
recent documents and searching inside the tree should be supported. For this to work, you
must implement one or two more methods in your DocumentsProvider implementation.

override fun queryRecentDocuments(rootId: String, projection:
Array<String>): Cursor:

This is supposed to return recently modified documents under the
requested root. The returned documents should be sorted by COLUMN_LAST _
MODIFIED in descending order, and at most 64 entries should be shown.
Recent documents do not support change notifications.

100 CHAPTER 6: Content Providers

querySearchDocuments(rootId: String, query: String, projection:
Array<String>): Cursor:

This is supposed to return documents that match the given query under
the requested root. The returned documents should be sorted by relevance
in descending order. For slow queries, you can return data in part and set
EXTRA_LOADING on the cursor to indicate that you are fetching additional
data. Then, when the data is available, you can send a change notification
to trigger a requery and return the complete contents. To support change
notifications, you must use setNotificationUri(ContentResolver, Uri)
with a relevant Uri, maybe from buildSearchDocumentsUri(String,
String, String). Then you can call the method notifyChange(Uri,
android.database.ContentObserver, boolean) with that Uri to send
change notifications.

Once your documents provider is configured and running, a client component can then use
an ACTION_OPEN_DOCUMENT or ACTION_CREATE_DOCUMENT intent to open or create a document.
The Android system picker will be taking care of presenting the appropriate documents to
the user; you don’t have to provide an own GUI for your documents provider.

Here’s an example of such a client access:

// An integer you can use to identify that call when the
// called Intent returns
val READ REQUEST CODE = 42

// ACTION_OPEN_DOCUMENT used in this example is the

// intent to choose a document like for example a file
// file via the system's file browser.

val intent = Intent(Intent.ACTION_OPEN_DOCUMENT)

// Filter to only show results that can be "opened", such
// as a file (as opposed to a list of informational items

)
intent.addCategory(Intent.CATEGORY OPENABLE)

// You can use a filter to for example show only images.
// To search for all documents instead, you can use "*/*"
// here.

intent.type = "image/*"

// The actual Intent call - the system will provide the
// GUI
startActivityForResult(intent, READ REQUEST CODE)

Once an item is selected from inside the system picker, to catch the intent return you’d write
something like this:

override fun onActivityResult(requestCode:Int,
resultCode:Int,
resultData:Intent) {

CHAPTER 6: Content Providers 101

// The ACTION_OPEN_DOCUMENT intent was sent with the
// request code READ REQUEST CODE. If the request

// code seen here doesn't match, it's the

// response to some other intent, and the code below
// shouldn't run at all.

if (requestCode == READ REQUEST CODE
88 resultCode == Activity.RESULT OK) {

// The document selected shows up in
// intent.getData()
val uri = resultData.data
Log.i("LOG", "Uri: " + uri.toString())
showImage(uri) // Do s.th. with it

}

}

Instead of opening a file as shown in the example, you can do other things with the URI
you received in the intent’s return. You could, for example, also issue a query to fetch
metadata as shown in the previous query methods. Since the DocumentsProvider inherits
from ContentProvider, you can use the methods described earlier to open a stream for the
document’s bytes.

Chapter

Permissions

Securing sensitive data is an important task during the development of apps. With more and
more apps on handheld devices being used for sensitive everyday tasks such as banking,

security has been gaining more importance, and it will continue to do so in the future. You as
a developer must take every precaution possible to handle your app users’ data responsibly.

Fully covering every possible security aspect is a challenging task and would fill a whole
book on its own. Fortunately, there is a vast number of online resources you can consult to
get updated with Android OS security matters. Just be cautious to filter out inappropriate
information. The following security-related topics in the Android OS’s online resources are a
good place to start:

https://developer.android.com/training/best-security.html
https://developer.android.com/training/best-permissions-ids.html

If these links are broken when you read the book, search for android best practices security
and android best practices permissions in your favorite search engine and you’ll readily find
these resources.

Having said that, we still want to thoroughly deal with the permission system inside the
Android OS because this is the place you as a developer will definitely have to feel at home
once your app addresses sensitive data. Permissions add security to system data and
features; you can use predefined permissions, define them yourself, or declare them by
writing appropriate entries in AndroidManifest.xml.

Permission Types

Permissions come in several flavors according to the desired protection level.

Normal: This level corresponds to low-level security-sensitive
information. The system will automatically grant such permissions
without explicitly asking the user, but the permission is listed in the
package description and can be queried by explicit demand using the
system settings app.

© Peter Spath 2018 103
P. Spath, Pro Android with Kotlin, https://doi.org/10.1007/978-1-4842-3820-2_7

http://dx.doi.org/10.1007/978-1-4842-3820-2_7

104 CHAPTER 7: Permissions

Dangerous: This level corresponds to high-level security-sensitive
information. The user will be asked whether they want to allow using
that permission. Once allowed for an app, the allowance will be saved,
and the user won’t be asked again until the app gets reinstalled or the
permission gets explicitly revoked by using the system settings app.

Signature: This level corresponds to extremely high-level security-
sensitive information. Only apps signed with the same certificate
as the app defining the permission can acquire it. The system will
check whether the signatures match and then automatically grant
the permission. This level makes sense only for a collection of apps
developed by the same developer.

Special: For a couple of use cases, the system grants access to certain
system resources only by off-band acquisition methods. Namely, for
permissions SYSTEM_ALERT_WINDOW and WRITE_SETTINGS, you have to
declare them in the manifest and call special intents to acquire them.
The intent action you have to use for SYSTEM_ALERT_WINDOW is Settings.
ACTION_MANAGE OVERLAY_PERMISSION, and the one for WRITE_SETTINGS is
Settings.ACTION_MANAGE WRITE_SETTINGS. Your app should use these
two only if absolutely necessary.

Privileged or System Only: These are for system image apps. You should
not have to use them.

Permissions are gathered in permission groups. The idea is that once the user has
accepted a permission request from permission A of group G1, another permission inquiry
for another permission B of the same group G1 is not needed. From a user experience
perspective, permission groups show an effect only if we are talking about Dangerous type
permissions; permission groups for Normal permissions have no impact.

Note The mapping of permissions to permission groups may change with future versions of
Android. Your app thus should not rely on such a mapping. From a development perspective, you
should just ignore permission groups, unless you define your own permissions and permission
groups.

Defining Permissions

The Android OS includes a number of permissions defined by various built-in apps or the
OS itself. In addition, you as a developer can define your own permissions to secure apps or
parts of your apps.

As for the built-in permissions, they are defined by the system, and if your app needs one

or several of them, you declare using them (see the “Permissions” section of the online text
companion). The system will then decide based on the protection level what to do with these
permission requests. If your app exposes sensitive information to other apps or the system
and it is not handled by permissions used by the app, you define your own permissions
inside AndroidManifest.xml.

CHAPTER 7: Permissions 105

<permission android:description="string resource"
android:icon="drawable resource"
android:label="string resource"
android:name="string"
android:permissionGroup="string"
android:protectionLevel=["normal" | "dangerous" |
"signature" | "signatureOrSystem"] />

The meaning of these attributes are described in the section “Manifest Top Level Entries”
of the online text companion. At a bare minimum, you must provide the name and
protectionlLevel attributes, but it certainly is a good idea to also add a label, icon, and a
description to help your users understand what the permission does.

If you need to group your permissions, you can use one of two methods.

Use the <permission-group> element and add permissionGroup
attributes to <permission>; see the section “Manifest Top Level Entries”
in the online text companion.

Use the <permission-tree> element and name your permissions
accordingly; see the "Manifest Top Level Entries” section in the online
text companion.

If you then acquire a permission of a group, the sibling permissions from the same group will
be implicitly included in the grant.

Caution To adhere to security guidelines and to make your app design clear and stable, keep the
number of permissions you define yourself at the bare minimum.

Using Permissions

To use permissions, inside your AndroidManifest.xml file add one or more, as shown here:

<uses-permission android:name="string"
android:maxSdkVersion="integer" />

Or if you need to specify permissions for API levels 23 or higher (Android 6.0), use this:

<uses-permission-sdk-23 android:name="string"
android:maxSdkVersion="integer" />

In both cases, the name attribute specifies the permission name, and maxSdkVersion is the
maximum API level this permission requirement will take into account. This special <uses-
permission-sdk23> element comes from a major change in permission semantics for
Android 6.0. If you don’t care for that distinction, just omit the maxSdkVersion attribute.

106 CHAPTER 7: Permissions

The question is, how would we know which permissions exactly we need for our app? The
answer has three parts.

B Android Studio tells you about a permission your app needs. If you,
for example, write the following, Android Studio tells you a certain
permission is required (Figure 7-1):

val uri = Calllog.Calls.CONTENT_URI
val cursor = contentResolver.query(
uri, null, null, null, null)

m During development and testing, your app crashes and in the logs you
see an entry like this:

Caused by: java.lang.SecurityException: Permission
Denial: opening provider
com.android.providers.contacts.CallLogProvider
from

ProcessRecord{faeda9c 4127:de.pspaeth.cp1/u0ag6}
(pid=4127, uid=10096) requires
android.permission.READ_CALL_LOG or
android.permission.WRITE_CALL_LOG

B The list of system permissions tells you that you need a certain
permission for a certain task. See Table 7-1.

val uri = CalllLog.Calls.CONTENT URI
val cur = contentResolver query(ur1

wr wmas¥ N o wmas® N wos mand N dows wman®W N

Missing perrmssmns requn'ed to read Calls CONTENT_URE: andrond permissmn READ CALL LOG more... (Ctrl+F1)
Figure 7-1. Android Studio telling you about a permission requirement

Once the usage of the permission is declared in the top-level element <uses-permissiony,
it still must be connected to the app’s components. This happens either inside the
<application> element if you want to connect the permission to all components at once
or, better, on a per-component base. In either case you declare the permission inside the
permission attribute, as follows:

<activity android:name=
"com.example.myapp.ExampleActivity"

android:permission=
"com.eample.myapp.abcPermission"/>

CHAPTER 7: Permissions 107

Table 7-1. System Permissions

Permission

Group

Description

READ_CALENDAR

WRITE_CALENDAR

CAMERA

READ_CONTACTS

WRITE_CONTACTS

GET_ACCOUNTS

ACCESS_FINE_LOCATION

ACCESS_COARSE_LOCATION

RECORD_AUDIO

READ _PHONE_STATE

READ_PHONE_NUMBERS

CALL_PHONE

ANSWER_PHONE_CALLS

CALENDAR

CALENDAR

CAMERA

CONTACTS

CONTACTS

CONTACTS

LOCATION

LOCATION

MICROPHONE

PHONE

PHONE

PHONE

PHONE

Allows for reading the calendar. Manifest entry:
android.permission.READ_CALENDAR

Allows for writing the calendar. Manifest entry:
android.permission.READ_CALENDAR

Allows for accessing the camera. Manifest entry:
android.permission.CAMERA

Read from the contacts table. Manifest entry:
android.permission.READ_CONTACTS

Write into the contacts table. Manifest entry:
android.permission.WRITE_CONTACTS

Allows for listing accounts from the Accounts Service.
Manifest entry:

android.permission.GET_ACCOUNTS

Allows an app to access fine-grained location. Manifest
entry:

android.permission.ACCESS_FINE_LOCATION

Allows an app to access approximate location. Manifest
entry:

android.permission.ACCESS COARSE_LOCATION

Allows for recording audio. Manifest entry:
android.permission.RECORD_AUDIO

Allows read access to phone state (phone number of the
device, current cellular network information, the status

of any ongoing calls, and a list of any PhoneAccounts
registered on the device). Manifest entry:

android.permission.READ_PHONE_STATE

Read access to the device’s phone number. Manifest
entry:
android.permission.READ_PHONE_NUMBERS

Allows an application to initiate a phone call without
going through the dialer user interface. Manifest entry:

android.permission.CALL_PONE

Allows an application to answer an incoming phone call.
Manifest entry:

android.permission.ANSWER_PHONE_CALLS

(continued)

108 CHAPTER 7: Permissions

Table 7-1. (continued)

Permission Group Description

READ_CALL_LOG PHONE Allows for reading from the call log table. Manifest entry:
android.permission.READ_CALL_LOG

WRITE_CALL_LOG PHONE Allows for writing to the call log table. Manifest entry:
android.permission.WRITE_CALL_LOG

ADD_VOICEMAIL PHONE Allows for adding a voicemail. Manifest entry:
com.android.voicemail.permission.ADD_VOICEMAIL

USE_SIP PHONE Allows for using the SIP service. Manifest entry:
android.permission.USE_SIP

PROCESS_OUTGOING_CALLS PHONE Allows an application to see the number being dialed
during an outgoing call with the option to redirect the call
to a different number or abort the call. Manifest entry:
android.permission.PROCESS OUTGOING CALLS

BODY_SENSORS SENSORS Allows an application to access data from sensors that
the user uses to measure what is happening inside their
body. Manifest entry:
android.permission.BODY_SENSORS

SEND_SMS SMS Allows sending an SMS. Manifest entry:
android.permission.SEND_SMS

RECEIVE_SMS SMS Allows receiving an SMS. Manifest entry:
android.permission.RECEIVE_SMS

READ SMS SMS Allows reading an SMS. Manifest entry:
android.permission.READ_SMS

RECEIVE_WAP_PUSH SMS Allows receiving a WAP push message. Manifest entry:
android.permission.RECEIVE_WAP_PUSH

RECEIVE_MMS SMS Allows receiving an MMS. Manifest entry:
android.permission.RECEIVE_MMS

READ_EXTERNAL_STORAGE STORAGE Allows for reading from the external storage. Required
only if the API level is below 19. Manifest entry:
android.permission.READ_EXTERNAL_STORAGE

WRITE_EXTERNAL_STORAGE STORAGE Allows for writing to the external storage. Required only if

the API level is below 19. Manifest entry:
WRITE_EXTERNAL_STORAGE

CHAPTER 7: Permissions 109

Acquiring Permissions

The way permissions are handled by the Android OS has changed. Prior to Android 6.0

(API level 23), the permission inquiry asked the user happened during the installation. Starting
with API level 23, a paradigm change happened: permission inquiry happens during the
runtime of an app. This made the permission system more flexible; users of your app might
never use certain parts of it, and thus asking for permission to do so might annoy them.

The downside of this approach is that more programming work is needed. The runtime
permission inquiry must be included in your code. To do so, at any suitable place before the
permission is needed, you add the following:

val activity = this

val perm = Manifest.permission.CAMERA

val cameraPermReturnld = 7239 // any suitable constant

val permissionCheck = ContextCompat.checkSelfPermission(
activity, perm)

if (permissionCheck !=

PackageManager.PERMISSION GRANTED) {
// Should we show an explanation?
if (ActivityCompat.
shouldShowRequestPermissionRationale(
activity, perm)) {
// Show an explanation to the user
// *asynchronously* -- don't block
// this thread waiting for the user's
// response! After the user sees the
// explanation, try again to request
// the permission.
val dialog = AlertDialog.Builder(activity) ...
.create()
dialog.show()
} else {
// No explanation needed, we can request
// the permission.
ActivityCompat.requestPermissions(activity,
arrayOf(perm), cameraPermReturnId)

// cameraPermReturnId is an app-defined
// int constant. The callback method gets
// the result of the request.

}

This code does the following:

First we check whether the permission has already been granted. If the
permission was granted before, the user wouldn’t be asked again unless
the app got reinstalled or the permission got revoked explicitly.

The ActivityCompat.shouldShowRequestPermissionRationale() method
checks whether a rationale should be shown to the user. The idea
behind that is if the user denied the permission inquiry request a couple
of times, they might have done that because the need for the permission
was not well understood. In this case, the app gets a chance to tell

110 CHAPTER 7: Permissions

the user more about the permission need. The frequency of how often
shouldShowRequestPermissionRationale() returns true is up to the
Android OS. The example here shows a dialogue; you can of course do
whatever you want here to inform the user.

The ActivityCompat.requestPermissions(...) method finally performs
the permission inquiry. This happens asynchronously, so the call returns
immediately.

Once the call to ActivityCompat.requestPermissions(...) happens, the user gets asked by
the Android OS, outside your app, whether they want to grant the permission. The result of
that will show up in an asynchronous callback method as follows:

override
fun onRequestPermissionsResult(
requestCode: Int, permissions: Array<String>,
grantResults: IntArray) {
when (requestCode) {
cameraPermReturnId -> {
// If request is canceled, the result
// arrays are empty. Here we know it just
// can be one entry
if ((grantResults.isNotEmpty()
88 grantResults[0] ==
PackageManager.PERMISSION GRANTED)) {
// permission was granted
// act accordingly...
} else {
// permission denied
// act accordingly...
}

return

}

// Add other 'when' lines to check for other
// permissions this App might request.
else -> {

// Ignore all other requests.

// Or whatever makes sense to you.

}
}
}

This method needs to be implemented inside an android.content.Activity class. In other
contexts, this is not possible.

Acquiring Special Permissions

Using ActivityCompat.requestPermissions() in certain circumstances is not enough to
acquire permissions SYSTEM _ALERT_WINDOW and WRITE_SETTINGS. For those two permissions,
you need to follow a different approach.

The permission WRITE_SETTINGS for API levels 23 and higher must be acquired using a
special intent as follows:

CHAPTER 7: Permissions

val backFromSettingPerm = 6183 // any suitable constant
if (Build.VERSION.SDK INT >= Build.VERSION CODES.M) {
val activity = this
if (!Settings.System.canWrite(activity)) {
// This is just a suggestion: present a special
// dialog to the user telling about the special
// permission. Important is the Activity start
AlertDialog dialog =
new AlertDialog.Builder(activity)
.setTitle(...)
.setMessage(...)
.setPositiveButton("0OK", { dialog, id -»
val intent = Intent(
Settings.ACTION MANAGE_WRITE SETTINGS)
intent.data = Uri.parse("package:" +
getPackageName())
activity.startActivityForResult(intent,
backFromSettingPerm)
}).setNegativeButton("Cancel",
{ dialog, id ->
/7 ...
1))
.create();
dialog.show();
systemWillAsk = true;
}
} else {
// do as with any other permissions...
}

Once done with that intent, the callback method onActivityResult() can be used to
continue with the GUI flow.

override
protected fun onActivityResult(requestCode:Int,
resultCode:Int, data:Intent) {
if ((requestCode and OXFFFF) == backFromSettingPerm) {
if (resultCode == Activity.RESULT OK) {
// act accordingly...
}

}
}

For the SYSTEM_ALERT_WINDOW permission, you have to follow the same approach, but use

ACTION_MANAGE_OVERLAY_PERMISSION instead for creating the content.

Note For this special SYSTEM_ALERT WINDOW permission, the Google Play store will
automatically grant the permission if the app gets installed from the Google Play store and the API
level is 23 or higher. For local development and testing, you have to use the intent as described.

11

112 CHAPTER 7: Permissions

Feature Requirements and Permissions

In Chapter 2 we saw that by virtue of the <uses-feature> element inside AndroidManifest.
xml you can specify which features your app will use. This information is important for the
Google Play store to find out on which devices your app can run after published. However,
there is another important aspect to take into account if you specify this requirement: which
permissions will be implied by such requirements, and how will they be handled depending
on the API level in use?

Feature constants and API levels do not necessarily strictly relate to each other. For
example, the android.hardware.bluetooth feature was added in API level 8, but the
corresponding Bluetooth API was added in API level 5. Because of this, some apps were
able to use the API before they had the ability to declare that they require the API using the
<uses-feature> declaration. To remedy this discrepancy, Google Play assumes that certain
hardware-related permissions indicate that the underlying hardware features are required
by default. For instance, applications that use Bluetooth must request the BLUETOOTH
permission in a <uses-permission> element, and for apps targeting older API levels, Google
Play assumes that the permission declaration implies that the underlying android.hardware.
bluetooth feature is required by the application. Table 7-2 lists the permissions that imply
such feature requirements.

Note that the <uses-feature> declarations take precedence over features implied by the
permissions in Table 7-2. For any of these permissions, you can disable filtering based on
the implied feature by explicitly declaring the implied feature in a <uses-feature> element,
with an android:required="false” attribute. For example, to disable any filtering based on
the CAMERA permission, you would add this to the manifest file:

<uses-feature android:name="android.hardware.camera"
android:required="false" />

Table 7-2. Permissions That Imply Feature Requirements

Category Permission... ...Implies Feature
Bluetooth BLUETOOTH android.hardware.bluetooth
BLUETOOTH_ADMIN android.hardware.bluetooth
Camera CAMERA android.hardware.camera and android.hardware.
camera.autofocus
Location ACCESS_MOCK_LOCATION android.hardware.location
ACCESS_LOCATION_EXTRA_COMMANDS android.hardware.location
INSTALL_LOCATION_PROVIDER android.hardware.location
ACCESS_COARSE_LOCATION android.hardware.locationandroid.hardware.
location.network (API level < 21)
ACCESS_FINE_LOCATION android.hardware.locationandroid.hardware.

location.gps (API level < 21)
Microphone RECORD_AUDIO android.hardware.microphone

(continued)

http://dx.doi.org/10.1007/978-1-4842-3820-2_2

CHAPTER 7: Permissions 113

Table 7-2. (continued)

Category Permission... ...Implies Feature

Telephony CALL_PHONE android.hardware.telephony
CALL_PRIVILEGED android.hardware.telephony
MODIFY_PHONE_STATE android.hardware.telephony
PROCESS_OUTGOING_CALLS android.hardware.telephony
READ_SMS android.hardware.telephony
RECEIVE_SMS android.hardware.telephony
RECEIVE_MMS android.hardware.telephony
RECEIVE_WAP_PUSH android.hardware.telephony
SEND_SMS android.hardware.telephony
WRITE_APN_SETTINGS android.hardware.telephony
WRITE_SMS android.hardware.telephony

Wi-Fi ACCESS_WIFI_STATE android.hardware.wifi
CHANGE_WIFI_STATE android.hardware.wifi

CHANGE_WIFI_MULTICAST_STATE android.hardware.wifi

Permissions Handling Using a Terminal

To see the permissions you have registered on your device, you can scan through the apps
list in the system settings app or, more easily, use the ADB shell to get various permission-
related information in a terminal.

For that aim, connect the hardware-device via USB to your laptop or PC, open a terminal, cd
to the platform-tools folder in your SDK installation, find your device in ./adb devices, and
then enter the following:

./adb shell -s <DEVICE-NAME>
If there is only one device, you can omit that -s switch.

Once inside the shell, you can use a couple of commands to get permission information.
First you can list all packages installed via this:

cmd package 1list package

To show all Dangerous permissions, to see the permission state for a certain package, or to
grant or revoke one or more permissions, you can use the following:

cmd package list permissions -d -g
dumpsys package <PACKAGE-NAME>
pm [grant|revoke] <PERMISSION-NAME> ...

Note Current versions of dumpsys will show both requested and granted permissions. Do not
get confused by old blog entries about that matter.

Chapter

APIs

The subject of this chapter is to introduce APIs, which are the cornerstones of your app.
The APIs include the following:

Databases
Scheduling
Loaders
Notifications

Alarm Manager
Contacts

Search Framework

Location and Maps

Databases

Android provides two realms for dealing with databases: either you use the SQLite library
included in the Android OS, or you use the Room architecture component. The latter is
recommended since it adds an abstraction layer between the database and the client,
simplifying the mapping between Kotlin objects and database storage objects. You can find
exhaustive information about SQLite in the online docs and lots of examples on the Web. In
this book, we talk about Room since the separation of concerns induced by the abstraction
helps you to write better code. Also, since Room helps to avoid boilerplate code, you can
shorten your database code significantly if you use Room instead of SQLite.

© Peter Spath 2018 115
P. Spath, Pro Android with Kotlin, https://doi.org/10.1007/978-1-4842-3820-2_8

http://dx.doi.org/10.1007/978-1-4842-3820-2_8

116 CHAPTER 8: APIs

Configuring Your Environment for Room

Since Room is a support architecture component, you must configure it in your Android
Studio build script. To do so, open the module’s build.gradle file (not the one from the
project!) and on top level (not inside any of the curly braces) write the following:

apply plugin: 'kotlin-kapt'

This is the Kotlin compiler plugin that supports annotation processing. In the dependencies
section, write the following (on three lines; remove the newlines after implementation and
kapt):

// Room

implementation
"android.arch.persistence.room:runtime:1.0.0"

kapt
"android.arch.persistence.room:compiler:1.0.0"

Room Architecture

Room was designed with ease of use in mind; you basically deal with three kinds of objects.

Database: Represents a holder for the database. Talking in SQL
language idioms, it contains several tables. To say it in a technology-
agnostic way, a database contains several entity containers.

Entity: Represents a table in the SQL world. To say it in a technology-
agnostic way, this is a usage-centric aggregate of fields. An example
would be an employee inside a company or a contact holding
information about how to communicate with people or partners.

Data Access Object (DAQ): Contains the access logic to retrieve data
from the database. It thus serves as an interface between the program
logic and the database model. You often have one DAO per entity

class but possibly more DAOs for various combinations. You could, for
example, have an EmployeeDao and a ContactDao for the two employee
and contact entities, as well as a PersonDao that combines the employee
and the contacts information of a person.

The Database

To declare a database, you write the following:
import android.arch.persistence.room.*

@Database(entities =
arrayOf(Employee::class, Contact::class),
version = 1)

abstract class MyDatabase : RoomDatabase() {
abstract fun employeeDao(): EmployeeDao

CHAPTER 8: APIs 117

abstract fun contactDao(): ContactDao
abstract fun personDao(): PersonDao

}

Inside the @Database annotation you declare all the entity classes used, and as abstract
functions you provide factory methods for the DAO classes. You don’t have to implement
this abstract database class. The Room library will automatically provide an implementation
for you based on the signatures and the annotations! The version number will help you when
upgrading to different data model versions; you’ll learn more about that in the following
sections.

Entities

Next we implement the entity classes, which is extremely easy to do in Kotlin.

@Entity

data class Employee(
@PrimaryKey(autoGenerate = true) var uid:Int
var firstName:String,
var lastName:String)

n
o
-

@Entity

data class Contact(
@PrimaryKey(autoGenerate
var emailAddr:String)

0,

true) var uid:Int

You can see that we need a primary key of type Int for each entity. autoGenerate = true
takes care of automatically making it unique.

The column names from the database table defined by these entity classes match the
variable names. If you want to change that, you can add another annotation:

@ColumnInfo.@Entity

data class Employee(
@PrimaryKey(autoGenerate = true) var uid:Int = 0,
@ColumnInfo(name = "first name") var firstName:String,
@ColumnInfo(name = "last name") var lastName:String)

This would lead to using first_name and last_name as table column names.

Also, the table name is taken from the entity class name, like with Employee and Contact for
these examples. You can also change this; just add the parameter tableName to the @Entity
annotation as follows:

@Entity(tableName = "empl")

data class Employee(
@PrimaryKey(autoGenerate = true) var uid:Int = 0,
@ColumnInfo(name = "first_name") var firstName:String,
@ColumnInfo(name = "last name") var lastName:String)

118 CHAPTER 8: APIs

While it is generally a good idea to have a single integer-valued primary key, you can also
use a combined key. For that aim, there is an additional annotation parameter in @Entity.
Here’s an example:

@Entity(tableName = "empl",
primaryKeys = tableOf("first_name","last_name"))
data class Employee(
@ColumnInfo(name = "first name") var firstName:String,
@ColumnInfo(name = "last name") var lastName:String)

Entities can also have fields that will not be persisted. From a design perspective, this is
maybe not a good idea, but if you need such a field, you can add it and use the annotation
@Ignore as follows:

@Entity(tableName = "empl")
data class Employee(
@PrimaryKey(autoGenerate = true) var uid:Int = 0,

var firstName:String = "",

var lastName:String = "",
@Ignore var salary:Int)

Because of the way Room is implemented, if you add such an @Ignore annotation, all the
fields must have default values assigned, even if unused.

Relationships

Room by design doesn’t allow direct relationships between entities. You cannot, for
example, add a list of Contact entities as a class member of an Employee entity. However, it
is possible to declare foreign key relationships, which helps in maintaining data consistency.

To do so, add a foreignKeys annotation attribute, as in the following code snippet:

@Entity(
foreignKeys = arrayOf(

ForeignKey(entity = Employee::class,
parentColumns = arrayOf("uid"),
childColumns = arrayOf("employeeId"),
onDelete = ForeignKey.CASCADE,
onUpdate = ForeignKey.CASCADE,
deferred = true)),

indices = arrayOf(
Index("employeeld"))

)

@Entity

data class Contact(
@PrimaryKey(autoGenerate = true) var uid:Int = 0,
var employeeld:Int,
var emailAddr:String)

CHAPTER 8: APIs 119

Here are a few notes about this construct:

In Java you would write @Entity(foreignKeys = @ForeignKey(...).
Kotlin doesn’t allow annotations inside annotations. In this case, using
the constructor serves as a substitute, which boils down to omitting the
@ for inner annotations.

In a Java annotation, attribute value arrays are written like name = {

.., ... }. This cannot be used in Kotlin because the curly braces do
not serve as array initializers. Instead, the array0f(...) library method
gets used.

The childColumns attribute points to the reference key in this entity,
Contact.employeeId in this case.

The parentColumns attribute points to the referred-to foreign key entity,
in this case Employee.uid.

The onDelete attribute tells what to do if the parent gets deleted. A value
of ForeignKey.CASCADE means to also automatically remove all children,
which is the associated Contact entities. The possible values are as
follows:

CASCADE: Transport all actions to the root of the child-parent relation
tree.

NO_ACTION: Don’t do anything. This is the default, and it leads to an
exception if the relationship breaks because of update or delete
actions.

RESTRICT: Similar to NO_ACTION, but the check will be made
immediately when a delete or an update happens.

SET_NULL: All child key columns get set to null if a parent delete or
update happens.

SET_DEFAULT: All child key columns get set to their default if a parent
delete or update happens.

The onUpdate attribute tells what to do if the parent gets updated.

A value ForeignKey.CASCADE means to also automatically update all
children, which are the associated Contact entities. The possible values
are the same as for onDelete.

The deferred = true setting will postpone the consistency check
until the database transaction is committed. This might, for example,
be important if both parent and child get created inside the same
transaction.

Foreign keys must be part of a corresponding index. Here Contact.
employeeId gets the index. You’ll learn more about indexes in the
following sections.

120 CHAPTER 8: APIs

Nested Objects

Although it is not possible to define inter-object relations other than manually by foreign
keys, you can on the object side define a nesting of hierarchical objects. For example, from
the following employee entity:

@Entity

data class Employee(
@PrimaryKey(autoGenerate = true) var uid:Int = 0,
var firstName:String,
var lastName:String)

you can factor out the first and last names and instead write the following:

data class Name(var firstName:String, var lastName:String)

@Entity

data class Employee(
@PrimaryKey(autoGenerate = true) var uid:Int = 0,
@Embedded var name:Name)

Note that this does not have any impact on the database side of the data model. The
associated table will still have the columns uid, firstName, and lastName. Since the
database identity of such an embedded object is tied to the name of its fields, if you have
several embedded objects of the same embedded type, you must disambiguate the names
by using a prefix attribute as follows:

data class Name(var firstName:String, var lastName:String)

@Entity

data class Employee(
@PrimaryKey(autoGenerate = true) var uid:Int = 0,
@Embedded var name:Name,
@Embedded (prefix="spouse ") var spouseName:Name)

This makes the table have the columns uid, firstName, lastName, spouse firstName, and
spouse_lastName.

If you like, inside the embeddable class, you can use Room annotations. For example, you
can use the @ColumnInfo annotation to specify custom column names.

data class Name(

@ColumnInfo(name = "first name") var firstName:String,
@ColumnInfo(name = "last name") var lastName:String)
@Entity

data class Employee(
@PrimaryKey(autoGenerate = true) var uid:Int = 0,
@Embedded var name:Name)

CHAPTER 8: APIs 121

Using Indexes

To improve database query performance, you can declare one or more indexes to use on
certain fields or field combinations. You don’t have to do that for the unique key; this is done
automatically for you. But for any other index you want to define, write something like this:

@Entity(indices = arrayOf(
Index("employeeld"),
Index(value = arrayOf("country","city"))
)
)
data class Contact(
@PrimaryKey(autoGenerate = true) var uid:Int = 0,
var employeeId:Int,
var emailAddr:String,
var country:String,
var city:String)

This adds an index that allows for fast queries using the foreign key field employeeId and
another one for fast queries given both country and city.

If you add unique = true as an attribute to the @Index annotation, Room will make sure the
table cannot have two entries with the same value for that particular index. As an example,
we can add a Social Security number (SSN) field to Employee and define an unique index for
it, as shown here:

@Entity(indices = arrayOf(
Index(value = arrayOf("ssn"), unique = true)
)

)

data class Employee(
@PrimaryKey(autoGenerate = true) var uid:Int = 0,
var ssn:String,
@Embedded var name:Name)

If you now try to add two employees with the same SSN to the database, Room will throw
an exception.

Data Access: DAOs

Data access objects (DAOs) provide the logic to access the database. We have already seen
that inside the database declaration we had to list all DAOs in factory methods as follows:

@Database(entities =
arrayOf(Employee::class, Contact::class),
version = 1)

abstract class MyDatabase : RoomDatabase() {
abstract fun employeeDao(): EmployeeDao
abstract fun contactDao(): ContactDao
abstract fun personDao(): PersonDao

122 CHAPTER 8: APIs

In this example, we declare three DAOs for use by Room. For the actual implementation, we
don’t need fully fledged DAO classes. It is enough to declare interfaces or abstract classes,
and Room will do the rest for us.

The DAO classes, for example, for the following entity:

@Entity

data class Employee(
@PrimaryKey(autoGenerate = true) var uid:Int = 0,
@ColumnInfo(name = "first name") var firstName:String,
@ColumnInfo(name = "last name") var lastName:String)

might look like this:

@Dao

interface EmployeeDao {
@Query("SELECT * FROM employee")
fun getAll(): List<Employee>

@Query("SELECT * FROM employee" +
" WHERE uid IN (:uIds)")
fun loadAllByIds(uIds: IntArray): List<Employee>

@Query("SELECT * FROM employee" +
" WHERE last_name LIKE :name"
fun findByLastName(name: String): List<Employee>

@Query("SELECT * FROM employee" +
" WHERE last name LIKE :lname AND " +
" first name LIKE :fname LIMIT 1")
fun findByName(1lname: String, fname: String): Employee

@Query("SELECT * FROM employee" +
" WHERE uid = :uid")
fun findById(uid: Int): Employee

@Insert
fun insert(vararg employees: Employee): LongArray

@Update
fun update(vararg employees: Employee)

@elete
fun delete(vararg employees: Employee)

}

You see that we used an interface here, which is possible because the complete access
logic is defined by method signatures and annotations. Also, for insert, update, and
delete, the method signature is all that Room needs; it will send the right commands to the
database just by looking at the signatures.

CHAPTER 8: APIs 123

For the various query methods, we use @Query annotations to provide the correct database
commands. You can see that Room is smart enough to see whether we want to return a list
of objects or a single object. Also, we can pass method arguments into the pseudo-SQL by
using :name identifiers.

The @Insert annotation allows for adding the attribute onConflict = "<strategy>" where
you can specify what to do if a conflict occurs because a unique or primary key constraint is
violated. Possible values for the <strategy> are given inside constants:

OnConflictStrategy.ABORT to abort the transaction
OnConflictStrategy.FAIL to fail the transaction
OnConflictStrategy.IGNORE to ignore the conflict

OnConflictStrategy.REPLACE to just replace the entity and otherwise
continue the transaction

OnConflictStrategy.ROLLBACK to roll back the transaction

The other DAOs from the example entities used earlier will look similar. PersonDao might do
outer joins to combine the employee and contact entities:

@®Dao
interface ContactDao {
@Insert
fun insert(vararg contacts: Contact)

@Query("SELECT * FROM Contact WHERE uid = :uId")
fun findById(uIld: Int): List<Contact>

@Query("SELECT * FROM Contact WHERE" +
" employeeld = :employeeId")
fun loadByEmployeeId(employeeld: Int): List<Contact>
}

data class Person(@Embedded var name:Name?,
var emailAddr: String?)
@Dao
interface PersonDao {
@Query("SELECT * FROM empl" +
" LEFT OUTER JOIN Contact ON" +
" empl.uid = Contact.employeeld" +
" WHERE empl.uid = :uId")
fun findById(uld: Int): List<Person>

Obhservable Queries

In addition to performing a query with returning entities or lists or arrays of entities as they
are at the moment when the query happens, it is also possible to retrieve the query result
plus register an observer that gets invoked when the underlying data change.

124 CHAPTER 8: APIs

The construct to achieve this for a method inside a DAO class looks like this:

@Query("SELECT * FROM employee")
fun getAllSync(): LiveData<List<Employee>>

So, you basically wrap a LiveData class around the result, and this is what you can do with
all your queries.

However, this is possible only if you add the corresponding architecture component. For this
aim, add the following to your module’s build.gradle file:

implementation "android.arch.lifecycle:livedata:1.1.0"

This LiveData object now allows for adding an observer as follows:

val 1d: LiveData<List<Employee>> =
employeeDao.getAl1Sync()
1d.observeForever { 1 ->
1?2.forEach { empl ->
Log.e("LOG", empl.toString())
// do s.th. else with the employee
}
}

This is particularly useful if inside the observer callback you update GUI components.

Caution Your production code should do a better job in doing correct housekeeping. The
LiveData object should have the observer unregistered by calling 1d.removeObserver(...)
at an appropriate place in your code. It is not shown here because we just provide snippets, and the
housekeeping must be done in the code containing the snippets.

A LiveData object also allows for adding an observer tied to a lifecycle object. This is done
with the following:

val 1d: LiveData<List<Employee>> =
employeeDao.getAl1Sync()
val 1cOwn : LifecycleOwner = ...
1d.observe(lcOwn, { 1 ->
1?.forEach { empl ->
Log.e("LOG", empl.toString())
// do s.th. else with the employee
}
)

For details about lifecycle objects, please take a look at the online APl documentation for
android.arch.lifecycle.LiveData.

CHAPTER 8: APIs 125

A similar but maybe more comprehensive approach to add observables to your database
code is to use RxJava/RxKotlin, which is the Java/Kotlin platform implementation of
ReactiveX. We do not give an introduction to ReactiveX programming here, but including it in
queries boils down to wrapping the results into RxJava objects. To give you a quick idea of
how to do that, you, for example, write the following:

@Query("SELECT * FROM employee" +
" WHERE uid = :uid")
fun findByIdRx(uid: Int): Flowable<Employee> {
[...] // Wrap query results into a Flowable
}

This returns a Flowable, allowing observers to react on retrieved database rows in an
asynchronous manner.

For this to work, you have to include RxJava support into the build file (remove the newline
after implementation).

// RxJava support for Room
Implementation
"android.arch.persistence.room:rxjava2:1.0.0"

For more details about RxKotlin, please consult the online resources about ReactiveX in
general or RxKotlin for the Kotlin language binding of ReactiveX.

Database Clients

To actually include Room into the app, we need to know how we can get hold of databases
and DAO objects. To achieve this, we first acquire a reference to a database via the
following:

fun fetchDb() =
Room.databaseBuilder(
this, MyDatabase::class.java,
"MyDatabase.db")
.build()
val db = fetchDb()

This creates a file-backed database. The string argument is the name of the file holding the
data. To instead open a memory-based database, say for testing purposes or because you
favor speed over data loss when the application stops, use the following:

fun fetchDb() =
Room. inMemoryDatabaseBuilder(
this, MyDatabase::class.java)
.build()
val db = fetchDb()

126 CHAPTER 8: APIs

The builder allows for certain configuration activities in a fluent builder style. Interesting
configuration options are shown in Table 8-1. You just chain them before the final .build()
call. One option you might use often during early development phases is relaxing the
foreground operation restriction by using this:

fun fetchDb() =
Room.databaseBuilder(
this, MyDatabase::class.java,
"MyDatabase.db")
.allowMainThreadQueries()
.build()
val db = fetchDb()

Table 8-1. Room Builder Options

Option Description

addCallback(RoomDatabase.Callback) Use this to add a RoomDatabase.Callback to this database.
You can use it, for example, to have some code
executed when the database gets created or opened.

allowMainThreadQueries() Use this to disable the no main thread restriction in Room.
If you don’t use this and try to perform database operations
in the main thread, Room will throw an exception. There
is a good reason for Room to work this way. GUI-related
threads should not be blocked because of lengthy
database operations. So, for your code you should not call
this method; it makes sense only for experiments to avoid
dealing with asynchronicity.

addMigrations(vararg Migration) Use this to add migration plans. Migration is covered in
more detail later in the chapter.

fallbackToDestructiveMigration() If a matching migration plan is missing (for example,
for a necessary upgrade from the data version inside
the database to the version specified in the @Database
annotation, no registered migration plan can be found),
Room normally throws an exception. If you instead want
the current database to be purged and then the database
be built up from scratch for the new version, use this

method.
fallbackToDestructive This is the same as fallbackToDestructiveMigration() but
Migration(vararg Int) restricted to certain starting versions. For all other versions,

an exception will be thrown if the migration plan is missing.

Then, once you have a database object, just call any of the DAO factory methods we
defined inside the database class in an abstract manner, and Room automatically provides
implementations. So, for example, write the following:

val db = ...
val employeeDao = db.employeeDao()
// use the DAO...

CHAPTER 8: APIs 127

Transactions

Room allows for transactions in EXCLUSIVE mode. This means that if transaction A is in
progress, no other processes or threads are allowed to access a database in another
transaction B until transaction A is finished. More precisely, transaction B will have to wait
until A is finished.

To run a set of database operations inside a transaction in Kotlin, you can write the following:

val db = ...

db.runInTransaction { -»
// do DB work...

}

The transaction is marked ”successful” if the code inside the closure does not throw any
exception. Otherwise, the transaction will be rolled back.

Migrating Databases

To migrate databases from one version of your app to another version, you add migration
plans while accessing the database as follows:

val migs = arrayOf(
object : Migration(1,2) {
override fun migrate(db: SupportSQLiteDatabase) {
// code for the 1->2 migration...
// this is already running inside a transaction,
// don't add your own transaction code here!
}
}, object : Migration(2,3) {
override fun migrate(db: SupportSOLiteDatabase) {
// code for the 2->3 migration...
// this is already running inside a transaction,
// don't add your own transaction code here!

}

} // more migrations ...

private fun fetchDb() =
Room.databaseBuilder(
this, MyDatabase::class.java,
"MyDatabase.db")
.addMigrations(*migs)
.build()

It obviously makes no sense to use DAO classes here, because then you’d have to manage
several DAO variants, one for each version. That is why inside the migrate() methods you
need to access the database on a lower level, for example by executing SQL statements
without bindings to Kotlin objects. As an example, say you have an Employee table. You
upgrade from version 1 to 2 and need to add a column salary, and then you upgrade

128 CHAPTER 8: APIs

from version 2 to 3 and need another column, childCount. Inside the migs array from the
previous code, you then write the following:

/...
object : Migration(1,2) {
override fun migrate(db: SupportSQLiteDatabase) {
db.execSQL("ALTER TABLE components "+
"ADD COLUMN salary INTEGER DEFAULT 0;")
}

}
/...

object : Migration(2,3) {
override fun migrate(db: SupportSQLiteDatabase) {
db.execSQL("ALTER TABLE components "+
"ADD COLUMN childCount INTEGER DEFAULT 0;")
}

}
/1...

object : Migration(1,3) {
override fun migrate(db: SupportSQLiteDatabase) {
db.execSQL("ALTER TABLE components "+
"ADD COLUMN salary INTEGER DEFAULT 0;")
db.execSQL("ALTER TABLE components "+
"ADD COLUMN childCount INTEGER DEFAULT 0;")
}

}
/...

If you provide small-step migrations as well as large-step migrations, the latter will have
precedence. This means if you have migration plans 1 - 2,2 — 3, and 1 — 3 and the
system demands a migration 1 — 3, the plan 1 — 3 will run, not the chain 1 - 2 — 3.

Scheduling

With user experience in mind, running tasks in an asynchronous manner is an important
matter. It is vital that no lengthy operations disturb the front-end flow, leaving the impression
that your app is doing its job fluently.

It is not too easy to write stable apps that have important parts running in background,
though. The reasons for that are many: the device might get powered off on demand or
because of low battery, or the user might have started a more important app with higher
priority, expecting to temporarily run background jobs in a low-priority mode. Also, the
Android OS might decide to interrupt or postpone background jobs for other reasons such
as a resource shortage or because a timeout condition applies. And with the advent of
Android 8, it has become even more important to think about clever ways of performing
background tasks since this version imposes severe restrictions on the background
execution of program parts.

For running jobs in an asynchronous manner, several techniques exist, all of them with
downsides and advantages.

CHAPTER 8: APIs

Java threads

Java and Kotlin threads (remember, both are targeting the same Java virtual
machine) are a low-level technique of running things in the background. In
Kotlin you can use a construct as easy as this to process program parts in
a background thread:

Thread{-> do s.th.}.start()

This is a basic approach, and you can expect high performance from your
background execution tasks. However, you are completely running out

of any Android OS component lifecycle, so you do not really have good
control of what happens to long-running background threads while the
lifecycle status of Android processes changes.

Java concurrency classes

Java and Kotlin allow the use of concurrency-related classes from the
java.util.concurrency package. This is a higher-level approach of running
things in the background with improved background tasks management
capabilities, but it still has the downside of running beyond the control of
the Android component lifecycle.

AlarmManager

This was originally designed for running tasks at specific times, and you can
use it if you need to send notifications to the user at specific instances in time.
It has been there since API level 1. Starting at API level 19 (Android 4.4),

the system allows for postponing alarms under certain conditions. The
downside is you don’t have control over more general device conditions;
when the device is up, it will fire alarm events at its own discretion, no
matter what else happens on your device.

SyncAdapter

This methodology was added in Android APl level 5. It is particularly useful
for synchronization tasks. For more general background execution tasks,
you should instead use one of the following two, Firebase JobDispatcher
or JobScheduler. Use one of these only if you need one of the additional
functionalities it provides.

Firebase JobDispatcher

This is a general multipurpose job dispatcher library you can use for an
Android device starting from API level 14, targeting more than 99 percent
of the Android devices in use. It is a little hard to find comprehensive and
complete documentation for the Firebase JobDispatcher on the Web,
but you will find enough examples to get you started. It is not part of the
Android OS core, though, and it requires Google Play Services and the
Google Play store to be installed.

129

130 CHAPTER 8: APIs

JobScheduler

This is an integrated library for scheduling jobs on the Android OS. It runs
on any device starting at API level 21, which is for about 85 percent of the
Android devices in use. It is highly recommended to use it, unless you really
need to address devices before API level 21, that is, Android 4.4 and older.

The more low-level approaches are covered in Chapter 10; the rest of this section is about
the Firebase JobDispatcher, the JobScheduler, and the AlarmManager.

JobScheduler

The JobScheduler is the dedicated method to schedule and run background tasks in

any Android device starting at API level 21. The documentation of Android 8 strongly
recommends using JobSchedulers to overcome the background task execution restrictions
imposed since Android 8.

Note Use JobSchedulers for background tasks if your target API level is 21 or higher (great than
85 percent of Android installations as of February 2018).

To start using a JobScheduler, we first implement the job itself. To do so, implement the
class android.app.job.JobService, as follows:

class MyJob : JobService() {
var jobThread:Thread? = null

override
fun onStartJob(params: JobParameters) : Boolean {
Log.i("LOG", "MyJob: onStartJob() : " +
params.jobId)

jobThread?.interrupt()
jobThread = Thread {
Log.i("LOG", "started job thread")
// do job work...
jobFinished(params, false) jobThread = null
Log.i("LOG", "finished job thread")

}
jobThread. start()
return true

}

override

fun onStopJob(params:JobParameters) : Boolean {
Log.i("LOG", "MyJob: onStopJob()")
jobThread?. interrupt()

http://dx.doi.org/10.1007/978-1-4842-3820-2_10

CHAPTER 8: APIs 131

jobThread = null
return true

}

The most important part of the implementation is the onStartJob() method. There you'll
enter the work the job is actually supposed to do. Note that we pushed the actual work into
a thread. This is important because the onStartJob() method runs in the app’s main thread,
thus blocking potentially important other work if it stays too long inside. Starting a thread
instead finishes immediately. Also, we return true, signaling that the job continues doing its
work in a background thread. Once the job finishes, it must call jobFinished(); otherwise,
the system wouldn’t know that the job finished doing its work.

The overridden onStopJob() method is not part of the normal job lifecycle. It instead gets
called when the system decides to finish the job prematurely. We let it return true to tell the
system that it is allowed to reschedule the job, in case it was configured accordingly.

To finish the job implementation, we must still configure the service class inside
AndroidManifest.xml. To do so, add the following:

<service android:name=".MyJob"
android:label="MyJob Service"
android:permission=
"android.permission.BIND_JOB_SERVICE" />

The permission configured here is not a "dangerous” permission, so you don’t have to
implement a process to acquire this permission. However, you must add this permission
here; otherwise, the job gets ignored.

To actually schedule a job governed by the JobScheduler, you first need to obtain a
JobScheduler object as a system service. Then you can build a JobInfo object, and in the
end you register it with the JobScheduler.

val jsched = getSystemService(JobScheduler::class.java)
val JOB_ID : Int = 7766

val service = ComponentName(this, MyJob::class.java)
val builder = JobInfo.Builder(JOB_ID, service)
.setMinimumLatency((1 * 1000).toLong())
// wait at least 1 sec
.setOverrideDeadline((3 * 1000).toLong())
// maximum delay 3 secs

jsched.schedule(builder.build())

This example schedules the job to be started, the earliest after one second and the latest
after three seconds. By construction it gets the ID 7766 assigned. This is a value passed to
onStartJob() inside the job implementation. The number is just an example; you can use
any unique number for the ID.

While building the JobInfo object, you can set various job characteristics, as shown in
Table 8-2.

132 CHAPTER 8: APIs

Table 8-2. Jobinfo Builder Options

Method

Description

setMinimumLatency
(minLatencyMillis: Long)

setOverrideDeadline(maxExecution
DelayMillis: Long)

setPeriodic(intervalMillis: Long)

setPeriodic(intervalMillis: Long,
flexMillis: Long)

setBackoffCriteria(initial
BackoffMillis:Long,
backoffPolicy:Int)

setExtras(extras:
PersistableBundle)

setTransientExtras(extras: Bundle)

setPersisted(isPersisted: Boolean)

setRequiredNetworkType(networkTy
pe: Int)

This job should be delayed by the specified amount of time,
or longer.

This is the maximum time a job can be delayed.

This makes the job repeating and sets a recurrence interval.
The actual interval can be higher but will not be lower.

This makes the job repeating and sets a recurrence
interval and a flexibility window. So, the real interval

will be between intervalMillis — 0.5 flexMillis and
intervalMillis + 0.5 flexMillis. Both numbers get their
lowest possible value clamped to getMinPeriodMillis()
and MAX(getMinFlexMillis(), 0.05 * intervalMillis),
respectively.

A back-off might happen when inside your job
implementation you write jobFinished(params, true). Here
you specify what happens in such a case. Possible values
for backoffPolicy are given by the constants in the following:
® JobInfo.BACKOFF_POLICY LINEAR: Back-offs happen at
intervals of initialBackoffMillis retry — number.
® JobInfo.BACKOFF_POLICY_EXPONENTIAL: Backoffs happen
at intervals of initialBackoffMillis

2retryfnumber.
This sets optional extras. These extras get passed to
onStartJob() inside the job implementation.

This is only for API level 26 and higher. This sets optional
unpersisted extras. These extras get passed to onStartJob()
inside the job implementation.

This sets whether the job gets persisted across device
reboots. It needs the permission android.Manifest.
permission.RECEIVE_BOOT_COMPLETED.

This specifies an additional condition that needs to be met
for the job to run. These are possible argument values:

e JobInfo.NETWORK TYPE_NONE

® JobInfo.NETWORK_TYPE_ANY

e JobInfo.NETWORK_TYPE_UNMETERED

® JobInfo.NETWORK_TYPE_NOT_ROAMING
e JobInfo.NETWORK TYPE METERED

(continued)

CHAPTER 8: APIs 133

Table 8-2. (continued)

Method

Description

setRequiresBatteryNotLow
(batteryNotLow: Boolean)

setRequiresCharging
(requiresCharging: Boolean)

setRequiresDeviceIdle
(requiresDeviceIdle: Boolean)

setRequiresStorageNotLow
(storageNotLow: Boolean)

addTriggerContentUri
(uri: JobInfo.TriggerContentUri)

setTriggerContentUpdateDelay
(durationMs: Long)

setTriggerContentMaxDelay
(durationMs: Long)

setClipData
(clip:ClipData, grantFlags:Int)

This is only for API level 26 and higher. This specifies as an
additional condition that needs to be met for the job to run
that the battery must not be low. false resets this to not
care.

Specifies as an additional condition that needs to be met
for the job to run that the device must be plugged in. false
resets this to not care.

Specifies as an additional condition that needs to be met
for the job to run that the device must be in idle state. false
resets this to not care.

This is only for API level 26 and higher. This specifies as an
additional condition that needs to be met for the job to run
that the device memory must not be low. false resets this to
not care.

This is only for API level 24 and higher. This adds a content
URI that will be monitored for changes. If a change happens,
the job gets executed.

This is only for API level 24 and higher. This sets the
minimum delay in milliseconds from when a content change
is detected until the job is scheduled.

This is only for API level 24 and higher. This sets the
maximum total delay in milliseconds that is allowed from
the first time a content change is detected until the job is
scheduled.

This is only for APl level 26 and higher. This sets a ClipData
associated with this job. Possible values for the grantFlags
are as follows:

FLAG_GRANT_READ_URI_PERMISSION
FLAG_GRANT_WRITE_URI_PERMISSION
FLAG_GRANT_PREFIX_URI_PERMISSION
(All constants are inside class Intent.)

Firebase JobDispatcher

The Firebase JobDispatcher is an alternative to the JobScheduler that works for Android API

levels before and starting with 21.

Caution The Firebase JobDispatcher library requires Google Play Services and the Google Play
store to be installed. If you are not targeting API levels below 21, it is recommended you use the

JobScheduler instead.

134 CHAPTER 8: APIs

To use the Firebase JobDispatcher, it first must be installed. To do so, add the following to
your module’s build.gradle file, in the dependencies section:

implementation 'com.firebase:firebase-jobdispatcher:0.8.5'

As a first step, implement a job class as follows:

import com.firebase.jobdispatcher.*

class MyJobService : JobService() {
var jobThread:Thread? = null

override fun onStopJob(job: JobParameters?): Boolean {
Log.e("LOG", "onStopJob()")
jobThread?. interrupt()
jobThread = null
return false // this job should not be retried

}

override fun onStartJob(job: JobParameters): Boolean {
Log.e("LOG", "onStartJob()")

jobThread?. interrupt()
jobThread = Thread {
Log.i("LOG", "started job thread")
// do job work...
jobFinished(job, false)
// instead use true to signal a retry
jobThread = null
Log.i("LOG", "finished job thread")

}
jobThread?.start()

return true // work is going on in the background

}

Then register the job in the manifest file AndroidManifest.xml as follows:

<service
android:exported="false"
android:name=".MyJobService">
<intent-filter>
<action android:name=
"com.firebase.jobdispatcher.ACTION EXECUTE"
/>
</intent-filter>
</service>

CHAPTER 8: APIs 135

To include a check for availability, you have to perform the following steps:

1. Google Play Services needs to be added to the SDK installation.
Inside Android Studio, go to Tools » Android » SDK Manager. In the
menu choose Appearance & Behavior » System Settings » Android
SDK. On the SDK Tools tab, select Google Play Services and then
click the OK button.

2. Right-click the project, choose Open Module Settings, and in the
menu select your app module. Go to the Dependencies tab, and add
the library com.google.android.gms:play-services by clicking the +
button.

To actually schedule a job from in your app, you can acquire the service, create a job, and
then register this job by using this:

val gps = GoogleApiAvailability.getInstance().
isGooglePlayServicesAvailable(this)
if(gps == ConnectionResult.SUCCESS) {
// Create a new dispatcher using the Google Play
// driver.
val dispatcher = FirebaseJobDispatcher(
GooglePlayDriver(this))

val myJob = dispatcher.newJobBuilder()
.setService(MyJobService::class.java)
// the JobService that will be called
.setTag("my-unique-tag")
// uniquely identifies the job
.build()

dispatcher.mustSchedule(myJob)
} else {

Log.e("LOG", "GooglePlayServices not available: " +
GoogleApiAvailability.getInstance().
getErrorString(gps))

}

This example scheduled a job with basic job scheduling characteristics. For more complex
needs, the job builder allows for more options, as shown in Table 8-3. Just chain them
before the .build() method.

136 CHAPTER 8: APIs

Table 8-3. JobDispatcher Options

Method

Description

setService(Class)

setTag(String)
setRecurring(Boolean)
setLifetime(Int)

setTrigger(Trigger)

setReplaceCurrent(Boolean)

setRetryStrategy(
RetryStrategy)

setConstraints(vararg Int)

setExtras(Bundle)

This is the job class (in Kotlin you must write MyService::class.
java).

This uniquely identifies the job.

This sets whether this is a recurring job.

This sets the lifetime of the job. Possible values are Lifetime.
FOREVER and Lifetime.UNTIL_NEXT BOOT. With FOREVER, the job will
persist even after a device reboot.

This sets when to trigger the job. Possible values are as follows:
e Trigger.NOW: Starts the job immediately

e Trigger.executionWindow(windowStart: Int, windowEnd: Int):
Sets an execution window (in seconds)

e Trigger.contentUriTrigger(uris: List<ObservedUri>): Watches
content URIs

This specifies whether to replace an existing job, provided it has the
same tag.

This sets the retry strategy. Possible values are as follows:

e RetryStrategy.DEFAULT_EXPONENTIAL: Exponential, as in 30s,
1min, 2min, 4min, 8min, and so on.

® RetryStrategy.DEFAULT_LINEAR: Linear, as in 30s, 60s, 90s, 120s,
and so on.

Here you can set constraints that need to be satisfied for the job to
run. Possible values are as follows:

e Constraint.ON_ANY_NETWORK: Run only if a network is available.

e Constraint.ON_UNMETERED_NETWORK: Run only if an unmetered
network is available.

® Constraint.DEVICE_CHARGING: Run only if the device is plugged in.
e Constraint.DEVICE_IDLE: Run only if the device is idle.

Use this to set extra data. These will be passed to onStartJob()
in the job service class.

CHAPTER 8: APIs 137

Alarm Manager

If you need actions to happen at specific times, regardless of whether associated
components are running, the Alarm Manager is the system service that you can use for such
tasks.

As for matters concerning the Alarm Manager, your device is in one of the following states:
Device awake

The device is running. Usually this means also the screen is on, but
there is no guarantee that if the screen is off, the device is no longer
awake. Although often if the screen gets switched off, the device shortly
after that leaves the awake state. The details depend on the hardware
and the device’s software configuration. The Alarm Manager can do its
work if the device is awake, but being awake is not necessary for the
Alarm Manager to fire events.

Device locked

The device is locked, and the user needs to unlock it before it can be
handled again. A locked device might lead to the device going asleep;
however, locking per se is a security measure and has no primary
impact on the Alarm Manager’s functioning.

Device asleep

The screen is switched off, and the device runs in a low-power
consumption mode. Events triggered by the Alarm Manager will be
able to wake up the device and then fire events, but this needs to be
explicitly specified.

Device switched off
The Alarm Manager stops working and resumes working only the next

time the device is switched on. Alarm events get lost when the device is
switched off; there is nothing like a retry functionality here.

Alarm events are one of the following:

A Pendingintent gets fired. Since Pendingintents may target at either
services, activities, or broadcasts, an alarm event may start an activity
or a service or send a broadcast.

A handler gets invoked. This is a direct version of sending alarm events
to the same component that is issuing the alarms.

To schedule alarms, you first need to get the Alarm Manager as a system service as follows:

val alrm = getSystemService(AlarmManager::class.java)
// or, if API level below 23:

// val alrm = getSystemService(Context.ALARM SERVICE)
// as AlarmManager

138 CHAPTER 8: APIs

You can then issue alarms by various methods, as shown in Table 8-4. If for API levels 24
or higher you choose to have a listener receive alarm events, the details about how to use
the associated handlers are covered in Chapter 10. If instead you’re aiming at intents, all
corresponding methods have a type:Int parameter with the following possible values:

AlarmManager .RTC_WAKEUP

The time parameter is wall clock time in UTC (milliseconds since
January 1, 1970, 00:00:00); the device will be woken up if necessary.

AlarmManager.RTC

The time parameter is wall clock time in UTC (milliseconds since
January 1, 1970, 00:00:00). If the device is asleep, the event will be
discarded, and no alarm will be triggered.

AlarmManager.ELAPSED REALTIME WAKEUP

The time parameter is the time in milliseconds since the last boot,
including sleep time. The device will be woken up if necessary

AlarmManager.ELAPSED REALTIME

The time parameter is the time in milliseconds since the last boot,
including the sleep time. If the device is asleep, the event will be
discarded, and no alarm will be triggered.

Table 8-4. Issuing Alarms

Method

Description

set(type: Int, triggerAtMillis: Long,
operation: PendingIntent): Unit

set(type: Int, triggerAtMillis: Long,
tag: String, listener: AlarmManager.
OnAlarmListener, targetHandler:
Handler): Unit

setAlarmClock(info: AlarmManager.
AlarmClockInfo, operation:
PendingIntent): Unit

This schedules an alarm. An intent gets invoked
and triggered according to the type, and the time
parameter is provided. Starting with API level 19,
alarm event delivery might be inexact to optimize
system resources usage. Use one of the setExact
methods if you need exact delivery.

This requires API level 24 or higher. It is a direct
callback version of set(Int, Long, PendingIntent).
The Handler parameter can be null to invoke the
listener on the app’s main looper. Otherwise, the

call of the listener will be performed from inside the
handler provided.

This requires API level 21 or higher. This schedules
an alarm represented by an alarm clock. The alarm
clock info object allows for adding an intent, which

is able to describe the trigger. The system may
choose to display relevant information about this
alarm to the user. Other than that, this method is like
setExact(Int, Long, PendingIntent) butimplies the
RTC_WAKEUP trigger type.

(continued)

http://dx.doi.org/10.1007/978-1-4842-3820-2_10

CHAPTER 8: APIs 139

Table 8-4. (continued)

Method

Description

setAndAllowWhileIdle(type: Int,
triggerAtMillis: Long, operation:
PendingIntent): Unit

setExact(type: Int, triggerAtMillis:
Long, operation: PendingIntent): Unit

setExact(type: Int, triggerAtMillis:
Long, tag: String, listener:
AlarmManager.OnAlarmListener,
targetHandler: Handler): Unit

setExactAndAllowWhileIdle(type: Int,
triggerAtMillis: Long, operation:
PendingIntent): Unit

setInexactRepeating(type: Int,
triggerAtMillis: Long, intervalMillis:
Long, operation: PendingIntent): Unit

setRepeating(type: Int, triggerAtMillis:

Long, intervalMillis: Long, operation:
PendingIntent): Unit

setWindow(type: Int, windowStartMillis:
Long, windowLengthMillis: Long,
operation: PendingIntent): Unit

setWindow(int type: Int,
windowStartMillis: Long,
windowLengthMillis: Long, tag: String,
listener: AlarmManager.OnAlarmListener,
targetHandler: Handler) : Unit

This requires API level 23 or higher. Like set(Int,
Long, PendingIntent), but this alarm will be allowed
to execute even when the system is in low-power idle
modes.

This requires API level 19 or higher. This schedules an
alarm to be delivered precisely at the stated time.

This requires API level 24 or higher. Direct callback
version of setExact(Int, Long, PendingIntent). The
Handler parameter can be null to invoke the listener
on the app’s main looper. Otherwise, the call of the
listener will be performed from inside the handler
provided.

This requires API level 23 or higher. Like
setExact(Int, Long, PendingIntent), but this alarm
will be allowed to execute even when the system is in
low-power idle modes.

This schedules a repeating alarm that has inexact
trigger time requirements; for example, an alarm that
repeats every hour but not necessarily at the top of
every hour.

This schedules a repeating alarm. Starting at API level
19, this is the same as setInexactRepeating().

This schedules an alarm to be delivered within a given
window of time.

This requires API level 24 or higher. This is a direct
callback version of setWindow(int, long, long,
PendingIntent). The Handler parameter can be
null to invoke the listener on the app’s main looper.
Otherwise, the call of the listener will be performed
from inside the handler provided.

The AlarmManager also has a couple of auxiliary methods, as described in Table 8-5.

140 CHAPTER 8: APIs

Table 8-5. Auxiliary AlarmManager Methods

Method Description
cancel(operation: PendingIntent) : Unit This removes any alarms with a matching intent.
cancel(listener: AlarmManager. This removes any alarm scheduled to be delivered to
OnAlarmListener): Unit the given AlarmManager.OnAlarmListener.
getNextAlarmClock() : AlarmManager. This gets information about the next alarm clock
AlarmClockInfo currently scheduled.
setTime(long millis): Unit This sets the system wall clock time, UTC
(milliseconds since January 1, 1970, 00:00:00).
setTimeZone(String timeZone): Unit This sets the system’s persistent default time zone.
Loaders
Loaders are for loading data in the background. The main usage pattern is as follows:
1. The need to load data in a presumably time-consuming process
arises, either in the Ul thread after, for example, clicking a button
or from any other place inside the code. Because the loading is
expected to take some time, you want to have the loading happen in
the background, not disturbing the Ul, for example.
2. You get the LoaderManager from the context. From within activities, in
Kotlin you just use the pseudo-getter loaderManager.
3. You implement and provide a subclass of LoaderManager.
LoaderCallbacks. The main responsibility of this class consists of
constructing an android.content. Loader and providing loading state
callback functions.
4. You call init(...) on the LoaderManager and pass the callback’s
implementation.
5. You react on callback events.

Looking at the online APl documentation for the Loader framework, two points are worth
mentioning.

B Almost all over the description and for all examples (and also for almost

all examples you can find on the Web), using the compatibility libraries
for the Loader framework classes is suggested. This is for backward
compatibility. The truth is, you don’t have to do that. The Loader
framework has been around for quite a while, since API level 11 to be
precise, and since you might not care about the less than 1 percent in-
use versions below API 11, the need to use the compatibility libraries for
Loader framework classes might not be too high.

CHAPTER 8: APIs M

Reading the documentation, it seems necessary to use loaders only

in conjunction with fragments. The truth is, the Loader framework has
nothing to do with fragments per se; you can use fragments, if you like,
but you don’t have to. So, you can use loaders with standard activities
as well.

In the following paragraphs, we present a basic example for using the Loader framework.
Experiment with it and extend it according to your needs.

As mentioned, inside an activity we have a LoaderManager already at hand; just use
loaderManager, which by Kotlin gets internally transcribed to getLoaderManager ().

Next we provide an implementation of LoaderManager.LoaderCallbacks. You can use your
own class, but for simplicity you can implement it directly over your activity as follows:

class MainActivity : AppCompatActivity(),
LoaderManager.LoaderCallbacks<MyData> {
val LOADER ID = 42
var loaded:MyData? = null

// other fields and methods...

override fun onCreateloader(id: Int, args: Bundle?):
Loader<MyData>? {
Log.e("LOG", "onCreatelLoader()")
return makeloader()

}

override fun onlLoadFinished(loader: Loader<MyData>?,
data: MyData?) {
Log.e("LOG", "Load finished: " + data)
loaded = data
// show on UI or other actions...

}

override fun onLoaderReset(loader: Loader<MyData>?) {
Log.e("LOG", "onLoaderReset()")
loaded = null
// remove from UI or other actions...

}

What we have here is the following:

The LOADER_ID is a unique ID for a loader. An app might have several
loaders at work, so the Loader framework needs to be able to
distinguish among different loaders.

var loaded:MyData? = null will later receive the result from the loading
process. Note that it is not necessary to keep a reference to the Loader
itself, and you actually shouldn’t do it, because the Loader framework
will be taking care of the lifecycle of the loaders.

142 CHAPTER 8: APIs

The methods onCreateloader(), onLoadFinished(), and onLoadReset()
describe the implementation of LoaderManager.LoaderCallbacks. Note
that the latter two are listeners, while the first one, with its name a little
confusing, is a factory method for creating loaders. The framework will
be taking care of onCreatelLoader() invoked only when a loader needs
to be constructed. If a loader with some ID exists and is not abandoned,
it will be reused, and this method will not be called.

In our activity, we place the method makeLoader () to build a loader. android.content.
Loader needs to be subclassed to have a usable loader. Two implementations are
provided: android.content.AsyncTaskLoader and android.content.CursorLoader. The
loader CursorLoader can be used to load table-like content from a content provider, and
AsyncTaskLoader is more general and will be loading its data from inside an AsyncTask.
We use the latter one for the example shown here:

fun makelLoader():Loader<MyData> {
val res =
@SuppressLint("StaticFieldLeak")
object : AsyncTaskLoader<MyData»(this@MainActivity) {
val myData: MutableList<String> =
Arraylist<String>()
var initloaded = false

override fun loadInBackground(): MyData {
Log.e("LOG",
"AsyncTaskLoader.loadInBackground()")
Log.e("LOG", "Thread: " +
Thread.currentThread().toString())
for (i in 0..9) {
Log.e("LOG", i.toString())
myData.add("Item " + i.toString())
Thread.sleep(1000)
if (isLoadInBackgroundCanceled)
throw OperationCanceledException(
"Canceled")
}
return MyData(myData)

}

override fun onStartLoading() {
Log.e("LOG",
"AsyncTaskLoader.onStartLoading()")
super.onStartLoading()
if (!initlLoaded)
forceload()

initloaded = true

}
}

return res

}

CHAPTER 8: APIs 143

Here are a few notes:

@SuppressLint(”StaticFieldLeak”) will suppress the warning about
possible memory leakage given inside Android Studio. The loader
lifecycle is governed by the Loader framework, and makeLoader () will
return a reusable loader, so the possible leak is mitigated. Instead,

by moving it to a static field, which in Kotlin means providing it as an
object, is not easy to do here since we need a reference to the activity
for constructing the AsycTaskLoader.

We provide for the Boolean initlLoaded field to make sure the loading
will be actually started by calling forcelLoad() the first time.

By design, the loadInBackground() method gets called in a background
thread. This is where the loading actually happens. In the example we
just count from 0 to 9. In a real-world scenario, you will of course do
more interesting things here.

To help the framework maintain a correct loader state,

inside loadInBackground() you should regularly check
isLoadInBackgroundCanceled and act accordingly. In the example, we
throw an OperationCanceledException, which will not break your app but
will be handled by the Loader framework. In fact, it will be transported up
and eventually call the onLoaderReset() callback method.

The method onStartLoading() gets called by the framework; you don’t
have to do that yourself.

All that is missing now is to start and maybe stop the loading. If you use two buttons for that
in the Ul, the corresponding methods read as follows:

fun go(view: View) {
loaderManager.initLoader (LOADER ID,null,this)
}

fun dismiss(view: View) {
loaderManager.getLoader<MyData> (LOADER _ID)?.
cancelload()
loaderManager.destroyLoader (LOADER_ID)

}

The cancelload() method is necessary to tell the loader to cancel its loading operation, and
the destroyLoader () method will unregister the loader from the Loader framework.

Notifications

A notification is a message an app can present to the user outside its normal GUI flow.
Notifications show up in a special region of the screen, most prominently inside the status
bar and notification drawer on top of a screen, in special dialogs, on the lock screen, on

a paired Android Wear device, or on an app icon badge. See Figures 8-1 and 8-2 for a
smartphone example. There you can see the notification icon and the notification content
after the user expands the notification drawer.

144 CHAPTER 8: APIs

i I

n . ‘cations

Hello World?
GO
DISMISS
DIRMY REPLY
Figure 8-1. Smartphone notification
Android 100% 0 1:29
®* VY ¢ & "4 X
Thu, Jun 21 f - w
© norfications - now A
Title

This is the Notification Content
SPEAK NOW

D Android System
USB debugging connected
Tap to disable USB debugging

o Android System - USB charging this device ~

CLEAR ALL

Figure 8-2. Notification content

CHAPTER 8: APIs 145

Notifications also allow for actions, such as calling custom activities when tapped, or they
can contain special action buttons or even edit fields a user can fill out. Likewise, although
notifications were primarily built to show only short text snippets, with current Android
versions, it is possible to present longer text there as well.

The online APl documentation suggests to use the NotificationCompat API from the
support library. Using this compatibility layer allows older versions to present similar or no-
op variants on features that were made available only later, simplifying the development.
Although using this compatibility layer removes the burden from the developer of presenting
many branches inside the code to take care of different Android API levels, caution must be
taken to not make an app unusable by depending too much on the latest notification API
features.

To make sure the compatibility API is available for your project inside Android Studio, check
the build.gradle setting of your module in the dependencies section (only one line; remove
the newline after implementation).

implementation
"com.android.support:support-compat:27.0.2"

The following sections present an outline of the notification API. With this APl having grown
considerably during the last years, please consult the online documentation for a more
detailed description of all notification features.

Creating and Showing Notifications

To create and show a notification, you prepare action intents for a tap and additional action
buttons, use a notification builder to construct the notification, register a notification channel,
and finally make the framework show the notification. An example looks like this:

val NOTIFICATION CHANNEL ID = "1"
val NOTIFICATION ID =1

// Make sure this Activity exists
val intent = Intent(this, AlertDetails::class.java)
intent.flags = Intent.FLAG ACTIVITY_NEW_TASK
//or Intent.FLAG_ACTIVITY CLEAR_TASK
val tapIntent = PendingIntent.getActivity(this, o,
intent, 0)

// Make sure this broadcast receiver exists and can

// be called by explicit Intent like this

val actionIntent = Intent(this, MyReceiver::class.java)

actionIntent.action = "com.xyz.MAIN"

actionIntent.putExtra(EXTRA NOTIFICATION ID, 0)

val actionPendingIntent =
PendingIntent.getBroadcast(this, 0, actionIntent, 0)

val builder = NotificationCompat.Builder(this,
NOTIFICATION CHANNEL ID)
.setSmallIcon(... an icon resource id...)

146 CHAPTER 8: APIs

.setContentTitle("Title")
.setContentText("Content Content Content Content ...")
.setPriority(NotificationCompat.PRIORITY DEFAULT)
// add the default tap action
.setContentIntent(tapIntent)
.setAutoCancel(true)
// add a custom action button
.addAction(... an icon resource id ...,
"Go",
actionPendingIntent)

buildChannel (NOTIFICATION CHANNEL ID)

val notificationManager =
NotificationManagerCompat.from(this)

notificationManager.notify(
NOTIFICATION ID, builder.build())

The function buildChannel() is needed for Android API levels 26 and higher (Android 8.0).
It reads as follows:

fun buildChannel(channelld:String) {
if (Build.VERSION.SDK INT >= Build.VERSION CODES.0) {
// Create the NotificationChannel, but only
// on API 26+ only after that it is needed
val channel = if (Build.VERSION.SDK INT »>=
Build.VERSION CODES.0) {
NotificationChannel(channelld,
"Channel Name",
NotificationManager.IMPORTANCE DEFAULT)
} else {
throw RuntimeException("Internal error")
}

channel.description = "Description”
// Register the channel with the system
val notificationManager =
if (Build.VERSION.SDK INT >=
Build.VERSION CODES.M) {
getSystemService(
NotificationManager::class.java)
} else {
throw RuntimeException("Internal error")
}
notificationManager.
createNotificationChannel(channel)

CHAPTER 8: APIs 147

An explanation for the other code follows:

B The notification itself needs a unique ID; we save that inside
NOTIFICATION ID.

B The action button, here for sending a broadcast, is for the example only.
Having no action button is allowed.

m setAutoCancel(true) will lead to automatically dismissing the
notification once the user taps the notification. This works only if
setContentIntent() is used as well.

B Creating the notification channel is necessary only for API level 26 or
higher (Android 8.0). The superfluous checks inside the outer if are
necessary to make Android Studio not complain about compatibility
issues.

B For all the strings you should use resource IDs where feasible;
otherwise, use texts that better suit your needs.

Adding Direct Reply

Starting with API level 24 (Android 7.0), you can allow the user to enter text as a reply to a
notification message. A major use case for this is of course a notification message from a
messaging system like a chat client or e-mail. See Figure 8-3 for an example.

Android 100% 0 1:33
D o] e g
* 2 ¢ ¢ d X
Thu, Jun 21 2 v
3 notifications « now A
Title
This is the Notification Content

THIS IS A REPLY —

D Android Syster

USB debugging connected

Tap to disable USE debugging
@ Android System - USB charging this device ~
> REPLY REPLACEMENT REPLYING &
1 2 3] 5 6 7 .4 9 (]
qwer T tyuiop

asdf gh j kI

4 z xc vbnma@a

7123 , © e

Figure 8-3. Reply notification

148 CHAPTER 8: APIs

Since API levels below 24 are not able to provide that, your app should not rely on this
functionality. Usually this is easy to achieve. For API levels 23 or lower, the activity called by
tapping a notification can of course contain a facility to reply if needed.

A method that issues a notification with reply functionality might look like this:

fun directReply(view:View) {
// Key for the string that's delivered in the
// action's intent.
val KEY TEXT REPLY = "key text reply"
val remoteInput = RemoteInput.Builder(KEY TEXT REPLY)
.setlLabel("Reply label")
.build()

// Make sure this broadcast receiver exists
val CONVERSATION_ID = 1
val messageReplyIntent =
Intent(this, MyReceiver2::class.java)
messageReplyIntent.action = "com.xyz2.MAIN"
messageReplyIntent.putExtra("conversationId",
CONVERSATION_ID)

// Build a PendingIntent for the reply
// action to trigger.
val replyPendingIntent = PendingIntent.
getBroadcast(applicationContext,
CONVERSATION_ID,
messageReplyIntent,
PendingIntent.FLAG_UPDATE_CURRENT)

// Create the reply action and add the remote input.
val action = NotificationCompat.Action.Builder(
. a resource id for an icon ...,
"Reply", replyPendingIntent)
.addRemoteInput(remoteInput)
.build()

val builder = NotificationCompat.Builder(this,
NOTIFICATION CHANNEL ID)

.setSmallIcon(... a resource id for an icon ...)

.setContentTitle("Title")

.setContentText("Content Content Content ...")

.setPriority(NotificationCompat.PRIORITY DEFAULT)

// add a reply action button

.addAction(action)

buildChannel (NOTIFICATION CHANNEL_ ID)

val notificationManager =
NotificationManagerCompat.from(this)

notificationManager.notify(
NOTIFICATION ID, builder.build())

CHAPTER 8: APIs 149

Here are a few notes about this code:
KEY_TEXT_REPLY is used to identify the reply text in the intent receiver.

CONVERSATION_ID is used to identify the conversation chain; here the
notification and the intent that receives the reply must know they refer to
each other.

As usual, make sure that in production code you use string resources
and appropriate text.

When the notification shows up, it will contain a Reply button, and when the user clicks
it, the system will prompt for some reply text, which is then going to be sent to the intent
receiver (messageReplyIntent in the example).

The intent receiver for the reply text might then have a receive callback that looks like this:

override fun onReceive(context: Context,
intent: Intent) {
Log.e("LOG", intent.toString())
val KEY TEXT REPLY = "key text reply"

val remoteInput = RemoteInput.
getResultsFromIntent(intent)
val txt = remoteInput?.
getCharSequence (KEY_TEXT_REPLY)?:"undefined"
val conversationld =
intent.getIntExtra("conversationId",0)
Log.e("LOG","reply text = " + txt)

// Do s.th. with the reply...

// Build a new notification, which informs the user
// that the system handled their interaction with
// the previous notification.
val NOTIFICATION CHANNEL_ID = "1"
val repliedNotification =
NotificationCompat.Builder(context,
NOTIFICATION CHANNEL ID)
.setSmallIcon(android.R.drawable.ic_media_play)
.setContentText("Replied")
.build()

buildChannel (NOTIFICATION CHANNEL ID)

// Issue the new notification.

val notificationManager =
NotificationManagerCompat.from(context)

notificationManager.notify(conversationId,
repliedNotification)

150 CHAPTER 8: APIs

Here are some notes about this method:

Fetches the reply text by using RemoteInput.getResultsFromIntent()
using the same key as used for the reply input

Fetches the conversation ID we added as an extra value to the intent
Does whatever is appropriate to handle the reply

Issues a reply to the reply by setting another notification

Notification Progress Bar

To add a progress bar to the notification, add the following to the builder with PROGRESS MAX
as the maximum integer value and PROGRESS _CURRENT 0 at the beginning:
.setProgress(PROGRESS MAX, PROGRESS CURRENT, false)

Or, if you want an indeterminate progress bar, you instead use the following:

.setProgress(0, 0, true)

In a background thread that does the work, you then update a determinate progress bar by
periodically executing the following with new currentProgress values:

builder.setProgress(PROGRESS MAX, currentProgress, false)
notificationManager.notify(
NOTIFICATION ID, builder.build())

To finish a determinate or an indeterminate progress bar, you can write the following:

builder.setContentText("Download complete")
.setProgress(0,0,false)
notificationManager.notify(
NOTIFICATION ID, builder.build())

Expandable Notifications

Notifications don’t have to contain short messages only; using the expandable features, it is
possible to show larger amounts of information to the user.

For details on how to do that, please consult the online documentation. Enter, for
example, android create expandable notification in your favorite search engine to find the
corresponding pages.

Rectifying Activity Navigation

To improve the user experience, an activity that was started from inside a notification can
have its expected task behavior added. For example, if you click the back button, the
activity down in the stack gets called. For this to work, you must define an activity hierarchy
inside AndroidManifest.xml, for example, as follows:

CHAPTER 8: APIs

<activity
android:name=".MainActivity"
el >
</activity>
<!-- MainActivity is the parent for ResultActivity -->
<activity
android:name=".ResultActivity"
android:parentActivityName=".MainActivity" />

</activity>
You can then use a TaskStackBuilder to inflate a task stack for the intent called.

// Create an Intent for the Activity you want to start
val resultIntent =
Intent(this, ResultActivity::class.java)
// Create the TaskStackBuilder
val stackBuilder = TaskStackBuilder.create(this)
stackBuilder.
addNextIntentWithParentStack(resultIntent)
// Get the PendingIntent containing the back stack
val resultPendingIntent =
stackBuilder.getPendingIntent(
0, PendingIntent.FLAG_UPDATE_CURRENT)
// -> this can go to .setContentIntent() inside
// the builder

For more details about activities and task management, please see Chapter 3.

Grouping Notifications
Beginning with API level 24 (Android 7.0), notifications can be grouped to improve the

151

representation of several notifications that are related in some way. To create such a group,
all you have to do is add the following to the builder chain, with GROUP_KEY being a string of

your choice:
.setGroup (GROUP_KEY)

If you need a custom sorting, the default is to sort by incoming date; you can use the

method setSortKey() from the builder. Sorting then happens lexicographically given that

key. A grouping inside the notification drawer might look like Figure 8-4.

http://dx.doi.org/10.1007/978-1-4842-3820-2_3

152 CHAPTER 8: APIs

Android 100% 0 6:56
2N 1T
* D ¢ ¢ 4 X
Thu, Jun 21 b= v
222 natifications « 1h
Title 5 This is the Notification Content 5
Title 4 This is the Notification Content 4

Title 3 This is t
Title 2 This is the
Title 1 This is the Notification Content 1

ification Content 3

ofification Content 2

D Android Systerr
USB debugging connected
Tap to disable USB debugging

9 Android System « USB charging this device v

CLEAR ALL

Figure 8-4. Notification group

For API levels below 24 where some kind of Android-managed autosummary for groups
is not available, you can add a notification summary. To do so, just create a notification
like any other notification, but additionally call . setGroupSummary(true) inside the builder
chain. Make sure all the notifications from the group and the summary use the same
setGroup(GROUP_KEY).

Caution Because of a bug at least in APl level 27 you must add a summary notification for the
grouping to be enabled at all. So, the advice is, no matter what API level you are targeting, add a
notification summary.

For the summary you might want to tailor the display style for displaying an appropriate
number of summary items. For this aim, you can use a construct like the following inside the
builder chain:

.setStyle(NotificationCompat.InboxStyle()
.addLine("MasterOfTheUniverse Go play PacMan")
.addLine("Silvia Cheng Party tonite")
.setBigContentTitle("2 new messages")
.setSummaryText ("xyz@example.com"))

CHAPTER 8: APIs 153

Notification Channels

Starting with Android 8.0 (API level 26), another way of grouping notifications by notification
channel has been introduced. The idea is to give the device user more control over how
notifications get categorized and prioritized by the system, as well as the way notifications
get presented to the user.

To create a notification channel, you write the following, which we have already seen in the
preceding sections:

if (Build.VERSION.SDK INT >= Build.VERSION CODES.0) {
// Create the NotificationChannel, but only
// on API 26+ only after that it is needed
val channel = if (Build.VERSION.SDK INT »>=
Build.VERSION CODES.0) {
NotificationChannel(channelld,
"Channel Name",
NotificationManager.IMPORTANCE_DEFAULT)
} else {
throw RuntimeException("Internal error")
}

channel.description = "Description”
// Register the channel with the system
val notificationManager =
if (Build.VERSION.SDK_INT >=
Build.VERSION CODES.M) {
getSystemService(
NotificationManager::class.java)
} else {
throw RuntimeException("Internal error")

}

notificationManager.
createNotificationChannel(channel)

}

Speaking of Kotlin language styling, this looks a little clumsy. The superfluous if constructs
were introduced so Android Studio wouldn’t complain about compatibility issues. Adapt the
channel ID, the channel name, and the importance in the channel constructor according to
your needs, just as the description text.

By the way, the createNotificationChannel() method in the last line is idempotent. If a
channel with the same characteristics already exists, nothing will happen.

The possible importance levels in the NotificationChannel constructor are IMPORTANCE_HIGH
for sound and heads-up notification, IMPORTANCE_DEFAULT for sound, IMPORTANCE_LOW for no
sound, and IMPORTANCE_MIN for neither sound nor status bar presence.

Having said that, it is up to the user how notification channels get handled. In your code

you can still read the settings a user has made by using one of the get*() methods of the
NotificationChannel object you can get from the manager via getNotificationChannel() or
getNotificationChannels(). Please consult the online APl documentation for details.

154 CHAPTER 8: APIs

There is also a notification channel settings Ul you can call by using this:

val intent = Intent(
Settings.ACTION CHANNEL NOTIFICATION SETTINGS)
intent.putExtra(Settings.EXTRA_APP_PACKAGE,
getPackageName())
intent.putExtra(Settings.EXTRA_CHANNEL ID,
myNotificationChannel.getId())
startActivity(intent)

You can further organize notification channels by gathering them in groups, for example to
separate work-related and private type channels. To create a group, you write the following:

val groupId = "my_group"

// The user-visible name of the group.

val groupName = "Group Name"

val notificationMngr =
getSystemService(Context.NOTIFICATION SERVICE)
as NotificationManager

notificationMngr.createNotificationChannelGroup(

NotificationChannelGroup(groupId, groupName))

You can then add the group to each notification channel by using its setGroup() method.

Notification Badges

Starting with Android 8.0 (API level 26), once a notification arrives in the system, a
notification badge will show up in the app’s icon. See, for example, Figure 8-5.

You can control this badge using one of the NotificationChannel methods listed in Table 8-6.

Figure 8-5. A notification badge

Table 8-6. Notification Badges

Method Description

setShowBadge (Boolean) This specifies whether to show the badge.

setNumber (Int) Long-tapping an app icon with a badge will show the number of
notifications that have arrived. You can tailor this number according to
your needs by using this method.

setBadgeIconType(Int) Long-tapping an app icon with a badge will show an icon associated
with the notification. You can tailor the icon’s size by using this method.
Possible values are given as constants in class NotificationCompat:
BADGE_ICON_NONE, BADGE_ICON SMALL, and BADGE_ICON_LARGE.

CHAPTER 8: APIs 155

Contacts

Managing and using contacts is one of the tasks a handheld device must really be good at.
After all, handheld devices and especially smartphones get often used to communicating
with other people, and contacts are abstracted entities representing people, groups,
companies, or other “things” you use as address points for communication needs.

With contacts being so important, the built-in contacts framework has become quite
complex over the history of Android. Fortunately, the complexity can be reduced somewhat
if we restrict ourselves to looking solely at the back-end part and omit user interface
peculiarities that are described in other chapters of this book. What is left for the description
of the contacts framework is the following:

Looking at the internals, especially the database model used
Finding out how to read contacts data

Finding out how to write contacts data

Calling system activities to handle single contacts
Synchronizing contacts

Using quick contact badges

Contacts Framework Internals

The basic class to communicate with the contents framework is the android. content.
ContentResolver class. This makes a lot of sense, since contact data fits well into what
content providers deal with. You thus often use content provider operations to handle
contact data. See Chapter 6 for more information.

The data model consists of three main tables: Contacts, Raw Contacts, Data. In addition, a
couple of auxiliary tables for administrative tasks exist. You usually don’t have to deal with
any kind of direct table access, but in case you are interested, take a look at the online
contacts framework documentation and the documentation for the ContactsContract class,
which extensively describes the content provider contract for the contacts.

If you want to look at the contacts tables directly, using ADB for a virtual or rooted device,
you can create a shell access to your device by using cd SDK_INST/platform-tools ; ./
adb root ; ./adb shell in a terminal; see Chapter 18 for more information, and from there
investigate the tables as follows:

cd /data

find . -name 'contacts*.db'

<- this is to locate the contacts DB
cd <folder-for-contacts-db>

sqlite3 <name-of-contacts-db-file>

For example, enter .header on to switch on table header output, .tables to list all table
names, and select * from raw_contacts; to list the Raw Contacts table.

http://dx.doi.org/10.1007/978-1-4842-3820-2_6
http://dx.doi.org/10.1007/978-1-4842-3820-2_18

156 CHAPTER 8: APIs

Reading Contacts

For reading a number of contacts based on some criterion, you should create a loader
as described in the “Loaders” section. To improve the code quality a little bit, we put the
loading responsibility on our own class and write the following:

import android.app.Activity

import android.app.LoaderManager

import android.content.CursorlLoader
import android.content.Loader

import android.database.Cursor

import android.os.Bundle

import android.provider.ContactsContract
import android.util.Log

import android.net.Uri.withAppendedPath

class ContactslLoader(val actv: Activity?,
val search:String):
LoaderManager.LoaderCallbacks<Cursor> {
override fun onCreateloader(id: Int, args: Bundle?):
Loader<Cursor>? {
Log.e("LOG", "onCreatelLoader()")

val PROJECTION = arrayOf(
ContactsContract.Contacts._ID,
ContactsContract.Contacts.LOOKUP_KEY,
ContactsContract.Contacts.DISPLAY NAME PRIMARY)

val SELECTION =
ContactsContract.Contacts.DISPLAY_NAME_PRIMARY
+ " LIKE ?"

val selectionArgs = arrayOf("%" + search + "%")

val contentUri =
ContactsContract.Contacts.CONTENT_URI
Log.e("LOG", contentUri.toString())

// Starts the query

return CursorLoader(
actv,
contentUri,
PROJECTION,
SELECTION,
selectionArgs,
null

}

override fun onlLoadFinished(loader: Loader<Cursor>,
data: Cursor) {
Log.e("LOG", "Load finished: " + data)
if(data.moveToFirst()) {

CHAPTER 8: APIs 157

do {
Log.e("LOG", "Entry:")
data.columnNames.forEachIndexed { i, s -»>
Log.e("L0G", " -> " + s+ " -5 "
+ data.getString(i))

} while (data.moveToNext())
}

// show on UI or other actions...

}

override fun onLoaderReset(loader: Loader<Cursor>?) {
Log.e("LOG", "onLoaderReset()")
// remove from UI or other actions...

}

By virtue of ContactsContract.Contacts.CONTENT URI that we use here as a URI, this will do
a search in the Contacts table, returning basic contacts data.

To initialize and start the loader, all that is left to do, for example, in your activity is this:
val searchStr = "" // or whatever
val 1dr = ContactslLoader(this, searchStr)
loaderManager.initLoader(0, null, ldr)

If instead you want to do a search inside the Data table, which contains phone numbers,
e-mail addresses, and more, you write the following in ContactsLoader.onCreateloader():

val PROJECTION = arrayOf(
ContactsContract.Data._ID,
ContactsContract.Data.DISPLAY_NAME_PRIMARY,
ContactsContract.CommonDataKinds.Email.ADDRESS)

val SELECTION =
ContactsContract.CommonDataKinds.Email.ADDRESS
+ " LIKE 2 " + "AND "
+ ContactsContract.Data.MIMETYPE + " = ""
+ ContactsContract.
CommonDataKinds.Email.CONTENT_ITEM TYPE

val selectionArgs = arrayOf("%" + search + "%")

val contentUri = ContactsContract.Data.CONTENT_URI
Log.e("LOG", contentUri.toString())

There are also special URIs you can use. For example, for finding contacts by e-mail
address, you could use the content URI ContactsContract.CommonDataKinds.Email.
CONTENT _URI.

158 CHAPTER 8: APIs

As a third possibility, the URI given by ContactsContract.Contacts.CONTENT FILTER
URI allows for adding search criteria inside the URI instead of specifying them in the
CursorlLoader constructor.

val PROJECTION : Array<String>? = null
val SELECTION : String? = null
val selectionArgs : Array<String>? = null

val contentUri = Uri.withAppendedPath(
ContactsContract.Contacts.CONTENT_FILTER_URI,
Uri.encode(search))

Log.e("LOG", contentUri.toString())

Note that in this case it is not allowed to pass an empty string ("") as a search criterion.

Writing Contacts

Inserting or updating contacts best happens in batch mode. You start with a list of the item
type ContentProviderOperation and fill it with operations as follows:

import android.content.Context

import android.content.ContentProviderOperation
import android.content.ContentResolver

import android.provider.ContactsContract

import android.content.ContentValues.TAG

import android.util.log

import android.widget.Toast

class ContactsWriter(val ctx:Context, val contentResolver:
ContentResolver) {
val oplList = mutablelListOf<ContentProviderOperation>()

fun addContact(accountType:String, accountName:String,
firstName:String, lastName:String,
emailAddr:String, phone:String) {
val firstOperationIndex = oplList.size

Inside this method we first create a new contact. The Contacts table will be filled
automatically; direct access is not possible anyway. The device’s user account and account
type are needed; otherwise, the operations silently will fail!

// Creates a new raw contact.
var op = ContentProviderOperation.newInsert(
ContactsContract.RawContacts.CONTENT_URI)
.withValue(
ContactsContract.RawContacts.ACCOUNT_TYPE,
accountType)
.withValue(

CHAPTER 8: APIs 159

ContactsContract.RawContacts.ACCOUNT_NAME,
accountName)
opList.add(op.build())

Next, still inside the method, we create a display name for the new row. This is a row inside
the table StructuredName.

// Creates the display name for the new row
op = ContentProviderOperation.newInsert(
ContactsContract.Data.CONTENT URI)
// withValueBackReference will make sure the
// foreign key relations will be set
// correctly
.withValueBackReference(
ContactsContract.Data.RAW_CONTACT ID,
firstOperationIndex)
// The data row's MIME type is StructuredName
.withValue(ContactsContract.Data.MIMETYPE,
ContactsContract.CommonDataKinds.
StructuredName.CONTENT ITEM TYPE)
// The row's display name is the name in the UI.
.withValue(ContactsContract.CommonDataKinds.
StructuredName.DISPLAY_NAME,
firstName + " " + lastName)
opList.add(op.build())

Likewise, we add the phone number and the e-mail address.

// The specified phone number
op = ContentProviderOperation.newInsert(
ContactsContract.Data.CONTENT URI)
// Fix foreign key relation
.withValueBackReference(
ContactsContract.Data.RAW_CONTACT_ID,
firstOperationIndex)
// Sets the data row's MIME type to Phone
.withValue(ContactsContract.Data.MIMETYPE,
ContactsContract.CommonDataKinds.
Phone.CONTENT ITEM TYPE)
// Phone number and type
.withValue(ContactsContract.CommonDataKinds.
Phone.NUMBER, phone)
.withValue(ContactsContract.CommonDataKinds.
Phone.TYPE,
android.provider.ContactsContract.
CommonDataKinds.Phone.TYPE_HOME)
opList.add(op.build())

// Inserts the email

op = ContentProviderOperation.newInsert(
ContactsContract.Data.CONTENT_URI)

// Fix the foreign key relation

.withValueBackReference(

160 CHAPTER 8: APIs

ContactsContract.Data.RAW_CONTACT_ID,
firstOperationIndex)
// Sets the data row's MIME type to Email
.withValue(ContactsContract.Data.MIMETYPE,
ContactsContract.CommonDataKinds.
Email.CONTENT ITEM TYPE)
// Email address and type
.withValue(ContactsContract.CommonDataKinds.
Email.ADDRESS, emailAddr)
.withValue(ContactsContract.CommonDataKinds.
Email.TYPE,
android.provider.ContactsContract.
CommonDataKinds.Email.TYPE_HOME)

Finally, before closing the method, we add a yield point. This has no functional influence
but introduces a break so the system can do other work to improve usability. The following
snippet also contains the rest of the class:

// Add a yield point.
op.withYieldAllowed(true)

opList.add(op.build())

}
fun reset() {
opList.clear()
}
fun doAll() {
try {
contentResolver.applyBatch(
ContactsContract.AUTHORITY,
opList as ArraylList)
} catch (e: Exception) {
// Display a warning
val duration = Toast.LENGTH_SHORT
val toast = Toast.makeText(ctx,
"Something went wrong", duration)
toast. show()
// Log exception
Log.e("LOG", "Exception encountered "+
"while inserting contact: " + e, e)
}
}
}

This uses a fixed phone type and a fixed e-mail type, but | guess you get the point. Also,
make sure in productive code you use resource strings instead of hard-coded strings, as
shown here. To use the class, all you have to do from inside an activity is the following:

val cwr = ContactsWriter(this, contentResolver)

cwr.addContact("com.google", "user@gmail.com",

"Peter","Kappa",

CHAPTER 8: APIs 161

"post@kappa.com","0123456789")
cwr.addContact("com.google", "user@gmail.com",

"Hilda","Kappa",

"post2@kappa.com","0123456789")
cwr.doAll()

To update a contacts entry, we introduce another function inside the ContactsWriter class.

fun updateContact(id:String, firstName:String?,
lastName:String?, emailAddr:String?, phone:String?) {
var op : ContentProviderOperation.Builder? = null
if(firstName != null && lastName != null) {
op = ContentProviderOperation.newUpdate(
ContactsContract.Data.CONTENT URI)
.withSelection(ContactsContract.Data.CONTACT ID +
"= ? AND " + ContactsContract.Data.MIMETYPE +
T
arrayOf(id, ContactsContract.CommonDataKinds.
StructuredName.CONTENT ITEM TYPE))
.withValue(ContactsContract.Contacts.DISPLAY NAME,
firstName + " " + lastName)
oplList.add(op.build())
}
if(emailAddr != null) {
op = ContentProviderOperation.newUpdate(
ContactsContract.Data.CONTENT URI)
.withSelection(ContactsContract.Data.CONTACT ID +
" =7? AND " + ContactsContract.Data.MIMETYPE +
T
arrayOf(id, ContactsContract.CommonDataKinds.
Email.CONTENT ITEM TYPE))
.withValue(ContactsContract.CommonDataKinds.Email.
ADDRESS, emailAddr)
opList.add(op.build())

if(phone != null) {
op = ContentProviderOperation.newUpdate(
ContactsContract.Data.CONTENT URI)
.withSelection(ContactsContract.Data.CONTACT ID +
" = ? AND " + ContactsContract.Data.MIMETYPE +
"
arrayOf(id, ContactsContract.CommonDataKinds.
Phone.CONTENT ITEM TYPE))
.withValue(ContactsContract.CommonDataKinds.Phone.
NUMBER, phone)
opList.add(op.build())

162 CHAPTER 8: APIs

As an input, you need the ID key from the Raw Contacts table; any function argument not
null gets updated. For example, you can write the following inside the activity:

val rawld = ...

val cwr = ContactsWriter(this, contentResolver)

cwr.updateContact(rawId, null, null,
"postXXX@kappa.com", null)

cwr.doAll()

As a last function, we add the possibility to delete a contact, again based on the ID.

fun delete(id:String) {
var op = ContentProviderOperation.newDelete(
ContactsContract.RawContacts.CONTENT_URI)
.withSelection(ContactsContract.RawContacts.
CONTACT ID + " = ?",
arrayOf(id))
opList.add(op.build())
}

Using it is similar to an update.

val rawld = ...

val cwr = ContactsWriter(this, contentResolver)
cwr.delete(rawld)

cwr.doAll()

Using Contacts System Activities

To read or update a single contact, you can avoid having to write your own user interface.
Just use the system activity to access a contact. An appropriate intent call for creating a
single contact looks like this:

val intent = Intent(Intents.Insert.ACTION)

intent.setType(ContactsContract.RawContacts.CONTENT TYPE)

intent.putExtra(Intents.Insert.EMAIL, emailAddress)
.putExtra(Intents.Insert.EMAIL TYPE,

CommonDataKinds.Email.TYPE_WORK)
.putExtra(Intents.Insert.PHONE, phoneNumber)
.PutExtra(Intents.Insert.PHONE_TYPE, Phone.

TYPE_WORK)

startActivity(intent)

This will open the contacts screen for creating a new contact and prefill the given fields.

To instead edit an existing contact, once you have the lookup key and the raw contact ID, as
shown earlier, write the following:

val uri = Contacts.getlLookupUri(id, lookupKey)

val intent = Intent(Intent.ACTION_ EDIT)

// the following must be done in _one_ call, do not
// chain .setData() and .setType(), because they

// overwrite each other!

CHAPTER 8: APIs 163

intent.setDataAndType(uri, Contacts.CONTENT ITEM TYPE)
// starting at API level 15, this is needed:
intent.putExtra("finishActivityOnSaveCompleted”, true)

// now put any data to update, for example
intent.putExtra(Intents.Insert.EMAIL, newEmail)

startActivity(intent)

Synchronizing Contacts

At this place, we provide a brief outline on what to do if you want to write a contacts
synchronization app between your device and a server.

1. Build a subclass of android.app.Application and register it as name
inside the <application> tag of the file AndroidManifest.xml. Inside
its onCreate() callback, instantiate a SyncAdapter and provide for a
method a SyncAdapter service can fetch this instance.

2. Build a bindable service component the system can use for
synchronization.

3. Implement the SyncAdapter, for example by subclassing an
AbstractThreadedSyncAdapter.

4. Provide an XML file to tell the system about the adapter. The
procedure gets described in the online APl documentation of
AbstractThreadedSyncAdapter.

5. Optionally provide a service for authentication. The AccountManager
starts this service to begin the authentication process. When the
system wants to authenticate a user account for the application’s
sync adapter, it calls the service’s onBind() method to get an IBinder
for the authenticator.

6. Optionally provide a subclass of AbstractAccountAuthenticator,
which handles requests for authentication.

Using Quick Contact Badges

Quick contact badges allow you to use a GUI widget that your user can tap to see a
contact’s details and take any suitable action from there such as sending an e-mail, issuing a
call, or whatever makes sense. This details screen gets presented by the system; you don’t
have to implement it in your app. See Figure 8-6.

164 CHAPTER 8: APIs

.. Hilda Kappa

A

. 0123456789 B

Privat

post2@kappa.com

Privat

Letzte

Figure 8-6. A quick contact badge

To generate such a quick contact badge, inside your layout file you must add the following:

<QuickContactBadge
android:id="@+id/quickBadge"
android:layout width="60dp"
android:layout_height="60dp"
android:scaleType="centerCrop"/>

In you code you must connect the badge to the following information you get from
the contacts provider: the raw contact ID, the lookup key, and a thumbnail URI. The
corresponding code might look like this:

val id = row[ContactsContract.Contacts. ID]

val lookup = row[ContactsContract.Contacts.
LOOKUP_KEY]

val photo = row[ContactsContract.Contacts.
PHOTO_THUMBNAIL URI]

Here, the row, for example, is a map you get from a contacts content provider query. In this
case, a query in Raw Contact is enough; you don’t need to also query the Data table.

CHAPTER 8: APIs

From here we configure the badge as follows, for example after you load the contact
information by user interface activities:

val contactUri = ContactsContract.Contacts.getLookupUri(
id?.tolLong()?:0,
lookup)
quickBadge.assignContactUri(contactUri)
val thumbnail =
loadContactPhotoThumbnail(photo.toString())
quickBadge.setImageBitmap(thumbnail)

Here, the loadContactPhotoThumbnail() function loads the thumbnail image data.

private fun loadContactPhotoThumbnail(photoData: String):
Bitmap? {
var afd: AssetFileDescriptor? = null
try {
val thumbUri = Uri.parse(photoData)
afd = contentResolver.
openAssetFileDescriptor (thumbUri, "r")
afd?.apply {
fileDescriptor?.apply {
return BitmapFactory.decodeFileDescriptor(
this, null, null)

}

} catch (e: FileNotFoundException) {
// Handle file not found errors ...
} finally {
afd?.close()
}

return null

}

Search Framework

The search framework allows you to seamlessly add search functionality to your app and

register your app as a searchable items provider in the Android OS.
Talking of the user interface, you have two options.
Opening a search dialog

Adding a search widget to your Ul via SearchView

165

166 CHAPTER 8: APIs

More precisely, to include search facilities inside your app, you have to do this:
1. Provide a searchable configuration as an XML file.

2. Provide an activity that (a) is able to receive a search query, (b)
performs the search inside your app’s data, and (c) displays the
search result.

3. Provide a dialog or search widget.

The rest of this section walks through these requirements.

The Searchable Configuration

The searchable configuration is a file named searchable.xml that resides inside the folder
/res/xml of your project. The most basic contents of this file read as follows:

<?xml version="1.0" encoding="utf-8"?>
<searchable xmlns:android=
"http://schemas.android.com/apk/res/android"
android:label="@string/app_label"
android:hint="@string/search_hint" >
</searchable>

@string/... points to localized string resources.@string/app_label points to a label and
should be equal to the name of the label attribute of the <application> element. The other
one, @string/search_hint, is the string to be shown inside search fields if nothing has

been entered yet. It is recommended and should show something like Search <content>,
with <content> being specific to the data your app provides. There are a lot more possible
attributes and some optional child elements; we will mention some in the following sections.
For the complete list, please see the online documentation in the “Searchable Configuration”
section.

The Searchable Activity

For the activity that handles search-related issues inside your app, start with its declaration
inside AndroidManifest.xml. The activity needs to have a special signature there, as follows:

<activity android:name=".SearchableActivity" >
<intent-filter>
<action android:name=
"android.intent.action.SEARCH" />
</intent-filter>
<meta-data android:name="android.app.searchable"
android:resource="@xml/searchable"/>
</activity>

The name of the activity is up to you; all the other tags and attributes must be as shown here.

CHAPTER 8: APIs 167

Next we let this activity receive the search request. This is done inside its onCreate()
callback as follows:

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity searchable)

// This is the standard way a system search dialog
// or the search widget communicates the query

// string:
if (Intent.ACTION SEARCH == intent.action) {
val query =
intent.getStringExtra(SearchManager.QUERY)
doMySearch(query)
}

// More initialization if necessary...

}

The doMySearch() function is supposed to perform the search and present the result inside
the SearchableActivity. The way this is done is totally up to the application; it could be a
database search or a search using a content provider or anything you want.

The Search Dialog

For any activity to open the system’s search dialog and have it pass the query entered there
to the SearchableActivity, you write the following in AndroidManifest.xml:

<activity android:name=".SearchableActivity" >
<!-- same as above -->
</activity>
<activity android:name=".MainActivity"
android:label="Main">
<d-- i -

<!-- Enable the search dialog and let it send -->
<!-- the queries to SearchableActivity -->
<meta-data android:name=
"android.app.default_searchable"
android:value=
".SearchableActivity" />
</activity>

This example allows for MainActivity to open the system’s search dialog. In fact, you can
use any suitable activity from inside your app for that purpose.

To open the search dialog inside your searching activity, write the following:

onSearchRequested()

168 CHAPTER 8: APIs

Note Usually directly executing obvious callback function starting with on. .. has a bad smell.
You usually do that for half-legal shortcuts. The reason why we have to do it here is that your
device might have a dedicated search button. In this case, onSearchRequested() gets called
from the system, and it is a real callback method. Because such a button is optional, it is, however,
necessary to always provide a search initiator from inside your app.

Figure 8-7 shows a dialog-based search flow.

START SEARCH START SEARCH You searched for Frog

=
— —

» Frog Froh Frohe 4

asdf gh j kI
4 yxcvbnm@

n23 , @ : {=>

Figure 8-7. A dialog-based search flow

The Search Widget

Instead of opening the system search dialog, you can place a <SearchView> widget inside
your Ul. While in principle you can place it wherever you like, it is recommended you put it
in the action bar. For this aim, provided you have set up an action bar and defined a menu
there, inside the menu XKML definition you write the following:

<menu xmlns:android=
"http://schemas.android.com/apk/res/android"
xmlns:app=
"http://schemas.android.com/apk/res-auto">

<!-- Usually you have Settings in any menu -->

<item android:id="@+id/action_settings"
android:title="Settings"
app:showAsAction="never"/>

CHAPTER 8: APIs 169

<item android:id="@+id/action_search"
android:title="Search"
app: showAsAction="ifRoom|collapseActionView"
app:actionViewClass=
"android.support.v7.widget.SearchView"
android:icon=
"@android:drawable/ic_menu_search"/>

<!-- more items ... ->
</menu>

What then needs to be done inside your app to connect the widget with the search
framework is the following:

// Set the searchable configuration

val searchManager = getSystemService(SEARCH_SERVICE)
as SearchManager

val searchView = menu.findItem(R.id.action search).
actionView as SearchView

searchView.setSearchableInfo(
searchManager.getSearchableInfo(componentName))

// Do not iconify the widget; expand it by default:

searchView.setIconifiedByDefault(false)

That is it! The flow looks like Figure 8-8 (you’d click the search icon in the action bar).

You searched for Frog

"

> Frog Froh Frohe &

q: wertzuio p
asdf ghjk I

4 y xcvbnma@

n23 , @ . Q@

Figure 8-8. A widget-based search flow

170 CHAPTER 8: APIs

Search Suggestions

There are two ways you can help the user input search query strings. You can let the system
memorize queries for the next time the search gets used, and you can let your app provide
fully customizable suggestions.

Recent Queries Suggestions

For the recent queries suggestions, you implement a content provider subclass of
SearchRecentSuggestionsProvider and add it to AndroidManifest.xml like any other content
provider. A basic but nevertheless already fully implemented content provider looks like this:

class RecentsProvider :
SearchRecentSuggestionsProvider {
val AUTHORITY = "com.example.RecentsProvider"
val MODE = DATABASE_MODE_QUERIES

init {
setupSuggestions (AUTHORITY, MODE)

}

Register it inside /res/xml/searchable.xml as follows:

<?xml version="1.0" encoding="utf-8"?>
<searchable xmlns:android=
"http://schemas.android.com/apk/res/android"
android:label="@string/app_label"
android:hint="@string/search_hint"
android:searchSuggestAuthority=
"com.example.RecentsProvider"
android:searchSuggestSelection=
"
</searchable>

New are the last two attributes. The android:searchSuggestAuthority attribute here draws a
connection to the provider.

The content provider must still be registered in AndroidManifest.xml. This for example reads
as follows:

<provider
android:name=".RecentsProvider"
android:authorities="com.example.RecentsProvider"
android:enabled="true"
android:exported="true">

</provider>

This reads previous queries from an automatically generated database. What is left to do is
add the search queries. For this aim, inside the SearchableActivity class write the following:

CHAPTER 8: APIs 17

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity searchable)

// This is the standard way a system search dialog
// or the search widget communicates the query
// string:
if (Intent.ACTION SEARCH == intent.action) {
val query =
intent.getStringExtra(SearchManager.QUERY)

// Add it to the recents suggestion database

val suggestions = SearchRecentSuggestions(this,
RecentsProvider.AUTHORITY, RecentsProvider.MODE)

suggestions.saveRecentQuery(q, null)

doMySearch(query)
}

// More initialization if necessary...

}

The second parameter for the saveRecentQuery() method could be a second line for
annotation purposes. For this to work, you have to use val MODE = DATABASE_MODE_QUERIES
or DATABASE_MODE_2LINES in the RecentsProvider and find a way to retrieve annotation text
inside the SearchableActivity class.

Custom Suggestions

Custom suggestions are more powerful compared to recents suggestions. They can be fully
app or domain specific, and you can provide intelligent suggestions to the user, tailored

for the current user action. Compared to recents suggestions, you instead implement and
register a ContentProvider by obeying certain rules.

The Android OS will fire ContentProvider.query(uri, projection,
selection, selectionArgs, sortOrder calls with URlIs like the following:

content://your.authority/
optional.suggest.path/
SUGGEST_URT_PATH_QUERY/
<query>

Here, your.authority is the content provider authority, /optional.
suggest.path might be added by the search configuration for
disambiguation, and SUGGEST_URI_PATH_QUERY is the value of the
constant SearchManager.SUGGEST_URI_PATH_QUERY. The <query> contains
the string to be searched for. Both the selection and selectionArgs
parameters will be filled only if appropriately configured in the search
configuration.

172 CHAPTER 8: APIs

The resulting Cursor must return the following fields (shown are constant
names):

BaseColumns. ID

This is a (technically) unique ID you must provide.
SearchManager.SUGGEST _COLUMN_TEXT 1

This is the search suggestion.
SearchManager.SUGGEST COLUMN_TEXT 2

(optional) This is a second, less important string representing an
annotation text.

SearchManager.SUGGEST _COLUMN_ICON 1

(optional) This is a drawable resource ID, content, or file URI string for
an icon to be shown on the left.

SearchManager.SUGGEST _COLUMN_ICON 2

(optional) This is a drawable resource ID, content, or file URI string for
an icon to be shown on the right.

SearchManager.SUGGEST _COLUMN_INTENT ACTION

(optional) This is an intent action string that is used to call an intent
when the suggestion gets clicked.

SearchManager.SUGGEST COLUMN_INTENT DATA

This is an intent data member to be sent with the intent.
SearchManager.SUGGEST COLUMN_INTENT DATA ID

This is a string to be appended to the intent data member.
SearchManager.SUGGEST COLUMN_INTENT_EXTRA DATA

This is extra data to be sent with the intent.
SearchManager.SUGGEST COLUMN_QUERY

This is the original query string.

SearchManager.SUGGEST COLUMN_SHORTCUT_ID

This is used when providing suggestions for the quick search box. It
indicates whether a search suggestion should be stored as a shortcut
and whether it should be validated.

SearchManager.SUGGEST _COLUMN_SPINNER WHILE REFRESHING

This is used when providing suggestions for the quick search box; a
spinner should be shown instead of the icon from SUGGEST_COLUMN _
ICON_2 while the shortcut of this suggestion is being refreshed in the
quick search box.

CHAPTER 8: APIs 173

Let’s try to build a valid example for custom suggestions. We start with a working example
of a recents suggestion provider as described earlier. It doesn’t matter whether you use the
dialog or the widget method. Note the differences are the content provider and the search
configuration.

For a search configuration defined by file /res/xml/searchable.xml, enter the following:

<?xml version="1.0" encoding="utf-8"?>
<searchable xmlns:android=
"http://schemas.android.com/apk/res/android"
android:label=
"@string/app_label"
android:hint=
"@string/search_hint"
android:searchSuggestAuthority=
"com.example.CustomProvider"
android:searchSuggestIntentAction=
"android.intent.action.VIEW">
</searchable>

Next we define a new content provider.

class CustomProvider : ContentProvider() {
override fun query(uri: Uri,
projection: Array<String>?,
selection: String?,
selectionArgs: Array<String>?,
sortOrder: String?): Cursor? {
Log.e("LOG", "query(): " + uri +
" - projection=" +
Arrays.toString(projection) +
- selection=" + selection +
- selectionArgs=" +
Arrays.toString(selectionArgs) +
- sortOrder=" + sortOrder)
return null

}

override fun delete(uri: Uri, selection: String?,
selectionArgs: Array<String>?): Int {
throw UnsupportedOperationException(
"Not yet implemented")

}

override fun getType(uri: Uri): String? {
throw UnsupportedOperationException(
"Not yet implemented")

}

override fun insert(uri: Uri, values: ContentValues?):
Uri? {
throw UnsupportedOperationException(
"Not yet implemented")

174 CHAPTER 8: APIs

override fun onCreate(): Boolean {
return false

}

override fun update(uri: Uri, values: ContentValues?,

selection: String?,
selectionArgs: Array<String>?): Int {

throw UnsupportedOperationException(

}
}

"Not yet implemented")

Register it in AndroidManifest.xml.

<provider

android:name=".CustomProvider"
android:authorities="com.example.CustomProvider"
android:enabled="true"
android:exported="true">

</provider>

This is what happens so far when the user starts a search:

1.

Whenever the user enters or removes a character, the system

will go to the search configuration it sees by looking at the
searchSuggestAuthority attribute that it needs so it can address a
content provider with this authority assigned to it.

By looking in AndroidManifest.xml, it sees that this authority is
connected to the provider class CustomProvider.

It invokes a query() on this provider and expects a Cursor to return
the custom suggestions.

If the user taps a suggestion, by virtue of the
searchSuggestIntentAction attribute set to android.intent.action.
VIEW, the SearchableActivity’s onCreate() will see the incoming
intent with the VIEW action.

Up to now we let the query() method return null, which is equivalent to no suggestions,
but we added a logging statement, so we can see what arrives at the query() method. For
example, when the user enters sp, the arguments so far will read as follows:

query(): content://com.example.CustomProvider/

search_suggest query/sp?limit=50

projection=null
selection=null
selectionArgs=null
sortOrder=null

CHAPTER 8: APIs 175

The arguments sent to the query() method by the search framework can be tailored
extensively by various search configuration attributes. Now, however, we refer you to

the online documentation and continue with extracting the information from the first uri
parameter. How to build Cursor objects is described in Chapter 6; for this example, we use a
MatrixCursor, and instead of returning null, we could, for example, return the following from
inside the SearchableActivity:

override fun query(uri: Uri,
projection: Array<String>?,
selection: String?,
selectionArgs: Array<String>?,
sortOrder: String?): Cursor? {
Log.e("LOG", "query(): " + uri +
" - projection=" +
Arrays.toString(projection) +
- selection=" + selection +
- selectionArgs=" +
Arrays.toString(selectionArgs) +
- sortOrder=" + sortOrder)

val lps = uri.lastPathSegment // the query
val gr = uri.encodedQuery // e.g. "limit=50"

val curs = MatrixCursor(arrayOf(
BaseColumns._ID,
SearchManager.SUGGEST_COLUMN_TEXT_1,
SearchManager.SUGGEST_COLUMN_INTENT_DATA

)

curs.addRow(array0Of(1, lps + "-Suggestion 1",
lps + "-Suggestion 1"))

curs.addRow(array0f(2, lps + "-Suggestion 2",
lps + "-Suggestion 2"))

return curs

}

This example provides only silly suggestions; you can write something more clever to the
MatrixCursor.

As a last modification, you can make your search suggestions available to the system’s quick
search box. All you have to do for that is add android:includeInGlobalSearch = true to your
search configuration. The user must allow this inside the settings for this connection to take effect.

Location and Maps

Handheld devices may track their geographic position, and they may interact with map
services to graphically interfere with a user’s location needs. Geographical position is not
only about latitude and longitude numbers but also about finding out street addresses and
points of interest. While it is certainly an important ethical question how far apps can go to
track their users’ personal life, the possibilities for interesting apps and games are potentially
endless. In this section, we talk about the technical possibilities. Just be cautious with your
user’s data and be transparent with what you are doing with them.

http://dx.doi.org/10.1007/978-1-4842-3820-2_6

176 CHAPTER 8: APIs

The Android OS itself contains a location framework with classes in the package android.
location. However, the official position of Google is to favor the Google Play Services
Location API because it is more elaborate and simpler to use. We follow this suggestion
and talk about the services API in the following paragraphs. Location is about finding out
the geographical position of a device as a latitude-longitude pair and finding out the street
names, house numbers, and other points of interest given the geographical position.

To make the Services Location API available to your app, add the following as dependencies
in your app module’s build.gradle file (as just two lines; remove the newlines after
implementation):

implementation
'com.google.android.gms:play-services-location:11.8.0'

implementation
'com.google.android.gms:play-services-maps:11.8.0"

Last Known Location

The easiest way to get the device’s position is to get the last known location. To do so, in
your app request permissions, add the following:

<uses-permission android:name=
"android.permission.ACCESS_COARSE_LOCATION"/>

<uses-permission android:name=
"android.permission.ACCESS_FINE_LOCATION"/>

GPS resolution with fewer than ten yards needs FINE location permission, while the
coarser network-based resolution with approximately 100 yards needs the COARSE location
permission. Adding both to the manifest file gives us the most options, but depending on
your needs, you could continue with just the coarse one.

Then, inside you component (for example, inside onCreate()), you construct a
FusedLocationProviderClient as follows:

var fusedlLocationClient: FusedlLocationProviderClient? =
null

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)

fusedLocationClient = LocationServices.
getFusedLocationProviderClient(this)
}

Wherever needed in your app, you can use it to get the last known location.

if (checkPermission(
Manifest.permission.ACCESS_COARSE_LOCATION,
Manifest.permission.ACCESS FINE LOCATION)) {

CHAPTER 8: APIs

fusedlLocationClient?.lastlocation?.
addOnSuccessListener(this,
{location : Location? -»
// Got last known location. In some rare
// situations this can be null.
if(location == null) {
// TODO, handle it
} else location.apply {
// Handle location object
Log.e("LOG", location.toString())

}
1)
}

Here, checkPermission() checks and possibly acquires the needed permissions as
described in Chapter 7. This could be, for example, the following:

val PERMISSION ID = 42
private fun checkPermission(vararg perm:String) :
Boolean {
val havePermissions = perm.tolList().all {
ContextCompat.checkSelfPermission(this,it) ==
PackageManager .PERMISSION_GRANTED
}
if ('havePermissions) {
if(perm.tolList().any {
ActivityCompat.
shouldShowRequestPermissionRationale(this, it)}
) {
val dialog = AlertDialog.Builder(this)
.setTitle("Permission™)
.setMessage("Permission needed!")
.setPositiveButton("0K",{
id, v ->
ActivityCompat.requestPermissions(
this, perm, PERMISSION ID)
b
.setNegativeButton("No",{
id, v ->
H

.create()
dialog.show()
} else {
ActivityCompat.requestPermissions(this, perm,
PERMISSION_ID)
}

return false

}

return true

}

177

http://dx.doi.org/10.1007/978-1-4842-3820-2_7

178 CHAPTER 8: APIs

For simplicity | used strings for button labels and messages. For production code, make sure
you use resources! The function checkPermission(), if necessary, tries to acquire permission
from a system activity. Whether the user grants permissions, upon return from this activity,
your app may accordingly react to the result.

override
fun onRequestPermissionsResult(requestCode: Int,
permissions: Array<String>,
grantResults: IntArray) {
when (requestCode) {
PERMISSION_ID -> {

}

Caution The concept of a “last known location” is somewhat blurry. In an emulated device, for
example, it is not sufficient to set the location by the provided device control for changing the last
known location. Only after an app like Google Maps uses location update mechanisms does the
code described here return the correct value. The mechanisms described in the following sections
are more complex but also more reliable.

Tracking Position Updates

If your app needs to track updates on changing locations, you follow a different approach.
First, the permissions needed are the same as stated earlier for the last known location,
so there’s no change there. The difference is in requesting periodic updates from the
fused location provider. For that we need to define a location settings object. Confusingly,
the corresponding class is called LocationRequest (it would have been better as
LocationRequestSettings or something else). To create one, write the following:

val reqSetting = LocationRequest.create().apply {
fastestInterval = 10000
interval = 10000
priority = LocationRequest.PRIORITY_ HIGH ACCURACY
smallestDisplacement = 1.0f

}

The .apply construct lets us configure the object faster. For example, fastestInterval =
10000 internally gets translated to reqSetting.setFastestInterval(10000). The meanings of
the individual settings are as follows:

fastestInterval

The fastest possible total update interval in milliseconds for the location
provider.

interval

CHAPTER 8: APIs

The requested interval in milliseconds. This setting is only approximate.

priority

The requested accuracy. This setting influences the battery usage. The
following are possible values (constants from LocationRequest):

PRIORITY_NO_POWER: Fetches passive updates only if other

requestors actively request updates

PRIORITY_LOW_POWER: Updates only on “city” levels
PRIORITY_ BALANCED POWER_ACCURACY: Updates only on “city street

block” levels

PRIORITY_HIGH ACCURACY: Uses the highest possible accuracy

available

This value will be internally adapted according to available permissions.

smallestDisplacement

This is the smallest displacement in meters necessary for an update

message to be fired.

179

With that location request setting, we check whether the system is able to fulfill our request.
This happens in the following code snippet:

val REQUEST CHECK STATE = 12300 // any suitable ID

val builder = LocationSettingsRequest.Builder()
.addLocationRequest(reqSetting)

val client = LocationServices.getSettingsClient(this) client.checkLocationSettings(builder.

build()).

addOnCompletelistener { task ->

try {
val state: LocationSettingsStates = task.result.

locationSettingsStates

Log.e("LOG", "LocationSettings: \n" +

)

BLE present: ${state.isBlePresent} \n" +

BLE usable: ${state.isBleUsable} \n" +

GPS present: ${state.isGpsPresent} \n" +

GPS usable: ${state.isGpsUsable} \n" +

Location present: " +
"${state.isLocationPresent} \n" +

Location usable: " +
"${state.islocationUsable} \n" +

Network Location present: " +
"${state.isNetworkLocationPresent} \n" +

Network Location usable: " +
"${state.isNetworkLocationUsable} \n"

} catch (e: RuntimeExecutionException) {
if (e.cause is ResolvableApiException)

(e.cause as ResolvableApiException).
startResolutionForResult(

180 CHAPTER 8: APIs

this@MainActivity,
REQUEST_CHECK_STATE)

}

This asynchronously performs a check. If high accuracy is requested and the device’s
setting won’t allow updates based on GPS data, the corresponding system settings dialog
gets called. The latter happens somewhat awkwardly inside the exception catch. The result
of the corresponding system intent call ends up in the following:

override fun onActivityResult(requestCode: Int,
resultCode: Int, data: Intent) {
if (requestCode and OXFFFF == REQUEST CHECK STATE) {
Log.e("LOG", "Back from REQUEST_CHECK_STATE")

}
}

With all set up correctly and enough permissions, we now can register for location updates
via the following:

val locationUpdates = object : LocationCallback() {
override fun onlLocationResult(lr: LocationResult) {
Log.e("LOG", 1r.toString())
Log.e("LOG", "Newest Location:
last())
// do something with the new location...
}

+ 1r.locations.

}

fusedLocationClient?.requestlocationUpdates(reqSetting,
locationUpdates,
null /* Looper */)

To stop location updates, you move locationUpdates to a class field and react to stop
requests via the following:

fun stopPeriodic(view:View) {
fusedLocationClient?.
removelocationUpdates(locationUpdates)

Geocoding

The Geocoder class allows you to determine the geocoordinates (longitude, latitude) for a
given address or, conversely, possible addresses for given geocoordinates. These processes
are known as forward and reverse geocoding. The Geocoder class internally uses an online
Google service, but the details are hidden inside the implementation. You as a developer can
use the Geocoder class without the need to understand where the data come from.

This section is about reverse geocoding. We use a Location object with longitude and
latitude to find nearby street names. To start, we first have to decide what we do with a
potentially long-running operation. To do the lookup, a network operation is necessary, and

CHAPTER 8: APIs 181

the online service needs to look up a huge database. An IntentService will do the job for
us, and from among the methods that can return us the value, we choose a ResultReceiver
passed by intent extras. First we define kind of a contract between the service and the
service clients of a class holding some constants.

class GeocoderConstants {
companion object Constants {

}

}

val
val
val
val
val

val

SUCCESS_RESULT = 0

FAILURE_RESULT = 1

PACKAGE_NAME = "<put your package name here>"
RECEIVER = "$PACKAGE_NAME.RECEIVER"
RESULT_DATA_KEY =
"$PACKAGE_NAME.RESULT DATA KEY"
LOCATION DATA EXTRA =
"$PACKAGE_NAME.LOCATION DATA EXTRA"

Now the full service class reads as follows.

class FetchAddressService :
IntentService("FetchAddressService") {
override

fun

onHandleIntent(intent: Intent?) {
val geocoder = Geocoder(this, Locale.getDefault())
var errorMessage = ""

// Get the location passed to this service through
// an extra.
val location = intent?.getParcelableExtra(
GeocoderConstants.LOCATION DATA EXTRA)
as Location

// Get the Intent result receiver
val receiver = intent.getParcelableExtra(
GeocoderConstants.RECEIVER) as ResultReceiver

var addresses: List<Address>? = null
try {

addresses = geocoder.getFromLocation(

location.getlatitude(),

location.getLongitude(),

1) // Get just a single address!
} catch (e: IOException) {

// Catch network or other I/O problems.
errorMessage = "service not_available"
Log.e("LOG", errorMessage, e)

} catch (e: IllegalArgumentException) {

// Catch invalid latitude or longitude values.
errorMessage = "invalid lat long used"
Log.e("LOG", errorMessage + ". " +

"Latitude = " + location.getlatitude() +

182 CHAPTER 8: APIs

, Longitude = " +
location.getlongitude(), e)
}

if (addresses == null || addresses.size == 0) {
// No address was found.
if (errorMessage.isEmpty()) {
errorMessage = "no_address_found"
Log.e("LOG", errorMessage)
}
deliverResultToReceiver(
receiver,
GeocoderConstants.FAILURE_RESULT,
errorMessage)
} else {
val address = addresses[0]
val addressFragments =
(0..address.maxAddressLineIndex).
map { i -> address.getAddressLine(i) }
val addressStr = addressFragments.joinToString(
separator =
System.getProperty("line.separator"))
Log.i("LOG", "address found")
deliverResultToReceiver(
receiver,
GeocoderConstants.SUCCESS_RESULT,
addressStr)
}
}

private fun deliverResultToReceiver(
receiver:ResultReceiver,
resultCode: Int,
message: String) {

val bundle = Bundle()

bundle.putString(GeocoderConstants.RESULT DATA KEY,
message)

receiver.send(resultCode, bundle)

}
}

Again, for productive code, you should use resource strings instead of literals, as shown in
this example. The service must be registered inside AndroidManifest.xml.

<service android:name=".FetchAddressService"
android:exported="false"/>

For using this service, we first build a ResultReceiver class and check the permissions.
For example, we use the last known location to call the service.

class AddressResultReceiver(handler: Handler?) :
ResultReceiver(handler) {
override

CHAPTER 8: APIs

fun onReceiveResult(resultCode: Int,
resultData: Bundle) {
val addressOutput =
resultData.getString(
GeocoderConstants.RESULT_DATA_KEY)
Log.e("LOG", "address result = " +
addressOutput.toString())

}
}

val resultReceiver = AddressResultReceiver(null)
fun startFetchAddress(view:View) {
if (checkPermission(
Manifest.permission.ACCESS_COARSE_LOCATION,
Manifest.permission.ACCESS FINE LOCATION))

fusedLocationClient?.lastLocation?.
addOnSuccesslListener(this, {
location: Location? ->
if (location == null) {
// TODO
} else location.apply {
Log.e("LOG", toString())
val intent = Intent(
this@MainActivity,
FetchAddressService: :class.java)
intent.putExtra(
GeocoderConstants.RECEIVER,
resultReceiver)
intent.putExtra(
GeocoderConstants.LOCATION DATA EXTRA,
this)
startService(intent)
}
H
}
}

You can see we use an explicit intent; that is why we don’t need an intent filter inside the

service declaration in AndroidManifest.xml.

Using ADB to Fetch Location Information

For development and debugging purposes, you can use ADB to fetch the location
information of a device connected to your PC or laptop.

./adb shell dumpsys location

For more information on CLI commands, see Chapter 18.

183

http://dx.doi.org/10.1007/978-1-4842-3820-2_18

184 CHAPTER 8: APIs

Maps

Adding a map to your location-related app greatly improves the usability for your users.
To add a Google API map, the easiest way is to use the wizard provided by Android Studio.
Follow these steps:

1. Add a map activity: right-click your module, in the menu choose
New » Activity » Gallery, and from the gallery choose Google
Maps Activity. Click Next. On the screen that follows, enter activity
parameters according to your needs. However, choosing an
appropriate activity name basically is all you need. The defaults make
sense in most cases.

2. You need an API key to use Google Maps. For this purpose, inside
the file /res/values/google maps_api.xml, locate the link inside the
comments; it might look like https://console.developers.google.
com/flows/enableapi?.... Open this link in a browser and follow the
instructions there. Finally, enter the key generated online as the text
of the <string name = "google maps_key" ... > element in that file.

What we have now is an activity class prepared for us, a fragment layout file that we can
include in our app, and a registered API key that allows us to fetch maps data from the
Google server.

To include the fragment as defined by /res/layout/activity maps.xml, you write the
following in your layout, with sizes adapted according to your needs:

<include
android:layout_width="fill parent"
android:layout_height="250dp"
layout="@layout/activity maps" />

Inside the code we first add a snippet to fetch a map from the server. You do this inside your
onCreate() callback as follows:

override fun onCreate(savedInstanceState: Bundle?) {

val mapFragment = supportFragmentManager
.findFragmentById(R.id.map)
as SupportMapFragment
mapFragment.getMapAsync(this)
}

Here, R.id.map points to the map’s ID inside /res/layout/activity maps.xml.

Next we add a callback that gets called when the map is loaded and ready to receive
commands. To do so, we extend the activity that handles the map to also implement the
interface com.google.android.gms.maps.0OnMapReadyCallback.

class MainActivity : AppCompatActivity(),
OnMapReadyCallback { ... }

https://console.developers.google.com/flows/enableapi?
https://console.developers.google.com/flows/enableapi?

CHAPTER 8: APIs 185

Add the callback implementation. Here’s an example:

/**
* Use this to save and manipulate the map once
* available.
*/
override fun onMapReady(map: GoogleMap) {
// Add a marker in Austin, TX and move the camera
val austin = LatLng(30.284935, -97.735464)
map.addMarker (MarkerOptions().position(austin).
title("Marker in Austin"))
map .moveCamera(CameraUpdateFactory.
newLatLng(austin))

}

If Google Play Services is not installed on the device, the user automatically gets prompted
to install it. The map object can, of course, be saved as a class object field, and you can do
lots of interesting things with it, including adding markers, lines, zoom, movement,

and more. The possibilities are described in the online APl documentation for
com.google.android.gms.maps.GoogleMap.

Preferences

Preferences allow the user to change the way the app performs certain parts of its
functionalities. Contrary to the input given by the user during the app’s functional workflows,
preferences are less likely to be changed, so the access to preferences is usually provided
by a single preferences entry in the app’s menu.

You as a developer might decide to develop special activities for preferences from scratch,
but you don’t have to do this. In fact, the Preferences API provided by the Android OS is quite
versatile and allows you to present a preferences or settings dialog in a standard way, letting
your app appear more professional. Also, you don’t have to implement the GUI yourself.

To start with an example preferences workflow, create a class like this:

class MySettingsFragment : PreferenceFragment(),
SharedPreferences.OnSharedPreferenceChangelistener {
companion object {
val DELETE_LIMIT = "pref key delete limit"
val LIST = "pref key list"
val RINGTONE = "pref key ringtone"

}

override fun onSharedPreferenceChanged(
sharedPreferences: SharedPreferences?,
key: String?) {
sharedPreferences?.run {
when(key) {
DELETE_LIMIT -»> {
findPreference(key).summary =
getString(key, "") ?: "10"
}

186 CHAPTER 8: APIs

LIST -> {
findPreference(key).summary =
(findPreference(key) as ListPreference).
entry
}
RINGTONE -> {
val uriStr = getString(key, "") ?:
findPreference(key).summary =
getRingtoneName(Uri.parse(uriStr))

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
// Load the preferences from an XML resource
addPreferencesFromResource(R.xml.preferences)

val sharedPref = PreferenceManager.
getDefaultSharedPreferences(activity)

sharedPref.registerOnSharedPreferenceChangelistener(
this)

with(sharedPref) {
findPreference(DELETE_LIMIT).summary =
getString(DELETE_LIMIT, "10")
findPreference(LIST).summary =
(findPreference(LIST) as ListPreference).let {
val ind = Math.max(0, it.findIndexOfValue(

it.value))
resources.getStringArray(listentries)[ind]
}
findPreference (RINGTONE) . summary =
getRingtoneName(
Uri.parse(getString(RINGTONE, "") ?2: ""))
}

}

fun getRingtoneName(uri:Uri):String {
return activity.contentResolver.
query(uri, null, null, null, null)?.let {
it.moveToFirst()
val res = it.getString(
it.getColumnIndex(
MediaStore.MediaColumns.TITLE))
it.close()
res

P

CHAPTER 8: APIs 187

This defines a fragment that has the following parameters:
On creation, it sets the preferences resource, as described in a moment.

On creation, it accesses the preferences API using the
PreferenceManager. We use it to set a preferences change listener, so
we can update the Ul when preferences change. In addition, we fetch a
couple of preferences to prepare the preferences Ul and set “summary”
lines that get shown inside preference items.

The listener onSharedPreferenceChanged() is used to update the
summary lines for applicable preferences.

The actual preferences layout gets defined inside res/xml/, in this case, as a resources file
preferences.xml with these contents:

<?xml version="1.0" encoding="utf-8"?>
<PreferenceScreen xmlns:android=
"http://schemas.android.com/apk/res/android">
<CheckBoxPreference
android:key="pref key auto_delete"
android:summary="Auto delete"
android:title="Auto delete"
android:defaultValue="false" />
<EditTextPreference
android:key="pref key delete limit"
android:dependency="pref key auto_delete"
android:summary="Delete Limit"
android:title="Delete Limit"
android:defaultValue="10" />
<ListPreference android:key="pref key list"
android:summary="A List"
android:title="A List"
android:entries="@array/listentries"
android:entryValues="@array/listvalues"”
android:defaultValue="1" />
<MultiSelectListPreference
android:key="pref key mslist"
android:summary="A Multiselect List"
android:title="A Multiselect List"
android:entries="@array/listentries”
android:entryValues="@array/listvalues"”
android:defaultValue="@array/multiselectdefaults"/>
<SwitchPreference
android:key="pref key switch"
android:summary="A Switch"
android:title="A Switch"
android:defaultValue="false" />
<RingtonePreference
android:key="pref key ringtone"
android:summary="A Ringtone"
android:title="A ringtone"
/>
</PreferenceScreen>

188 CHAPTER 8: APIs

The keys used here must match the key strings used inside the fragment defined earlier.
Note that for simplicity | used plain strings in that file. For a productive environment, you
should of course refer to resource strings.

In addition, in res/values add a file arrays.xml and in it write the following for the various
arrays we use in the example:

<?xml version="1.0" encoding="utf-8"?>
<resources>
<string-array name="listentries">
<item>List item 1</item>
<item>List item 2</item>
<item>List item 3</item>
</string-array>
<string-array name="listvalues">
<item>1</item>
<item>2</item>
<item>3</item>
</string-array>
<string-array name="multiselectdefaults">
<item>1</item>
<item>3</item>
</string-array>
</resources>

What is left is a place in your app where to insert preferences. You could, for example, add
the following at a suitable place:

<FramelLayout
android:id="@+id/prefsFragm"
android:layout_width="match_parent"
android:layout_height="match_parent" />

In the app call, start the preferences workflow.

fragmentManager.beginTransaction()
.replace(prefsFragm.id, MySettingsFragment())
.commit()

For the various default values we defined in preferences.xml to take effect, you must at any
place in your app where preferences get accessed first call the following:
PreferenceManager.setDefaultValues(

this, preferences.id, false)

This could be done in an activity’s onCreate() callback. Figure 8-9 shows this preferences
example.

CHAPTER 8: APIs 189

Auto Delete
v
Auto delete .

Delete Limit
10

A List
List item 2

A Multiselect List
A Multiselect List

A Switch
A Switch

A Ringtone

Bodtes

Figure 8-9. A preferences screen

For more settings, the settings screen as designed so far might be a little hard to read. To
add some structure, you can gather setting items in groups and add group titles. This is
done in the preferences.xml file as follows:

<?xml version="1.0" encoding="utf-8"?>
<PreferenceScreen xmlns:android=
"http://schemas.android.com/apk/res/android">

<PreferenceCategory
android:title="Category Title">
<SwitchPreference
android:key="pref key switch"
android:summary="A Switch"
android:title="A Switch"
/>
<RingtonePreference
android:key="pref key ringtone’
android:summary="A Ringtone"
android:title="A Ringtone"
/>
</PreferenceCategory>

190 CHAPTER 8: APIs

You can instead have the entries open a preferences subscreen. For this aim, again in
preferences.xml you write the following:

<?xml version="1.0" encoding="utf-8"?>
<PreferenceScreen xmlns:android=
"http://schemas.android.com/apk/res/android">

<PreferenceScreen
android:title="Subscreen Title"
android:persistent="false">
<SwitchPreference
android:key="pref key switch"
android:summary="A Switch"
android:title="A Switch"
/>
<RingtonePreference
android:key="pref key ringtone"
android:summary="A Ringtone"
android:title="A Ringtone"
/>
</PreferenceScreen>

Advanced preferences features include a standardized header-contents way of presenting
preferences, overwriting the setting item Uls, creating your own preferences Ul, and
tweaking the preferences data location. For details, refer to the online documentation of the
Settings API.

Chapter

User Interface

The user interface is certainly the most important part of any end-user app. For corporate
usage, apps without user interfaces are possible, but even then in most cases you will have
some kind of rudimentary Ul, if for no other reason just to avoid the Android OS killing your
app too readily during resource housekeeping tasks.

In this chapter, we will not cover the basics of Ul development for Android. Instead, it is
expected that you’ve read some introductory-level book or worked through the official
tutorials (or any number of the other tutorials you will find on the Web). What we do here is
to cover a couple of important Ul-related issues that help you to create more stable apps or
apps with special outstanding requirements.

Background Tasks

Android relies on a single-threaded execution model. This means when an app starts, it by
default starts only a single thread, called the main thread, in which all actions run unless
you explicitly use background threads for certain tasks. This automatically means you have
to take special precautions if you have long-running tasks that would interrupt a fluent Ul
workflow. It is not acceptable for modern apps to have the Ul freeze after the user taps a
button or because this action leads to a process running for a few seconds or longer. It is
therefore vital to put long-running tasks into the background.

One way to accomplish putting things into the background is to use IntentService objects,
as described in Chapter 4. Depending on the circumstances, it might, however, blow up your
app design to put all background work into services; in addition, having too many services
run on a device will not help keep resources usage low. Another option is to use loaders

as described in Chapter 8. For low-level tasks, however, it is better to use a more low-level
approach. You have several options here, which we describe in the following sections.

© Peter Spath 2018 191
P. Spath, Pro Android with Kotlin, https://doi.org/10.1007/978-1-4842-3820-2_9

http://dx.doi.org/10.1007/978-1-4842-3820-2_9
http://dx.doi.org/10.1007/978-1-4842-3820-2_4
http://dx.doi.org/10.1007/978-1-4842-3820-2_8

192 CHAPTER 9: User Interface

Java Concurrency

At a low level, you can use Java threads and classes from the java.util.concurrent
package to handle background jobs. Beginning with Java 7, those classes have become
quite powerful, but you need to fully understand all options and implications.

You will quite often read that directly handling threads from inside the Android OS is not a
good idea because threads are expensive when speaking of system resources. While this
was certainly true for older devices and old Android versions, nowadays this is just no longer
the case. For me, a simple test on a Motorola Moto G4 starting 1,000 threads and waiting
until all are running took approximately 0.0006 seconds per thread. So, if you are used to
Java threads and less than a millisecond for the thread to start is good for you, there is no
performance reason for not using Java threads. However, you must take into account that
threads run outside any Android component lifecycle, so you have to handle lifecycle issues
manually if you use threads.

In Kotlin, threads are defined and started easily.

val t = Thread{ ->
// do background work...
}.also { it.start() }

Note that accessing the Ul from inside a thread is not allowed in Android. You must do that
as follows:

val t = Thread{ ->
// do background work...
runOnUiThread {
// use the UI...

}.also { it.start() }

The AsyncTask Class

An AsyncTask object is a medium-level helper class to run some code in the background.
You override its doInBackground() method to do some background work, and if you need to
communicate with the Ul, you also implement onProgressUpdate() to do the communication

and fire publishProgress() from inside the background work to trigger it.

Note Android Studio will as a warning complain about a possible memory leak if you create
AsyncTask objects like val at = object : AsyncTask< Int, Int, Int >() { ... }.
This is because internally a static reference to the background code will be held. The warning can
be suppressed by annotating the method with @SuppressLint("StaticFieldLeak").

Caution A number of N AsyncTask jobs will not lead to a parallel execution of all N of them.
Instead, they all run sequentially in one background thread.

CHAPTER 9: User Interface 193

Handlers

A Handler is an object maintaining a message queue for the asynchronous processing of
messages or Runnable objects. You can use a Handler for asynchronous processes as follows:

var handlerThread : HandlerThread? = null
// or: lateinit var handlerThread : HandlerThread

fun doSomething() {
handlerThread = handlerThread ?:
HandlerThread("MyHandlerThread").apply {
start()

}

val handler = Handler(handlerThread?.looper)

handler.post {
// do s.th. in background

}
}

If you create one HandlerThread as in this code snippet, everything that is posted gets run
in the background, but it is executed sequentially there. This means handler.post{};
handler.post{} will run the posts in series. You can, however, create more HandlerThread
objects to handle the posts in parallel. For true parallelism, you’d have to use one
HandlerThread for each execution.

Note Handlers were introduced in Android a long time before the new java.util.concurrent
package was available in Java 7. Nowadays for your own code, you might decide to favor the
generic Java classes over Handlers without missing anything. Handlers, however, quite often
show up in Android’s libraries.

Loaders

Loaders also do their work in the background. They are primarily used for loading data from
an external source. Loaders are described in Chapter 8.

Supporting Multiple Devices

Device compatibility is an important issue for apps. Whenever you create an app, it is of
course your goal to address as many device configurations as possible and to make sure
users who install your app on a certain device can actually use it. Compatibility boils down
to the following:

Finding a way your app can run with different screen capabilities, including
pixel width, pixel height, pixel density, color space, and screen shape

Finding a way your app can run with different API versions

http://dx.doi.org/10.1007/978-1-4842-3820-2_8

194 CHAPTER 9: User Interface

Finding a way your app can run with different hardware features,
including sensors and keyboards

Finding a way you can filter your app’s visibility inside the Google
Play store

Possibly providing different APKs for one app, depending on device
features

In this chapter, we talk about Ul-related issues for compatibility; we focus on screen and
user input capabilities.

Screen Sizes
To allow your app to look nice on different screen sizes, you can do the following:
Use flexible layouts

Avoid specifying absolute positions and absolute width. Instead, use
layouts that allow specifications like “on the right of” or “use half of the
available space” or similar.

Use alternative layouts

Using alternative layouts is a powerful means for supplying different screen
sizes. The layout XML files can be put into different directories with names
containing size filters. For example, you could put one layout into the file
res/layout/main_activity.xml and another one into res/layout-sw480dp/
main_activity.xml expressing a “smallest width” of 480dp (for large phone
screens 5" or higher). The naming schema gets extensively described
online in the “providing resources” and “providing alternative resources”
documents in the Android developer documentation. The Android OS then
automatically picks the best matching layout during runtime on the user’s
device.

Use stretchable images

You can provide nine-patch bitmaps for Ul elements. Inside such images
you provide a 1-pixel-wide border telling which parts of an image can

be repeated to stretch an image and optionally which parts can be used
for inner contents. Such nine-patch images are PNG files with the suffix
.9.png. Android Studio allows for converting conventional PNGs into nine-
patch PNGs; use the context menu for that purpose.

Pixel Densities

Devices have different pixel densities. To make your app as device independent as possible,
wherever you need pixel sizes, use density-independent pixel sizes instead of pixel sizes.
Density-independent pixel sizes use dp as a unit, while pixels use px.

In addition, you can also provide different layout files based on different densities. The
separation is similar to the separation for different screen sizes described earlier.

CHAPTER 9: User Interface 195

Declare Restricted Screen Support

In some situations, you want to restrict your app by saying that some screen characteristics
just cannot be used. Obviously, you want to avoid such situations, but in case it is inevitable,
you can do so in AndroidManifest.xml.

Tell the app that certain activities can run in multiwindow modes
available on API level 24 (Android 7.0) or later. For that aim, use attribute
android:resizeableActivity and set it to true or false.

Tell certain activities they should be letter-boxed (have appropriate
margins added) above certain aspect ratios. For that aim, use attribute
android:maxAspectRatio and specify the aspect ratio as a value. For
Android 7.1 and older, duplicate this setting in the <application>
element, as in <meta-data android:name = "android.max_aspect"”
android:value = "s.th." />.

Tell certain activities they should not be stretched above a certain limit
by using the largestWidthLimitDp attribute inside a <supports-screens>
element.

Use more <supports-screens> and <compatible-screens> elements and
attributes, as described in Chapter 2.

Detect Device Capabilities

From inside your app, you can check for certain features as follows:

if(packageManager.
hasSystemFeature(PackageManager.FEATURE ...)) {
/...

}

Here, FEATURE ... is one of the various constants from inside PackageManager.

An additional source of feature information is Configuration. In Kotlin, from inside an
activity, you can obtain the configuration object via the following:

val conf = resources.configuration

From there, obtain information about the color mode in use, available keyboards, screen
orientation, and touchscreen capabilities. To get the screen’s size, you can write the
following:

val size = Point()
windowManager.defaultDisplay.getSize(size)

// or (getSystemService(Context.WINDOW SERVICE)

/7 as WindowManager).defaultDisplay.getSize(size)
val (width,height) = Pair(size.x, size.y)

http://dx.doi.org/10.1007/978-1-4842-3820-2_2

196 CHAPTER 9: User Interface

To get the resolution, you can use the following:

val metrics = DisplayMetrics()
windowManager.defaultDisplay.getMetrics(metrics)
val density = metrics.density

Programmatic Ul Design

Usually Ul design happens by declaring Ul objects (View objects) and containers (ViewGroup
objects) inside one or more XML layout files. While this is the suggested way of designing a
Ul and most people probably tell you shouldn’t do anything else, there are reasons to take
away the layout design from XML and do a programmatical layout instead.

You need more dynamics on a layout. For example, your app adds,
removes, or moves layout elements by user actions. Or you want to
create a game with game elements represented by View objects that are
dynamically moving, appearing, and disappearing.

Your layout is defined on a server. Especially in a corporate environment,
defining the layout on a server makes sense. Whenever the layout of

an app changes, you don’t need a new version to be installed on all
devices. Instead, only a central layout engine needs to be updated.

You define a layout builder that allows to specify layouts in Kotlin in a
more expressive and concise way compared to XML. Take a look at the
following, for example, which is valid Kotlin syntax:

LinearLayout(orientation="vertical") {
TextView(id="tv1",
width="match_parent", height="wrap content")
Button(id="btn1", text="Go",
onClick = { btniClicked() })
}

You need special constructs that are not defined in XML. While the
standard way is to define everything in XML as much as possible and do
the rest in the code, you might prefer a single-technology solution, and
in that case you have to do everything from inside the code.

Note that if you abandon the descriptive layout via XML files and use a programmatic layout
instead, you manually have to take care of different screen sizes, screen densities, and other
hardware characteristics. While this is always possible, under certain circumstances it could
be a complicated and error-prone procedure. Certain characteristics such as Ul element
sizes can be much more easily expressed in XML than in the code.

To start with a programmatic Ul design, it is the easiest if you define a single container
inside XML and use it in your code. | say this because layouts have their own idea of how
and when to place their children, so you might end up in a nightmare of timing, layout, and
clipping issues if your code has another idea about how and when to place views. A good
candidate is a FrameLayout, as shown here:

CHAPTER 9: User Interface 197

<?xml version="1.0" encoding="utf-8"?>
<Framelayout
xmlns:android =
"http://schemas.android.com/apk/res/android"
android:id="@+id/f1"
android:layout width="match_parent"
android:layout_height="match_parent">
</Framelayout>

Use this as a layout XML file, say /res/layout/activity main.xml, and write the following
as a sample activity:

class MainActivity : AppCompatActivity() {
var tv:TextView? = null
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity main)

// For example add a text at a certain position
tv = TextView(this).apply {
text = "Dynamic"

x = 37.0f
y = 100.0f
}
fl.addView(tv)
}
}

To add a button that shifts the text from the previous example around, you can write the
following:
val WRAP = ViewGroup.LayoutParams(

ViewGroup.LayoutParams.WRAP_CONTENT,
ViewGroup.LayoutParams.WRAP_CONTENT)

f1l.addView(
Button(this).apply {
text = "Go"
setOnClickListener { v ->
v?.run {
X += 30.0f *
(-0.5f + Math.random().toFloat())
y += 30.0f *
(-0.5f + Math.random().toFloat())
}
}
}, WRAP
)

If you don’t need total control and want a layout object to do its children positioning and
sizing job the way it is designed, adding children to other layout types like, for example, a
LinearLayout, this is possible from inside the code. Just use the addView() method without
explicitly setting the position via setX() or setY(). Under certain circumstances you must

198 CHAPTER 9: User Interface

use layoutObject.invalidate() to trigger a re-layout afterward. The latter has to be done
from inside the Ul thread or inside runOnUiThread{ ... }.

Adapters and List Controls

The need to display a list with a variable number of items happens quite often, especially in
a corporate environment. While AdapterView and Adapter objects with various subclasses
have been around for a while, we concentrate on the relatively new and high-performing
recycler views. You will see that with Kotlin’s conciseness, implementing a recycler view
happens in an elegant and comprehensive manner.

The basic ides is as follows: you have an array or a list or another collection of data items,
maybe from a database, and you want to send them to a single Ul element that does all the
presentation, including rendering all visible items and providing a scroll facility if necessary.
Each item’s presentation either should depend on an item XML layout file or be generated
dynamically from inside the code. The mapping from each data item’s member to the
corresponding view element from inside the item’s Ul representation is to be handled by an
adapter object.

With recycler views, this all happens in a straightforward manner, but first we have to include
a support library because the recycler views are not part of the framework. To do so, inside
your module’s build.gradle file, add the following:

implementation
"com.android.support:recyclerview-v7:26.1.0'

Add this inside the dependencies{ ... } section (on one line; remove the newline after
implementation).

To tell the app we want to use a recycler view, inside your activity’s layout file, add the following:

<android.support.v7.widget.RecyclerView
android:id="@+id/recycler view"
android:scrollbars="vertical"
/>

Specify its layout options as for any other View.

For the layout of an item from the list, create another layout file inside res/layout, say item.xml,
with the following sample content:

<?xml version="1.0" encoding="utf-8"?>
<Relativelayout xmlns:android="http://schemas.android.com/
apk/res/android"
android:layout_width="fill parent"
android:layout_height="?android:attr/
listPreferredItemHeight"
android:padding="8dip" >

CHAPTER 9: User Interface 199

<ImageView

android:
android:
android:
:layout_alignParentBottom="true"
android:
android:
android:
android:

android

<TextView

android:
android:
android:
android:
android:
android:
android:
android:
android:

<TextView

android:
android:
:layout_height="wrap_content"
android:
android:
android:
android:
android:
android:
android:
android:

android

id="@+id/icon"
layout_width="wrap_content"”
layout_height="fill parent"

layout_alignParentTop="true"
layout_marginRight="8dip"
contentDescription="TODO"
src="@android:drawable/star_big on" />

id="@+id/secondLine"
layout_width="fill parent"
layout_height="26dip"
layout_alignParentBottom="true"
layout_alignParentRight="true"
layout_toRightOf="@id/icon"
singleLine="true"
text="Description”
textSize="12sp" />

id="@+id/firstLine"
layout_width="fill parent"

layout_above="@id/secondLine"
layout_alignParentRight="true"
layout_alignParentTop="true"
layout_alignWithParentIfMissing="true"
layout_toRightOf="@id/icon"
gravity="center_vertical"
text="Example application”
textSize="16sp" />

</Relativelayout>

As stated earlier, you could also omit this step and define an

item’s layout solely from inside

the code! Next we provide an adapter. In Kotlin this could be as easy as follows:

class MyAdapter(val myDataset:Array<String>) :
RecyclerView.Adapter

companion
class

}

override

<MyAdapter.Companion.ViewHolder>() {
object {

ViewHolder(val v:Relativelayout) :
RecyclerView.ViewHolder(v)

fun onCreateViewHolder(parent:ViewGroup,
viewType:Int) : ViewHolder {
val v = LayoutInflater.from(parent.context)

.inflate(R.layout.item, parent, false)

as Relativelayout

return ViewHolder(v)

200 CHAPTER 9: User Interface

override
fun onBindViewHolder(holder:ViewHolder,
position:Int) {
// replace the contents of the view with
// the element at this position
holder.v.findViewById<TextView> (
R.id.firstlLine).text =

myDataset[position]
}
override
fun getItemCount() : Int = myDataset.size

}

Here are a couple of notes on that listing:

The class inside the “companion object” is Kotlin’s way of declaring a
static inner class. This one designates a reference to each data item as
a Ul element. More precisely, the recycler view will internally hold only so
many view holders as are necessary to represent the visible items.

Only when really needed the function onCreateViewHolder() to create
a view holder gets called. More precisely, it’s called more or less only as
often as is necessary to render the items visible to the user.

The function onBindViewHolder () connects one of the visible view
holders with a certain data item. Here we must replace the contents of a
view holder’s view.

Inside the activity all that is needed to define the recycler view is the following:

with(recycler_view) {
// use this setting to improve performance if you know
// that changes in content do not change the layout
// size of the RecyclerView
setHasFixedSize(true)
// use for example a linear layout manager
layoutManager = LinearlLayoutManager(this@MainActivity)
// specify the adapter, use some sample data
val dataset = (1..21).map { "Itm" + it }.toTypedArray()
adapter = MyAdapter(dataset)

}

This will look like Figure 9-1. The following are useful extensions to the program:
Add on-click listeners to all items
Make items selectable
Make items or item parts editable
Automatically react to changes in the underlying data

Tailor graphical transition effects

CHAPTER 9: User Interface 201

For all that | refer to the online documentation of recycler views. The code presented here,
however, should give you a good starting point.

L

Recycler View

Figure 9-1. Recycler view

Styles and Themes

The predefined styles an Android app uses by default already give a good starting point for
professional-looking apps. If, however, you want to apply your company’s style guidelines

or otherwise create a visually outstanding app, creating your own styles is worth the effort.
Even better, create your own theme, which is a collection of styles to be applied to groups of
Ul elements.

Styles and themes get created inside res/values/ as XML files. To make a new theme, you
use or create a file called themes.xml and write something like the following:

<?xml version="1.0" encoding="utf-8"?>
<resources>
<style name="MyTheme" parent="Theme.AppCompat">
<item name="colorPrimary">
@color/colorPrimary</item>

202 CHAPTER 9: User Interface

<item name="colorPrimaryDark">
@color/colorPrimaryDark</item>

<item name="colorAccent">
@color/colorAccent</item>

<item name="android:textColor">
#FF0000</item>

<item name="android:textSize"> 22sp</item>

</style>
</resources>

Here are a couple of notes on that:

The parent attribute is important. It expresses that we want to create
a theme overriding parts of the Theme.AppCompat theme from the
compatibility library.

Because of the naming schema Theme + DOT + AppCompat, we can
infer that the theme Theme . AppCompat inherits from theme Theme. This
dot-induced inheritance could have more elements.

Instead of the parent Theme.AppCompat, we could use one of its
subthemes. You can see a list of them; inside Android Studio click
the AppCompat part and then press Ctrl+B. Android Studio will open
a file with the list of all subthemes, for example Theme.AppCompat.
CompactMenu, Theme.AppCompat.Light, and more.

In the example, we see two methods to overwrite styles. Those with
android: at the beginning refer to style settings as defined for Ul
elements the same way as if we want to set styles from inside a layout
file. You find all of them in the online API documentation for all the
views. Better, however, you use those without android: at the beginning
because those refer to abstract style identifiers that actually make

up a theme. You get a list of possible item names if inside the online
documentation you search for R.styleable.Theme.

The styling system has become complex over the years. If you are brave
and have some time, you can navigate through all the files in Android
Studio by repeatedly pressing Ctrl+B on the parents.

@color/... refer to entries inside the res/values/colors.xml files. You
should adopt that method and define new colors in your app module’s
res/values/colors.xml file.

The values of <item> elements can refer to styles via @style/.... For
example, use the item <item name="buttonStyle">@style/Widget.
AppCompat.Button</item>. You can overwrite such items as well; just
define your own styles in styles.xml and refer to them.

CHAPTER 9: User Interface 203

To use that new theme for your whole app at once, you write the following in the manifest file
AndroidManifest.xml:

<manifest ... >
<application android:theme="@style/MyTheme" ... >
</application>

</manifest>

Note You don’t have to use a complete theme to overwrite styles. Instead, you can overwrite or
create single styles that you can then apply to single widgets. Using a theme, however, greatly
improves the design consistency of your app.

You can assign styles to different API levels. For that aim, for example, create a folder called
res/values-v21/ or any level number that suits you. Styles from inside the folder then get
applied additionally if the current API level is greater or equal than that number.

Fonts in XML

Android versions starting at API level 26 (Android 8.0), and also prior versions if using the
support library 26, allow you to add your own fonts in TTF or OTF format.

Note To use this support library, inside your module’s build.gradle file, add implementation
"com.android.support:appcompat-v7:26.1.0" in the dependencies section.

To add font files, create a fonts resource directory: select New » Android resource directory,
enter font as a directory name, enter font as a resource type, and click OK. Copy your

font files to that new resource directory, but first convert all the file names to only contain
characters that are allowed (a to z, 0 to 9, _) before the suffix.

To apply the new font, use the android:fontFamily attribute as follows:
<TextView ...

android:fontFamily="@font/<FONT_NAME>"
/>

Here, <FONT_NAME> is the file name of the font without a suffix.

204 CHAPTER 9: User Interface

To add fonts with different font styles, say you have the fonts myfont_regular.ttf,

myfont _bold.ttf, myfont italic.ttf, and myfont bold italic.ttf inside the font resource
folder. Add the file myfont.xml by choosing New » Font resource file. In this file write the
following:

<?xml version="1.0" encoding="utf-8"?>
<font-family
xmlns:android=
"http://schemas.android.com/apk/res/android"
xmlns:app=
"http://schemas.android.com/apk/res-auto">
<font
android:fontStyle="normal"
app:fontStyle="normal"
android: fontWeight="400"
app:fontWeight="400"
android:font="@font/myfont_regular"
app:font="@font/myfont_regular"/>
<font
android:fontStyle="normal"
app:fontStyle="normal"
android:fontWeight="700"
app:fontWeight="700"
android:font="@font/myfont_bold"
app:font="@font/myfont_bold"/>
<font
android:fontStyle="italic"
app:fontStyle="italic"
android:fontWeight="400"
app:fontWeight="400"
android:font="@font/myfont_italic"
app:font="@font/myfont_italic"/>
<font
android:fontStyle="italic"
app:fontStyle="italic"
android:fontWeight="700"
app:fontWeight="700"
android:font="@font/myfont_bold italic"
app:font="@font/myfont_bold italic"/>
</font-family>

Ignore Android Studio’s version warning; for compatibility, all attributes use a standard and
additionally a compatibility namespace.

Then you can use the name of this XML file, without the suffix, for Ul views inside the
android:fontFamily attribute.

<TextView ...
android:fontFamily="@font/myfont"
android:textStyle="normal"

/>

As textStyle you could now also use italic or bold or bold|italic.

CHAPTER 9: User Interface 205

2D Animation

Animation makes your apps look fancier, and while too much animation might look kinky, the
right amount of it helps your users understand what your app does.

The Android OS provides several animation techniques you can use, and we describe them
in the following sections.

Auto-animating Layouts

An easy way to add animation is using the built-in automatic animation for layouts. All you have
to dois add android:animatelayoutChanges="true" to the layout declaration. Here’s an example:

<LinearlLayout
android:animatelayoutChanges="true"

/>

Animated Bitmaps

You can add animation to bitmaps by providing a number of different versions of a bitmap
and letting Android switch between them. First add all the images to res/drawable, for
example imgl.png, img2.png, ..., img9.png. Then create a file inside the same folder named,
for example, anim.xml and write the following in the file:

<?xml version="1.0" encoding="utf-8"?>
<animation-list
xmlns:android=
"http://schemas.android.com/apk/res/android"
android:oneshot="false">
<item android:drawable="@drawable/img1"
android:duration="250" />
<item android:drawable="@drawable/img2"
android:duration="250" />

<item android:drawable="@drawable/img9"
android:duration="250" />
</animation-list>

Here, the duration for each bitmap slide is given in milliseconds. To make it nonrepeating,
set android:oneshot="true". Add the image as an ImageView to your layout as follows:

<ImageView
android:id="@+id/img"
android:adjustViewBounds="true"
android:scaleType="centerCrop"
android:layout width="match_parent"
android:layout_height="wrap_content"
android:background="@drawable/anim1" />

206 CHAPTER 9: User Interface

This prepares the animation, but it needs to be started from inside the program as follows:

img.setBackgroundResource(R.drawable.anim1)
img.setOnClickListener{
val anim = img.background as AnimationDrawable
anim.start()

}

Here, the animation starts when the user clicks the image.

Property Animation

The property animation framework allows you to animate anything you might think of. Using
the class android.animation.ValueAnimator, you can specify the following:

Duration and repeating mode

Type of the interpolated value

Time interpolation during the animation
A listener for value updates

Most of the time you will, however, use the android.animation.ObjectAnimator

class because it already targets objects and their properties, so you don’t have to
implement listeners. This class has various static factory methods to create instances

of ObjectAnimator. In the arguments you specify the object to animate, the name of the
property of this object to use, and the values to use during the animation. On the object you
can then set a certain interpolator (the default is AccelerateDecelerateInterpolator, which
starts and ends slowly and in between accelerates and decelerates) and add a value update
listener (set in onAnimationUpdate()) if, for example, a target object of type View needs to be
informed that it must update itself (by calling invalidate()).

As an example, we define a TextView object inside a FrameLayout and move it from x=0 to
X=500 in an accelerating manner. The layout file contains the following:

<FramelLayout
android:id="@+id/fl"
android:layout_width="match_parent"
android:layout_height="400dp">
<TextView
android:id="@+id/tv"
android:layout width="wrap _content"
android:layout height="wrap_content"
android:text="XXX"/>
</FramelLayout>

Inside the code, for example, after a button is clicked, write the following:

val anim = ObjectAnimator.ofFloat(tv, "x", 0.0f, 500.0f)
-apply {
duration = 1000 // default is 300ms
interpolator = AccelerateInterpolator()

}

anim.start()

CHAPTER 9: User Interface 207

Note This works only if the object in question, here a TextView, has a setter method for the
property specified, here a x. More precisely, the object needs a setX(Float), which however is
the case for all View objects.

Caution Your mileage varies largely depending on the layout your Ul object is placed in.
Atter all, the layout object might have its own idea how to position objects, thwarting the animation.
A Framelayout is quite handsome here, but you have to do all layout inside the code.

Using android.animation.AnimatorSet, you can also choreograph a set of several
animations. The online API documentation will tell you more about how to use it.

View Property Animator

With certain constraints imposed, a couple of View-related properties can also be animated
using android.view.ViewPropertyAnimator. This seems to be less invasive compared to
general property animation, but only a small number of properties can be animated, and only
the drawing gets affected by the animation. The position for on-click listeners gets orphaned
if views move away.

In addition, you can use it to translate views, scale views, rotate views, and fade in or fade
out views. For details, please see the online documentation.

As an extension to the built-in View Property animation, you might want to take a look at the
Fling animation. This type of animation applies a frictional force on moving objects, letting
the animation appear more natural. To find information about the Fling animation, search for
android fling animation inside your favorite search engine.

Spring Physics

Adding spring physics to your animations improves the user experience by making moves
more realistic. To add spring physics, you need to include the corresponding support library.
In your module’s build.gradle file, add implementation 'com.android.support:support-
dynamic-animation:27.1.0" in the dependencies element.

For details, refer to the online APl documentation of class android.support.animation.
SpringAnimation. The following are the most important settings:

Inside the constructor, set the property. Available are properties for
alpha, translation, rotation, scroll value, and scale.

Add listeners; use addUpdatelistener() and/or addEndListener().

Use setStartVelocity()to start the animation with an initial speed (the
default is 0.0f) .

208 CHAPTER 9: User Interface

Use getSpring().setDampingRatio() or in Kotlin just .spring.
dampingRatio = ... to set the damping factor.

Use getSpring().setStiffness() orin Kotlin just .spring.stiffness =
... to set the spring stiffness.

Use start() or animateToFinalPosition() to start the animation. This must happen inside
the GUI thread or inside runOnUiThread { ... }.

The following is an example of a spring animation after a button press:

val springAnim = SpringAnimation(tv, DynamicAnimation.
TRANSLATION X, 500.0f).apply {
setStartVelocity(1.0f)
spring.stiffness =
SpringForce.STIFFNESS LOW
spring.dampingRatio =
SpringForce.DAMPING RATIO LOW_BOUNCY

springAnim.start()

Transitions

The transition framework allows you to apply animated transitions between different layouts.
You basically create android.transition.Scene objects from a starting layout and an end
layout and then let TransitionManager act. Here’s an example:

val sceneRoot:ViewGroup = ...

// Obtain the view hierarchy to add as a child of
// the scene root when this scene is entered
val startViewHierarchy:ViewGroup = ...

// Same for the end scene
val endViewHierarchy:ViewGroup = ...

// Create the scenes
val startScene = Scene(sceneRoot, startViewHierarchy)
val endScene = Scene(sceneRoot, endViewHierarchy)

val fadeTransition = Fade()
TransitionManager.go(endScene, fadeTransition)

sceneRoot could, for instance, be a FrameLayout layout with the transition supposed to
happen inside. You’d then at the beginning add the starting layout (startViewHierarchy)
inside. The previous code will establish a transition to the end layout (endViewHierarchy), all
happening inside the sceneRoot.

Such transitions can be specified from inside the code but also as special XML files. For
details, please see the online documentation.

CHAPTER 9: User Interface 209

Caution Certain restrictions apply. Not all View types will correctly take part in such layout
transitions. It is, however, possible to exclude elements from the transition by using the
removeTarget () method.

Start an Activity Using Transitions

While one activity gets replaced by another activity, it is possible to specify an exit transition
for the first, specify an enter transition for the second, and allow for a smooth transition of
common view elements. Such transitions can be specified either by special XML files or
from inside the code. We briefly describe the latter for the XML way; for more details, please
consult the online documentation.

Such switch transitions are available for API levels 21 (Android 5.0) and up. To make sure
your code works with versions prior to that, inside the following code snippets we write a
check:

if (Build.VERSION.SDK INT »>=
Build.VERSION CODES.LOLLIPOP) ...

To set an exit and an enter transition, use the following snippet inside both activities:

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)

if (Build.VERSION.SDK INT »>=
Build.VERSION CODES.LOLLIPOP) {
with(window) {
requestFeature(
Window.FEATURE_CONTENT TRANSITIONS)

exitTransition = Explode()
// if inside the CALLED transition,
// instead use:
// enterTransition = Explode()

// use this in the CALLED transition to
// primordially start the enter transition:
// allowEnterTransitionOverlap = true

}
} else {

// Go without transition - this can be empty
}

}

Here, instead of Explode(), you can choose Slide(), Fade(), or AutoTransition(). Slide()
and Fade() do the obvious thing; AutoTransition fades out elements that are not common,
moves and resizes common elements, and then fades in new elements.

210 CHAPTER 9: User Interface

Note The requestFeature() method must happen at the beginning of onCreate().

The transition gets activated only when you start a new activity via the following:

if (Build.VERSION.SDK INT >=
Build.VERSION CODES.LOLLIPOP) {
startActivity(intent,
ActivityOptions.
makeSceneTransitionAnimation(this).toBundle())
telse{
startActivity(intent)

}

When the called activity exists, you could use Activity.finishAfterTransition() instead
of the usual finish() to have the reverse transition more nicely handled. Again, you have to
put that inside an if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.LOLLIPOP) check.

To improve user experience, you can identify elements that are common to both activities
and let the transition framework handle them in a special way. To do so, you do two things.

Give the common Ul elements a special transition name.

if (Build.VERSION.SDK_INT >=
Build.VERSION_CODES.LOLLIPOP) {
img.transitionName = "imgTrans"
// for a certain "img" UI element
}

This name must be unique, and the setting should happen inside
onCreate() in both the calling and called activities.

Replace the ActivityOptions.makeSceneTransitionAnimation(this)
with the following:

ActivityOptions.
makeSceneTransitionAnimation(
this@MainActivity,
UPair.create(img, "imgTrans"),
...more pairs...

)

Here, UPair is an important alias to avoid name clashes: import android.util.Pair as UPair.

You can then use the AutoTransition() transition to get such common Ul elements handled
in a special way during the animation.

CHAPTER 9: User Interface 211

Fast Graphics OpenGL ES

For Android apps you can use the industry-standard OpenGL ES to render high-
performance graphics in 2D and 3D. The user interface development differs significantly
from the standard Android OS way, and you have to expect to spend some time learning
how to use OpenGL ES. In the end, however, you might end up with outstanding graphics
that pay off for the effort.

Note It doesn’t make sense to use OpenGL ES if the Android OS user interface provides the same
functionality and performance is not an issue.

OpenGL ES comes in different versions: 1.x, 2.0, and 3.x. While there is a huge difference in
methodology between 1.x and the later versions, the difference between 2.0 and 3.x is not
so big. But setting 3.x as a strict requirement, you miss about one-third of all possible users
(by beginning 2018), so the recommendation is this:

Develop for OpenGL ES 2.0 and only if you really need it add 3.x
features. If using 3.x, you best supply fallbacks for devices that do not
speak 3.x.

In the following sections, we will be talking about version 2.0.

Note OpenGL ES for Android is supported by both the framework and also the Native
Development Kit (NDK). In the book we will be putting more weight on the framework classes.

OpenGL ES is extremely versatile, and usage patterns are potentially endless. Covering all
that OpenGL ES provides goes beyond the scope of the book, but | will present the following
scenarios to get you started:

Configure the Activity to use OpenGL ES
Provide a custom GLSurfaceView class to hold the OpenGL scene

Provide two graphics primitives: a triangle that uses a vertex buffer and
a shader program, and a quad that uses a vertex buffer, an index buffer,
and a shader program

Provide a renderer to paint the graphics

Briefly outline how to introduce view projection
Briefly outline how to add motion

Briefly outline how to add light

Briefly outline how to react to user input

212 CHAPTER 9: User Interface

Showing an OpenGL Surface in Your Activity

You can make a custom OpenGL view element be the only Ul element to show in an activity
via the following:

class MyActivity : AppCompatActivity() {
var glView:GLSurfaceView? = null

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)

// Create a GLSurfaceView instance and set it
// as the ContentView for this Activity.
glview = MyGLSurfaceView(this)
setContentView(glView)
}
}

Here, MyGLSurfaceView is the custom GLSurfaceView we will define.

Or, you could use a normal XML layout file and add the custom GL view there by, for
example, writing the following:

<com.example.opengl.glapp.MyGLSurfaceView
android:layout_width="400dp"
android:layout_height="400dp"/>

Here, you have to specify the full class path of the custom GL view class.

Creating a Custom OpenGL View Element

A custom OpenGL view element could be as easy as subclassing android.opengl.
GLSurfaceView and specifying a renderer for the graphics data, a rendering mode, and
maybe listeners for user interactions. We, however, want to go a step further and include
an OpenGL ES version check so you can decide whether the inclusion of OpenGL ES 3.x
constructs is possible. The code reads as follows:

import android.app.ActivityManager

import android.content.Context

import android.opengl.GLSurfaceView

import android.util.Log

import javax.microedition.khronos.egl.EGL10

class MyGLSurfaceView(context: Context) :
GLSurfaceView(context) {
val renderer: MyGLRenderer
var supports3x = false
var minVers = 0

CHAPTER 9: User Interface

init {

}

fetchVersion()

// Create an OpenGL ES 2.0 context
setEGLContextClientVersion(2)

// We set the 2.x context factory to use for
// the view
setEGLContextFactory()

// We set the renderer for drawing the graphics
renderer = MyGLRenderer()
setRenderer(renderer)

// This setting prevents the GLSurfaceView frame
// from being redrawn until you call

// requestRender()

renderMode = GLSurfaceView.RENDERMODE WHEN DIRTY

private fun fetchVersion() {

}

val activityManager =
context.getSystemService(
Context.ACTIVITY_SERVICE)
as ActivityManager
val configurationInfo =
activityManager.deviceConfigurationInfo
val vers = configurationInfo.glEsVersion
// e.g. "2.0"
supports3x = vers.split(".")[0] == "3"
minVers = vers.split(".")[1].toInt()

Log.1("LOG", "Supports OpenGL 3.x = " +

supports3x)
Log.i("LOG", "OpenGL minor version = " +
minVers)

private fun setEGLContextFactory() {

val EGL_CONTEXT_CLIENT VERSION = 0x3098
// from egl.h c-source
class ContextFactory :
GLSurfaceView.EGLContextFactory {
override fun createContext(egl: EGL10,
display: javax.microedition.khronos.
egl.EGLDisplay?,
eglConfig: javax.microedition.khronos.
egl.EGLConfig?)
:javax.microedition.khronos.egl.EGLContext? {
val attrib _list =
intArrayOf(EGL_CONTEXT CLIENT VERSION,
2, EGL10.EGL_NONE)
val ectx = egl.eglCreateContext(display,

213

214 CHAPTER 9: User Interface

eglConfig,
EGL10.EGL_NO_CONTEXT,
attrib list)

return ectx

}

override fun destroyContext(egl: EGL10,
display: javax.microedition.khronos.
egl.EGLDisplay?,
context: javax.microedition.khronos.
egl.EGLContext?) {
egl.eglDestroyContext(display, context)
}
}
setEGLContextFactory(ContextFactory())
}
}

You can then use .supports3x to see whether OpenGL ES 3.x is supported and use
.minVers for the minor version number if you need it. The renderer used by this class gets
defined in a moment. Also, note that by virtue of RENDERMODE_WHEN_DIRTY a redrawing
happens only on demand. If you need fully dynamic changes, then comment that line out.

A Triangle with a Vertex Buffer

A class responsible for drawing graphics primitives, in this case a simple triangle, reads
as follows:

class Triangle {
val vertexShaderCode =
attribute vec4 vPosition;
void main() {
gl Position = vPosition;
}
""" trimIndent()

val fragmentShaderCode =
precision mediump float;
uniform vec4 vColor;
void main() {
gl FragColor = vColor;
""" trimIndent()
var program:Int? =0

val vertexBuffer: FloatBuffer

var color = floatArrayOf(0.6f, 0.77f, 0.22f, 1.0f)

CHAPTER 9: User Interface 215

var positionHandle: Int? =0
var colorHandle: Int? =0

val vertexCount =

triangleCoords.size / COORDS_PER_VERTEX
val vertexStride = COORDS_PER_VERTEX * 4

// 4 bytes per vertex

companion object {

// number of coordinates per vertex

internal val COORDS_PER_VERTEX = 3

internal var triangleCoords =

floatArrayOf(// in counterclockwise order:

0.of, 0.6f, 0.0f, // top
-0.5f, -0.3f, 0.0f, // bottom left
0.5f, -0.3f, 0.0f // bottom right

}

Inside the class’s init block, the shaders get loaded and initialized, and a vertex buffer gets
prepared.
init {
val vertexShader = MyGLRenderer.loadShader(
GLES20.GL_VERTEX_SHADER,
vertexShaderCode)
val fragmentShader = MyGLRenderer.loadShader(
GLES20.GL_FRAGMENT_SHADER,
fragmentShaderCode)

// create empty OpenGL ES Program
program = GLES20.glCreateProgram()

// add the vertex shader to program
GLES20.glAttachShader(program!!, vertexShader)

// add the fragment shader to program
GLES20.glAttachShader(program!!, fragmentShader)

// creates OpenGL ES program executables
GLES20.glLinkProgram(program!!)

// initialize vertex byte buffer for shape
// coordinates
val bb = ByteBuffer.allocateDirect(
// (4 bytes per float)
triangleCoords.size * 4)
// use the device hardware's native byte order
bb.order(ByteOrder.nativeOrder())

// create a floating point buffer from bb
vertexBuffer = bb.asFloatBuffer()
// add the coordinates to the buffer

216 CHAPTER 9: User Interface

vertexBuffer.put(triangleCoords)
// set the buffer to start at o
vertexBuffer.position(0)

}

The draw() method performs the rendering work. Note that, as usual in OpenGL rendering,
this method must run really fast. Here we just move around references:

fun draw() {
// Add program to OpenGL ES environment
GLES20.glUseProgram(program!!)

// get handle to vertex shader's vPosition member
positionHandle = GLES20.glGetAttribLocation(
program!!, "vPosition")

// Enable a handle to the triangle vertices
GLES20.glEnableVertexAttribArray(
positionHandle!!)

// Prepare the triangle coordinate data
GLES20.glVertexAttribPointer(positionHandle!!,
COORDS_PER_VERTEX,
GLES20.GL_FLOAT, false,
vertexStride, vertexBuffer)

// get handle to fragment shader's vColor member
colorHandle = GLES20.glGetUniformLocation(
program!!, "vColor")

// Set color for drawing the triangle
GLES20.glUniform4fv(colorHandle!!, 1, color, 0)

// Draw the triangle
GLES20.glDrawArrays(GLES20.GL_TRIANGLES, o,
vertexCount)

// Disable vertex array
GLES20.glDisableVertexAttribArray(
positionHandle!!)
}

}

To see how this triangle class gets used from inside the renderer, please see the following section.

A Quad with a Vertex Buffer and an Index Buffer

In OpenGL, polygons with more than three vertices best get described as gluing together as
many triangles as necessary. So, for a quad we need two triangles. Obviously, some vertices
then show up several times: if we have a quad A-B-C-D, we need to declare the triangles
A-B-C and A-C-D, so the vertices A and C get used twice each.

CHAPTER 9: User Interface 217

Uploading vertices to the graphics hardware several times is not a good solution, and that

is why there are index lists. We upload vertices A, B, C, and D, and in addition a list 0, 1, 3,
and 2, pointing into the vertices list and describing the two triangles as a triangle strip (first is
0-1-3, second is 1-3-2). The corresponding code for a quad reads as follows:

class Quad {
val vertexBuffer: FloatBuffer
val drawlListBuffer: ShortBuffer
val vertexShaderCode = """
attribute vec4 vPosition;
void main() {
gl Position = vPosition;

""" trimIndent()
val fragmentShaderCode = """
precision mediump float;
uniform vec4 vColor;
void main() {
gl FragColor = vColor;

""" trimIndent()

// The shader program
var program:Int? =0

var color = floatArray0f(0.94f, 0.67f, 0.22f, 1.0f)

val vbo
val ibo

IntArray(1) // one vertex buffer
IntArray(1) // one index buffer

var positionHandle: Int? = 0
var colorHandle: Int? = 0

companion object {
val BYTES PER_FLOAT
val BYTES PER_SHORT
val COORDS PER_VERTEX = 3
val VERTEX STRIDE = COORDS_PER_VERTEX *
BYTES_PER_FLOAT
var quadCoords = floatArrayOf(
-0.5f, 0.2f, 0.0f, // top left
-0.5f, -0.5f, 0.0f, // bottom left
0.2f, -0.5f, 0.0f, // bottom right
0.2f, 0.2f, 0.0f) // top right
val drawOrder = shortArrayOf(o, 1, 3, 2)
// order to draw vertices

4
2

218 CHAPTER 9: User Interface

As for the previous triangle, we initialize the shaders and the buffers in the init block.
init {
val vertexShader = MyGLRenderer.loadShader(
GLES20.GL_VERTEX_SHADER,
vertexShaderCode)
val fragmentShader = MyGLRenderer.loadShader(
GLES20.GL_FRAGMENT_SHADER,
fragmentShaderCode)

program = GLES20.glCreateProgram().apply {
// add the vertex shader to program
GLES20.glAttachShader(this, vertexShader)

// add the fragment shader to program
GLES20.glAttachShader(this, fragmentShader)

// creates OpenGL ES program executables
GLES20.glLinkProgram(this)
}

// initialize vertex byte buffer for shape coords
vertexBuffer = ByteBuffer.allocateDirect(
quadCoords.size * BYTES PER FLOAT).apply{
order(ByteOrder.nativeOrder())
}.asFloatBuffer().apply {
put(quadCoords)
position(0)

}

// initialize byte buffer for the draw list
drawlListBuffer = ByteBuffer.allocateDirect(
drawOrder.size * BYTES PER_SHORT).apply {
order(ByteOrder.nativeOrder())
}.asShortBuffer().apply {
put (drawOrder)
position(0)

GLES20.glGenBuffers(1, vbo, 0);
GLES20.glGenBuffers(1, ibo, 0);
if (vbo[0] > 0 8& ibo[0] > 0) {
GLES20.glBindBuffer(GLES20.GL_ARRAY BUFFER,
vbo[0])
GLES20.glBufferData(GLES20.GL_ARRAY BUFFER,
vertexBuffer.capacity() * BYTES PER_FLOAT,
vertexBuffer, GLES20.GL_STATIC DRAW)
GLES20.glBindBuffer(
GLES20.GL_ELEMENT_ARRAY BUFFER, ibo[0])
GLES20.glBufferData(
GLES20.GL_ELEMENT_ARRAY_BUFFER,

CHAPTER 9: User Interface

drawListBuffer.capacity() *
BYTES_PER_SHORT,
drawlListBuffer, GLES20.GL_STATIC DRAW)

GLES20.glBindBuffer(
GLES20.GL_ARRAY BUFFER, 0);
GLES20.glBindBuffer(
GLES20.GL_ELEMENT_ARRAY BUFFER, 0)
} else {
//T0D0: some error handling
}

}

The draw() method performs the rendering, as is the case for the triangle class we
described earlier.

fun draw() {
// Add program to OpenGL ES environment
GLES20.glUseProgram(program!!)

// Get handle to fragment shader's vColor member

colorHandle = GLES20.glGetUniformLocation(
program!!, "vColor")

// Set color for drawing the quad

GLES20.glUniform4fv(colorHandle!!, 1, color, 0)

// Get handle to vertex shader's vPosition member
positionHandle = GLES20.glGetAttribLocation(
program!!, "vPosition")

// Enable a handle to the vertices
GLES20.glEnableVertexAttribArray(
positionHandle!!)

// Prepare the coordinate data
GLES20.glVertexAttribPointer(positionHandle!!,
COORDS_PER_VERTEX,
GLES20.GL_FLOAT, false,
VERTEX_STRIDE, vertexBuffer)

// Draw the quad
GLES20.glBindBuffer(
GLES20.GL_ARRAY BUFFER, vbo[0]);

// Bind Attributes

GLES20.glBindBuffer(
GLES20.GL_ELEMENT_ARRAY BUFFER, ibo[0])

GLES20.glDrawElements(GLES20.GL_TRIANGLE STRIP,
drawListBuffer.capacity(),
GLES20.GL_UNSIGNED SHORT, 0)

219

220 CHAPTER 9: User Interface

GLES20.glBindBuffer(
GLES20.GL_ARRAY BUFFER, 0)
GLES20.glBindBuffer(
GLES20.GL_ELEMENT_ARRAY BUFFER, 0)

// Disable vertex array
GLES20.glDisableVertexAttribArray(
positionHandle!!)
}

}

In the constructor of the shader program, the vertex buffer and the index buffer get uploaded
to the graphics hardware. Inside the draw() method, which potentially gets called often, only
pointers to the uploaded buffers get used. The usage of this Quad class gets described in the
following section.

Creating and Using a Renderer

A renderer is responsible for drawing the graphics objects. Since we are using a subclass

of android.opengl.GLSurfaceView, the renderer must be a subclass of GLSurfaceView.
Renderer. Since the classes Triangle and Quad have their own shaders, all the renderer
needs to do is instantiate a quad and a triangle and use their draw() methods, besides some
boilerplate code.

class MyGLRenderer : GLSurfaceView.Renderer {
companion object {
fun loadShader(type: Int, shaderCode: String)
: Int {
// create a vertex shader type
!/ (GLES20.GL_VERTEX_ SHADER)
// or a fragment shader type
!/ (GLES20.GL_FRAGMENT_SHADER)
val shader = GLES20.glCreateShader(type)

// add the source code to the shader and
// compile it
GLES20.glShaderSource(shader, shaderCode)
GLES20.glCompileShader (shader)

return shader

}

var triangle:Triangle? = null
var quad:Quad? = null

// Called once to set up the view's OpenGL ES
// environment.
override

CHAPTER 9: User Interface

fun onSurfaceCreated(gl: GL10?, config:
javax.microedition.khronos.egl.EGLConfig?) {

// enable face culling feature
GLES20.glEnable(GL10.GL_CULL_FACE)

// specify which faces to not draw
GLES20.glCullFace(GL10.GL_BACK)

// Set the background frame color
GLES20.glClearColor(0.0f, 0.0f, 0.0f, 1.0f)

}

// Called for each redraw of the view.

// If renderMode =

// GLSurfaceView.RENDERMODE_WHEN_DIRTY

// (see MyGLSurfaceView)

// this will not be called every frame

override

fun onDrawFrame(unused: GL10) {
// Redraw background color
GLES20.glClear(GLES20.GL_COLOR_BUFFER_BIT)

triangle = triangle ?: Triangle()
triangle?.draw()
quad = quad ?: Quad()
quad?.draw()

}

override
fun onSurfaceChanged(unused: GL10, width: Int,
height: Int) {
GLES20.glViewport(0, 0, width, height)
}
}

Projection

Once we start using the third dimension, we need to talk about projection. The projection

221

describes how the three dimensions of the vertices get mapped to two-dimensional screen

coordinates. The Triangle and Quad graphics primitives we built so far both use their own

shader program. While this gives us the maximum flexibility, to avoid a proliferation of

shader programs, it is better to extract the shader program and use just one from inside the

renderer. Also, the projection calculation then needs to be done at only one place.

In addition, we let the renderer prepare N times two buffer objects, one pair of vertex and

index buffer per object, and provide corresponding handles to each graphics primitive
constructor. The new Square class then looks like the following:

class Square(val program: Int?,
val vertBuf:Int, val idxBuf:Int) {
val vertexBuffer: FloatBuffer
val drawlListBuffer: ShortBuffer

222 CHAPTER 9: User Interface

}

var color = floatArray0f(0.94f, 0.67f, 0.22f, 1.0f)

companion object {

val BYTES_PER_FLOAT

val BYTES PER_SHORT

val COORDS PER VERTEX = 3

val VERTEX STRIDE = COORDS PER _VERTEX *

BYTES_PER_FLOAT

var coords = floatArrayOf(
-0.5f, 0.2f, 0.0f, // top left
-0.5f, -0.5f, 0.0f, // bottom left
0.2f, -0.5f, 0.0f, // bottom right
0.2f, 0.2f, 0.0f) // top right

val drawOrder = shortArrayOf(o, 1, 3, 2)

// order to draw vertices

1l
n N B

The class no longer contains shader code, so what is left for the init block is preparing the
buffers to use the following:

init {

// initialize vertex byte buffer for shape
// coordinates
vertexBuffer = ByteBuffer.allocateDirect(
coords.size * BYTES PER_FLOAT).apply{
order(ByteOrder.nativeOrder())
}.asFloatBuffer().apply {
put(coords)
position(0)

}

// initialize byte buffer for the draw list
drawListBuffer = ByteBuffer.allocateDirect(
drawOrder.size * BYTES PER_SHORT).apply {
order (ByteOrder.nativeOrder())
}.asShortBuffer().apply {
put(drawOrder)
position(0)

}

if (vertBuf > 0 8& idxBuf > 0) {
GLES20.glBindBuffer(GLES20.GL_ARRAY BUFFER,
vertBuf)
GLES20.glBufferData(GLES20.GL_ARRAY BUFFER,
vertexBuffer.capacity() *
BYTES_PER_FLOAT,
vertexBuffer, GLES20.GL_STATIC DRAW)

GLES20.glBindBuffer(
GLES20.GL_ELEMENT ARRAY BUFFER, idxBuf)

GLES20.glBufferData(
GLES20.GL_ELEMENT_ARRAY_BUFFER,

CHAPTER 9: User Interface 223

drawListBuffer.capacity() *
BYTES_PER_SHORT,
drawlListBuffer, GLES20.GL_STATIC DRAW)

GLES20.glBindBuffer(
GLES20.GL_ARRAY_ BUFFER, 0)
GLES20.glBindBuffer(
GLES20.GL_ELEMENT_ARRAY_BUFFER, 0)
} else {
//T0D0: error handling
}

}

The draw() method does not substantially differ from before. This time we use the shader
program provided in the constructor. Again, this method runs fast, since it only shifts around
references.

fun draw() {
// Add program to OpenGL ES environment
GLES20.glUseProgram(program!!)

// get handle to fragment shader's vColor member

val colorHandle = GLES20.glGetUniformLocation(
program!!, "vColor")

// Set color for drawing the square

GLES20.glUniform4fv(colorHandle!!, 1, color, 0)

// get handle to vertex shader's vPosition member
val positionHandle = GLES20.glGetAttriblLocation(
program!!, "vPosition")

// Enable a handle to the vertices
GLES20.glEnableVertexAttribArray(
positionHandle!!)

// Prepare the coordinate data
GLES20.glVertexAttribPointer(positionHandle!!,
COORDS_PER_VERTEX,
GLES20.GL_FLOAT, false,
VERTEX_STRIDE, vertexBuffer)

// Draw the square
GLES20.glBindBuffer(GLES20.GL_ARRAY BUFFER,
vertBuf)
GLES20.glBindBuffer(
GLES20.GL_ELEMENT_ARRAY BUFFER, idxBuf)
GLES20.glDrawElements(GLES20.GL_TRIANGLE STRIP,
drawListBuffer.capacity(),
GLES20.GL_UNSIGNED SHORT, 0)

224 CHAPTER 9: User Interface

GLES20.glBindBuffer(
GLES20.GL_ARRAY BUFFER, 0)
GLES20.glBindBuffer(
GLES20.GL_ELEMENT_ARRAY BUFFER, 0)

// Disable vertex array
GLES20.glDisableVertexAttribArray(
positionHandle!!)
}

}

Here, inside the constructor we fetch handles to the program, a vertex buffer name (an
integer) and an index buffer name (another integer), and furthermore we prepare and upload
the vertex and index buffers to the graphics hardware. Letting a new Triangle class use the
same method is left as an exercise for you.

The new renderer class now contains the shader program and prepares handles for the
buffers. But we go one step further and also add projection matrices.

class MyGLRenderer : GLSurfaceView.Renderer {
companion object {
fun loadShader(type: Int, shaderCode: String)
: Int {
// create a vertex shader type
// (GLES20.GL_VERTEX_SHADER)
// or a fragment shader type
// (GLES20.GL_FRAGMENT SHADER)
val shader = GLES20.glCreateShader(type)

// add the source code to the shader and
// compile it
GLES20.glShaderSource(shader, shaderCode)
GLES20.glCompileShader (shader)

return shader

}

val vertexShaderCode =
attribute vec4 vPosition;
uniform mat4 uMVPMatrix;
void main() {
gl Position = uMVPMatrix * vPosition;

""" trimIndent()

val fragmentShaderCode =
precision mediump float;
uniform vec4 vColor;
void main() {
gl FragColor = vColor;

""" trimIndent()

CHAPTER 9: User Interface 225

var triangle:Triangle? = null
var square:Square? = null
var program:Int? = 0

val vbo
val ibo

IntArray(2) // vertex buffers
IntArray(2) // index buffers

val vMatrix:FloatArray = FloatArray(16)
val projMatrix:FloatArray = FloatArray(16)
val mvpMatrix:FloatArray = FloatArray(16)

The method onSurfaceCreated() just gets called once by the system when the OpenGL
rendering is ready to go. We use it to set some rendering flags and to initialize the shaders.

// Called once to set up the view's

// OpenGL ES environment.

override fun onSurfaceCreated(gl: GL10?, config:

javax.microedition.khronos.egl.EGLConfig?) {

// enable face culling feature
GLES20.glEnable(GL10.GL_CULL_FACE)
// specify which faces to not draw
GLES20.glCullFace(GL10.GL_BACK)

// Set the background frame color
GLES20.glClearColor(o.0f, 0.0f, 0.0f, 1.0f)

val vertexShader = loadShader(
GLES20.GL_VERTEX_SHADER,
vertexShaderCode)

val fragmentShader = loadShader(
GLES20.GL_FRAGMENT_SHADER,
fragmentShaderCode)

// create empty OpenGL ES Program
program = GLES20.glCreateProgram()

// add the vertex shader to program
GLES20.glAttachShader(program!!, vertexShader)

// add the fragment shader to program
GLES20.glAttachShader(program!!, fragmentShader)

// creates OpenGL ES program executables
GLES20.glLinkProgram(program!!)

GLES20.glGenBuffers(2, vbo, 0) // just buffer names
GLES20.glGenBuffers(2, ibo, 0)

226 CHAPTER 9: User Interface

// Create a camera view and an orthogonal projection
// matrix
Matrix.setLookAtM(vMatrix, 0, of, of, 3.o0f, of,
of, of, of, 1.0f, 0.0f)
Matrix.orthoM(projMatrix,o,-1.0f,1.0f, -1.0f, 1.0f,
100.0f, -100.0f)
}

The callback method onDrawFrame() gets called for each redraw of the view.

If renderMode = GLSurfaceView.RENDERMODE WHEN DIRTY, see class MyGLSurfaceView.
This will, however, not be called every frame, only if changes are detected. The following
snippet also closes the class:

override fun onDrawFrame(unused: GL10) {
// Redraw background color
GLES20.glClear(GLES20.GL_COLOR_BUFFER_BIT)

GLES20.glUseProgram(program!!)
val muMVPMatrixHandle = GLES20.glGetUniformLocation

program!!, "uMVPMatrix");
Matrix.multiplyMM(mvpMatrix, o,
projMatrix, 0, vMatrix, 0)

// Apply the combined projection and camera view

// transformations

GLES20.glUniformMatrix4fv(muMvPMatrixHandle, 1,
false, mvpMatrix, 0);

triangle = triangle ?:
Triangle(program,vbo[0],ibo[0])
triangle?.draw()

square = square ?:
Square(program,vbo[1],ibo[1])
square?.draw()

}

override
fun onSurfaceChanged(unused: GL10, width: Int,
height: Int) {
GLES20.glViewport(0, 0, width, height)
}
}

You can see the projection matrices get calculated inside the Kotlin code, but they’re
uploaded as shader uniform variables and used from inside the vertex shader.

CHAPTER 9: User Interface 227

Applying projection to three-dimensional objects makes more sense. As a general
assumption for such 3D objects, we expect the following:

Vertex coordinates in four-dimensional homogeneous coordinates
RGBA colors assigned to vertices
Face normals assigned to vertices

Using four coordinate values instead of the usual three (x, y, z) helps for perspective
projection. Colors assigned to vertices can be used from inside the shader code to apply a
coloring scheme. But it can also be ignored or used for noncoloring purposes. This is totally
up to the shader code. The normals help for a realistic lighting.

The renderer gets just new shader code, as shown here:

val vertexShaderCode = """
attribute vec4 vPosition;
attribute vec4 vNorm;
attribute vec4 vColor;

varying vec4 fColor;
varying vec4 fNorm;

uniform mat4 uMVPMatrix;

void main() {
gl Position = uMVPMatrix * vPosition;
fColor = vColor;
fNorm = vNorm;

}
""" trimIndent()

val fragmentShaderCode = """
precision mediump float;
varying vec4 fColor;
varying vec4 fNorm;

void main() {
gl FragColor = fColor;

""" trimIndent()

As a sample 3D object, | present a cube with an interpolated coloring according to the vertex
colors and the normals ignored for now.

class Cube(val program: Int?, val vertBuf:Int,
val idxBuf:Int) {
val vertexBuffer: FloatBuffer
val drawlListBuffer: ShortBuffer

228 CHAPTER 9: User Interface

The companion object holds all the coordinates and indices we need for the cube.

companion object {
val BYTES_PER_FLOAT = 4
val BYTES_PER_SHORT = 2
val COORDS PER VERTEX = 4
val NORMS_PER VERTEX = 4
val COLORS_PER_VERTEX = 4
val VERTEX STRIDE = (COORDS PER VERTEX +
NORMS_PER_VERTEX +
COLORS_PER_VERTEX) * BYTES_PER_FLOAT
var coords = floatArrayOf(
// positions + normals + colors
// --- front
-0.2f, -0.2f, o0.2f, 1.0f,
0.0f, 0.0f, 1.0f, 0.0f,
1.0f, o.of, o.of, 1.0f,
0.2f, -0.2f, 0.2f, 1.0f,
0.of, 0.0f, 1.0f, 0.0f,
1.0f, 0.0f, 0.0f, 1.0f,
0.2f, 0.2f, 0.2f, 1.0f,
0.0f, 0.0f, 1.0f, 0.0f,
1.0f, o.o0f, o.of, 1.0f,
-0.2f, 0.2f, 0.2f, 1.0f,
0.0f, 0.of, 1.0f, 0.0f,
1.0f, o.of, 0.0f, 1.0f,
// --- back
-0.2f, -0.2f, -0.2f, 1.0f,
o.of, 0.of, -1.0f, 0.0f,
o.of, 1.0f, 0.0f, 1.0f,
0.2f, -0.2f, -0.2f, 1.0f,
0.of, o.of, -1.0f, 0.0f,
0.0f, 1.0f, 0.0f, 1.0f,
0.2f, 0.2f, -0.2f, 1.0f,
o.of, 0.of, -1.0f, 0.0f,
0.of, 1.0f, 0.0f, 1.0f,
-0.2f, 0.2f, -0.2f, 1.0f,
0.of, o.of, -1.0f, 0.0f,
0.0f, 1.0f, 0.0f, 1.0f,
// --- bottom
-0.2f, -0.2f, 0.2f, 1.0f,
o.of, -1.0f, o0.0f, 0.0f,
0.of, 0.0f, 1.0f, 1.0f,
0.2f, -0.2f, 0.2f, 1.0f,
0.0f, -1.0f, 0.0f, 0.0f,
o.of, 0.0f, 1.0f, 1.0f,
0.2f, -0.2f, -0.2f, 1.0f,
0.of, -1.0f, 0.0f, 0.0f,
0.of, o.of, 1.0f, 1.0f,
-0.2f, -0.2f, -0.2f, 1.0f,
0.0f, -1.0f, 0.0f, 0.0f,
o.of, 0.0of, 1.0f, 1.0f,
// --- top

CHAPTER 9: User Interface

-0.2f, 0.2f, 0.2f, 1.0f,
0.0f, 1.0f, 0.0f, 0.0f,
1.0f, o0.0f, 1.0f, 1.0f,
0.2f, 0.2f, 0.2f, 1.0f,
0.0f, 1.0f, 0.0f, 0.0f,
1.0f, 0.0f, 1.0f, 1.0f,
0.2f, 0.2f, -0.2f, 1.0f,
0.0f, 1.0f, 0.0f, 0.0f,
1.0f, o0.0f, 1.0f, 1.0f,
-0.2f, 0.2f, -0.2f, 1.0f,
0.0f, 1.0f, 0.0f, 0.0f,
1.0f, o.0of, 1.0f, 1.0f,
// --- right
0.2f, -0.2f, 0.2f, 1.0f,
1.0f, o0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 1.0f, 1.0f,
0.2f, 0.2f, 0.2f, 1.0f,
1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 1.0f, 1.0f,
0.2f, 0.2f, -0.2f, 1.0f,
1.0f, o.of, o0.0f, 0.0f,
0.0f, 1.0f, 1.0f, 1.0f,
0.2f, -0.2f, -0.2f, 1.0f,
1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 1.0f, 1.0f,
/1 --- left
-0.2f, -0.2f, 0.2f, 1.0f,
-1.0f, 0.0f, 0.0f, 0.0f,
1.0f, 1.0f, 0.0f, 1.0f,
-0.2f, 0.2f, 0.2f, 1.0f,
-1.0f, o.of, o0.0f, 0.0f,
1.0f, 1.0f, 0.0f, 1.0f,
-0.2f, 0.2f, -0.2f, 1.0f,
-1.0f, 0.0f, 0.0f, o0.0f,
1.0f, 1.0f, 0.0f, 1.0f,
-0.2f, -0.2f, -0.2f, 1.0f,
-1.0f, o.of, o0.0f, 0.0f,
1.0f, 1.0f, o0.0f, 1.0f

)
val drawOrder = shortArrayOf(// vertices order
0, 1, 2, 0, 2, 3, // front
4, 6, 5, 4, 7, 6, // back
8, 10, 9, 8, 11, 10, // bottom
12, 13, 14 12, 14, 15, // top
16, 18, 17 16, 19, 18, // right
20, 21, 22 20, 22, 23, // left

229

230 CHAPTER 9: User Interface

As in the previous listings, we use the init block to prepare and initialize the buffers we
need for the shaders.
init {
// initialize vertex byte buffer for shape
// coordinates, normals and colors
vertexBuffer = ByteBuffer.allocateDirect(
coords.size * BYTES PER_FLOAT).apply{
order (ByteOrder.nativeOrder())
}.asFloatBuffer().apply {
put(coords)
position(0)

}

// initialize byte buffer for the draw list
drawListBuffer = ByteBuffer.allocateDirect(
drawOrder.size * BYTES_PER_SHORT).apply {
order(ByteOrder.nativeOrder())
}.asShortBuffer().apply {
put(drawOrder)
position(0)

if (vertBuf > 0 8& idxBuf > 0) {
GLES20.glBindBuffer(
GLES20.GL_ARRAY BUFFER, vertBuf)
GLES20.glBufferData(GLES20.GL_ARRAY BUFFER,
vertexBuffer.capacity() *
BYTES_PER_FLOAT,
vertexBuffer, GLES20.GL_STATIC DRAW)

GLES20.glBindBuffer(
GLES20.GL_ELEMENT_ARRAY BUFFER, idxBuf)
GLES20.glBufferData(
GLES20.GL_ELEMENT_ARRAY_ BUFFER,
drawListBuffer.capacity() *
BYTES_PER_SHORT,
drawListBuffer, GLES20.GL_STATIC DRAW)

GLES20.glBindBuffer(
GLES20.GL_ARRAY_BUFFER, 0)
GLES20.glBindBuffer(
GLES20.GL_ELEMENT_ARRAY_BUFFER, 0)
} else {
// TODO: error handling
}

CHAPTER 9: User Interface 231

The draw() method for rendering the graphics this time reads as follows:

fun draw() {
// Add program to OpenGL ES environment
GLES20.glUseProgram(program!!)

// get handle to vertex shader's vPosition member
val positionHandle =
GLES20.glGetAttribLocation(program,
"vPosition")

// Enable a handle to the vertices
GLES20.glEnableVertexAttribArray(positionHandle)
// Prepare the coordinate data
GLES20.glVertexAttribPointer(

positionHandle, COORDS_PER_VERTEX,

GLES20.GL_FLOAT, false,

VERTEX_STRIDE, vertexBuffer)

J/ trrrnnd

// Buffer offsets are a little bit strange in the
// Java binding - for the normals and colors we
// create new views and then reset the vertex

// array
J7 VULLLLLLLEL L e e ey

// get handle to vertex shader's vPosition member
vertexBuffer.position(COORDS_PER_VERTEX)
val normBuffer = vertexBuffer.slice()
// create a new view
vertexBuffer.rewind()
// ... and rewind the original buffer
val normHandle = GLES20.glGetAttriblLocation(
program, "vNorm")
if(normHandle >= 0) {
// Enable a handle to the vertices
GLES20.glEnableVertexAttribArray(normHandle)
// Prepare the coordinate data
GLES20.glVertexAttribPointer(normHandle,
COORDS_PER_VERTEX,
GLES20.GL_FLOAT, false,
VERTEX_STRIDE, normBuffer)

}

// get handle to vertex shader's vColor member
vertexBuffer.position(COORDS_PER_VERTEX +
NORMS_PER_VERTEX)
val colorBuffer = vertexBuffer.slice()
// create a new view
vertexBuffer.rewind()
// ... and rewind the original buffer
val colorHandle = GLES20.glGetAttribLocation(
program, "vColor")
if(colorHandle >= 0) {

232 CHAPTER 9: User Interface

// Enable a handle to the vertices
GLES20.glEnableVertexAttribArray(colorHandle)
// Prepare the coordinate data
GLES20.glVertexAttribPointer(colorHandle,

COLORS_PER VERTEX,

GLES20.GL_FLOAT, false,

VERTEX_STRIDE, colorBuffer)

}

// Draw the cube
GLES20.g1BindBuffer (GLES20.GL_ARRAY BUFFER,
vertBuf)
GLES20.g1BindBuffer(
GLES20.GL_ELEMENT_ARRAY BUFFER, idxBuf)
GLES20.glDrawElements(GLES20.GL_TRIANGLES,
drawListBuffer.capacity(),
GLES20.GL_UNSIGNED SHORT, 0)

GLES20.glBindBuffer(GLES20.GL_ARRAY BUFFER,0)
GLES20.g1BindBuffer(GLES20.GL_ELEMENT ARRAY BUFFER,0)
// Disable attribute arrays
GLES20.glDisableVertexAttribArray(positionHandle)
if(normHandle >= 0)
GLES20.glDisableVertexAttribArray(normHandle)
if(colorHandle >= 0)
GLES20.glDisableVertexAttribArray(colorHandle)

Motion

Up to now our objects were kind of static, and by virtue of renderMode = GLSurfaceView.
RENDERMODE_WHEN DIRTY in class MyGLSurfaceView, redrawing happens only on demand. If
instead you use GLSurfaceView.RENDERMODE CONTINUOUSLY, the redrawing happens every
frame.

Note that you still can and should use vertex and index buffers for feeding the shaders. You
can easily introduce motion by adjusting the matrices inside Kotlin or by directly editing the
shader code, for example after adding more uniform variables.

Light

Lighting can be added inside the fragment shader code. This time we will have to use the
normal vectors because they determine how light gets reflected on the surface elements.
If we introduce light, we need to tell where its position is. For this aim, inside the renderer’s
companion object add the following:

val lightPos = floatArrayOf(o.of, 0.0f, 4.0f, 0.0f)

CHAPTER 9: User Interface 233

With the shader code now getting more complex, we should have to find out how to get hold
of the error messages. For this to be achieved, you can add the following in the renderer’s
loadShader () function:

val statusShader = IntArray(1)
GLES20.glGetShaderiv(shader, GLES20.GL_COMPILE STATUS,
IntBuffer.wrap(statusShader))
if (statusShader[0] == GLES20.GL FALSE) {
val s = GLES20.glGetShaderInfolog(shader)
Log.e("LOG", "Shader compilation: " + s)
}

Similarly, after the program linking, add the following snippet:

val statusShader = IntArray(1)
GLES20.glGetShaderiv(program!!, GLES20.GL_LINK STATUS,
IntBuffer.wrap(statusShader))
if (statusShader[0] == GLES20.GL_FALSE) {
val s = GLES20.glGetShaderInfolog(program!!)
Log.e("LOG", "Shader linking: " + s)
}

The new vertex shader transports a transformed normal vector according to rotation and
scaling, not including translation (that is why the fourth component of the normal vectors
reads 0.0), and also a transformed position vector, this time including translation.

val vertexShaderCode =
attribute vec4 vPosition;
attribute vec4 vNorm;
attribute vec4 vColor;

varying vec4 fColor;
varying vec3 N;
varying vec3 v;

uniform mat4 uVMatrix;
uniform mat4 uMVPMatrix;

void main() {
gl Position = uMVPMatrix * vPosition;
fColor = vColor;
v = vec3(uVMatrix * vPosition);
N = normalize(vec3(uVMatrix * vNorm));

}
""" trimIndent()

Note that we also transport the vertex colors, although we are not going to use them
any longer. You could, however, merge the color information, so we don’t remove it. The
following code ignores the vertex colors.

234 CHAPTER 9: User Interface

The new fragment shader takes the interpolated positions and normals from the vertex
shader, adds a uniform variable for the light’s position, and in our case uses the Phong
shading model to apply light.

val fragmentShaderCode = """
precision mediump float;
varying vec4 fColor;

varying vec3 N;

varying vec3 v;

uniform vec4 lightPos;

void main() {
vec3 L = normalize(lightPos.xyz - v);
vec3 E = normalize(-v); // eye coordinates!
vec3 R = normalize(-reflect(L,N));

//calculate Ambient Term:
vec4 Iamb = vec4(0.0, 0.1, 0.1, 1.0);

//calculate Diffuse Term:

vec4 Idiff = vec4(0.0, 0.0, 1.0, 1.0) *
max(dot(N,L), 0.0);

Idiff = clamp(Idiff, 0.0, 1.0);

// calculate Specular Term:
vec4 Ispec = vec4(1.0, 1.0, 0.5, 1.0) *
pow(max(dot(R,E),0.0),
/*shininess=*/5.0);
Ispec = clamp(Ispec, 0.0, 1.0);

// write Total Color:
gl FragColor = Iamb + Idiff + Ispec;
//gl_FragColor = fColor; // use vertex color instead

""" trimIndent()

Don’t forget to add a handle for the light’s position inside the renderer’s onDrawFrame()
function.

// The light position

val lightPosHandle = GLES20.glGetUniformLocation(
program!!, "lightPos");

GLES20.gluniform4f(lightPosHandle,
lightPos[0],lightPos[1],lightPos[2],lightPos[3])

The vectors used in the Phong shading algorithm are depicted in Figure 9-2. You will find the
same vector names used in the shader code.

CHAPTER 9: User Interface 235

Figure 9-2. Phong shading vectors

You can add more dynamics to the lighting by using uniforms for the color components. For
simplicity, | hard-coded them inside the fragment shaders (all those vec4(...) constructors).
A lighted cube looks like Figure 9-3.

Figure 9-3. A lighted cube

Textures

Images in OpenGL get handled by textures, which are bitmap data uploaded to the graphics
hardware and usually spanning surfaces defined by textures. To allow for textures, the
companion object from the renderer we introduced in the previous sections gets another
function to load texturable images from the Android resources folder.

companion object {
fun loadTexture(context: Context, resourceld: Int):
Int {
val textureHandle = IntArray(1)

GLES20.glGenTextures(1, textureHandle, 0)

236 CHAPTER 9: User Interface

if (textureHandle[o] != 0) {
val options = BitmapFactory.Options().apply {
inScaled = false // No pre-scaling
}

// Read in the resource

val bitmap = BitmapFactory.decodeResource(
context.getResources(),
resourceld, options)

// Bind to the texture in OpenGL
GLES20.glBindTexture(GLES20.GL_TEXTURE_2D,
textureHandle[0])

// Set filtering

GLES20.glTexParameteri(GLES20.GL_TEXTURE_2D,
GLES20.GL_TEXTURE_MIN_FILTER,
GLES20.GL_NEAREST)

GLES20.glTexParameteri(GLES20.GL_TEXTURE_ 2D,
GLES20.GL_TEXTURE_MAG_FILTER,
GLES20.GL_NEAREST)

// Load the bitmap into the bound texture.
GLUtils.texImage2D(GLES20.GL_TEXTURE_2D, o,
bitmap, 0)

// The bitmap is no longer needed.
bitmap.recycle()

telse{
// T0DO: handle error

}

return textureHandle[0]

}

In addition, the renderer gets new code for both the vertex and the fragment shader.

val vertexShaderCode =
attribute vec4 vPosition;
attribute vec2 vTexture;
attribute vec4 vColor;

varying vec2 textureCoords;
varying vec4 fColor;

uniform mat4 uMVPMatrix;

void main() {
gl Position = uMVPMatrix * vPosition;
textureCoords = vTexture;

fColor = vColor;

""" trimIndent()

CHAPTER 9: User Interface 237

val fragmentShaderCode =
precision mediump float;
uniform sampler2D texture; // The input texture.
varying vec2 textureCoords;
varying vec4 fColor;

void main() {
gl FragColor = texture2D(texture, textureCoords);
// use vertex color instead:
// gl FragColor = fColor;

""" trimIndent()

The attribute vTexture corresponds to a new data section in the vertex definition of an
object. uniform sampler2D texture; describes the connection to a texture object defined in
the Kotlin code.

As a sample object, we define a plane that resembles one of the faces from the Cube class
we defined earlier, apart from additionally feeding the texture.

class Plane(val program: Int?, val vertBuf:Int,
val idxBuf:Int, val context: Context) {

val vertexBuffer: FloatBuffer
val drawListBuffer: ShortBuffer

// Used to pass in the texture.
var textureUniformHandle: Int = 0O
// A handle to our texture data
var textureDataHandle: Int = 0

The companion object is used to define the coordinates and some constants.

companion object {
val BYTES_PER_FLOAT =
val BYTES_PER_SHORT =
val COORDS_PER_VERTEX
val TEXTURE PER_VERTEX =
val NORMS PER VERTEX = 4
val COLORS_PER_VERTEX = 4
val VERTEX STRIDE = (COORDS PER_VERTEX +
TEXTURE_PER_VERTEX +
NORMS PER_VERTEX +
COLORS_PER_VERTEX) * BYTES PER_FLOAT
var coords = floatArrayOf(
// positions, normals, texture, colors
-0.2f, -0.2f, 0.2f, 1.0f,
0.0f, 0.0f, 1.0f, 0.0f,
0.0f, 1.0f,
1.0f, 0.0f, 0.0f, 1.0f,
0.2f, -0.2f, 0.2f, 1.0f,
0.0f, o0.0f, 1.0f, 0.0f,

NS

4
2

238 CHAPTER 9: User Interface

1.0f, 1.0f,
1.0f, 0.0f, 0.0f, 1.0f,
0.2f, 0.2f, 0.2f, 1.0f,
0.0f, 0.0f, 1.0f, 0.0f,
1.0f, 0.0f,
1.0f, 0.0of, 0.0f, 1.0f,
-0.2f, 0.2f, 0.2f, 1.0f,
0.0f, 0.0f, 1.0f, 0.0f,
0.0f, 0.0f,
1.0f, 0.0f, 0.0f, 1.0f

)

val drawOrder = shortArrayOf(// vertices order
o, 1, 2, 0, 2, 3

)

}

Inside the init block, the buffers get defined and initialized, and we also load a texture image.
init {
// initialize vertex byte buffer for shape
// coordinates
vertexBuffer = ByteBuffer.allocateDirect(
coords.size * BYTES PER_FLOAT).apply{
order(ByteOrder.nativeOrder())
}.asFloatBuffer().apply {
put(coords)
position(0)

}

// initialize byte buffer for the draw list
drawListBuffer = ByteBuffer.allocateDirect(
drawOrder.size * BYTES PER SHORT).apply {
order (ByteOrder.nativeOrder())
}.asShortBuffer().apply {
put(drawOrder)
position(0)

}

if (vertBuf > 0 &3 idxBuf > 0) {
GLES20.glBindBuffer(GLES20.GL_ARRAY BUFFER,
vertBuf)
GLES20.glBufferData(GLES20.GL_ARRAY BUFFER,
vertexBuffer.capacity() * BYTES PER_FLOAT,
vertexBuffer, GLES20.GL_STATIC DRAW)

GLES20.g1BindBuffer(
GLES20.GL_ELEMENT_ARRAY BUFFER, idxBuf)
GLES20.glBufferData(
GLES20.GL_ELEMENT ARRAY BUFFER,
drawListBuffer.capacity() *
BYTES_PER_SHORT,
drawListBuffer, GLES20.GL_STATIC DRAW)

CHAPTER 9: User Interface 239

GLES20.glBindBuffer(GLES20.GL_ARRAY_BUFFER, 0)
GLES20.g1BindBuffer(
GLES20.GL_ELEMENT_ ARRAY BUFFER, 0)
} else {
// TODO: handle error
}

// Load the texture

textureDataHandle =
MyGLRenderer.loadTexture(context,
R.drawable.myImage)

}

The draw() callback is used to draw the buffers including the texture. Inside the following
snippet, we also close the class.

fun draw() {
// Add program to OpenGL ES environment
GLES20.glUseProgram(program!!)

// get handle to vertex shader's vPosition member
val positionHandle =
GLES20.glGetAttribLocation(program,
"vPosition")
// Enable a handle to the vertices
GLES20.glEnableVertexAttribArray(positionHandle)
// Prepare the coordinate data
GLES20.glVertexAttribPointer(positionHandle,
COORDS_PER_VERTEX,
GLES20.GL_FLOAT, false,
VERTEX_STRIDE, vertexBuffer)

J/ trrn

// Buffer offsets are a little bit strange in the
// Java binding - For the other arrays we create

// a new view and then reset the vertex array
A R R R N RN AR R AR R AR AR AR RN RN

// get handle to vertex shader's vNorm member
vertexBuffer.position(COORDS PER_VERTEX)
val normBuffer = vertexBuffer.slice()
// create a new view
vertexBuffer.rewind()
// ... and rewind the original buffer
val normHandle =
GLES20.glGetAttribLocation(program, "vNorm™")
if(normHandle >= 0) {
// Enable a handle to the vertices
GLES20.glEnableVertexAttribArray(normHandle)
// Prepare the coordinate data

240

CHAPTER 9: User Interface

GLES20.glVertexAttribPointer(normHandle,
COORDS_PER_VERTEX,
GLES20.GL_FLOAT, false,
VERTEX_STRIDE, normBuffer)

}

// get handle to vertex shader's textureCoords
vertexBuffer.position(COORDS PER_VERTEX +
NORMS_PER_VERTEX)
val textureBuffer = vertexBuffer.slice()
// create a new view
vertexBuffer.rewind()
// ... and rewind the original buffer
val textureHandle =
GLES20.glGetAttribLocation(program,
"vTexture")
if(textureHandle >= 0) {
// Enable a handle to the texture coords
GLES20.glEnableVertexAttribArray(
textureHandle)
// Prepare the coordinate data
GLES20.glVertexAttribPointer(textureHandle,
COORDS_PER_VERTEX,
GLES20.GL_FLOAT, false,
VERTEX STRIDE, textureBuffer)

}

// get handle to vertex shader's vColor member
vertexBuffer.position(COORDS PER VERTEX +
NORMS PER_VERTEX + TEXTURE_PER_VERTEX)
val colorBuffer = vertexBuffer.slice()
// create a new view
vertexBuffer.rewind()
// ... and rewind the original buffer
val colorHandle =
GLES20.glGetAttribLocation(program, "vColor")
if(colorHandle >= 0) {
// Enable a handle to the vertices
GLES20.glEnableVertexAttribArray(colorHandle)
// Prepare the coordinate data
GLES20.glVertexAttribPointer(colorHandle,
COLORS_PER_VERTEX,
GLES20.GL_FLOAT, false,
VERTEX_STRIDE, colorBuffer)

}

textureUniformHandle =
GLES20.glGetUniformLocation(program,
"texture")

if(textureHandle >= 0) {
// Set the active texture unit to
// texture unit o.
GLES20.glActiveTexture(GLES20.GL_TEXTUREO)
// Tell the texture uniform sampler to use

CHAPTER 9: User Interface 241

// this texture in the shader by binding to
// texture unit o.
GLES20.glUniform1i(textureUniformHandle, 0)

}

// Draw the plane
GLES20.glBindBuffer(GLES20.GL_ARRAY BUFFER,
vertBuf)
GLES20.g1BindBuffer(
GLES20.GL_ELEMENT_ARRAY BUFFER, idxBuf)
GLES20.glDrawElements(GLES20.GL_TRIANGLES,
drawListBuffer.capacity(),
GLES20.GL_UNSIGNED SHORT, 0)

GLES20.glBindBuffer(GLES20.GL_ARRAY_BUFFER, 0)
GLES20.glBindBuffer(
GLES20.GL_ELEMENT_ARRAY BUFFER, 0)

// Disable vertex array

GLES20.glDisableVertexAttribArray(
positionHandle)

if(normHandle >= 0)
GLES20.glDisableVertexAttribArray(
normHandle)

if(textureHandle >= 0)
GLES20.glDisableVertexAttribArray(
textureHandle)

if(colorHandle >= 0)
GLES20.glDisableVertexAttribArray(
colorHandle)

User Input

To respond to user touch events, all you have to do is overwrite the function onTouchEvent(e:
MotionEvent) : Boolean { ... }. The MotionEvent you receive is able to tell many things.

Touch events: Touch down and touch up
Move events: Moving while touched
Pointer events: Second, third, ... finger touching

Besides that, a couple more events are registered; see the online documentation of
MotionEvent.

If we want to listen to touch and move events, the minimum implementation for such a
listener reads as follows:

override
fun onTouchEvent(event: MotionEvent): Boolean {
var handled = true

242 CHAPTER 9: User Interface

when(event.actionMasked) {
MotionEvent.ACTION_DOWN -> {
Log.e("LOG","Action: ACTION DOWN " +
event.toString())

}

MotionEvent.ACTION UP -> {
Log.e("LOG","Action: ACTION UP " +
event.toString())

}
MotionEvent.ACTION MOVE -> {

Log.e("LOG","Action: MOVE " +
event.toString())

}
else -> handled = false
}

return handled || super.onTouchEvent(event)

}

You can see that we return true when our listener handles events. If we receive an ACTION
DOWN event, returning true is important; otherwise, both move and up actions will be ignored.

Note We check the actionMasked accessor of the event object, not the action accessor as is
suggested often. The reason for this is that the action accessor might contain additional bits if a
multitouch event happens. The masked variant is just more reliable.

Ul Design with Movable Items

If your app needs movable Ul elements, you should use the FramelLayout class or a subclass
of it. We want to take care of Ul element positions ourselves and don’t want a layout class
to interfere with that. The FramelLayout class does not position its elements dynamically, so
using it is a good choice for that kind of positioning.

If you want your view to be movable, you create a subclass and overwrite its onTouchEvent ()
method. For example, say you have an ImageView and want to have it movable. For that aim,
create a subclass as follows:

class MyImageView : ImageView {
constructor(context: Context)
: super(context)
constructor(context: Context, attrs: AttributeSet)
: super(context, attrs)

0.0f
0.0f

var dx : Float
var dy : Float

override
fun onTouchEvent(event: MotionEvent): Boolean {
var handled = true

CHAPTER 9: User Interface 243

when(event.actionMasked) {
MotionEvent.ACTION_DOWN -> {
//Log.e("LOG","Action: ACTION DOWN " +
//event.toString())
dx = x - event.rawX
dy =y - event.rawY

}
MotionEvent.ACTION_UP -> {

//Log.e("LOG","Action: ACTION UP " +
//event.toString())

}
MotionEvent.ACTION_MOVE -> {

//Log.e("LOG","Action: MOVE " +
//event.toString())
x = event.rawX + dx
y = event.rawY + dy

}
else -> handled = false
}

return handled || super.onTouchEvent(event)

}
}

If instead you want to have moving handled by a single point inside your code, you can do
one of two things.

You can create a base class for movable views and let all Ul elements
inherit from it.

You can add the touch event listener to the layout container. You then,
however, have to provide some logic to find the touched Ul element by
checking pixel coordinate bounds.

Menus and Action Bars

Menus and action bars are important user interface elements if you want to present your
user with a list of selectable choices. In the following sections, we present different kinds of
menus and explain when and how to use them.

Options Menu

The options menu shows up inside the app bar. Android Studio will help you to start
developing an app with an app bar. If you want to do that yourself, inside your layout add the
following:

<android.support.design.widget.AppBarLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:theme="@style/AppTheme.AppBarOverlay">

244 CHAPTER 9: User Interface

<android.support.v7.widget.Toolbar
android:id="@+id/toolbar"
android:layout_width="match_parent"
android:layout_height="?attr/actionBarSize"
android:background="?attr/colorPrimary"
app:popupTheme="@style/AppTheme.PopupOverlay"/>
</android.support.design.widget.AppBarLayout>

Inside the activity’s onCreate(...) method, we need to tell Android OS that we are using an
app bar. To do so, register the app bar via the following:

setSupportActionBar(toolbar)

Also, in the activity, overwrite onCreateOptionsMenu(...) to create the menu, and overwrite
onOptionsItemSelected(...) to listen to menu click events.

override
fun onOptionsItemSelected(item: MenuItem): Boolean {
when (item.getItemId()) {
menu_item1 -> {
Toast.makeText(this,"Item 1",
Toast.LENGTH_LONG) . show()
return true
}
menu_item2 -> {
Toast.makeText(this,"Item 2",
Toast.LENGTH_LONG).show()
return true
}
else -> return
super.onOptionsItemSelected(item)

}
}

override

fun onCreateOptionsMenu(menu: Menu): Boolean {
val inflater = menuInflater
inflater inflate(R.menu.my menu, menu)
return true

}

What is left is the definition of the menu itself. Inside res/menu, add an XML file called my_
menu.xml with the following contents:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android=
"http://schemas.android.com/apk/res/android">
<item android:id="@+id/menu_item1"
android:title="@string/title item1"/>
<item android:id="@+id/menu_item2"
android:title="@string/title item2"/>
</menu>

CHAPTER 9: User Interface 245

Here, the <item> element accepts more attributes; see the online documentation for

more information (search for Android Menu Resource). Particularly interesting is the
android:showAsAction attribute. Setting it to ifRoom allows for prominently placing the menu
item inside the action bar as a separate action element.

Context Menu

A context menu shows up after a long tap on a registered view. To do this registration, inside
the activity call registerForContextMenu() and provide the view as an argument.

override fun onCreate(savedInstanceState: Bundle?) {

registerForContextMenu(myViewId)

}

This can be done several times if you want the context menu to show up for several views.

Once a context menu is registered, you define it by overwriting onCreateContextMenu(...)
inside the activity, and furthermore you overwrite onContextItemSelected to listen to menu
select events. Here’s an example:

override
fun onCreateContextMenu(menu: ContextMenu, v: View,
menuInfo: ContextMenuInfo?) {
super.onCreateContextMenu(menu, v, menuInfo)
val inflater = menuInflater
inflater.inflate(R.menu.context menu, menu)

}

override
fun onContextItemSelected(item: Menultem): Boolean {
when (item.itemId) {
ctxmenu_item1 -> {
Toast.makeText(this,"CTX Item 1",
Toast.LENGTH_LONG) . show()
}
ctxmenu_item2 -> {
Toast.makeText(this,"CTX Item 2",
Toast.LENGTH_LONG).show()
}
else -> return
super.onContextItemSelected(item)

}

return true

246 CHAPTER 9: User Interface

The XML definition goes to a standard menu XML file, for example res/context_menu.xml.

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android=
"http://schemas.android.com/apk/res/android">
<item android:id="@+id/ctxmenu_item1"
android:title="@string/ctxtitle_item1"/>
<item android:id="@+id/ctxmenu_item2"
android:title="@string/ctxtitle item2"/>
</menu>

It is also possible to open a context menu programmatically by using openContextMenu(
someView) inside an activity.

Contextual Action Mode

The contextual action mode signs responsible for a context-relative app bar. While the app
bar is static to the app, a contextual action mode is view specific. What you have to do for
this kind of context menu is the following:

1. Implement the ActionMode.Callback interface.

— Inside onCreateActionMode(...) create the menu, similar to
onCreateContextMenu() shown previously for the standard context
menu.

— Inside onPrepareActionMode(...) return false, unless you need special
preparation steps.

— Implement onActionItemClicked(...) to listen to touch events.
2. Create a menu XML resource file, as for the standard context menu.

3. Inside your code, open the contextual action mode by calling
startActionMode(theActionModeCallback).

Pop-up Menus

While context-related menus are mostly for settings that are not subject to be changed
often, menus that belong to a front-end workflow are best implemented as pop-up menus.
Pop-ups usually show up as a result of the user interacting with a certain view, so pop-up
menus are assigned to Ul elements.

Showing the pop-up menu of a view after some user action can be as easy as calling a function.

fun showPopup(v: View) {
PopupMenu(this, v).run {
setOnMenuItemClickListener { menuItem ->
Toast.makeText (this@TheActivity,
menuItem.toString(),
Toast.LENGTH_LONG) . show()
true

}

CHAPTER 9: User Interface 247

menuInflater.inflate(popup, menu)
show()
}
}

As usual, you also need to define the menu inside the res/menu resources. For the example,
it’s a file called popup.xml (as shown in the first argument to inflate(...)).

Progress Bars

Showing progress bars is a good way to improve the user experience for tasks that are
taking a couple of seconds. To implement progress bars, add a ProgressBar view to your
layout. It doesn’t matter whether you do that inside the XML layout file or from inside the
Kotlin program. In XML you write the following:

<ProgressBar
android:id="@+id/progressBar"
android:layout_width="wrap content"
android:layout_height="wrap_content"
/>

for an indeterminate bar (if you can’t tell the progress as a percentage value) or the following
for a determinate progress bar (you know the percentage while updating the progress bar).

<ProgressBar
android:id="@+id/progressBar"
style="@android:style/Widget.ProgressBar.Horizontal"
android:layout_width="wrap_content"”
android:layout_height="wrap_content"
android:progress="0"
/>

Inside the code you toggle the visibility of an indeterminate progress bar by using this:

progressBar.visibility = View.INVISIBLE
// or .. = View.VISIBLE

To set the progress value for a determinate progress bar, see the following example:

with(progressBar) {
if (Build.VERSION.SDK INT >= Build.VERSION_ CODES.O)
min = 0
max = 100
}
var value = 0
Thread {
while(value < 100) {
value += 1
Thread.sleep(200)
runOnUiThread {

248 CHAPTER 9: User Interface

progressBar.progress = value

}

}
progressBar.visibility = View.INVISIBLE

}.start()

Here, we use a background thread to simulate the longer-running task. In a real-world app,
there will be something more sensible happening in the background. And maybe you use an
AsyncTask instead of a thread.

Working with Fragments

A fragment is a reusable, modular part of an activity. If you develop a nontrivial app without
fragments, you will have a number of activities calling each other. The problem is that on
devices with larger screens, this is might not be the optimal solution if the activities stay in
close relation to each other. Consider, for example, a list of some items in one activity and a
details view of a selected item in another activity. On a small device it is perfectly acceptable
to start the details activity once the user clicks an item in the list activity. On a larger screen,
however, it might improve the user experience if both views, the list and the details, show up
beside each other.

That is where fragments come handy. Instead of switching between activities, you create
several fragments that are part of the same activity. Then, depending on the device, you
choose either the one-pane view or the two-pane view.

Developing for fragments is easy if you perform a transition from an app that consists only
of activities. Fragments have a lifecycle just as activities do, and the lifecycle callbacks are
similar if not the same as for activities. This is where the story gets a little bit complicated,
though, because the lifecycle of the container activity and the lifecycles of the contained
fragments are connected to each other, and fragments also exhibit a dedicated callstack
behavior. The online documentation for fragments gives you a detailed reference for all
fragment-related issues; here in this section we limit the survey to the basic aspects of
creating and using fragments.

Creating Fragments

To create fragments, you have two options: either you specify Fragment elements inside a
layout file or you add fragments programmatically from inside the Kotlin code.

To use the XML way of adding fragments to your app, inside a layout file you identify
appropriate places where to add fragments and write the following:

<fragment android:name=
"com.example.android.fragments.TheFragment"
android:id="@+id/fragment_id1"
android:layout_weight="..."
android:layout_width="..."
android:layout_height="..." />

CHAPTER 9: User Interface 249

Layout parameters are to be chosen according to your app’s layout needs. For different
devices, more precisely different screen sizes, you can provide several distinct layout files
that contain varying numbers of fragments at varying places.

For the fragment class, designated by the name attribute in the XML file, start with a bare
minimum like the following:

import android.support.v4.app.Fragment

class MyFragment : Fragment() {
override
fun onCreateView(inflater: LayoutInflater?,
container: ViewGroup?,
savedInstanceState: Bundle?): View? {
return inflater!!.inflate(
my_fragment, container, false)

}
}

Add a layout file called my_fragment.xml to the res/layout resource folder.

To add fragments from inside your Kotlin code, you identify a layout container or ViewGroup
where to place a fragment and then use a fragment manager to perform that insertion.

with(supportFragmentManager.beginTransaction()) {
val fragment = MyFragment()
add(fragm container.id, fragment, "fragmTag")
val fragmentId = fragment.id // can use that later...
commit()

}

This can happen, for example, inside the activity’s onCreate() callback or more dynamically
at any other suitable place. fragm_container is, for example, a <FrameLayout> element inside
the layout XML.

Note A fragment gets its ID from the fragment manager while adding it inside a transaction. You
cannot use it before that, and you cannot provide your own ID if you add fragments in Kotlin code.

Handling Fragments from Activities

Handling fragments from inside activities includes the following:
Adding fragments, as shown earlier in the “Creating Fragments” section
Getting references to fragments, given an ID or a tag
Handling the back stack

Registering listeners for lifecycle events

250 CHAPTER 9: User Interface

For all those needs, you use getSupportFragmentManager (), which gives you the fragment
manager that is capable of doing all that, or in Kotlin simply just use the following accessor
to fetch a reference:

supportFragmentManager

Note There is also a fragmentManager without “support” in the name. That one points to the
framework’s fragment manager as opposed to the support library fragment manager. Using the
support fragment manager, however, improves the compatibility with older API levels.

Communicating with Fragments

Activities can communicate with their fragments by using the fragment manager and finding
fragments based on their ID or tag.

val fragm = supportFragmentManager.
findFragmentByTag("fragmTag")

// or val fragm = supportFragmentManager.

/7 findFragmentById(fragmId)

But fragments also can talk to their activity. This might indicate a poor application design
because fragments should be self-contained entities. If you still need it, you can use
getActivity() inside the fragment class, or in Kotlin simply use this to access it:

activity

From there a fragment can even fetch references to other fragments.

App Widgets

App widgets are a dedicated type of application that show informational messages and/

or controllers in other apps, especially the home screen. App widgets get implemented as
special broadcast receivers and as such are subject to being killed by the Android OS once
the callback methods have done their work and a couple of seconds have passed. If you
need to have a longer process run, consider starting services from inside the app widgets.

To start creating an app widget, write the following in AndroidManifest.xml as a child
element of <application>:

<receiver android:name=".ExampleAppWidgetProvider" >
<intent-filter>
<action android:name="android.appwidget.action.
APPWIDGET_UPDATE" />
</intent-filter>
<meta-data android:name="android.appwidget.provider"
android:resource="@xml/
example appwidget info" />
</receiver>

CHAPTER 9: User Interface 251

Next create metadata inside the resources. Create a new file called example appwidget
info.xml inside res/xml and write the following in it:

<appwidget-provider xmlns:android=
"http://schemas.android.com/apk/res/android"
android:minWidth="40dp"
android:minHeight="40dp"
android:updatePeriodMillis="86400000"
android:resizeMode="horizontal|vertical"
android:widgetCategory="home_screen">
</appwidget-provider>

What is left is creating the broadcast listener class. For this aim, it is easiest to inherit from
class android.appwidget.AppWidgetProvider. For example, write the following:

class ExampleAppWidgetProvider : AppWidgetProvider() {
override
fun onUpdate(context: Context,
appWidgetManager: AppWidgetManager,
apphWidgetIds:IntArray) {
// Perform this loop procedure for each App
// Widget that belongs to this provider
for(appWidgetId in appWidgetIds) {
// This is just an example, you can do other
// stuff here...
// Create an Intent to launch MainActivity
val intent = Intent(context,
MainActivity::class.java)
val pendingIntent = PendingIntent.
getActivity(context, 0, intent, 0)

// Attach listener to the button
val views =
RemoteViews (context.getPackageName(),
R.layout.appwidget provider layout)
views.setOnClickPendingIntent(
R.id.button, pendingIntent)

// Tell the AppWidgetManager to perform an

// update on the app widget

appWidgetManager .updateAppWidget (
appWidgetId, views)

}
}

Because an app widget provider can serve several app widgets, we have to go through a
loop inside the setup. Since this needs a layout file ciappwidget provider layout.xml, we
create this file inside res/layout and write the following:

<?xml version="1.0" encoding="utf-8"?>
<Relativelayout
xmlns:android=
"http://schemas.android.com/apk/res/android"

252 CHAPTER 9: User Interface

android:layout width="match_parent"
android:layout_height="match_parent"
android:orientation="horizontal">

<Button
android:id="@+id/button"
android:layout width="match_parent"
android:layout height="wrap_content"
android:text="Go"/>
</Relativelayout>

Note Not all layout containers and views are allowed inside the layout file for an app widget.

You can use one of these: FrameLayout, LinearLayout, Relativelayout, GridLayout,
AnalogClock, Button, Chronometer, ImageButton, ImageView, ProgressBar, TextView,
ViewFlipper, ListView, GridView, StackView, and AdapterViewFlipper.

Note The user must still decide to activate an app widget by long-tapping the app icon and then
placing it on the home screen. Because not all users know this, the functionality of an app should
not depend on whether it gets set as an app widget on the home screen.

App widgets can have a configuration activity attached to them. This special activity gets
called once the user tries to place the app widget on the home screen. The user then can be
asked for some settings concerning appearance or functioning. To install such an activity,
you write the following in AndroidManifest.xml:

<activity android:name=".ExampleAppWidgetConfigure">
<intent-filter>
<action android:name=
"android.appwidget.action.APPWIDGET_CONFIGURE"/>
</intent-filter>
</activity>

The intent filter shown here is important; it tells the system about this special nature of the
activity.

The app widget configuration activity must then be added to the XML configuration file
example_appwidget info.xml. Add the following as an additional attribute, using the fully
qualified name of the configurator class:

android:configure=
"full.class.name.ExampleAppWidgetConfigure"

CHAPTER 9: User Interface 253

The configuration activity itself is asked to return the app widget ID as follows:

class ExampleAppWidgetConfigure : AppCompatActivity() {
var awi:Int = 0

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity conf)

awi = intent.extras.getInt(
AppWidgetManager.EXTRA_APPWIDGET_ID)

Toast.makeText(this,"" + awi, Toast.LENGTH_LONG).
show()

// do more configuration stuff...

fun goBack(view: View) {
// just an example...
val data = Intent()
data.putExtra(AppWidgetManager.EXTRA APPWIDGET ID,
awi)
setResult(RESULT OK, data)
finish()

Note The app widget’s onUpdate() method is not getting called the first time the
configuration activity exits. It lies in the responsibility of the configuration activity to accordingly call
updateApphidget() on the app widget manager if needed.

Drag and Drop
Android supports drag and drop for any kind of Ul element and layout.

The app defines a gesture that defines the start of a drag operation.
You are totally free to define this gesture; usual candidates are touch
or touch and move operations, but you can also start drag operations
programmatically.

If the drag and drop designates some kind of data transfer, you may
assign a data snippet of type android.content.ClipData to the drag
operation.

Views that take part of this drag-and-drop operation (this includes any
drag source and all possible drop targets) get a customized
View.OnDraglistener object assigned to.

254

CHAPTER 9: User Interface

While the dragging is in progress, the dragged target gets visually
represented by a moving shadow object. You are free to define it. It
could be a star, a box, or any kind of graphics resembling the drag
source. You only have to tell the system how to paint it. The positioning
during the drag operation gets automatically handled by the Android
OS. Because the drag source stays in place during the drag operation,
the layout remains static all the time, and the dragging does not thwart
layout operations by the layout manager.

When the drag shadow enters the area of a possible drop target, the
listener gets informed about that, and you can react by, for example,
changing the visual appearance of the drop candidate.

Because all drag sources and possible drop targets get informed about
the various dragging states, you are free to visually express that by
using different view appearances.

Once a drop happens, the listener gets informed and you can freely
react on such drop events.

It is also possible to not use a dedicated drag-and-drop listener but instead overwrite some
specific methods of the views taking part in drag-and-drop operations. The downside of
that is you have to use the customized views inside the layout description, which makes

it somewhat less readable. Also, from an architectural point of view, the views then know
too much of what is happening to them, which is an external concern and as such is better
handled from outside objects. We therefore follow the listener approach and in the following
sections describe what exactly to do for this methodology.

Defining Drag Data

If your drag-and-drop operation defines some kind of data transfer from one object
represented by a view to another, you define a ClipData object, for example, as follows:

val item = ClipData.Item(myView.tag.toString())
val dragData = ClipData(myView.tag.toString(),

arrayOf(MIMETYPE_TEXT PLAIN), item)

The first argument to the constructor is a user-readable label for the clip datum, the second

describes the type of the contents by assigning appropriate MIME types, and the item argument
represents the datum to be transported, which here is the string given by the tag attribute of the
view. Other item types are intents and URls, to be specified in the constructor of ClipData.Item.

Defining a Drag Shadow

The drag shadow is the visible element painted underneath your finger while the dragging is
in progress. You define the shadow in an object as follows:

class DragShadow(val resources: Resources, val resId:Int,

view: ImageView) : View.DragShadowBuilder(view) {

val rect = Rect()

CHAPTER 9: User Interface 255

// Defines a callback that sends the drag shadow

// dimensions and touch point back to the

// system.

override

fun onProvideShadowMetrics(size: Point, touch: Point) {
val width = view.width
val height = view.height

rect.set(0, 0, width, height)

// Back to the system through the size parameter.
size.set(width, height)

// The touch point's position in the middle
touch.set(width / 2, height / 2)

}

// Defines a callback that draws the drag shadow in a
// Canvas
override
fun onDrawShadow(canvas: Canvas) {

canvas.drawBitmap(

BitmapFactory.decodeResource(

resources, resld),

null, rect, null)

}
}

This example draws a bitmap resource, but you can do anything you like here.

Starting a Drag

To start a drag, you invoke startDragAndDrop() for API level 24 and higher, or you invoke
startDrag() on everything else, on the view object that serves as a drag source. Here’s an
example:

theView.setOnTouchListener { view, event ->
if(event.action == MotionEvent.ACTION DOWN) {
val shadow = DragShadow(resources,
R.the dragging image, theView)

val item = ClipData.Item(frog.tag.toString())
val dragData = ClipData(frog.tag.toString(),
arrayOf (MIMETYPE_TEXT PLAIN), item)

if (Build.VERSION.SDK_INT >=
Build.VERSION CODES.N) {
theView.startDragAndDrop(dragData, shadow,
null, 0)

256 CHAPTER 9: User Interface

} else {
theView.startDrag(dragData, shadow,
null, 0)

true

}

If the drag operation is not associated with a data type, you can just as well let dragData be
null. In this case, you don’t have to build a ClipData object.

Listening to Drag Events

The complete set of events occurring during a drag-and-drop operation is governed by a
drag-and-drop listener. Here’s an example:

class MyDraglListener : View.OnDraglistener {
override
fun onDrag(v: View, event: DragEvent): Boolean {
var res = true
when(event.action) {
DragEvent.ACTION _DRAG STARTED -> {
when(v.tag) {
"DragSource" -> { res = false
/*not a drop receiver*/ }
"OneTarget" -> {
// could visibly change
// possible drop receivers

}
}
DragEvent.ACTION_DRAG_ENDED -> {
when(v.tag) {
"OneTarget" -> {

// could visibly change
// possible drop receivers

}
}
DragEvent.ACTION_DROP -> {
when(v.tag) {
"OneTarget" -> {
// visually revert drop
// receiver ...
}
}

Toast.makeText(v.context, "dropped!",
Toast.LENGTH_LONG).show()

CHAPTER 9: User Interface 257

DragEvent.ACTION _DRAG_ENTERED -> {
when(v.tag) {
"OneTarget" -> {
// could visibly change
// possible drop receivers

}
}
DragEvent.ACTION_DRAG_EXITED -> {
when(v.tag) {
"OneTarget" -> {
// visually revert drop
// receiver ...

}
}

return res

}
}

You can see that we are listening to drag start and end events, to the shadow entering or
exiting a possible drop area, and to drop events. As pointed out, how you react to all these

events is totally up to you.

Note In the example we use a tag attribute assigned to a view to identify the view as part of a
drag-and-drop operation. In fact, you can also use the ID or any other way you might think of.

What is left is inside the activity’s onCreate() callback; you register the listener to all views
that participate in a drag-and-drop operation.

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity main)

theView.setOnTouchListener ...
val draglistener = MyDraglistener()

theView.setOnDraglistener(draglistener)
otherView.setOnDraglListener(draglListener)

258 CHAPTER 9: User Interface

Multitouch

Multitouch events in the Android OS are surprisingly easy to handle. All you need is
to overwrite the onTouchEvent () method of a View or a ViewGroup element. Inside the
onTouchEvent (), you fetch the masked action and act upon it.

frog.setOnTouchListener { view, event ->
true
}

Note In older versions of Android, you usually dispatch on the action as in event.action. With
multitouch gestures, it is better to act on the maskedAction.

Inside the listener, you get the masked action by event.actionMasked and pass it to a when()
{ .. } statement.

The magic now lies in this listener being invoked for all fingers (here called pointers)
consecutively. To find out how many fingers currently are registered, you use event.
pointerCount, and if you want to know which finger the event belongs to you, use val index
= event.actionIndex. A starting point is thus as follows:

theView.setOnTouchListener { view,event ->

fun actionToString(action:Int) : String = mapOf(
MotionEvent.ACTION DOWN to "Down",
MotionEvent.ACTION MOVE to "Move",
MotionEvent.ACTION _POINTER DOWN to "Pointer Down",
MotionEvent.ACTION UP to "Up",
MotionEvent.ACTION POINTER UP to "Pointer Up",
MotionEvent.ACTION OUTSIDE to "Outside",
MotionEvent.ACTION CANCEL to "Cancel").

getOrDefault(action,"")

val action = event.actionMasked

val index = event.actionIndex

var xPos = -1

var yPos = -1

Log.d("LOG", "The action is " +
actionToString(action))

if (event.pointerCount > 1) {
Log.d("LOG", "Multitouch event")
// The coordinates of the current screen contact,
// relative to the responding View or Activity.
xPos = event.getX(index).toInt()
yPos = event.getY(index).toInt()

} else {
// Single touch event

CHAPTER 9: User Interface 259

Log.d("LOG", "Single touch event")
xPos = event.getX(index).toInt()
yPos = event.getY(index).toInt()

}

// do more things...

true

Picture-in-Picture Mode

Starting with Android 8.0 (API level 26), there exists a picture-in-picture mode where an
activity gets shrunk and pinned to an edge of the screen. This is especially useful if the
activity plays a video and you want the video to keep playing while another activity shows up.

To enable the picture-in-picture mode, inside AndroidManifest.xml add the following
attributes to <activity>:

android:resizeableActivity="true"

android:supportsPictureInPicture="true"

android:configChanges=
"screenSize|smallestScreenSize|
screenlayout |orientation”

Then, wherever feasible in your app, you start the picture-in-picture mode by using this:

enterPictureInPictureMode()

You might want to change and later revert the layout if the picture-in-picture mode
gets entered or exited. To do so, overwrite onPictureInPictureModeChanged(
isInPictureInPictureMode : Boolean, newConfig : Configuration) and react accordingly.

Text to Speech

The text to speech framework allows for text to be converted to audio, either directly sent
to the audio hardware or sent to a file. Using the corresponding TextToSpeech class is easy,
but you should make sure all necessary resources are loaded. For this aim, an intent with
action TextToSpeech.Engine.ACTION_CHECK TTS_DATA should be fired. It is expected to return
TextToSpeech.Engine.CHECK VOICE DATA PASS; if it does not, call another intent with action
TextToSpeech.Engine.ACTION INSTALL TTS DATA to let the user install text to speech data.

An example activity doing all that reads as follows:
class MainActivity : AppCompatActivity() {

companion object {
val MY DATA CHECK CODE = 42
}

var tts: TextToSpeech? = null

260 CHAPTER 9: User Interface

override

fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity main)

val checkIntent = Intent()
checkIntent.action = TextToSpeech.Engine.
ACTION CHECK_TTS_DATA
startActivityForResult(checkIntent,
MY _DATA CHECK_CODE)

}

fun go(view: View) {
tts?.run {
language = Locale.US
val myText1 = "Did you sleep well?"
val myText2 = "It's time to wake up."
speak(myText1, TextToSpeech.QUEUE FLUSH, null)
speak(myText2, TextToSpeech.QUEUE_ADD, null)

}

override
fun onActivityResult(requestCode: Int,
resultCode: Int, data: Intent) {
if (requestCode == MY DATA CHECK_CODE) {
if (resultCode ==
TextToSpeech.Engine.CHECK VOICE DATA PASS) {
// success, create the TTS instance
tts = TextToSpeech(this, { status ->
// do s.th. if you like
)
} else {
// data are missing, install it
val installIntent = Intent()
installIntent.action =
TextToSpeech.Engine.ACTION INSTALL_TTS_ DATA
startActivity(installIntent)
}
}
}
}

This example also contains a go() method, which for example could be triggered by a
button press. | will produce some speech and send it immediately to the loudspeakers.

If instead you want to write the audio to a file, use the tts.synthesizeToFile() method.
You can find more details in the online documentation of TextToSpeech.

Chapter

Development

This chapter covers issues closer to development matters, compared to the previous
chapters. The topics we will be talking about here are less tightly coupled to specific Android
OS APIs. It is more our concern here to find out how technical requirements can best be
accomplished using Kotlin methodologies.

The chapter also has a section that covers transcribing Kotlin code to JavaScript code that
can serve WebView widgets.

Writing Reusable Libraries in Kotlin

Most tutorials you will find on the Web are about activities, services, broadcast receivers,
and content providers. These components are reusable in the sense that you can more or
less easily extract them from a project and copy them to another project. The encapsulation
in the Android OS has reached an elaborate stage, which makes this reuse possible. On a
lower level, however, in some cases the libraries or APIs that are provided inside Android
might not suit all your needs, so you might be tempted to develop such libraries yourself and
then copy the sources from project to project wherever feasible.

Surely, such a copying on the source code level does not fit well into modern methodologies
for reusable libraries; just think about maintenance and versioning issues that introduce a

lot of boilerplate efforts. The best thing is to design such reusable libraries as dedicated
development artifacts. They then can be easily reused from different projects.

In the following sections, we develop a rudimentary regular expression library, serving as a
conceptual basis for your own library projects.

Starting a Library Module

Library projects are projects containing one or more modules. With Android Studio open,
create a new project and make sure it has Kotlin support enabled. Then, inside the new
project go to New » New module and choose Android Library.

© Peter Spath 2018 261
P. Spath, Pro Android with Kotlin, https://doi.org/10.1007/978-1-4842-3820-2_10

http://dx.doi.org/10.1007/978-1-4842-3820-2_10

262 CHAPTER 10: Development

Note An Android library is more than just a collection of classes. It may also contain resources
and configuration files. For our purposes, we’ll just look at the classes. From a development
perspective, these additional possibilities don’t hurt, and you just can ignore them. For projects
using the Android Library type, however, this gives you many more possibilities for future
extensions, compared to using just JAR files.

Creating the Library
Inside the library module, create a new Kotlin class and inside write the following:

package com.example.regularexpressionlib

infix operator fun String.div(re:String) :
Array<MatchResult> =
Regex(re).findAll(this).toList().toTypedArray()

infix operator fun String.rem(re:String) :
MatchResult? =
Regex(re).findAll(this).toList().firstOrNull()

operator fun MatchResult.get(i:Int) =
this.groupValues[i]

fun String.onMatch(re:String, func: (String)-> Unit)
: Boolean =
this.matches(Regex(re)).also { if(it) func(this) }

What these four operators and functions do is not less than allowing us to write
searchString/regExpString to search for regular expression matches and searchString %
regExpString to search for the first match. In addition, we can use searchString.onMatch()
to have some block execute only if there is a match.

This listing is different from all the listings we have seen so far in this book. First, you can see
that we don’t have any class here. This is possible because Kotlin knows the concept of a
file artifact. Behind the scenes it generates a hidden class based on the package name. Any
client of the library that imports it via import com.example.regularexpressionlib.* can act
as if it performed a static import of all these functions in Java.

infix operator fun String.div(re:String) defines a division operator for strings. Such
a division is not possible in the standard, so there is no clash with Kotlin built-in operators. It
uses the Regex class from the Kotlin libraries to find all occurrences of a regular expression in
a search string and convert it to an array, so we can later use the [] operator to access the
results by index. infix operator fun String.rem(re:String) does almost the same, but
it defines the % operator for strings, performs a regular expression search, and takes only the
first result or returns null if no result exists.

CHAPTER 10: Development 263

operator fun MatchResult.get(i:Int) = ... is an extension of the MatchResult returned
by the previous operators. It allows for accessing the groups of a match by index. Say if,
for example, you searched for (el)” in- side "Hello Nelo”, you can write ("Hello Nelo" /
"(e.)") [0][1] to get the first group of the first match, in this case the el from Hello

Testing the Library

We need a way to test the library while developing it. Unfortunately, Android Studio 3.0 does
not allow for something like a main() function. The only thing we can do is to create a unit
test, and for our case such a unit test could read as follows:

import org.junit.Assert.*
import org.junit.Test

class RegularExpressionTest {
@Test
fun proof of concept() {
assertEquals(1, ("Hello Nelo" / ".*el.*").size)
assertEquals(2, ("Hello Nelo" / ".*?el.*?").size)
var si:String = ""
("Hello Nelo" / "e[1X]").forEach {
sl += it.groupValues
}

assertEquals("[el][el]", s1)

var s2: String =

("Hello Nelo" / ".*el.*").firstOrNull()?.run {
s2 += this[0]

}

assertEquals("Hello Nelo", s2)
assertEquals("el"”,
("Hello Nelo" % ".*(el).*")2.let{ it[1] })

assertEquals("el",
("Hello Nelo" / ".*(el).*")[0][1])

var matchi: Boolean = false

"Hello".onMatch(".*el.*") {
matchl = true

}

assertTrue(match1)

}
}

You can then run this test like any other unit test using Android Studio’s context menu. Note
that at early stages of the development you can add println() statements to the test to
print some information on the test console while the test runs.

264 CHAPTER 10: Development

Using the Library

Once you invoke Build » Rebuild Project, you can find the Android library inside this folder
of the module.

build/outputs/aar

To use it from clients, create a new module in the client project via New » New Module,
choose Import .JAR/.AAR Package, and navigate to the .aar file generated by the library
project.

Caution This procedure copies the . aar file. If you have a new version of the library, you can
either remove the library project inside the client project and import it again or copy the . aar file
manually from the library project to the client project.

To use the library in the client, you just add import com.example.regularexpressionlib.*
to the header, and henceforth you can apply the new matching constructs as shown in the
previous test.

Publishing the Library

So far we have used the library locally, which means you have the library project somewhere
on your development machine and can use it from other projects on the same machine.

You can also publish libraries, meaning make them available for other developers inside a
corporate environment if you have a corporate repository at hand or make them truly public
for libraries you want to provide to the community.

Unfortunately, the process of publishing libraries is rather complex and involves altering

the build files in several places and using third party plug-ins and repository web sites.

This makes the process of publishing libraries a complex and brittle task, and a detailed
description of one possible publishing process might easily be outdated when you read this
book. | therefore ask you to do your own research. Entering publishing android libraries in
your favorite search engine will readily point you to online resources that will help you. If you
find several processes that might suit your needs, a general rule of thumb is to use one that
has a large supporting community and is as easy as possible.

Also, make sure for corporate projects you have the allowance to use public repositories if
you want to use one of them. If you cannot use public repositories, installing a corporate
repository is not an overly complex task. To establish a corporate Maven repository, you can
use the software suite Artifactory.

CHAPTER 10: Development 265

Advanced Listeners Using Kotlin

Whatever kind of app you are creating for Android, at one or the other place or more
probably quite often you will have to provide listeners for API function calls. While in Java
you have to create classes or anonymous inner classes that implement the listener interface,
in Kotlin you can do that more elegantly.

If you have a single abstract method (SAM) class or interface, it is easy. For example, if
you want to add an on-click listener to a button, which means you have to provide an
implementation of interface View.0OnClickListener, doing it the Java way looks like this:

btn.setOnClickListener(object : View.OnClickListener {
override fun onClick(v: View?) {
// do s.th.
}

1

However, since this interface just has one method, you can write it more succinctly, like this:

btn.setOnClickListener {
// do s.th.

}

You can let the compiler find out how the interface method should be implemented.

If a listener is not a SAM, that means if it has more than one method, this short notation is
not possible any longer. If, for example, you have an EditText view and want to add a text
change listener, you basically have to write the following even if you are interested only in the
onTextChanged() callback method.

val et = ... // the EditText view
et.addTextChangedListener(object : TextWatcher {
override fun afterTextChanged(s: Editable?) {
/1 ...
}

override fun beforeTextChanged(s: CharSequence?,
start: Int, count: Int, after: Int) {
/1 ...
}
override fun onTextChanged(s: CharSequence?,
start: Int, before: Int, count: Int) {
/1 ...

1)

266 CHAPTER 10: Development

What you could do, however, is extend the EditText class in a utility file and add the
possibility to provide a simplified text changed listener. To do so, start with such a file, for
example, utility.kt inside package com.example or of course any package of your app.
Add the following:

fun EditText.addTextChangedListener(1:
(CharSequence?, Int, Int, Int) -> Unit) {
this.addTextChangedListener(object : TextWatcher {
override fun afterTextChanged(s: Editable?) {

}

override fun beforeTextChanged(s: CharSequence?,
start: Int, count: Int, after: Int) {
}

override fun onTextChanged(s: CharSequence?,
start: Int, before: Int, count: Int) {
1(s, start, before, count)
}
)
}

This adds the desired method to that class dynamically.

You can now use import com.example.utility.* anywhere needed and then write the
following, which looks considerably more concise compared to the original construct:

val et = ... // the EditText view
et.addTextChangedListener({ s: CharSequence?,
start: Int, before: Int, count: Int ->
// do s.th.

1)

Multithreading

We already talked about multithreading to some extent in Chapter 9. In this section, we just
point out what Kotlin on a language level can do to simplify multithreading.

Kotlin contains a couple of utility functions inside its standard library. They help to start
threads and timers more easily compared to using the Java API; see Table 10-1.

CHAPTER 10: Development 267

Table 10-1. Kotlin Concurrency

Name Parameters Return Description
fixedRate-Timer name: String? Timer Creates and starts a
daemon: Boolean timer object for fixed-rate
heduling. Th iod and
initialDelay: Long §c'eOUIng © periodan

] initialDelay parameters are
period: Long in milliseconds.
action: TimerTask.() -> Unit

fixedRate-Timer name: String? Timer Creates and starts a
daemon: Boolean timer object for fixed-rate
scheduling. The period
startAt: Date d g. . p .I
parameter is in milliseconds.
period: Long
action: TimerTask.() -> Unit
timer name: String? Timer Creates and starts a
daemon: Boolean timer object for fixed-rate
heduling. Th iod
initialDelay: Long sche ulng. ° pgno.

] parameter is the time in
period: Long milliseconds between the end
action: TimerTask.() -> Unit of the previous and the start

of the next task.
timer name: String? Timer Creates and starts a
daemon: Boolean timer object for fixed-rate
startAt: Date scheduling. The period

) parameter is the time in
period: Long milliseconds between the end
action: TimerTask.() -> Unit of the previous and the start

of the next task.
thread start: Boolean Thread Creates and possibly starts

isDaemon: Boolean

contextClasslLoader:
Classloader?

name: String?
priority: Int
block: () -> Unit

a thread, executing its block.
Threads with higher priority
are executed in preference to
threads with lower priority.

For the timer functions, the action parameter is a closure with this being the corresponding
TimerTask object. Using it, you may, for example, cancel the timer from inside its execution
block. Threads or timers that have daemon or isDaemon set to true will not prevent the JVM
from shutting down when all nondaemonized threads have exited.

268 CHAPTER 10: Development

By virtue of its general functional abilities, Kotlin does a good job in helping us with
concurrency; many of the classes inside java.util.concurrent that deal with parallel
execution take a Runnable or Callable as an argument, and in Kotlin you can always replace
such SAM constructs via direct { ... } lambda constructs. Here’s an example:

val es = Executors.newFixedThreadPool(10)

/] ...

val future = es.submit({
Thread.sleep(2000L)
println("executor over")
10

} as ()->Int)
val res:Int = future.get()

So, you don’t have to write the following as in Java:

ExecutorService es = Executors.newFixedThreadPool(10);
/1 ...
Callable<Integer> c = new Callable<>() {

public Integer call() {

try {
Thread.sleep(2000L);
} catch(InterruptedException e { }
System.out.println("executor over");
return 10;
};
Future<Integer> f = es.submit(c);
int res = f.get();

Note, the cast to ()->Int is necessary in the Kotlin code, even with Android Studio complaining
that it is superfluous. The reason for that is if we didn’t do it, the other method with a Runnable as
an argument gets called instead, and the executor is unable to return a value.

Compatibility Libraries

There is an important and at the beginning not so easy to understand distinction between

the Framework API and the compatibility libraries. If you start developing Android apps, you
quite often see classes of the same name showing up in different packages. Or even worse,
you see classes of different names from different packages seemingly doing the same thing.

Let’s take a look at a prominent example. To create activities, either you can subclass
android.app.Activity or you can subclass android. support.v7.app.AppCompatActivity.
Looking at examples and tutorials you find on the Web, there seems to be no noticeable
difference in usage. In fact, AppCompatActivity inherits from Activity, so wherever Activity
is required, you can substitute AppCompatActivity for it, and it will compile. So, is there a
difference in function? It depends. If you look at the documentation or at the code, you can
see that the AppCompatActivity allows for adding android.support.v7.app.ActionBar, which
android.app.Activity does not. Instead, android.app.Activity allows for adding android.
app.ActionBar. And this time android. support.v7.app.ActionBar does not inherit from
android.app.ActionBar, so you cannot add android.support.v7.app.ActionBar to android.
app.Activity.

CHAPTER 10: Development 269

This basically says that if you favor android.support.v7.app.ActionBar over android.app.
ActionBar, you must use AppCompatActivity for an activity. Why would one use android.
support.v7.app.ActionBar instead of android.app.ActionBar? The answer is easy: the
latter is quite old; it has been available since API level 11. Newer versions of android.app.
ActionBar cannot break the API to maintain compatibility with older devices. But android.
support.v7.app.ActionBar can have new functions added; it is much newer and has existed
since API level 24.

The magic now works as follows: if you use a device that speaks API level 24 or higher, you
can use android.support.v7.app.AppCompatActivity and add android.support.v7.app.
ActionBar. You could also use android.app.Activity, but then you cannot add android.
support.v7.app.ActionBar and instead have to use android.app.ActionBar. So, for new
devices, it makes sense to use android.support.v7.app.AppCompatActivity for your
activities if the support library action bar better suits your needs compared to the framework
action bar.

How about older devices? You still can use android. support.v7.app.AppCompatActivity
because it is provided as a library added to the app. So, you also can use the modern
android.support.v7.app.ActionBar as an action bar and have more functionalities
compared to the old android.app.ActionBar genuinely provided by the device. And this
is actually how the trick goes; by using support libraries, even older devices can take
advantage of new functionalities added later! The implementation of the support class
internally checks for the device version and provides sensible fallback functionalities to
resemble modern devices as much as possible.

The caveat is that you as a developer have to live in two worlds at the same time. You have
to explicitly or implicitly use framework classes if there is no other choice, and you have to
think about using support library classes if available and if you want to ensure the maximum
compatibility with older devices. It is therefore vital to check, before using a class, whether
there is also a matching support library class. You might not be happy with this two-world
methodology used in Android, and it also means more thinking work to build an app, but
that is how Android handles backward compatibility.

You will readily find detailed information about the support libraries if you enter android
support library in your favorite search engine.

Support libraries get bundled with your app, so they must be declared as dependencies
in the build file. If you start a new project in Android Studio, it by default writes inside the
module’s build.gradle file.

dependencies {

implementation 'com.android.support:appcompat-v7

126.1.0'

implementation 'com.android.support.constraint:
constraint-layout:1.0.2'

270 CHAPTER 10: Development

You can see the support library version 7 is available by default, so you can use it right from
the start.

Kotlin Best Practices

Development is not only about solving IT-related problems or implementing requirements;
you also want to write “good” software. What “good” exactly means in this context is a
little blurry, though. A lot of aspects play a role here: quick development, high execution
performance, short programs, readable programs, high program stability, and so on. All of
them have their merits, and exaggerating any of them will thwart the other aspects.

In fact, you should have all of them in mind, but my experience says to put some emphasis
on the following aspects:

Make programs comprehensive (or expressive). A super-elegant solution
that nobody else understands might make you happy, but bear in mind
that later maybe other people need to understand your software.

Keep programs simple. Overly complex solutions are subject to
instabilities. Of course, you will not wake up one morning and say, “OK,
today | will write a simple program to solve requirement XYZ.” Writing
simple programs that reliably solve problems is a matter of experience,
and it comes with years of practice. But you can always try to constantly
get better in writing simple programs. A good starting point is always
asking yourself, “Shouldn’t there be a simpler solution to this?” for any
part of your software, and by looking at the API documentations and

the programming language reference in quite some cases, you will find
easier solutions doing the same as what you currently have.

Don’t repeat yourself. This principle, commonly referred to as DRY
programming, cannot be overemphasized. Whenever you find yourself
using Ctrl+C and Ctrl+V to copy some program passages, think of
instead using one function or one lambda expression to provide just one
place where things are done.

Do expected things. You can overwrite class methods and operators

in Kotlin, and you can dynamically add functions to existing classes,
even to such basic classes like String. In any case, make sure such
extensions work as expected by looking at their names because if they
don’t, the program is hard to understand.

Kotlin helps with all of these aspects and quite often does a better job than the venerable
Java. In the following sections, we point out a couple of Kotlin concepts you can use to
make your program short, simple, and expressive. Note that the sum of these concepts is far
from being a complete documentation of Kotlin. So for more details, please see the online
documentation.

CHAPTER 10: Development 21

Functional Programming

While functional programming as a development paradigm entered Java with version 8,
Kotlin has supported a functional programming style from the beginning. In functional
programming, you prefer nonmutable values over variables, avoid state machines, and allow
functions as parameters to functions. Also, the lambda calculus allows for passing functions
without names. Kotlin provides us with all that.

In Java you have the final modifier to express that a variable isn’t going to be changed after
the first initialization. While most Java developers use final modifiers for constants; | barely
ever see developers using them in the coding.

public class Constants {
public final static int CALCULATION_PRECISION = 10;
public final static int MAX_ITERATIONS = 1000;

}...

This is a pity since it improves both readability and stability. The temptation to omit it to save
a few keystrokes is just too big. In Kotlin the story is different; you say val to express that a
data object remains constant during its lifetime, and you use var if you need a real variable,
as shown here:

fun getMaxFactorial():Int = 13
fun fact(n:Int):Int {
val maxFactorial = getMaxFactorial()
if(n > maxFactorial)
throw RuntimeException("Too big")
var x = 1
for(i in 1.. (n)) {
X *= 1
}

return x

}

val x = fact(12)
System.out.println("12! = ${x}")

This short snippet uses maxFactorial as a val, which means “This is not subject to change.”
The x however is a var, and it gets changed after initialization.

We can even avoid var x in the snippet for the factorial calculation and replace it with
a functional construct. This is another functional imperative: prefer expressions over a
statement or a chain of statements. To do so, we use a recursion and write the following:

fun fact(n:Int):Int = if(n>getMaxFactorial())
throw RuntimeException("Too big") else
if(n > 1) n * fact(n-1) else 1

val x = fact(10)

System.out.println("10! = ${x}")

272 CHAPTER 10: Development

This little factorial calculator is just a short example. With collections, the story gets more
interesting. The Kotlin standard library includes a lot of functional constructs you can use to
write elegant code. Just to give you a glimpse of all the possibilities, we rewrite the factorial
calculator once again and use a fold function from the collections package.

fun fact(n:Int) = (1..n).fold(2, { acc,i -> acc * i })
System.out.println("10! = ${fact(10)}")

For simplicity | removed the range check; if you like, you can add that if... check from
earlier to the lambda expression inside {...}. You see that we even don’t have a val left;
internally the i and acc get handled as vals, though. This can even be shortened one step
further. Since all we use is the “times” functionality of type Int, we can directly refer to it and
write the following:

fun fact(n:Int) = (1..n).fold(1, Int::times)
System.out.println("10! = ${fact(120)}")

With the other functional constructs from the collections package, you can perform more
interesting transformations with sets, lists, and maps. But functional programming is also
about passing around functions as objects in your code. In Kotlin you can assign functions
to vals or vars as follows:

val factEngine: (acc:Int,i:Int) -> Int =

{ acc,i -» acc * i}
fun fact(n:Int) = (1..n).fold(1, factEngine)
System.out.println("10! = ${fact(10)}")

or as follows, which is even shorter since Kotlin under certain circumstances can infer the
type:

val factEngine = { acc:Int, i:Int -> acc * i }

fun fact(n:Int) = (1..n).fold(1, factEngine)

System.out.println("10! = ${fact(10)}")

In this book we are using functional constructs wherever feasible to improve
comprehensiveness and conciseness.

Top-Level Functions and Data

While in the Java world it is considered bad style to have too many globally available
functions and data, for example by definitions with static scope inside some utility class, in
Kotlin this has experienced a renaissance and also looks somewhat more natural. That is
because you can declare functions and variables/values in a file outside any class. Still, to
use them, you have to import such elements like in import com.example.global.* where a
file with an arbitrary name inside package com/example.global contains no classes but only
fun, var, and val elements.

CHAPTER 10: Development 273

For example, write a file called common.kt in com/example/app/util and add the
following in it:

package com.example.app.util
val PI_SQUARED = Math.PI * Math.PI

fun logObj(o:Any?) =
o?.let { "(" + o::class.toString() + ") " +
o.toString() } ?: "<null>"
Then add more utility functions and constants. To use them, write the following:
import com.example.app.util.*

val ps = PI_SQUARED
logObj(ps)

You should, however, be cautious using that feature; overly using it easily leads to a
structural mess. Avoid putting mutable variables in such a scope altogether! You can and
should put utility functions and global constants in such a global file.

Class Extensions

Unlike in the Java language, Kotlin allows you to dynamically add methods to classes.
To do so, write the following:

fun TheClass.newFun(...){ ... }

The same works for operators, which allows you to create extensions like "Some Text" %
"magic" (it is left to your imagination what this does) to such common classes like String.
You’d implement this particular extension like this:

infix operator fun String.rem(s:String){ ... }
Just make sure you don’t unintentionally overwrite existing class methods and operators.
This makes your program unreadable because it does unexpected things. Note that most

standard operators like Double.times() cannot be overwritten anyway since they are marked
final internally.

Table 10-2 describes the operators you can define via operator fun TheClass.<OPER- ATOR>.

274 CHAPTER 10: Development

Table 10-2. Kotlin Operators

Symbol Translates to Infix Default Function

+a a.unaryPlus() Usually does nothing.

-a a.unaryMinus () Negates a number.

la a.not() Negates a Boolean expression.

a++ a.inc() Increments a number.

a- - a.dec() Decrements a number.

a+b a.plus(b) X Addition.

a-b a.minus(b) X Subtraction

a*b a.times(b) X Multiplication.

a/b a.div(b) X Division.

a%b a.rem(b) X Remainder after division.

a..b a.rangeTo(b) X Defines a range.

ainb b.contains(a) X Containment check.

alinb !b.contains(a) X Not-containment check.

ali] a.get(i) Indexed access.

ali,j,...] a.get(i,j,...) Indexed access, normally not used.

a[i]l = b a.set(i,b) Indexed setting access.

ali,j,...] =b a.set(i,j,...,b) Indexed setting access, normally not
used.

a() a.invoke() Invocation.

a(b) a.invoke(b) Invocation.

a(b,c,...) a.invoke(b,c,...) Invocation.

a+=b a.plusAssign(b) X Adds to a. Must not return a value;
instead, you must modify this.

a-=b a.minusAssign(b) X Subtracts from a. Must not return a
value; instead, you must modify this.

a*=b a.timesAssign() X Multiplies to a. Must not return a value;
instead, you must modify this.

a/=b a.divAssign(b) X Divides a by b and then assigns. Must
not return a value; instead, you must
modify this.

a%b a.remAssign(b) X Takes the remainder of the division by
b and then assigns. Must not return a
value; instead, you must modify this.

a==>b a?.equals(b) ?: (b X Checks equality.

=== null)

(continued)

CHAPTER 10: Development 275

Table 10-2. (continued)

Symbol Translates to Infix Default Function

al=b I(a?.equals(b) ?: (b x Checks inequality
=== null))

a>b a.compareTo(b) > 0 X Comparison.

a<hb a.compareTo(b) < 0 X Comparison.

a>=b a.compareTo(b) »>= 0 x Comparison.

a<=b a.compareTo(b) <= 0 X Comparison.

To define an extension, for any operator from the table of type Infix, you write the following:
infix operator fun TheClass.<OPERATOR>(...){ ... }

Here, the function arguments are the second and any subsequent operands, and this inside
the function body refers to the first operand. For operators not of type Infix, just omit the
infix.

Defining operators for your own classes certainly is a good idea. Amending standard Java or
Kotlin library classes by operators might improve the readability of your code as well.

Named Arguments
By using named arguments as follows:

fun person(fName:String = "", 1Name:String = "",
age:Int=0) {
val p = Person().apply { ... }

return p

}
you can make more expressive calls like this:
val p = person(age = 27, 1Name = "Smith")

Using parameter names means you don’t have to care about argument order, and in many
cases you can avoid overloading constructors for various parameter combinations.

Scoping Functions

The scoping functions allow you to structure your code in a way that’s different from using
classes and methods. Consider, for example, the following code:

val person = Person()
person.lastName = "Smith"
person.firstName = "John"
person.birthDay = "2011-01-23"
val company = Company("ACME")

276 CHAPTER 10: Development

While this is valid code, the repetition of person. is annoying. Besides, the first four lines are
about constructing a person, while the next line has nothing to do with a person. It would be
nice if this could be visually expressed, and the repetition could also be avoided. This is a
construct in Kotlin, and it reads as follows:

val person = Person().apply {
lastName = "Smith"
firstName = "John"
birthDay = "2011-01-23"

}
company = Company("ACME")

This looks more expressive compared to the original code. It clearly says construct a person,
do something with it, and then do something else. There are five such constructs, and
despite being similar, they differ in meaning and usage: also, apply, let, run, and with.
Table 10-3 describes them.

Table 10-3. Scoping Functions

Syntax What Is What is it Returns Use
this
a.also { this of a a Use for some
.} outer crosscutting concern,
context for example to add
logging.
a.apply { a - a Use for
.} postconstruction
object forming.
a.let { this of a Last expression Use for
.} outer transformations.
context
a.run { a - Last expression Do some computation
.} using an object, with

only side effects. For ¢
better clarity, don’t use
what it returns.

with(a) { a - Last expression Group operations on
.} an object. For better
clarity, don’t use what
it returns.

Using scoping functions greatly improves the expressiveness of your code. | use them often
in this book.

CHAPTER 10: Development 277

Nullability

Kotlin addresses the problem of nullability on a language level, to avoid annoying
NullPointerException throws. For any variable or constant, the assignment of null values
is not allowed by default; you have to explicitly declare nullability by adding a ? at the end as
follows:

var name:String? = null

The compiler then knows that name from the example can be null and takes various
precautions to avoid NullPointerExceptions. You, for example, cannot write name.
toUpperCase(), but you have to use name?.toUpperCase() instead, which does the
capitalization only if name is not null and otherwise returns null itself.

Using the scoping functions we described earlier, there is an elegant method to avoid
constructs like if(x != null) { ... }. You can instead write the following:

x?.run {

}...

This does the same but is more expressive; by virtue of the ?., the execution of run{}
happens only if x is not null.

The elvis operator ?: is also quite useful because it handles cases where you want to
calculate an expression only if the receiver variable is null, as follows:
var x:String? = ..

var y:String = x ?: "default"

This is the same as String y = (x != null) ? x : "default"); in Java.

Data Classes

Data classes are classes whose responsibility is to carry structured data. Actually doing
something with the data inside the data class usually is not necessary or at least not
important.

The declaring of data classes in Kotlin is easy; all you have to do is write the following:

data class Person(
val fName:String,
val 1Name:String,
val age:Int)

Or, if you want to use default values for some arguments, use this:

data class Person(
val fName:String="",
val 1Name:String,
val age:Int=0)

278 CHAPTER 10: Development

This simple declaration already defines a constructor, an appropriate equals() method
for comparison, a default toString() implementation, and the ability to be part of a
destructuring. To create an object, you just have to write the following:

val pers = Person("John","Smith",37)

or write a more expressive version, shown here:

val pers = Person(fName="John", 1Name="Smith", age=37)

In this case, you can also omit parameters if they have defaults declared.

This and the fact that you can declare classes and functions also inside functions makes it
easy to define ad hoc complex function return types, as follows:

fun someFun() {

data class Person(
val fName:String,
val 1Name:String,
val age:Int)
fun innerFun():Person = ...

val pi:Person = innerFun()
val fNamel = pi1.fName

Destructuring

A destructuring declaration allows you to multi-assign values or variables. Say you have a
data class Person as defined in the previous section. You can then write the following:

val p:Person = ...
val (fName,1lName,age) = p

This gives you three different values. The order for data classes is defined by the order of
the class’s member declaration. Generally, any object that has component1(), component2(),
... accessors can take part in a destructuring, so you can use destructuring for your own
classes as well. This is, for example, by default given for map entries, so you can write the
following:

val m = mapOf(1 to "John", 2 to "Greg", ...)

for((k,v) inm) { ... }

Here, the to is an infix operator that creates a Pair class, which in turn has fun
component1() and fun component2() defined.

As an additional feature to a destructuring declaration, you can use _ wildcards for unused
parts, as follows:

val p:Person = ...
val (fName,IName,) = p

CHAPTER 10: Development 279

Multiline String Literals

Multiline string literals in Java always were a little clumsy to define.

String s = "First line\n" +
"Second line";

In Kotlin you can define multiline string literals as follows:

val s =
First line
Second Line

You can even get rid of the preceding indent spaces by adding .trimIndent() as follows:

val s =
First line
Second Line""".trimIndent()

This removes the leading newline and the common spaces at the beginning of each line.

Inner Functions and Classes

In Kotlin, functions and classes can also be declared inside other functions, which further
helps in structuring your code.

fun someFun() {

class InnerClass { ... }
fun innerFun() = ...

}...

The scope of such inner constructs is of course limited to the function in which they are
declared.

String Interpolation

In Kotlin you can pass values into strings as follows:

val i =7
val s = "And the value of 'i' is ${i}"

This is borrowed from the Groovy language, and you can use it for all types since all types
have a toString() member. The only requirement is that the contents of ${} evaluate to an
expression, so you can even write the following:

val i1 =7
val i2 = 8
"

val s = "The sum is: ${i1+i2}"

280 CHAPTER 10: Development

or write more complex constructs using method calls and lambda functions:
val s = "8 + 1 is: ${ { i: Int -> i + 1 }(8) }"

Qualified “this”

If this is not what you want but you instead want to refer to this from an outer context, in
Kotlin you use the @ qualifier as follows:

class A {
val b =7
init {
val p = array0f(8,9).apply {
this[0] += this@A.b
}

Delegation

Kotlin allows for easily following the delegation pattern. Here’s an example:

interface Printer {
fun print()
}

class PrinterImpl(val x: Int) : Printer {
override fun print() { print(x) }
}

class Derived(b: Printer) : Printer by b

Here, the class Derived is of type Printer and delegates all its method calls to the b object.
So, you can write the following:

val pi = PrinterImpl(7)
Derived(pi).print()

You are free to overwrite method calls at will, so you can adapt the delegate to use new
functionalities.

class Derived(val b: Printer) : Printer by b {
override fun print() {
print("Printing:")
b.print()

CHAPTER 10: Development 281

Renamed Imports

In some cases, imported classes might use long names but you use them often, so you wish
they would have shorter names. For example, say you often use SimpleDateFormat classes
in your code and don’t want to write the full class name all the time. To help us with that and
shorten this a little, you can introduce import aliases and write the following:

import java.text.SimpleDateFormat as SDF

Henceforth, you can use SDF as a substitute for SimpleDateFormat, as follows:
val dateStr = SDF("yyyy-MM-dd").format(Date())

Don’t overuse this feature, though, because otherwise your fellow developers need to
memorize too many new names, which makes your code hard to read.

Kotlin on JavaScript

If you hear Android and Kotlin together, the obvious thing you will think is that Kotlin serves
as a substitute for Java and addresses the Android Runtime and Android APIs. But there is
another possibility, which is not that obvious but nevertheless opens interesting possibilities.
If you look at Kotlin alone, you will see that it can create bytecode to be run on a Java virtual
machine or on a somewhat Java-like Dalvik Virtual Machine in the case of Android. Or it can
produce JavaScript to be used in a browser. The question is, can we use that in Android as
well? The answer is yes, and in the following sections | will show you how this can be done.

Creating a JavaScript Module

We start with a JavaScript module containing Kotlin files that are compiled to JavaScript
files. There is nothing like a JavaScript module wizard available when you start a new
module, but we can easily start with a standard smartphone app module and convert it to
serve our needs.

In an Android Studio project, select New » New Module and then choose Phone & Tablet
Module. Give it a decent name, say kotlinjsSample for now. Once the module is generated,
remove the following folders and files because we don’t need them:

src/test

src/androidTest
src/main/java

src/main/res
src/main/AndroidManifest.xml

Note If you want to do that removal from inside Android Studio, you have to switch the view type
from Android to Project first.

282 CHAPTER 10: Development

Instead, add two folders.

src/main/kotlinjs
src/main/web

Now replace the contents of the module’s build.gradle file to read as follows:

buildscript {
ext.kotlin version = '1.2.31'
repositories {
mavenCentral()
¥

dependencies {
classpath "org.jetbrains.kotlin:" +
"kotlin-gradle-plugin:$kotlin version"
}
}

apply plugin: 'kotlin2js'

sourceSets {
main.kotlin.srcDirs += 'src/main/kotlinjs’
}
task prepareForExport(type: Jar) {
baseName = project.name + '-all'
from {
configurations.compile.collect {
it.isDirectory() ? it : zipTree(it) } +
"src/main/web’
}
with jar

}

repositories {
mavenCentral()

}

dependencies {
implementation "org.jetbrains.kotlin:" +
"kotlin-stdlib-js:$kotlin_version"
}

This build file enables the Kotlin » JavaScript compiler and introduces a new export task.

You can now open the Gradle view on the right side of Android Studio’s window, and
there under others, you will find the task prepareForExport. To run it, double-click it. After
that, inside build/1ibs you will find a new file kotlinjsSample-all. jar. It is this file that
represents the JavaScript module for use by other apps or modules.

CHAPTER 10: Development 283

Create the file Main.kt inside src/main/kotlinjs and add content to it as follows:
import kotlin.browser.document

fun main(args: Array<String>) {
val message = "Hello JavaScript!"
document.getElementById("cont")!!.innerHTML = message

}

In the end we will be targeting a web site, so we need a first HTML page as well. Make it the
standard landing page index.html, create it inside src/main/web, and enter the following:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Kotlin-JavaScript</title>
</head>
<body>

<script type="text/javascript"
src="kotlin.js"></script>
<script type="text/javascript"
src="kotlinjsSample.js"></script>
</body>
</html>

Execute the task prepareForExport once again to let the module output artifact reflect the
changes we just made.

Using the JavaScript Module

To use the JavaScript module we constructed in the previous section, add a couple of lines
in the app’s build.gradle file, as shown here:

task syncKotlinJs(type: Copy) {
from zipTree('../kotlinjsSample/build/1libs/"' +
"kotlinjsSample-all.jar")
into 'src/main/assets/kotlinjs’

preBuild.dependsOn(syncKotlinJs)

This will import the JavaScript module’s output file and extract it inside the assets folder of
the app. This extra build task gets executed automatically for you during a normal build by
virtue of the dependsOn() declaration.

284 CHAPTER 10: Development

Now inside your layout file place a WebView element, maybe as follows:

<WebView
android:id="@+id/wv"
android:layout width="match parent"
android:layout_height="match_parent">
</WebView>

To fill that view with a web page inside your main activity’s onCreate() callback, write the
following:

wv.webChromeClient = WebChromeClient()
wv.settings.javaScriptEnabled = true
wv.loadUrl("file:///android asset/kotlinjs/index.html")

This will enable JavaScript support for the WebView widget and load the main HTML page
from the JavaScript module.

As an extension, you might want to connect the JavaScript inside the web page to the Kotlin
code from the app (not the JavaScript module). This is not overly complicated; you just have
to add the following:

class JsObject {
@JavascriptInterface
override fun toString(): String {
return "Hi from injectedObject"

}

}
wv.addJavascriptInterface(JsObject(), "injectedObject")

Henceforth you can use injectedObject from the JavaScript module as follows:
val message = "Hello JavaScript! injected=" +
window["injectedObject"]

Using these techniques you could design your complete app using HTML, CSS, Kotlin
transcribing to JavaScript, and a couple of accessor objects to address Android APIs.

Chapter

Building

In this chapter, we talk about the building process of your apps. Although building an app
with source files can be done both using a terminal and using the graphical interface of the
Android Studio IDE, this is not an introduction to Android Studio nor a code reference. For
this type of in-depth instruction, please refer to the help included or to other books and
online resources.

What we will do in this chapter is look at build-related concepts and methods for adapting
the build process to your needs.

Build-Related Files

Once you create a new project inside Android Studio, you will see the following build-related

files:
build.gradle
This is the top-level project-related build file. It contains the declaration
of repositories and dependencies common to all modules the project
contains. There is normally no need for you to edit this file for simple apps.
gradle.properties
This contains technical settings related to Gradle builds. There is normally
no need for you to edit this file.
gradlew and gradlew.bat
These are wrapper scripts so you can run builds using a terminal instead of
the Android Studio IDE.
local.properties
This holds generated technical properties related to your Android Studio
installation. You should not edit this file.

© Peter Spath 2018 285

P. Spath, Pro Android with Kotlin, https://doi.org/10.1007/978-1-4842-3820-2_11

http://dx.doi.org/10.1007/978-1-4842-3820-2_11

286 CHAPTER 11: Building

settings.gradle

This tells you which modules are part of the project. Android Studio will
handle this file if you add new modules.

app/build.gradle

This is a module-related build file. This is where important dependencies
and the build process for the module are configured. Android Studio will
create a first module named app including the corresponding build file for
you, but app as a name is just a convention. Additional modules will have
different names you choose at will, and they all have their own build files.
It is even possible to rename app to a different name that better suits your
needs, if you like.

Module Configuration

Each module of a project contains its own build file called build.gradle. If you let Android
Studio create a new project or module for you, it also creates an initial build file for you.
Such a basic build file for a module with Kotlin support looks like this (disregard the - and
the following line breaks):

apply plugin: "com.android.application”
apply plugin: "kotlin-android"
apply plugin: "kotlin-android-extensions"

android {

compileSdkVersion 26

defaultConfig {
applicationld "de.pspaeth.xyz"
minSdkVersion 16
targetSdkVersion 26
versionCode 1
versionName "1.0"
testInstrumentationRunner -

"android.support.test.runner.AndroidJUnitRunner"

}
buildTypes {
release {
minifyEnabled false
proguardFiles -
getDefaultProguardFile(-
"proguard-android.txt"), -
"proguard-rules.pro”
}
}

}

dependencies {
implementation fileTree(dir: 'libs', -
include: ['*.jar'])

CHAPTER 11: Building 287

implementation -
"org.jetbrains.kotlin:kotlin-stdlib-jre7: -
$kotlin_version"
implementation -
"com.android. support:appcompat-v7:26.1.0"
implementation -
"com.android.support.constraint: -
constraint-layout:1.0.2"
testImplementation "junit:junit:4.12"
androidTestImplementation -
"com.android.support.test:runner:1.0.1"
androidTestImplementation -
"com.android.support.test.espresso: -
espresso-core:3.0.1"

}

Note that "" strings in Gradle can contain ${} placeholders, while > ’ strings cannot. Other
than that, they are interchangeable.

Its elements are as follows:

The apply plugin: lines load and apply Gradle plugins necessary for
Android and Kotlin development.

The android{ } element specifies settings for the Android plugin.

The dependencies{ } element describes dependencies of the module.
The implementation keyword means the dependency is needed

both for compiling the module and for running it. The latter implies

that the dependency gets included in the APK file. Identifiers like
xyzImplementation refer to a build type or source set xyz. You can see
that for the unit tests located at src/test, the jUnit libraries get added,
while for src/androidTest both the test runner and espresso get used. If
you prefer to build types or product flavor, you can substitute the build
type name or product flavor name for xyz. If you want to reference a
variant, which is a combination of a build type and a product flavor, you
additionally must declare it inside a configurations { } element. Here’s
an example:

configurations {
// flavor = "free", type = "debug"
freeDebugCompile {}

}

For defaultConfig { } and buildTypes { }, see the following sections.
Other keywords inside the dependencies {...} section include the following:
implementation

We talked about this one. It expresses the dependency is needed both for
compiling and for running the app.

288 CHAPTER 11: Building

api

This is the same as implementation, but in addition it lets the dependency
leak through to clients of the app.

compile
This is an old alias for api. Don’t use it.
compileOnly

The dependency is needed for compilation but will not be included in the
app. This frequently happens for source-only libraries like source code
preprocessors and the like.

runtimeOnly

The dependency is not needed for compilation but will be included in the
app.

Module Common Configuration

The element defaultConfig { ... } inside a module’s build.gradle file specifies
configuration settings for a build, independent of the variant chosen (see the next section).
The possible setting can be looked up in the Android Gradle DSL reference, but a common
setup reads like the following:

defaultConfig {

// Uniquely identifies the package for publishing.
applicationId 'com.example.myapp’

// The minimum API level required to run the app.
minSdkVersion 24

// The API level used to test the app.
targetSdkVersion 26

// The version number of your app.
versionCode 42

// A user-friendly version name for your app.
versionName "2.5"

Module Build Variants

Build variants correspond to different .apk files that are generated by the build process.
The number of build variants is given by the following:

Number of Build Variants =
(Number of Build Types) x (Number of Product Flavors)

CHAPTER 11: Building 289

Inside Android Studio, you choose the build variant via Build » Select Build Variant in the
menu. In the following sections, we describe what build types and product flavors are.

Build Types

Build types correspond to different stages of the app development. If you start a project,
Android Studio will set up two build types for you: development and release. If you open the
module’s build.gradle file, you can see inside android { ... } (disregard the -, including
the following newlines).

buildTypes {
release {
minifyEnabled false
proguardFiles -
getDefaultProguardFile('proguard-android.txt'), -
'proguard-rules.pro’

}

Even though you don’t see a debug type here, it exists. The fact that it doesn’t appear just
means the debug type uses its default settings. If you need to change the defaults, just add a
debug section as follows:

buildTypes {
release {

} cee
debug {
} .

}

You are not restricted to use one of the predefined build types. You can define additional
build types, as for example here:

buildTypes {
release {
}
debug {
}
integration {
initWith debug
manifestPlaceholders = -
[hostName: "internal.mycompany.com"]
applicationIdSuffix ".integration"

}
}

290 CHAPTER 11: Building

This defines a new build type called integration that inherits from debug by virtue of
initWith and otherwise adds a custom app file suffix and provides a placeholder to be used
in the manifest file. The settings you can specify there are rather numerous. You can find
them if you enter android gradle plugin dsl reference in your favorite search engine.

Another identifier we haven’t talked about yet is the proguardFiles identifier. That one

is used for filtering and/or obfuscating files that are to be included in the app before
distributing it. If you use it for filtering, please first weight the benefit against the effort. With
modern devices, saving a few megabytes doesn’t play a big role nowadays. And if you want
to use it for obfuscation, note that this might cause trouble if reflection gets used by either
your code or from the libraries referred to. And obfuscation does not really prevent hijackers
from using your code after decompilation; it just makes it a little harder. So, carefully
consider the advantages of using proguard. If you think it will suit your needs, you can find
details about how to use it in the online documentation.

Product Flavors

Product flavors allow distinctions between things like different feature sets or different device
requirements, but you can draw the distinction wherever best suits you.

By default Android Studio doesn’t prepare different product flavors for a new project or
module. If you need them, you must add a productFlavors { ... } section inside the
android { ... } element of the file build.gradle. Here’s an example:

buildTypes {...}
flavorDimensions "monetary"
productFlavors {
free {
dimension "monetary"
applicationIdSuffix ".free"
versionNameSuffix "-free"

}

paid {
dimension "monetary"
applicationIdSuffix ".paid"
versionNameSuffix "-paid"

}

}

Here, you can look at the possible settings in the Android Gradle DSL reference. This will
lead to APKs of the following form:

app-free-debug.apk
app-paid-debug.apk
app-free-release.apk
app-paid-release.apk

You can even extend the dimensionality. If you add more elements to the flavorDimensions
line, for example flavorDimensions “monetary”, “apilevel”, you can add more flavors.

CHAPTER 11: Building 291

flavorDimensions "monetary", "apilevel"
productFlavors {

free {

dimension "monetary" ... }
paid {

dimension "monetary" ... }

sinceapi21 {
dimension "apilevel"
versionNameSuffix "-api21" ... }
sinceapi24 {
dimension "apilevel”
versionNameSuffix "-api24" ... }

}

This in the end will give you the following set of APK files:

app-free-api21-debug.apk
app-paid-api21-debug.apk
app-free-api2i-release.apk
app-paid-api21-release.apk
app-free-api24-debug.apk
app-paid-api24-debug.apk
app-free-api24-release.apk
app-paid-api24-release.apk

To filter out certain possible variants, add a variantFilter element into the build file and
write the following:

variantFilter { variant -»
def names = variant.flavors*.name // this is an array
// To filter out variants, make a check here and then
// do a "setIgnore(true)" if you don't need a variant.
// This is just an example:
if (names.contains("sinceapi24") &&

names.contains("free")) {
setIgnore(true)

}

}

Source Sets

If you create a project in Android Studio and switch to the Project view, you can see that
there is a main folder inside the src folder. This corresponds to the main source set, which is
the single default source set configured and used by default. See Figure 11-1.

292 CHAPTER 11: Building

RegularExpressionLib [~/DEVEL/PRIVAT/AndroidSt

File Edit View Navigate Code Analyze Refactor Build
HE g % [0 o ¢ 2 A [ERegu
. RegularExpressionLib ' [gradle.properties

B Project - SR - 2 o
v P2 RegularExpressionLib ~/DEVEL/PRIVAT/AndroidStudic
> .gradle

> .idea

v WL app

> build

libs

I Src
> androidTest
v main

> java

> res

& AndroidManifest.xml

» test

= .gitignore

2 app.iml
& build.gradle

= proguard-rules.pro

' 1: Project |,

% 7: Structure
4

@ Captures

Figure 11-1. The main source set

You can have more sets, and they correspond to the build types, the product flavors, and
the build variants. As soon as you add more source sets, a build will lead to merging the
current build variant, the build type it includes, the product flavor it includes, and finally the
main source set. To see which source sets will be included in a build, open the Gradle view
on the right side of the window, and run the sourceSets task. This will produce a long listing,
and you can see entries like the following:

main
Java sources: [app/src/main/java]

debug
Java sources: [app/src/debug/java]

free
Java sources: [app/src/free/java]

freeSinceapi21
Java sources: [app/src/freeSinceapi21/java]

CHAPTER 11: Building 293

freeSinceapi21Debug
Java sources: [app/src/freeSinceapi2iDebug/java]

freeSinceapi2iRelease
Java sources: [app/src/freeSinceapi2iRelease/java]

paid
Java sources: [app/src/paid/java]

paidSinceapi21
Java sources: [app/src/paidSinceapi21/java]

release
Java sources: [app/src/release/java]

sinceapi21
Java sources: [app/src/sinceapi2i/java]

This will tell you that if you choose a build variant called freeSinceapi21Debug, the build
process will look into these folders for classes:

app/src/freeSinceapi21Debug/java
app/src/freeSinceapi21/java
app/src/free/java
app/src/sinceapi2l/java
app/src/debug/java
app/src/main/java

Likewise, it will look into the corresponding folders for resources, assets, and the
AndroidManifest.xml file. While the Java or Kotlin classes must not repeat in such a build
chain, the manifest files and resource and assets files will be merged by the build process.

Inside the dependencies { ... } section of file build.gradle, you can dispatch
dependencies according to build variants. Just add a camel-cased version of the source set
in front of any of the settings there. For example, if for the freeSinceapi21 variant you want
to include a compile dependency of :mylib, write the following:

freeSinceapi21Compile ':mylib’

Running a Build from the Console

You don’t have to use Android Studio to build apps. While it is a good idea to bootstrap an
app project using Android Studio, after this you can build apps using a terminal. This is what
the Gradle wrapper scripts gradlew and gradlew.bat are for. The first one is for Linux, and
the second one is for Windows. In the following paragraphs, we will take a look at some
command-line commands for Linux; if you have a Windows development machine, just use
the BAT script instead.

294 CHAPTER 11: Building

In the preceding sections, we have seen that the basic building blocks of each build consist
of one or more tasks that get executed during the build. So, we first want to know which
tasks actually exist. For this aim, to list all the tasks available, enter the following:

./gradlew tasks
This will give you an extensive list and some description of each task. In the following
sections, we will take a look at some of these tasks.

To build the app APK file for build type debug or release, enter one of the following:

./gradlew assembleDebug
./gradlew assembleRelease

This creates an APK file inside <PROJECT>/<MODULE>/build/outputs. Of course, you can also
specify any custom build type you defined inside build.gradle.

To build the debug type APK and then install it on a connected device or emulator, enter the
following:

./gradlew installDebug

Here, for the Debug part in the argument, you can substitute any build variant using the
variant’s camel-cased name. This installs the app on connected devices. It does not
automatically run it, though; you have to do that manually! To install and run an app, please
see Chapter 18.

If you want to find out which dependencies any of your app’s module has, see the
dependency tree and enter the following or with app substituted out for the module name in
question:

./gradlew dependencies :app:dependencies
This provides a rather lengthy listing, so you might want to pipe it into a file and then

investigate the result in an editor.

./gradlew dependencies :app:dependencies > deps.txt

Signing
Each app’s APK file needs to be signed before it can be run on a device. For the debug

build type, a suitable signing configuration will be chosen for you automatically, so for the
debugging development stage, you don’t need to care about signing.

A release APK, however, needs a proper signing configuration. If you use Android Studio’s
Build » Generate Signed APK menu item, Android Studio will help you create and/or use

an appropriate key. But you can also specify the signing configuration inside the module’s
build.gradle file. To do so, add a signingConfigs { ... } section as follows:

http://dx.doi.org/10.1007/978-1-4842-3820-2_18

android {

defaultConfig {...}
signingConfigs {
release {
storeFile file("myrelease.keystore")
storePassword "passwd"
keyAlias "MyReleaseKey"
keyPassword "passwd"

}
}
buildTypes {
release {
signingConfig signingConfigs.release
}

}

CHAPTER 11: Building

295

Also, from inside the release build type, refer to a signing config as shown at signingConfig
inside the listing. The keystore you need to provide for that is a standard Java keystore;

please see Java’s online documentation to learn how to build one. Or, you can let Android

Studio help you create a keystore using the dialog that pops up when you choose

Build » Generate Signed APK in the menu.

Chapter

Communication

Communication is about sending data through component or app or device boundaries.
A standardized way for the components of one or more apps to communicate with each
other is by using broadcasts, which were discussed in Chapter 5.

Another possibility for inter-app communication on one device is to use ResultReceiver
objects, which are passed by intents. Despite their name, they can be used to send data
back to an invoker not only when an invoked component has done its work but also anytime
while it is alive. We used them at a couple of places in this book, but in this chapter we will
revise using how we use them to have all communication means together.

For communication through device boundaries, the options are numerous, which is even
more true if we can use a cloud-based communication platform. We will be talking about
inter-app communication using both cloud-based services and direct communication over
the internet.

ResultReceiver Classes

A ResultReceiver object can be passed from any one component to another component by
assigning it to an intent, so you can use it to send data between components of any kind,
provided they live on the same device.

We first subclass a ResultReceiver that will later receive messages from an invoked
component and write the following:

class MyResultReceiver : ResultReceiver(null) {
companion object {
val INTENT KEY = "my.result.receiver"
val DATA KEY = "data.key"

}

© Peter Spath 2018 297
P. Spath, Pro Android with Kotlin, https://doi.org/10.1007/978-1-4842-3820-2_12

http://dx.doi.org/10.1007/978-1-4842-3820-2_12
http://dx.doi.org/10.1007/978-1-4842-3820-2_5

298 CHAPTER 12: Communication

override fun onReceiveResult(resultCode: Int,
resultData: Bundle?) {
super.onReceiveResult(resultCode, resultData)
val d = resultData?.get(DATA KEY) as String
Log.e("LOG", "Received: " + d)
}

}

Of course, you can write more meaningful things inside its onReceiveResult() function.

To pass an instance of MyResultReceiver to an invoked component, we can now write the
following or any other means to invoke another component:

Intent(this, CalledActivity::class.java).apply {
putExtra(MyResultReceiver.INTENT KEY,
MyResultReceiver())
}.run{ startActivity(this) }

Inside the invoked component, you can now at any suitable place send data to the invoking
component via something like this:

var myReceiver:ResultReceiver? = null

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity called)

myReceiver = intent.
getParcelableExtra<ResultReceiver>(
MyResultReceiver.INTENT KEY)

}

fun go(v: View) {
val bndl = Bundle().apply {
putString(MyResultReceiver.DATA KEY,
"Hello from called component™)

}
myReceiver?.send(42, bndl) ?:
throw IllegalStateException("myReceiver is null")
}

Inside a production environment, you additionally need to take care of checking whether
the recipient is still alive. | left this check out for brevity. Also note that on the sending side a
reference to the ResultReceiver implementation is actually not needed; if you communicate
through app boundaries, you can just write the following:

val INTENT KEY = "my.result.receiver"
val DATA_KEY = "data.key"

val myReceiver = intent.
getParcelableExtra<ResultReceiver>(
INTENT_KEY)

CHAPTER 12: Communication 299

val bndl = Bundle().apply {
putString(DATA KEY,
"Hello from called component")
}

myReceiver?.send(42, bndl)

Firebase Cloud Messaging

Firebase Cloud Messaging (FCM) is a cloud-based message broker you can use to send
and receive messages from various devices, including other operating systems like Apple
iOS. The idea is as follows: you register an app in the Firebase console and henceforth can
receive and send messages in connected devices, including other installations of your app
on other devices.

Note Firebase Cloud Messaging is a successor of Google Cloud Messaging (GCM). The
documentation says you should favor FCM over GCM. In this book we talk about FCM; if you need
information about GCM, please consult the online resources.

To start FCM from inside Android Studio, from your open project go to Tools » Firebase for
various wizards. Select Cloud Messaging and then Set up Firebase Cloud Messaging. If you
follow the instructions there, you will end up using two services.

A subclass of FirebaseInstanceIdService where you will receive a message token. The
class basically looks like this:

class MyFirebaseInstanceldService :
FirebaseInstanceIdService() {
override
fun onTokenRefresh() {
// Get updated InstanceID token.
val refreshedToken =
FirebaseInstanceld.getInstance().token
Log.d(TAG, "Refreshed token: " +
refreshedToken!!)
}
}

It has a corresponding entry inside AndroidManifest.xml.

<service
android:name=".MyFirebaseInstanceIdService"
android:enabled="true"
android:exported="true">
<intent-filter>
<action android:name=
"com.google.firebase.INSTANCE_ID_EVENT"/>
</intent-filter>
</service>

300 CHAPTER 12: Communication

The token you receive here when you first start an app that is connected to Firebase is
important; you need it to use the Firebase-based communication channel. It is subject

to infrequent automated renewal, so you need to find a way to reliably store the token
whenever you receive it in this service. Do yourself a favor: unless you implemented a way to
store the token, be sure to save the token you receive in the logs because recovering a lost
token results in annoying administrative work.

Another service signs responsible for receiving FCM-based messages. It could read as follows:

class MyFirebaseMessagingService :
FirebaseMessagingService() {
override
fun onMessageReceived(remoteMessage:
RemoteMessage) {
/...
// Check if message contains a data payload.
if (remoteMessage.data.size > 0) {
Log.d(TAG, "Message data payload: " +
remoteMessage.data)

// Implement a logic:

// For long-running tasks (10 seconds or more)
// use Firebase Job Dispatcher.

scheduleJob()

// ...or else handle message within 10 seconds
// handleNow()

}

// Message contains a notification payload?
remoteMessage.notification?.run {
Log.d(TAG, "Message Notification Body: " +

body)
}

}

private fun handleNow() {
Log.e("LOG", "handleNow()")
}

private fun scheduleJob() {
Log.e("LOG","scheduleJob()")
}

}

This too has a corresponding entry in AndroidManifest.xml.

<service
android:name=".MyFirebaseMessagingService"
android:enabled="true"
android:exported="true">
<intent-filter>
<action android:name=
"com.google.firebase.MESSAGING EVENT"/>
</intent-filter>
</service>

CHAPTER 12: Communication 301

For this all to work, you need to have Firebase active in your Google account. There are
several options, and for a high-traffic messaging service, you need to buy a plan. The free
variant (as of March 2018), however, will give you more than enough power for development
and tests.

If all is set up correctly, you can use the web-based Firebase console to test sending
messages to your running app and see the message arriving there in the logs.

Note Firebase is more than just messaging; please consult the online documentation and
information you find in the Firebase console, as well as the information Android Studio gives you, to
learn what else can be done.

For sending messages, the suggested solution is to set up a trusted environment in the
form of an application server. This is beyond the scope of the book, but the online Firebase
documentation gives you various hints to get started with that matter.

Communication with Backends

Using a cloud-based provider like Firebase for connecting your app to other apps on other
devices, as described in the preceding section, certainly exhibits different merits. You have a
reliable message broker with message backup facilities, analytics, and more.

But using the cloud has its disadvantages as well. Your data, whether it’s encrypted or not,
will leave your house even for corporate apps, and you cannot be 100 percent sure the
provider will not change the API at some point in the future, forcing you to change your app.
So, if you need more control, you can abandon the cloud and use direct networking instead.

For directly using network protocols to communicate with devices or application servers,
you basically have two options.

Use javax.net.ssl.HttpsURLConnection

This provides for a low-level connectivity, but with TLS, streaming
capabilities, timeouts, and connection pooling included. As you can
see from the class name, it is part of the standard Java API, so you

will find lots of information about it on the Web. We nevertheless give a
description in the following section.

Use the Volley API included with Android

This is a higher-level wrapper around basic networking functions. Using
Volley considerably simplifies network-based development, so it is
generally the first candidate for using networking in Android.

In both cases you need to add appropriate permissions inside AndroidManifest.xml.

<uses-permission android:name=
"android.permission.INTERNET" />

<uses-permission android:name=
"android.permission.ACCESS_NETWORK_STATE" />

302 CHAPTER 12: Communication

Communication with HitpsURLConnection

Before using a network communication API, we need to make sure networking operations
happen in the background; modern Android versions even won’t allow you to perform
networking in the Ul thread. But even without that restriction, it is highly recommended to
always perform networking in a background task. We talked about background operation
in Chapter 9. A first method you want to look at is running network operations inside an
AsyncTask, but you are free to choose other means as well. The following sections assume
the snippets presented there are running in the background.

Using class HttpsURLConnection-based communication boils down to the following:

fun convertStreamToString(istr: InputStream): String {
val s = Scanner(istr).useDelimiter("\\A")
return if (s.hasNext()) s.next() else ""

}

// This is a convention for emulated devices
// addressing the host (development PC)
val HOST IP = "10.0.2.2"

val url = "https://${HOST IP}:6699/test/person”
var stream: InputStream? = null
var connection: HttpsURLConnection? = null
var result: String? = null
try {
connection = (URL(uri.toString()).openConnection()
as HttpsURLConnection).apply {

// 1 ONLY FOR TESTING ! No SSL hostname verification
class TrustAllHostNameVerifier : HostnameVerifier {
override
fun verify(hostname: String, session: SSLSession):
Boolean = true
}

hostnameVerifier = TrustAllHostNameVerifier()

// Timeout for reading InputStream set to 3000ms
readTimeout = 3000
// Timeout for connect() set to 3000ms.
connectTimeout = 3000
// For this use case, set HTTP method to GET.
requestMethod = "GET"
// Already true by default, just telling. Needs to
// be true since this request is carrying an input
// (response) body.
doInput = true
// Open communication link
connect()
responseCode.takeIf {
it != HttpsURLConnection.HTTP_OK }?.run {
throw IOException("HTTP error code: $this")

}

http://dx.doi.org/10.1007/978-1-4842-3820-2_9

CHAPTER 12: Communication 303

// Retrieve the response body
stream = inputStream?.also {
result = it.let { convertStreamToString(it) }

}

}

} finally {
stream?.close()
connection?.disconnect()

}

Log.e("LOG", result)

This example tries to access a GET URL of https://10.0.2.2:6699/test/person that targets
your development PC and prints the result on the logs.

Note that if your server happens to hold a self-signed certificate for SSL, you must at an
initialization place, say inside the onCreate() callback, add the following:

val trustAllCerts =
arrayOf<TrustManager>(object : X509TrustManager {
override
fun getAcceptedIssuers():
Array<java.security.cert.X509Certificate>? = null
override
fun checkClientTrusted(
certs: Array<java.security.cert.X509Certificate>,
authType: String) {

override
fun checkServerTrusted(
certs: Array<java.security.cert.X509Certificate>,
authType: String) {
}
1)

SSLContext.getInstance("SSL").apply {
init(null, trustAllCerts, java.security.SecureRandom())

}.apply {
HttpsURLConnection.setDefaultSSLSocketFactory(
socketFactory)
}

Otherwise, the previous code will complain and fail. Of course, you favor officially signed
certificates over self-signed certificates in production code.

304 CHAPTER 12: Communication

Networking with Volley

Volley is a networking library that simplifies networking for Android. First, Volley sends its
work to the background by itself; you don’t have to take care of that. Other goodies provided
by Volley are the following:

Scheduling mechanisms

Parallel working several requests

Handling of JSON requests and responses
Caching

Diagnosis tools

To start developing with Volley, add the dependency to your module’s build.gradle file, as
shown here:

dependencies {

implementation 'com.android.volley:volley:1.1.0'

}

The next thing to do is set up a RequestQueue that Volley uses to handle requests in the
background. The easiest way to do that is to write the following in an activity:

val queue = Volley.newRequestQueue(this)

But you can also customize the creation of a RequestQueue and instead write the following:

val CACHE_CAPACITY = 1024 * 1024 // 1MB
val cache = DiskBasedCache(cacheDir, CACHE CAPACITY)
// ... or a different implementation

val network = BasicNetwork(HurlStack())
// ... or a different implementation

val requestQueue = RequestQueue(cache, network).apply {
start()
}

The question is, under which scope is the request queue best defined? We could create
and run the request queue in an activity’s scope, which means that the queue needs to
be re-created each time the activity gets re-created itself. This is a valid option, but the
documentation suggests using the application scope instead to reduce the re-creation
of caches. The recommended way is to use the Singleton pattern, which results in the
following:

class RequestQueueSingleton
constructor (context: Context) {
companion object {
@Volatile
private var INSTANCE: RequestQueueSingleton? = null
fun getInstance(context: Context) =

CHAPTER 12: Communication 305

INSTANCE ?: synchronized(this) {
INSTANCE ?: RequestQueueSingleton(context)
}

}

val requestQueue: RequestQueue by lazy {
val alwaysTrusting = object : HurlStack() {
override
fun createConnection(url: URL): HttpURLConnection {
fun getHostnameVerifier():HostnameVerifier {
return object : HostnameVerifier {
override
fun verify(hostname:String,
session:SSLSession):Boolean = true

}
}

return (super.createConnection(url) as
HttpsURLConnection).apply {
hostnameVerifier = getHostnameVerifier()
}
}
}
// Using the Application context is important.
// This is for testing:
Volley.newRequestQueue(context.applicationContext,
alwaysTrusting)

// ... for production use:
// Volley.newRequestQueue(context.applicationContext)

}
}

For development and testing purposes, an accept-all SSL hosthame verifier was added.

So, instead of writing val queue = Volley.newRequestQueue(this) or val requestQueue =
RequestQueue(...) as shown earlier, you then use the following:

val queue = RequestQueueSingleton(this).requestQueue

Now for sending a string request, you have to write the following:

// This is a convention for emulated devices
// addressing the host (development PC)
val HOST IP = "10.0.2.2"

val stringRequest =
StringRequest(Request.Method.GET,
"https://${HOST IP}:6699/test/person”,
Response.Listener<String> { response ->
val shortened =
response.substring(0,
Math.min(response.length, 500))
tv.text = "Response is: ${shortened}"

b

306 CHAPTER 12: Communication

Response.ErrorListener { err ->
Log.e("LOG", err.toString())
tv.text = "That didn't work!"

)

queue.add(stringRequest)

Here, tv points to a TextView Ul element. For that to work, you need to have a server
responding to https://localhost:6699/test/person. Note that the response listener
automatically runs on the Ul thread, so you don’t have to take care of that yourself.

To cancel single requests, use cancel() on the request object anywhere. You can also
cancel a group of requests. Add a tag to each request in question as in val stringRequest =

. .apply {tag = "TheTag"} and then write queue?.cancelAll("TheTag"). Volley makes
sure the response listener never gets called once a request is canceled.

To request a JSON object or JSSON array, you have to substitute the following:

val request =
JsonArrayRequest(Request.Method.GET, ...)

or the following for the StringRequest we used previously:

val request =
JsonObjectRequest(Request.Method.GET, ...)

For example, for a JSON request and the POST method, you can write the following:

val reqObj:JSONObject =
JSONObject("""{"a":7, "b":"Hello"}""")
val jsonl = JsonObjectRequest(Request.Method.POST,
"https://${HOST IP}:6699/test/json",
reqObj,
Response.Listener<JSONObject> { response ->
Log.e("LOG", "Response: ${response}")
1

Response.ErrorListener{ err -»
Log.e("LOG", "Error: ${err}")
1)

Volley can do more for you; you can use other HTTP methods like PUT and also write custom
request handling and return other data types. Please see Volley’s online documentation or its
API documentation for more details.

Setting Up a Test Server

This is not really an Android topic and not even anything that necessarily has to do with
Kotlin, but to test the communication, you need to have some kind of web server running.
To make things easy, | usually configure a simple yet powerful server based on Groovy and
Spark (not Apache Spark but instead Java Spark from http://sparkjava.com/).

http://sparkjava.com

CHAPTER 12: Communication 307

To use it in Eclipse, first install the Groovy plugin. Then create a Maven project and add the
dependencies as follows:

<dependency>
<groupId>com.sparkjava</groupId>
<artifactId>spark-core</artifactId>
<version>2.7.2</version>

</dependency>

<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-simple</artifactId>
<version>1.7.25</version>
<scope>test</scope>

</dependency>

After that, create a Java keystore file, write a Groovy script, and start it.

import static spark.Spark.*

def keystoreFilePath = "keystore.jks"
def keystorePassword = "passw7%d"

def truststoreFilePath = null

def truststorePassword = null

secure(keystoreFilePath, keystorePassword,
truststoreFilePath, truststorePassword)
port(6699)

get("/test/person”, { req, res -> "Hello World" })

post("/test/json", { req, res ->
println(req.body())
"{ "msg":"Hello World", "val":7 }'

H

Caution To avoid Servlet APl version clashes, remove the dependency on the Servlet APl in the
Groovy settings dialog that you open by right-clicking Groovy Libraries in the project and selecting
Properties.

To create a keystore file under Linux, you could use the Bash script like that following, with
the Java path adapted:

#!/bin/bash

export JAVA HOME=/opt/jdk

$JAVA_HOME/bin/keytool -genkey -keyalg RSA \
-alias selfsigned -keystore keystore.jks \
-storepass passw7%d -validity 360 -keysize 2048

308 CHAPTER 12: Communication

Android and NFC

NFC is for short-range wireless connectivity for the transport of small data packages
between NFC-capable devices. The range is limited to a few centimeters between the
communication partners. These are typical use cases:

Connecting and then reading from or writing to NFC tags

Connecting and then communicating with other NFC-capable devices
(peer-to-peer mode)

Emulating an NFC card by connecting and then communicating with
NFC card readers and writers

To start developing an app that speaks NFC, you need to acquire the permission to do so
inside AndroidManifest.xml.

<uses-permission android:name="android.permission.NFC" />

To also limit visibility in the Google Play store, add the following to the same file:

<uses-feature android:name="android.hardware.nfc"
android:required="true" />

Talking to NFC Tags

Once a device with NFC enabled discovers an NFC tag in the vicinity, it tries to dispatch the
tag according to a certain algorithm. If the systems determines an NDEF datum and finds
an intent filter that is able to handle NDEF, the corresponding component gets called. If the
tag does not exhibit NDEF data but otherwise identifies itself by providing information about
technology and/or payload, this set of data gets mapped to a “tech” record, and the system
tries to find a component that is able to handle it. If both fail, the discovery information is
limited to the fact that an NFC tag was discovered. In this case, the system tries to find a
component that can handle NFC tags without NDEF and without the “tech” type data.

Based on the information found on the NFC tag, Android also creates a URI and a MIME
type you can use for intent filters. The procedure for that is described in more detail on the
page “NFC Basics” of the Android online developer documentation; enter android develop
nfc basics in your favorite search engine to find it.

For writing appropriate intent filters, please see Chapter 3, with the addition that for “tech”
style discovery you need to add a certain <meta-data> element inside <activity> as follows:

<meta-data android:name="android.nfc.action.
TECH_DISCOVERED"
android:resource="@xml/nfc_tech filter" />

http://dx.doi.org/10.1007/978-1-4842-3820-2_3

CHAPTER 12: Communication 309

This points to a file called nfc_tech_filter.xml inside res/xml, containing the following or
any subset of it:

<resources xmlns:xliff=
"urn:oasis:names:tc:xliff:document:1.2">
<tech-list>
<tech>android.nfc.tech.IsoDep</tech>
<tech>android.nfc.tech.NfcA</tech>
<tech>android.nfc.tech.NfcB</tech>
<tech>android.nfc.tech.NfcF</tech>
<tech>android.nfc.tech.NfcV</tech>
<techy>android.nfc.tech.Ndef</tech>
<tech>android.nfc.tech.NdefFormatable</tech>
<techsandroid.nfc.tech.MifareClassic</tech>
<tech>android.nfc.tech.MifareUltralight</tech>
</tech-list>
</resources>

The actions you need to add to the intent filter to contribute to the NFC dispatching process
are as follows:

For NDEF discovery style, use the following:

<intent-filter>
<action android:name=
"android.nfc.action.NDEF_DISCOVERED"/>
...more filter specs...
</intent-filter>

For tech discovery style, use the following:

<intent-filter>
<action android:name=
"android.nfc.action.TECH_DISCOVERED"/>
</intent-filter>
<meta-data android:name=
"android.nfc.action.TECH DISCOVERED"
android:resource="@xml/nfc_tech_filter" />

For failback discovery style, use the following:

<intent-filter>
<action android:name=
"android.nfc.action.TAG_DISCOVERED"/>
...more filter specs...
</intent-filter>

Once the NFC-related intent gets dispatched, a matching activity can extract NFC information
from the intent. To do so, fetch intent extra data via one or a combination of the following:
NfcAdapter.EXTRA_TAG. Required; gives back an android.nfc.Tag object.

NfcAdapter.EXTRA_NDEF_MESSAGES. Optional; NDEF messages from the
tag. You can retrieve them via the following:

310 CHAPTER 12: Communication

val rawMessages : Parcelable[] =
intent.getParcelableArrayExtra(
NfcAdapter.EXTRA_NDEF_MESSAGES)

NfcAdapter.EXTRA_ID. Optional; the low-level ID of the tag.

If you want to write to NFC tags, the procedure for that is described on the page “NFC
Basics” of the Android online developer documentation.

Peer-to-Peer NFC Data Exchange

Android allows for the NFC communication between two Android devices via its Beam
technology. The procedure goes as follows: let the activity of an NFC-capable device extend
CreateNdefMessageCallback and implement the method createNdefMessage(event :
NfcEvent) : NdefMessage. Inside this method, create and return an NdefMessage as follows:

val text = "A NFC message at " +
System.currentTimeMillis().toString()
val msg = NdefMessage(arrayOf(
NdefRecord.createMime(
"application/vnd.com.example.android.beam",
text.toByteArray())

))

* When a device receives an NFC message with an Android
* Application Record (AAR) added, the application

* specified in the AAR is guaranteed to run. The AAR

* thus overrides the tag dispatch system.

*/

//val msg = NdefMessage(arrayOf(

// NdefRecord.createMime(

/7 "application/vnd.com.example.android.beam",
/7 text.toByteArray()),

// NdefRecord.createApplicationRecord(

// "com.example.android.beam")

/7))

return msg

An NFC data-receiving app could then in its onResume() callback detect whether it got
initiated by an NFC discovery action.

override
fun onResume() {
super.onResume()
// Check to see that the Activity started due to an
// Android Beam event
if (NfcAdapter.ACTION NDEF DISCOVERED ==
intent.action) {
processIntent(intent)

CHAPTER 12: Communication 311

NFC Card Emulation

Letting an Android device act as if it was a smartcard with an NFC chip requires involved
setting and programming tasks. This especially makes sense if you think about security;
some Android devices may contain a secure element that performs the communication
with the card reader on a hardware basis. Some other device may apply host-based card
emulation to let the device CPU perform the communication. An exhaustive description of
all the details for NFC card emulation is beyond the scope of this book, but you can find
information on the Web if you open the page “Host-based Card Emulation” in the online
developer guides of Android.

That said, we describe the basic artifacts to start with a host-based card emulation. The
example is based on the HCE example provided by the developer guides of Android, but it's
converted to Kotlin and boiled down to important NFC-related aspects only (the example
runs under an Apache license; see www.apache.org/licenses/LICENSE-2.0). The code reads
as follows:

/¥
This is a sample APDU Service which demonstrates how
to interface with the card emulation support added
in Android 4.4, KitKat.

This sample replies to any requests sent with the
string "Hello World". In real-world situations, you
would need to modify this code to implement your
desired communication protocol.

This sample will be invoked for any terminals
selecting AIDs of OxF11111111, 0xF22222222, or
0xF33333333. See src/main/res/xml/aid:1list.xml for
more details.

Note: This is a low-level interface. Unlike the
NdefMessage many developers are familiar with for
implementing Android Beam in apps, card emulation
only provides a byte-array based communication
channel. It is left to developers to implement
higher level protocol support as needed.

¥ X K X X K X X XK X K X X X X X ¥ X X ¥

*/
class CardService : HostApduService() {

The onDeactivated() callback gets called if the connection to the NFC card is lost to let
the application know the cause for the disconnection (either a lost link or another AID being
selected by the reader).

Vi

* Called if the connection to the NFC card is lost.

* @param reason Either DEACTIVATION LINK LOSS or

* DEACTIVATION_DESELECTED

*/

override fun onDeactivated(reason: Int) {}

http://www.apache.org/licenses/LICENSE-2.0

312 CHAPTER 12: Communication

The processCommandApdu() method will be called when a command APDU has been
received. A response APDU can be provided directly by returning a byte-array in this
method. In general, response APDUs must be sent as quickly as possible, given that the
user is likely holding a device over an NFC reader when this method is called. If there are
multiple services that have registered for the same AIDs in their metadata entry, you will get
called only if the user has explicitly selected your service, either as a default or just for the
next tap. This method is running on the main thread of your application. If you cannot return
a response APDU immediately, return null and use the sendResponseApdu() method later.

Vai

* This method will be called when a command APDU has

* been received from a remote device.
*

* @param commandApdu The APDU that received from the

* remote device

* @param extras A bundle containing extra data. May
* be null.

* @return a byte-array containing the response APDU,
* or null if no response APDU can be sent

* at this point.

*/

override

fun processCommandApdu(commandApdu: ByteArray,
extras: Bundle): ByteArray {
Log.i(TAG, "Received APDU: " +
byteArrayToHexString(commandApdu))
// If the APDU matches the SELECT AID command for
// this service, send the loyalty card account
// number, followed by a SELECT_OK status trailer
// (0x9000).
if (Arrays.equals(SELECT APDU, commandApdu)) {
val account = AccountStorage.getAccount(this)
val accountBytes = account!!.toByteArray()
Log.i(TAG, "Sending account number: $account")
return concatArrays(accountBytes, SELECT_OK_SW)
} else {
return UNKNOWN_CMD_SW
}
}

The companion object contains a couple of constants and utility functions.

companion object {
private val TAG = "CardService"
// AID for our loyalty card service.
private val SAMPLE_LOYALTY_ CARD AID = "F222222222"
// ISO-DEP command HEADER for selecting an AID.
// Format: [Class | Instruction | Parameter 1 |
// Parameter 2]
private val SELECT APDU_HEADER = "00A40400"
// "OK" status word sent in response to SELECT AID
// command (0x9000)

CHAPTER 12: Communication 313

private val SELECT OK SW =
hexStringToByteArray("9000")

// "UNKNOWN" status word sent in response to

// invalid APDU command (0x0000)

private val UNKNOWN_CMD_SW =
hexStringToByteArray("0000")

private val SELECT APDU =
buildSelectApdu(SAMPLE LOYALTY_CARD AID)

Vioio
* Build APDU for SELECT AID command. This command
* indicates which service a reader is
* interested in communicating with. See
* IS0 7816-4.
*
* @param aid Application ID (AID) to select
* @return APDU for SELECT AID command
*/
fun buildSelectApdu(aid: String): ByteArray {
// Format: [CLASS | INSTRUCTION |
// PARAMETER 1 | PARAMETER 2 |
/! LENGTH | DATA]
return hexStringToByteArray(
SELECT_APDU_HEADER +
String.format("%02X",
aid.length / 2) +
aid)
}

/**
* Utility method to convert a byte array to a
* hexadecimal string.
*/
fun byteArrayToHexString(bytes: ByteArray):
String {
val hexArray = charArrayof('o', '1', '2', '3,
'a', 's', '6', '7', '8', '9", 'A", 'B', 'C’, 'D', 'E', 'F')
val hexChars = CharArray(bytes.size * 2)
var v: Int
for (j in bytes.indices) {
v = bytes[j].toInt() and OxFF
// Cast bytes[j] to int, treating as
// unsigned value
hexChars[j * 2] = hexArray[v.ushr(4)]
// Select hex character from upper nibble
hexChars[j * 2 + 1] = hexArray[v and OXOF]
// Select hex character from lower nibble

}

return String(hexChars)

314 CHAPTER 12: Communication

/**
Utility method to convert a hexadecimal string
to a byte string.

* X X X %

Behavior with input strings containing
non-hexadecimal characters is undefined.
*/
fun hexStringToByteArray(s: String): ByteArray {
val len = s.length
if (len % 2 == 1) {
// TODO, throw exception
}

val data = ByteArray(len / 2)
var i =0
while (i < len) {
// Convert each character into a integer
// (base-16), then bit-shift into place
data[i / 2] =
((Character.digit(s[i], 16) shl 4) +
Character.digit(s[i + 1], 16)).

toByte()
i+4=2

}

return data
}
/¥
* Utility method to concatenate two byte arrays.
*/

fun concatArrays(first: ByteArray,
vararg rest: ByteArray): ByteArray {
var totallength = first.size
for (array in rest) {
totallength += array.size
}

val result =
Arrays.copyOf(first, totallength)

var offset = first.size

for (array in rest) {
System.arraycopy(array, O,

result, offset, array.size)

offset += array.size

}

return result

}
}
}

The corresponding service declaration inside AndroidManifest.xml reads as follows:

<service android:name=".CardService"
android:exported="true"
android:permission=
"android.permission.BIND NFC_SERVICE">

CHAPTER 12: Communication

<!-- Intent filter indicating that we support
card emulation. -->
<intent-filter>
<action android:name=
"android.nfc.cardemulation.action.
HOST_APDU_SERVICE"/>
<category android:name=
"android.intent.category.DEFAULT"/>
</intent-filter>
<!-- Required XML configuration file, listing the
AIDs that we are emulating cards
for. This defines what protocols our card
emulation service supports. -->
<meta-data android:name=
"android.nfc.cardemulation.host_apdu_service"
android:resource="@xml/aid:1ist"/>
</service>

And we need a file called aid:1ist.xml inside res/xml.

<?xml version="1.0" encoding="utf-8"?>
<!-- This file defines which AIDs this application
should emulate cards for.

Vendor-specific AIDs should always start with an "F",
according to the ISO 7816 spec. We recommended
vendor-specific AIDs be at least 6 characters long,
to provide sufficient uniqueness. Note, however, that
longer AIDs may impose a burden on non-Android NFC
terminals. AIDs may not exceed 32 characters

(16 bytes).

Additionally, AIDs must always contain an even number
of characters, in hexadecimal format.

In order to avoid prompting the user to select which
service they want to use when the device is scanned,
this app must be selected as the default handler for
an AID group by the user, or the terminal must
select *all* AIDs defined in the category
simultaneously ("exact match").
-->
<host-apdu-service
xmlns:android=
"http://schemas.android.com/apk/res/android"
android:description="@string/service name"
android:requireDeviceUnlock="false">
<l--
If category="payment" is used for any aid-groups, you
must also add an android:apduServiceBanner attribute
above, like so:
android:apduServiceBanner="@drawable/settings_banner"

apduServiceBanner should be 260x96 dp. In pixels,
that works out to...

315

316 CHAPTER 12: Communication

- drawable-xxhdpi: 780x288 px
- drawable-xhdpi: 520x192 px
- drawable-hdpi: 390x144 px
- drawable-mdpi: 260x96 px

The apduServiceBanner is displayed in the "Tap & Pay"
menu in the system Settings app, and is only displayed
for apps which implement the "payment" AID category.

Since this sample is implementing a non-standard card
type (a loyalty card, specifically), we do not need
to define a banner.

Important: category="payment" should only be used for
industry-standard payment cards. If you are
implementing a closed-loop payment system (e.g.
stored value cards for a specific merchant or
transit system), use category="other". This is
because only one "payment" card may be active at
a time, whereas all "other" cards are active
simultaneously (subject to AID dispatch).

-=>

<aid-group android:description=
"@string/card_title" android:category="other">
<aid-filter android:name="F222222222"/>
</aid-group>
</host-apdu-service>

The service class also depends on object AccountStorage, which for example reads as
follows:

/**

Utility class for persisting account numbers to disk.

ES
ES
* The default SharedPreferences instance is used as
* the backing storage. Values are cached in memory for
* performance.
*/
object AccountStorage {
private val PREF_ACCOUNT NUMBER = "account_number"
private val DEFAULT_ACCOUNT_NUMBER = "00000000"
private val TAG = "AccountStorage"
private var sAccount: String? = null
private val sAccountlLock = Any()

fun setAccount(c: Context, s: String) {
synchronized(sAccountLock) {
Log.1i(TAG, "Setting account number: $s")
val prefs = PreferenceManager.
getDefaultSharedPreferences(c)
prefs.edit().
putString(PREF_ACCOUNT NUMBER, s).

CHAPTER 12: Communication 317

commit()
sAccount = s

}

fun getAccount(c: Context): String? {
synchronized(sAccountLock) {
if (sAccount == null) {
val prefs = PreferenceManager.
getDefaultSharedPreferences(c)
val account = prefs.getString(
PREF_ACCOUNT NUMBER,
DEFAULT_ACCOUNT_NUMBER)
sAccount = account

}

return sAccount

Android and Bluetooth

Android allows you to add your own Bluetooth functionality. An exhaustive description of all
that can be done to serve Bluetooth’s needs is beyond the scope of this book, but to learn
how to do the following, please see the online documentation for Bluetooth in Android:

Scan for available local Bluetooth devices (in case you have more
than one)

Scan for paired remote Bluetooth devices

Scan for services a remote device provides
Establish communication channels

Transfer data between local and remote devices
Work with profiles

Add Bluetooth servers on your Android device

What we will do here is describe the implementation of an RfComm channel to transfer serial
data between your smartphone and an external Bluetooth service. With this use case, you
already have a powerful means for Bluetooth communication at hand. You can, for example,
use it to control robots or smart home gadgets.

A Bluetooth RfComm Server

It is surprisingly hard on the Web to find valuable information about setting up Bluetooth
servers. However, for development, it is necessary to implement a Bluetooth server so you
can test the Android app. And such a test server might also serve as the basis for real-world
scenarios you might think of.

318 CHAPTER 12: Communication

A good candidate for a Bluetooth server technology is BlueCove, which is an open source
project. Parts of it are licensed under an Apache License V2.0 and other parts under GPL,
so while it is easy to incorporate in your own projects, you need to check whether for
commercial projects the license is applicable for your needs. In the following paragraphs,

| will describe how to set up a RfComm Bluetooth server on Linux using BlueCove and
Groovy. For Windows, you’ll have to adapt the startup script and use DLL libraries instead.

Start with downloading and installing Groovy. Any modern version should do. Next, download
BlueCove. The version | tested is 2.1.0, but you might try newer versions as well. You need the
files bluecove-2.1.0. jar, bluecove-emu-2.1.0.jar, and bluecove-gpl-2.1.0.jar. Temporarily
extract the JARs as zip files somewhere and create a folder structure as follows:

libbluecove.jnilib
startRfComm.sh
libbluecove.so
libbluecove x64.so
libs/
bluecove-2.1.0.jar
bluecove-emu-2.1.0.jar
bluecove-gpl-2.1.0.jar
scripts/
rfcomm.groovy

Note Depending on the Linux distribution you use, you might need to add a symlink as follows:
cd /usr/1ib/x86_64-1linux-gnu/
1In -s libbluetooth.so.3 libbluetooth.so

You must do this as root.

Note In addition, still as root, execute the following:

mkdir /var/run/sdb

chmod 777 /var/run/sdp

Note Also, to remedy compatibility issues, you must adapt the Bluetooth server process like so:
cd/etc/systemd/system/bluetooth.target.wants/

Change inside bluetooth.service like so:
ExecStart=/usr/1lib/bluetooth/bluetoothd —
ExecStart=/usr/1lib/bluetooth/bluetoothd -C

Then enter the following in the terminal

systemctl daemon-reload and systemctl restart bluetooth

CHAPTER 12: Communication

The file startRfComm. sh is the startup script. Create it and inside write the following, fixing

paths accordingly:
#!/bin/bash

export JAVA HOME=/opt/jdk8
export GROOVY_HOME=/opt/groovy

$GROOVY_HOME/bin/groovy \

-cp libs/bluecove-2.1.0.jar:1ibs/bluecove-emu-2.1.0.jar
:1ibs/bluecove-gpl-2.1.0.jar \

-Dbluecove.debug=true \

-Djava.library.path=. \

scripts/rfcomm.groovy

The server code lives inside scripts/rfcomm.groovy. Create it and insert the following

content:

import javax.bluetooth.*

import javax.obex.*

import javax.microedition.io.*
import groovy.transform.Canonical

// Run server as root!

// setup the server to listen for connection

// retrieve the local Bluetooth device object
LocalDevice local = LocalDevice.getlLocalDevice()
local.setDiscoverable(DiscoveryAgent.GIAC)

UUID uuid = new UUID(80087355)
String url = "btspp://localhost:" + uuid.toString() +
";name=RemoteBluetooth"
println("URI: " + url)
StreamConnectionNotifier notifier = Connector.open(url)
// waiting for connection
while(true) {
println("waiting for connection...")
StreamConnection connection = notifier.acceptAndOpen()
InputStream inputStream = connection.openInputStream()
println("waiting for input")
while (true) {
int command = inputStream.read()
if(command == -1) break
println("Command: " + command)
}
}

319

320 CHAPTER 12: Communication

The server must be started as root. Once you invoke sudo ./startRfComm.sh on a system
with a Bluetooth adapter installed, the output with timestamps removed should look like this:

Java 1.4+ detected: 1.8.0_60; Java HotSpot(TM) 64-Bit
Server VM; Oracle Corporation

localDeviceID 0

BlueCove version 2.1.0 on bluez

URI: btspp://localhost:04c6093b00001000800000805f9b34fb;
name=RemoteBluetooth

open using BlueCove javax.microedition.io.Connector

connecting btspp://localhost:04
€6093b00001000800000805f9b34Fb; name=RemoteBluetooth

created SDPSession 139982379587968
BlueZ major verion 4 detected
function sdp_extract_pdu of bluez major version 4 is called

waiting for connection...

An Android RfComm Client

With the RfComm Bluetooth server process from the preceding section running, we will now
develop the client for the Android platform. It is supposed to do the following:

Provide an activity to select the remote Bluetooth device to connect to

Provide another activity to initiate a connection and send a message to
the Bluetooth RfConn server

Start with a new project and don’t forget to add Kotlin support. Change the file
AndroidManifest.xml to read as follows:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android=
"http://schemas.android.com/apk/res/android"
package="de.pspaeth.bluetooth">

<uses-permission android:name=
"android.permission.BLUETOOTH_ADMIN"/>
<uses-permission android:name=
"android.permission.BLUETOOTH"/>
<application
android:allowBackup="true"
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:roundIcon="@mipmap/ic_launcher round"
android:supportsRtl="true"

CHAPTER 12: Communication 321

android:theme="@style/AppTheme">
<activity android:name=".MainActivity">
<intent-filter>
<action android:name=
"android.intent.action.MAIN"/>
<category android:name=
"android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<activity
android:name=".DevicelistActivity"
android:configChanges=
"orientation|keyboardHidden"
android:label="Select Device"
android:theme=
"@android:style/Theme.Holo.Dialog"/>
</application>
</manifest>

Next create three layout files inside res/layout. The first, activity main.xml, contains a
status line and two buttons.

<?xml version="1.0" encoding="utf-8"?>

<Linearlayout
xmlns:android=

"http://schemas.android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match_parent"
android:layout_height="match_parent"
tools:context=".MainActivity"
android:orientation="vertical">

<Linearlayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="horizontal">

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="State: " />

<TextView
android:id="@+id/state"
android:layout_width="wrap content"
android:layout_height="wrap_content"/>

</Linearlayout>

<Button
android:layout width="match_parent"
android:layout height="wrap_content"
android:text="Scan Devices"
android:onClick="scanDevices"/>

322 CHAPTER 12: Communication

<Button
android:layout width="match_parent"
android:layout height="wrap_content"
android:text="RfComm"
android:onClick="rfComm"/>
</Linearlayout>

Note For simplicity | added text as literals. In a production environment, you should of course use
string resources.

The next layout file, device list.xml, is for the remote device selector activity:

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android=
"http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">

<TextView
android:id="@+id/title paired devices"
android:layout width="match_parent"
android:layout_height="wrap_content"
android:background="#666"
android:paddingleft="5dp"
android:text="Paired Devices"
android:textColor="#fff"
android:visibility="gone"
/>

<ListView
android:id="@+id/paired_devices"
android:layout width="match_parent"
android:layout_height="wrap_content
android:layout weight="1"
android:stackFromBottom="true"
/>

<TextView
android:id="@+id/title new_devices"
android:layout width="match_parent"
android:layout _height="wrap_content
android:background="#666"
android:paddingleft="5dp"
android:text="0Other Devices"
android:textColor="#fff"
android:visibility="gone"
/>

CHAPTER 12: Communication

<ListView
android:id="@+id/new_devices"
android:layout width="match_parent"
android:layout _height="wrap_content
android:layout weight="2"
android:stackFromBottom="true"
/>

<Button
android:id="@+id/button_scan"
android:layout width="match_parent"
android:layout_height="wrap_content"
android:text="Scan"
/>
</LinearlLayout>

The last, device_name.xml, is for laying out list items from the device lister activity:

<?xml version="1.0" encoding="utf-8"?>
<TextView xmlns:android=
"http://schemas.android.com/apk/res/android"
android:layout width="match_parent"
android:layout height="wrap_content"
android:padding="5dp"
android:textSize="18sp" />

The DevicelistActvity class is an adapted version of the device lister activity of the
Bluetooth chat example from the Android developer documentation.
/**
* This Activity appears as a dialog. It lists any
* paired devices and devices detected in the area after
* discovery. When a device is chosen by the user, the
* MAC address of the device is sent back to the parent
* Activity in the result Intent.
*/
class DevicelistActivity : Activity() {
companion object {
private val TAG = "DevicelistActivity"
var EXTRA DEVICE_ADDRESS = "device_ address"
}

private var mBtAdapter: BluetoothAdapter? = null
private var mNewDevicesArrayAdapter:
ArrayAdapter<String>? = null

OnItemClicklListener is an example for the implementation of a single method interface in
Kotlin.

private val mDeviceClicklListener =
AdapterView.OnItemClickListener {
av, v, arg2, arg3 ->
// Cancel discovery because it's costly and we're

323

324 CHAPTER 12: Communication

// about to connect
mBtAdapter!!.cancelDiscovery()

// Get the device MAC address, which is the last
// 17 chars in the View

val info = (v as TextView).text.toString()

val address = info.substring(info.length - 17)

// Create the result Intent and include the MAC
// address

val intent = Intent()
intent.putExtra(EXTRA _DEVICE ADDRESS, address)

// Set result and finish this Activity
setResult(Activity.RESULT OK, intent)
finish()

}

The BroadcastReceiver listens for discovered devices and changes the title when discovery
is finished.

/**

* Listening for discovered devices.

*/

private val mReceiver = object : BroadcastReceiver() {
override

fun onReceive(context: Context, intent: Intent) {
val action = intent.action

// When discovery finds a device
if (BluetoothDevice.ACTION FOUND == action) {
// Get the BluetoothDevice object from
// the Intent
val device = intent.
getParcelableExtra<BluetoothDevices (
BluetoothDevice.EXTRA DEVICE)
// If it's already paired, skip it,
// because it's been listed already
if (device.bondState !=
BluetoothDevice.BOND BONDED) {
mNewDevicesArrayAdapter!!.add(
device.name + "\n" +
device.address)
}
// When discovery is finished, change the
// Activity title
} else if (BluetoothAdapter.
ACTION DISCOVERY FINISHED == action) {
setProgressBarIndeterminateVisibility(
false)
setTitle("Select Device")
if (mNewDevicesArrayAdapter!!.count

- 0) {

CHAPTER 12: Communication 325

val noDevices = "No device"
mNewDevicesArrayAdapter!!.add(
noDevices)
}
}
}
}

As usual, the onCreate() callback method sets up the user interface.

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)

// Setup the window

requestWindowFeature (Window.
FEATURE_INDETERMINATE PROGRESS)

setContentView(R.layout.activity device list)

// Set result CANCELED in case the user backs out
setResult(Activity.RESULT CANCELED)

// Initialize the button to perform device
// discovery
button_scan.setOnClickListener { v ->
doDiscovery()
v.visibility = View.GONE
}

// Initialize array adapters. One for already
// paired devices and one for newly discovered
// devices
val pairedDevicesArrayAdapter =
ArrayAdapter<String>(this,
R.layout.device name)
mNewDevicesArrayAdapter =
ArrayAdapter(this,
R.layout.device name)

// Find and set up the ListView for paired devices

val pairedlListView = paired devices as ListView

pairedlListView.adapter = pairedDevicesArrayAdapter

pairedlListView.onItemClickListener =
mDeviceClickListener

// Find and set up the ListView for newly

// discovered devices

val newDevicesListView = new_devices as ListView

newDeviceslListView.adapter =
mNewDevicesArrayAdapter

newDevicesListView.onItemClickListener =
mDeviceClickListener

326 CHAPTER 12: Communication

// Register for broadcasts when a device is

// discovered

var filter =
IntentFilter(BluetoothDevice.ACTION_FOUND)

this.registerReceiver(mReceiver, filter)

// Register for broadcasts when discovery has

// finished

filter = IntentFilter(BluetoothAdapter.
ACTION DISCOVERY FINISHED)

this.registerReceiver(mReceiver, filter)

// Get the local Bluetooth adapter
mBtAdapter = BluetoothAdapter.getDefaultAdapter()

// Get a set of currently paired devices
val pairedDevices = mBtAdapter!!.bondedDevices

// If there are paired devices, add each one to

// the ArrayAdapter

if (pairedDevices.size > 0) {
title paired devices.visibility = View.VISIBLE
for (device in pairedDevices) {

pairedDevicesArrayAdapter.add(
device.name + "\n" + device.address)

}

} else {
val noDevices = "No devices"
pairedDevicesArrayAdapter.add(noDevices)

}

The onDestroy() callback method is used to clean up stuff. Finally, the doDiscovery()
method performs the actual discovery work.

override fun onDestroy() {
super.onDestroy()

// Make sure we're not doing discovery anymore

if (mBtAdapter != null) {
mBtAdapter!!.cancelDiscovery()

}

// Unregister broadcast listeners
this.unregisterReceiver(mReceiver)

}

/**
* Start device discover with the BluetoothAdapter
*/

private fun doDiscovery() {

Log.d(TAG, "doDiscovery()")

CHAPTER 12: Communication

// Indicate scanning in the title
setProgressBarIndeterminateVisibility(true)
setTitle("Scanning")

// Turn on sub-title for new devices
title new devices.visibility = View.VISIBLE

// If we're already discovering, stop it

if (mBtAdapter!!.isDiscovering) {
mBtAdapter!!.cancelDiscovery()

}

// Request discover from BluetoothAdapter
mBtAdapter!!.startDiscovery()
}
}

The MainActivity class is responsible for checking and acquiring permissions and
constructs a BluetoothCommandService that we will describe later.

class MainActivity : AppCompatActivity() {
companion object {
val REQUEST ENABLE_BT = 42
val REQUEST_QUERY_DEVICES = 142
}
var mBluetoothAdapter: BluetoothAdapter? = null
var mCommandService:BluetoothCommandService? = null

The onCreate() callback inside the activity gets used to set up the user interface and
register the Bluetooth adapter.

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity main)

val permissionl = ContextCompat.
checkSelfPermission(
this, Manifest.permission.BLUETOOTH)

val permission2 = ContextCompat.
checkSelfPermission(
this, Manifest.permission.BLUETOOTH_ ADMIN)

if (permissioni !=
PackageManager.PERMISSION GRANTED | |

permission2 !=

PackageManager.PERMISSION GRANTED)

ActivityCompat.requestPermissions(this,
arrayOf(
Manifest.permission.BLUETOOTH,
Manifest.permission.BLUETOOTH ADMIN),
642)

327

328 CHAPTER 12: Communication

mBluetoothAdapter =
BluetoothAdapter.getDefaultAdapter()

if (mBluetoothAdapter == null) {
Toast.makeText(this,
"Bluetooth is not supported”,
Toast.LENGTH_LONG) . show()
finish()
}

if (!mBluetoothAdapter!!.isEnabled()) {
val enableIntent = Intent(
BluetoothAdapter.ACTION REQUEST ENABLE)
startActivityForResult(
enableIntent, REQUEST ENABLE BT)

}

The scanDevices() method is used for calling the system’s Bluetooth device scanner.
/**
* Launch the DevicelistActivity to see devices and
* do scan
*/
fun scanDevices(v:View) {
val serverIntent = Intent(
this, DevicelistActivity::class.java)
startActivityForResult(serverIntent,
REQUEST QUERY_DEVICES)
}

The methods rfComm and sendMessage() handle the sending of Bluetooth messages.

fun rfComm(v: View) {
sendMessage("The message")
}

/¥

* Sends a message.

*

* @param message A string of text to send.

*/

private fun sendMessage(message: String) {

if (mCommandService?.mState !==

BluetoothCommandService.Companion.
State.CONNECTED)

Toast.makeText(this, "Not connected",
Toast.LENGTH_SHORT) . show()
return

CHAPTER 12: Communication 329

// Check that there's actually something to send
if (message.length > 0) {
val send = message.toByteArray()
mCommandService?.write(send)

}

The actual connection to a device gets done from inside the method connectDevice().

private
fun connectDevice(data: Intent, secure: Boolean) {
val macAddress = data.extras!!
.getString(
DevicelistActivity.EXTRA DEVICE ADDRESS)
mBluetoothAdapter?.
getRemoteDevice(macAddress)?.run {
val device = this
mCommandService =
BluetoothCommandService(
this@MainActivity, macAddress).apply {
addStateChangelListener { statex ->
runOnUiThread {
state.text = statex.toString()

}

connect(device)

}

private fun fetchUuids(device: BluetoothDevice) {
device.fetchUuidsWithSdp()

}

The callback method onActivityResult() handles the returning from the system’s device
chooser. Here we just perform a connection to the device chosen.

override
fun onActivityResult(requestCode: Int,
resultCode: Int, data: Intent) {
when (requestCode) {
REQUEST QUERY DEVICES -> {
if (resultCode == Activity.RESULT OK) {
connectDevice(data, false)

}

330 CHAPTER 12: Communication

Class BluetoothCommandService is, despite its name, not an Android service. It handles the
communication with the Bluetooth server and reads as follows:

class BluetoothCommandService(context: Context,
val macAddress:String) {
companion object {
// Unique UUID for this application
private val MY_UUID INSECURE = UUID.fromString(
"04c6093b-0000-1000-8000-00805f9b34fb")

// Constants that indicate the current connection

// state
enum class State {
NONE, // we're doing nothing
LISTEN, // listening for incoming conns

CONNECTING, // initiating an outgoing conn
CONNECTED // connected to a remote device

}

private val mAdapter: BluetoothAdapter

private var createSocket: CreateSocketThread? = null
private var readWrite: SocketReadWrite? = null

var mState: State = State.NONE

private var stateChangelisteners =
mutableListOf<(State)->Unit>()
fun addStateChangelListener(1l:(State)->Unit) {
stateChangelListeners.add(1)

}

init {
mAdapter = BluetoothAdapter.getDefaultAdapter()
changeState(State.NONE)

}

Its public methods are for connecting, disconnecting, and writing data.
/**

* Initiate a connection to a remote device.
*

* @param device The BluetoothDevice to connect

*/
fun connect(device: BluetoothDevice) {
stopThreads()
// Start the thread to connect with the given
// device
createSocket = CreateSocketThread(device).apply {
start()
}

CHAPTER 12: Communication

/**
* Stop all threads
*/
fun stop() {
stopThreads()
changeState(State.NONE)
}

/**
* Write to the ConnectedThread in an unsynchronized
* manner
*
* @param out The bytes to write
* @see ConnectedThread.write
*/
fun write(out: ByteArray) {
if (mState != State.CONNECTED) return
readWrite?.run { write(out) }

}

Its private methods handle the connection threads.

[117777177771771777117711771177717771177117711177111771177
[11777771777177771777777777777177777771177117717771171777177

/**

* Start the ConnectedThread to begin managing a

* Bluetooth connection
*

* @param socket The BluetoothSocket on which the

* connection was made

* @param device The BluetoothDevice that has been
* connected

*/

private fun connected(socket: BluetoothSocket,
device: BluetoothDevice) {
stopThreads()

// Start the thread to perform transmissions

readWirite = SocketReadWrite(socket).apply {
start()

}

}

private fun stopThreads() {
createSocket?.run {
cancel()
createSocket = null

}
readWrite?.run {
cancel()
readWrite = null
}

331

332 CHAPTER 12: Communication

/**

* Indicate that the connection attempt failed.

*/

private fun connectionFailed() {
changeState(State.NONE)

}

/**

* Indicate that the connection was lost.

*/

private fun connectionlost() {
changeState(State.NONE)

}

The connection socket handling thread itself is a dedicated Thread implementation.
Vs
* This thread runs while attempting to make an
* outgoing connection with a device. It runs straight
* through; the connection either succeeds or fails.
*/
private inner
class CreateSocketThread(
private val mmDevice: BluetoothDevice) :
Thread() {
private val mmSocket: BluetoothSocket?

init {
// Get a BluetoothSocket for a connection
// with the given BluetoothDevice
mmSocket = mmDevice.
createInsecureRfcommSocketToServiceRecord(
MY _UUID INSECURE)
changeState(Companion.State.CONNECTING)

}

override fun run() {
name = "CreateSocketThread"

// Always cancel discovery because it will
// slow down a connection
mAdapter.cancelDiscovery()

// Make a connection to the BluetoothSocket

try {

// This is a blocking call and will only
// return on a successful connection or an
// exception

mmSocket!!.connect()

} catch (e: IOException) {
Log.e("LOG","Connection failed", e)
Log.e("LOG", "Maybe device does not " +

" expose service " + MY _UUID INSECURE)
// Close the socket
mmSocket!!.close()

CHAPTER 12: Communication 333

connectionFailed()
return
}

// Reset the thread because we're done
createSocket = null

// Start the connected thread
connected(mmSocket, mmDevice)

fun cancel() {
mmSocket!!.close()

}

For reading and writing data from and to the connection socket, we use another thread.
Vioio
* This thread runs during a connection with a
* remote device. It handles all incoming and outgoing
* transmissions.
*/
private inner
class SocketReadWrite(val mmSocket: BluetoothSocket) :
Thread() {
private val mmInStream: InputStream?
private val mmOutStream: OutputStream?

init {
mmInStream = mmSocket.inputStream
mmOutStream = mmSocket.outputStream
changeState(Companion.State.CONNECTED)

}

override fun run() {
val buffer = ByteArray(1024)
var bytex: Int

// Keep listening to the InputStream while

// connected

while (mState ==
Companion.State.CONNECTED) {

try {
// Read from the InputStream
bytex = mmInStream!!.read(buffer)
} catch (e: IOException) {
connectionLost()
break

334 CHAPTER 12: Communication

/**

* Write to the connected OutStream.
k

* @param buffer The bytes to write

*/

fun write(buffer: ByteArray) {
mmOutStream! ! .write(buffer)

}

fun cancel() {
mmSocket.close()
}

}

Finally, we provide a method to tell interested parties when a socket connection state
changes. Here this also emits a logging statement. For production code you’d remove this or
provide this information to the user some other way.

private fun changeState(newState:State) {
Log.e("LOG",
"changing state: ${mState} -> ${newState}")
mState = newState
stateChangelisteners.forEach { it(newState) }

Note The UUID from the companion object must match the UUID you see in the server startup logs.

This class does is the following:

Once its connect(...) method gets called, it starts a connection
attempt.

If the connection succeeds, another thread for initializing input and
output streams using the connection object gets started. Note that
the input stream is not used in this example; it is here for informational
purposes.

By virtue of its mState member, clients can check for the connection
state.

If connected, the method write(...) can be called to send data through
the connection channel.

CHAPTER 12: Communication 335

To test the connection, press the RFCOMM button on the Ul. The server application should
then log the following:

Command: 84

Command: 104
Command: 101
Command: 32

Command: 109
Command: 101
Command: 115
Command: 115
Command: 97

Command: 103
Command: 101

This is the numerical representation of the message “The message.”

Chapter

Hardware

Android can do more than present a GUI on a smartphone. Android is also about wearables,
talking to appropriately equipped TV sets and infotainment in cars. Smartphones also have
cameras, NFC and Bluetooth adapters, and sensors for position, movement, orientation, and
fingerprints. And yes, smartphones can do phone calls as well. This chapter describes how
the Android OS can run on devices other than smartphones and how to interact with the
device’s hardware.

Programming with Wearables

Google Wear is about small devices you wear on your body. Although right now this is pretty
much restricted to smartwatches you buy and then wrap around your wrist, future devices
might include your glasses, your clothes, or whatever else you might think of. Right now Google
Wear using means having a smartphone with you and connecting it to a Google Wear device
via some pairing mechanism, but modern devices also may run in a stand-alone fashion.

This means to function they won’t need paired smartphones any longer and themselves can
connect to the Internet, a cellular network, or a local network via Wi-Fi, Bluetooth, or a
cellular adapter.

If you happen to use a paired smartphone for a Google Wear app, this no longer is restricted
to running only Android, so you can pair a Google Wear device with an Android smartphone
or an Apple iOS phone. The Android Wear OS works with paired phones running Android
version 4.4 or higher and iOS 9.3 or higher.

Google’s design guidelines for smartphone apps (more precisely, the demand for an easy
and expressive user interface) are even more important for Wear apps. Because of the
limited space and input capabilities, it is absolutely vital for Wear-related development to
reduce Ul elements and front-end workflows to a bare minimum. Otherwise, you risk your
app’s usability and acceptance degrading significantly.

© Peter Spath 2018 337
P. Spath, Pro Android with Kotlin, https://doi.org/10.1007/978-1-4842-3820-2_13

http://dx.doi.org/10.1007/978-1-4842-3820-2_13

338 CHAPTER 13: Hardware

The following are common use cases for Google Wear apps:
Designing own watch faces (time and date display)
Adding face complications (custom face elements)
Displaying notifications
Messaging
Voice interaction
Google Assistant
Playing music
Making and receiving calls
Alarms
Apps with simple user interfaces
Companion apps to smartphone and tablet apps
Sensor apps
Location-based services
Pay apps

In the following sections, we will be looking at development matters for Google Wear apps.

Wearables Development

While to develop Wear apps you can mostly use the same tools and techniques you use
for smartphone or tablet app development, you have to keep in mind the limited space on
smartwatches and the different way users interact with watches compared to other devices.

Nevertheless, the prominent place to start Wear development is Android Studio, and in this
section we describe what to do to set up your IDE to start Wear development and how to get
devices connected to Android Studio.

For developing Wear apps, we first have to point out that there are two operation modes.
Pairing a wearable device with a smartphone

Because of technical restrictions, it is not possible to pair a virtual
smartwatch with a virtual smartphone. So, you have to use a real phone
to pair a virtual smartwatch.

Stand-alone mode

The Wear app runs on its own, without needing to pair with a
smartphone. It is highly recommended for modern apps to be able to do
sensible things also in stand-alone mode.

CHAPTER 13: Hardware

In either case, create a new Android Studio project, and in the Target Android Devices
section, select only the Wear box. As a minimum API level, choose API 24. On the
subsequent screen, select one of the following:

Add No Activity

Proceed without adding an activity. You will have to do that later
manually.

Blank Wear Activity
Add the following as the layout:

<android.support.wear.widget.BoxInsetlLayout ...>
<FramelLayout ...>
</FramelLayout>
</android.support.wear.widget.BoxInsetLayout>

Add the following as an activity class:

class MainActivity : WearableActivity() {
override
fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity main)
setAmbientEnabled() // Enables Always-on
}
}

Google Maps Wear Activity
Add the following as the layout:

<android.support.wear.widget.
SwipeDismissFramelayout ...>
<FrameLayout ...>
<fragment android:id="@+id/map" android:name=
"com.google.android.gms.maps.MapFragment"
/>
</FramelLayout>
</android.support.wear.widget.
SwipeDismissFramelayout>

Add the following as an activity class:

class MapsActivity : WearableActivity(),
OnMapReadyCallback {
override fun onCreate(savedState: Bundle?) {
super.onCreate(savedState)
setAmbientEnabled() // Enables always on
setContentView(R.layout.activity maps)

339

340 CHAPTER 13: Hardware

// Enables the Swipe-To-Dismiss Gesture
// Adjusts margins

}
override
fun onMapReady(googleMap: GoogleMap) {

}
}

Watch Face

This option does not create an activity; instead, it builds a service class
needed to define a watch face.

This choice corresponds to the development paradigm you choose. You will create one of
the following:

A smartphone-like app that needs explicitly to be started on the watch
to run. This includes a Google Maps app for Wear.

A watch face. This is more or less a graphics design issue; a face is the
visual appearance of time and date on the watch’s surface.

A face complication. This is a feature added to a face.
We will be talking about the different development paths in the following sections.

Next, open Tools » AVD Manager and create a new virtual Wear device. You can now start
your app on a virtual Wear device. Unless you chose Add No Activity, the emulator should
already show a starting Ul on the face.

To pair the virtual watch with your smartphone, connect the smartphone to your development
PC with a USB cable, make it a development device (tap seven times on the build number at
the bottom of the system settings), and then install the Wear OS using the Google app on the
smartphone. On your development PC, set up the communication via this:

./adb -d forward tcp:5601 tcp:5601

Start the app, and from the menu choose Connect to Emulator.

If you want to develop using a real smartwatch and need debugging capabilities, the online
resource “Debugging a Wear OS App” shows more information about how to set up a
smartwatch debugging process.

Wearables App User Interface

Before you start creating a user interface for your Wear app, consider using one of the
built-in mechanisms, namely, a notification or a face complication as described in the
following sections. If, however, you think it is necessary your Wear app to present its own
layout, do not just copy a smartphone app layout and use it for Wear. Instead, to build a

CHAPTER 13: Hardware k7|

genuine Wear user interface, use the special Ul elements provided by the Wear support
library. To use them, make sure the module’s build.gradle file contains the following:

dependencies {

implementation 'com.android.support:wear:26.0.0'

}

This library contains various classes that help you to build a Ul with elements especially
tailored for Wear development. The page “android.support.wear.widget” in the online API
documentation contains detailed information about how to use those classes.

Wearables Faces

If you want to create a Wear face showing the time and date in a certain custom design,
start with the project creation wizard as described earlier, using the Watch Face option.

Caution The watch face example provided in Android Studio 3.1 contains a bug. It tries to start
a default activity that does not exist for a face-only app. To fix this, open Edit Configurations in the
Run menu, and in Launch Options change Launch to Nothing.

The wizard service class that is generated provides a pretty elaborate example for a watch
face that you can use as a starting point for your own faces.

Adding Face Complications

Face complications are placeholders for data snippets in a face. The complication data
providers are strictly separated from the complication renderers, so in your face you do not
say you want to show certain complications. Instead, you specify places where to show
complications, and you also specify possibly complication data types, but you let the user
decide which complications to show where exactly.

In this section, we talk about how to enhance your face to show complication data. For
this aim, | present a minimum invasive way to update your face implementation so it will
be easier for you to realize your own ideas. Having a running face as described earlier is a
requirement for this section.

342 CHAPTER 13: Hardware

We start with the entries in AndroidManifest.xml.

We need a way to tell Android that we are going to have a configuration
activity for complication Ul elements. This happens by adding this inside
the service element (remove the line breaks indicated by -):

<meta-data
android:name=
"com.google.android.wearable. -
watchface.wearableConfigurationAction"
android:value=
"com.example.xyz88.CONFIG_COMPLICATION"/>

This shows Android that there exists a complication administration activity. We map it to the
new activity described next.

We add the information about a permission inquiry activity and a
configuration activity as follows:

<activity android:name=
"android.support.wearable. -
complications. -
ComplicationHelperActivity"/>
<activity
android:name=
".ComplicationConfigActivity"
android:label="@string/app_name">
<intent-filter>
<action android:name=
"com.example.xyz88. -
CONFIG_COMPLICATION"/>
<category android:name=
"com.google.android. -
wearable.watchface.category. -
WEARABLE_CONFIGURATION"/>
<category android:name=
"android.intent.category. -
DEFAULT"/>
</intent-filter>
</activity>

Next we add the following inside the Face class at any suitable place:

lateinit var compl : MyComplications

private fun initializeComplications() {
compl = MyComplications()
compl.init(this@MyWatchFace, this)

}

override

fun onComplicationDataUpdate(
complicationId: Int,
complicationData: ComplicationData)

CHAPTER 13: Hardware 343

compl.onComplicationDataUpdate(
complicationId,complicationData)

}

private fun drawComplications(
canvas: Canvas, drawWhen: Long) {
compl.drawComplications(canvas, drawWhen)

}

// Fires PendingIntent associated with
// complication (if it has one).
private fun onComplicationTap(
complicationId:Int) {
Log.d("LOG", "onComplicationTap()")
compl.onComplicationTap(complicationId)

}

In the same file, add the following to ci.onCreate(...):
initializeComplications()

At the end of onSurfaceChanged(...), add the following:
compl.updateComplicationBounds(width, height)

Inside the onTapCommand(. . .) function, replace the corresponding where block branch as
follows:

WatchFaceService.TAP_TYPE_TAP -> {
// The user has completed the tap gesture.
// Toast.makeText(applicationContext, R.string.message,
Toast.LENGTH_SHORT)
// .show()
compl.getTappedComplicationId(x, y)?.run {
onComplicationTap(this)
}
}

This figures out whether the user tapped one of the shown complications and, if this is the
case, forwards the event to one of the new functions we defined. Finally, inside onDraw(...),
write the following:

drawBackground(canvas)
drawComplications(canvas, now)
drawWatchFace(canvas)

344 CHAPTER 13: Hardware

To handle the complications, create a new class called MyComplications with this content:
class MyComplications {

We first in the companion object define a couple of constants and utility methods.

companion object {
fun getComplicationId(
pos: ComplicationConfigActivity.
ComplicationLocation): Int {
// Add supported locations here
return when(pos) {
ComplicationConfigActivity.
Complicationlocation.LEFT ->
LEFT_COMPLICATION_ID
ComplicationConfigActivity.
Complicationlocation.RIGHT ->
RIGHT _COMPLICATION_ID
else -> -1

}

fun getSupportedComplicationTypes(
complicationLocation:
ComplicationConfigActivity.
ComplicationLocation): IntArray? {
return when(complicationlLocation) {
ComplicationConfigActivity.
ComplicationlLocation.LEFT ->
COMPLICATION SUPPORTED TYPES[O]
ComplicationConfigActivity.
ComplicationLocation.RIGHT ->
COMPLICATION_SUPPORTED TYPES[1]
else -> IntArray(0)

}

private val LEFT_COMPLICATION_ID = O

private val RIGHT COMPLICATION_ID = 1

val COMPLICATION IDS = intArrayOf(
LEFT_COMPLICATION ID, RIGHT COMPLICATION ID)

private val complicationDrawables =
SparseArray<ComplicationDrawable> ()

private val complicationDat =
SparseArray<ComplicationData>()

// Left and right dial supported types.
private val COMPLICATION SUPPORTED TYPES =
arrayOf(
intArrayOf(ComplicationData.TYPE_RANGED VALUE,
ComplicationData.TYPE_ICON,
ComplicationData.TYPE_SHORT_TEXT,
ComplicationData.TYPE SMALL IMAGE),

CHAPTER 13: Hardware

intArrayOf(ComplicationData.TYPE_RANGED VALUE,
ComplicationData.TYPE_ICON,
ComplicationData.TYPE_SHORT TEXT,
ComplicationData.TYPE_SMALL_IMAGE)

}

private lateinit var ctx:CanvasWatchFaceService
private lateinit var engine:MyWatchFace.Engine

Inside an init() method we register the complications to draw. The method

345

onComplicationDataUpdate() is used to handle complication data updates, and the method

updateComplicationBounds() reacts to complication size changes.

fun init(ctx:CanvasWatchFaceService,
engine: MyWatchFace.Engine) {
this.ctx = ctx
this.engine = engine

// A ComplicationDrawable for each location
val leftComplicationDrawable =
ctx.getDrawable(custom complication_styles)
as ComplicationDrawable
leftComplicationDrawable.setContext(
ctx.applicationContext)
val rightComplicationDrawable =
ctx.getDrawable(custom complication styles)
as ComplicationDrawable
rightComplicationDrawable.setContext(
ctx.applicationContext)
complicationDrawables[LEFT_COMPLICATION_ID] =
leftComplicationDrawable
complicationDrawables[RIGHT COMPLICATION ID] =
rightComplicationDrawable

engine.setActiveComplications(*COMPLICATION IDS)

fun onComplicationDataUpdate(
complicationId: Int,
complicationData: ComplicationData) {
Log.d("LOG", "onComplicationDataUpdate() id: " +
complicationId);
complicationDat[complicationId] = complicationData
complicationDrawables[complicationId].
setComplicationData(complicationData)
engine.invalidate()

346 CHAPTER 13: Hardware

fun updateComplicationBounds(width: Int,
height: Int) {
// For most Wear devices width and height
// are the same
val sizeOfComplication = width / 4
val midpointOfScreen = width / 2

val horizontalOffset =

(midpointOfScreen - sizeOfComplication) / 2
val verticalOffset =

midpointOfScreen - sizeOfComplication / 2

complicationDrawables.get(LEFT_COMPLICATION ID).
bounds =
// Left, Top, Right, Bottom
Rect(
horizontalOffset,
verticalOffset,
horizontalOffset + sizeOfComplication,
verticalOffset + sizeOfComplication)
complicationDrawables.get(RIGHT_COMPLICATION_ID).
bounds =
// Left, Top, Right, Bottom
Rect(
midpointOfScreen + horizontalOffset,
verticalOffset,
midpointOfScreen + horizontalOffset +
sizeOfComplication,
verticalOffset + sizeOfComplication)

}

The method drawComplications() actually draws the complications. For this aim, we scan
through the complications we registered inside the init block.

fun drawComplications(canvas: Canvas, drawWhen: Long) {
COMPLICATION_IDS.forEach {
complicationDrawables[it].
draw(canvas, drawhhen)

}

We need the ability to find out whether one of our complications has been tapped.
The method getTappedComplicationId() is responsible for that. Finally, a method
onComplicationTap() reacts to such events.

// Determines if tap happened inside a complication
// area, or else returns null.
fun getTappedComplicationId(x:Int, y:Int):Int? {

val currentTimeMillis = System.currentTimeMillis()

for(complicationId in

MyComplications.COMPLICATION IDS) {
val res =
complicationDat[complicationId]?.run {

CHAPTER 13: Hardware 347

var res2 = -1
if(isActive(currentTimeMillis)
88 (getType() !=
ComplicationData.TYPE _NOT_CONFIGURED)
88 (getType() !=
ComplicationData.TYPE EMPTY))

val complicationDrawable =
complicationDrawables[complicationId]
val complicationBoundingRect =
complicationDrawable.bounds
if (complicationBoundingRect.width()
> 0) {
if (complicationBoundingRect.
contains(x, y)) {
res2 = complicationlId
}
} else {
Log.e("LOG",
"Unrecognized complication id.")

}

res2
} 21
if(res != -1) return res
}

return null

}

// The user tapped on a complication
fun onComplicationTap(complicationId:Int) {
Log.d("LOG", "onComplicationTap()")

val complicationData =
complicationDat[complicationId]
if (complicationData != null) {
if (complicationData.getTapAction()
I= null) {
try {
complicationData.getTapAction().send()
} catch (e: Exception) {
Log.e("LOG",
"onComplicationTap() tap error: " +
e);

} else if (complicationData.getType() ==
ComplicationData.TYPE_NO PERMISSION) {
// Launch permission request.
val componentName = ComponentName(
ctx.applicationContext,
MyComplications::class.java)

348 CHAPTER 13: Hardware

val permissionRequestIntent =
ComplicationHelperActivity.
createPermissionRequestHelperIntent(
ctx.applicationContext,

componentName)
ctx.startActivity(permissionRequestIntent)
}
} else {

Log.d("LOG",
"No PendingIntent for complication " +
complicationId + ".")

}

What is left to do is write the configuration activity. For that purpose, create a new Kotlin
class called ComplicationConfigActivity with the following content:

class ComplicationConfigActivity :
Activity(), View.OnClickListener {
companion object {
val TAG = "LOG"
val COMPLICATION CONFIG_REQUEST CODE = 1001

}

var mLeftComplicationId: Int = 0
var mRightComplicationId: Int = 0
var mSelectedComplicationId: Int = 0

// Used to identify a specific service that renders
// the watch face.
var mWatchFaceComponentName: ComponentName? = null

// Required to retrieve complication data from watch
// face for preview.
var mProviderInfoRetriever:

ProviderInfoRetriever? = null

var mLeftComplicationBackground: ImageView? = null
var mRightComplicationBackground: ImageView? = null

var mLeftComplication: ImageButton? = null
var mRightComplication: ImageButton? = null

var mDefaultAddComplicationDrawable: Drawable? = null
enum class ComplicationLocation {

LEFT,
RIGHT

CHAPTER 13: Hardware

349

As usual, we use the onCreate() and onDestroy() callbacks to set up or clean up our user
interface. Also, the method retrieveInitialComplicationsData() gets used by onCreate()

to initialize the complications.

override
fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)
setContentView(R.layout.activity config)

mDefaultAddComplicationDrawable =
getDrawable(R.drawable.add complication)

mSelectedComplicationId = -1

mLeftComplicationld =
MyComplications.getComplicationId(
ComplicationLocation.LEFT)

mRightComplicationId =
MyComplications.getComplicationId(
ComplicationLocation.RIGHT)

mWatchFaceComponentName =
ComponentName (applicationContext,
MyWatchFace::class.javall)

// Sets up left complication preview.
mLeftComplicationBackground =
left_complication_background
mLeftComplication = left complication
mLeftComplication!!.setOnClickListener(this)

// Sets default as "Add Complication" icon.

mLeftComplication!!.setImageDrawable(
mDefaultAddComplicationDrawable)

mLeftComplicationBackground!!.setVisibility(
View.INVISIBLE)

// Sets up right complication preview.
mRightComplicationBackground =
right_complication_background
mRightComplication = right complication
mRightComplication!!.setOnClickListener(this)

// Sets default as "Add Complication" icon.

mRightComplication!!.setImageDrawable(
mDefaultAddComplicationDrawable)

mRightComplicationBackground!!.setVisibility(
View.INVISIBLE)

350 CHAPTER 13: Hardware

mProviderInfoRetriever =
ProviderInfoRetriever(applicationContext,
Executors.newCachedThreadPool())

mProviderInfoRetriever!!.init()

retrieveInitialComplicationsData()

}

override fun onDestroy() {
super.onDestroy()
mProviderInfoRetriever!!.release()

}

fun retrieveInitialComplicationsData() {
val complicationlds =
MyComplications.COMPLICATION_IDS
mProviderInfoRetriever!!.retrieveProviderInfo(
object : ProviderInfoRetriever.
OnProviderInfoReceivedCallback() {
override fun onProviderInfoReceived(
watchFaceComplicationId:
Int,
complicationProviderInfo:
ComplicationProviderInfo?)

{

Log.d(TAG,
"onProviderInfoReceived: " +
complicationProviderInfo)

updateComplicationViews(

watchFaceComplicationId,
complicationProviderInfo)
}
b
mWatchFaceComponentName,
*complicationIds)

}

The methods onClick() and launchComplicationHelperActivity() are used to handle
on-complication taps.

override
fun onClick(view: View) {

if (view.equals(mLeftComplication)) {
Log.d(TAG, "Left Complication click()")
launchComplicationHelperActivity(

ComplicationLocation.LEFT)

} else if (view.equals(mRightComplication)) {
Log.d(TAG, "Right Complication click()")
launchComplicationHelperActivity(

ComplicationLocation.RIGHT)

CHAPTER 13: Hardware

fun launchComplicationHelperActivity(
complicationLocation: Complicationlocation) {

mSelectedComplicationIld =
MyComplications.getComplicationId(
complicationLocation)

if (mSelectedComplicationId »>= 0) {
val supportedTypes = MyComplications.
getSupportedComplicationTypes(
complicationLocation)!!

startActivityForResult(
ComplicationHelperActivity.
createProviderChooserHelperIntent(
applicationContext,
miWatchFaceComponentName,
mSelectedComplicationId,
*supportedTypes),
ComplicationConfigActivity.
COMPLICATION CONFIG REQUEST CODE)
} else {
Log.d(TAG,
"Complication not supported by watch face.")

}

To handle updates that we get signaled by the Android OS, we provide the methods
updateComplicationViews() and onActivityResult().

fun updateComplicationViews(
watchFaceComplicationId:
Int,
complicationProviderInfo:
ComplicationProviderInfo?)
Log.d(TAG, "updateComplicationViews(): id: "+
watchFaceComplicationId)
Log.d(TAG, "\tinfo: " + complicationProviderInfo)

if (watchFaceComplicationId ==
mLeftComplicationId) {
if (complicationProviderInfo != null) {
mLeftComplication!!.setImageIcon(
complicationProviderInfo.providerIcon)
mLeftComplicationBackground!!.
setVisibility(View.VISIBLE)
} else {
mLeftComplication!!.setImageDrawable(
mDefaultAddComplicationDrawable)
mLeftComplicationBackground!!.
setVisibility(View.INVISIBLE)

351

352 CHAPTER 13: Hardware

} else if (watchFaceComplicationId ==
mRightComplicationId) {
if (complicationProviderInfo != null) {

mRightComplication!!.
setImageIcon(
complicationProviderInfo.providerIcon)

mRightComplicationBackground!!.
setVisibility(View.VISIBLE)

} else {
mRightComplication!!.setImageDrawable(
mDefaultAddComplicationDrawable)
mRightComplicationBackground!!.
setVisibility(View.INVISIBLE)

}

override
fun onActivityResult(requestCode: Int,
resultCode: Int, data: Intent) {
if (requestCode ==
COMPLICATION CONFIG REQUEST CODE
88 resultCode == Activity.RESULT OK) {

// Retrieves information for selected
// Complication provider.
val complicationProviderInfo =
data.getParcelableExtra<
ComplicationProviderInfo>(
ProviderChooserIntent.
EXTRA_PROVIDER_INFO)
Log.d(TAG, "Provider: " +
complicationProviderInfo)

if (mSelectedComplicationId »>= 0) {
updateComplicationViews(
mSelectedComplicationId,
complicationProviderInfo)

}
}
}

Note that we added a couple of logging statements that you might want to remove for
productive code. A corresponding layout may read as follows:

<?xml version="1.0" encoding="utf-8"?>
<Relativelayout
xmlns:android=
"http://schemas.android.com/apk/res/android"
android:layout width="match_parent"
android:layout height="match_parent">

CHAPTER 13: Hardware

<View
android:id="@+id/watch_face_background"
android:layout_width="180dp"
android:layout_height="180dp"
android:layout_centerHorizontal="true"
android:layout centerVertical="true"
android:background=

"@drawable/settings_face preview background"/>

<View
android:id="@+id/watch_face_highlight"
android:layout_width="180dp"
android:layout_height="180dp"
android:layout_centerHorizontal="true"
android:layout_centerVertical="true"
android:background=

"@drawable/settings face preview_highlight"/>

<View
android:id="@+id/watch_face_arms_and_ticks"
android:layout_width="180dp"
android:layout_height="180dp"
android:layout centerHorizontal="true"
android:layout centerVertical="true"
android:background=

"@drawable/settings_face preview arms_n_ticks"/>

<ImageView
android:id="@+id/left_complication_background"
android:layout _width="wrap content"
android:layout_height="wrap_content"
android:src="@drawable/added_complication"
style="?android:borderlessButtonStyle"
android:background="@android:color/transparent"”
android:layout centerVertical="true"
android:layout_alignStart=
"@+id/watch_face_background"/>

<ImageButton
android:id="@+id/left_complication"
android:layout_width="wrap content"”
android:layout_height="wrap_content"
style="?android:borderlessButtonStyle"
android:background="@android:color/transparent"”
android:layout_alignTop=
"@+id/left_complication_background"
android:layout_alignStart=
"@+id/watch_face_background"/>

353

354 CHAPTER 13: Hardware

<ImageView
android:id="@+id/right_complication_background"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:src="@drawable/added_complication”
style="?android:borderlessButtonStyle"
android:background="@android:color/transparent
android:layout_alignTop=
"@+id/left_complication_background"
android:layout_alignStart=
"@+id/right_complication"/>

<ImageButton
android:id="@+id/right_complication"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
style="?android:borderlessButtonStyle"
android:background="@android:color/transparent"”
android:layout_alignTop=
"@+id/right_complication_background"
android:layout_alignEnd=
"@+id/watch_face_background"/>
</Relativelayout>

With all these additions, the face provides for two possible complications to be added on user
demand. More complication positions are possible; just rewrite the appropriate parts of the code.

Note Entering the code as shown here, Android Studio will complain about missing resources,
especially drawables. For the code presented here to run, you must provide the missing resources.
You can usually figure out what they get used for by looking at the names.

Providing Complication Data

A Google Wear device by default includes several complication data providers, so the user
can choose among them to fill the complication placeholders in a face.

If you want to create your own complication data provider, prepare a new service as
declared in AndroidManifest.xml.

<service
android:name=".CustomComplicationProviderService"
android:icon="@drawable/ic_watch_white"
android:label="Service label"
android:permission="com.google.android.wearable. -
permission.BIND_COMPLICATION_ PROVIDER">

<intent-filter>
<action android:name="android.support.wearable. -
complications. -
ACTION_COMPLICATION_UPDATE_REQUEST"/>
</intent-filter>

CHAPTER 13: Hardware 355

<meta-data
android:name="android. support.wearable.-
complications.SUPPORTED TYPES"
android:value=
"SHORT_TEXT, LONG_TEXT,RANGED_VALUE"/>

<I--

UPDATE_PERIOD_SECONDS specifies how

often you want the system to check for updates

to the data. A zero value means you will
instead manually trigger updates.

If not zero, set the interval in the order

of minutes. The actual update may however

differ - the system might have its own idea.

-->

<meta-data
android:name="android.support.wearable.-

complications.UPDATE_PERIOD_ SECONDS"

android:value="0"/>

</service>

Start with a service class CustomComplicationProviderService as follows:

class CustomComplicationProviderService :
ComplicationProviderService() {
// This method is for any one-time per complication set
-up.
override
fun onComplicationActivated(
complicationId: Int, dataType: Int,
complicationManager: ComplicationManager?) {
Log.d(TAG,
"onComplicationActivated(): $complicationId")

}

// The complication needs updated data from your
// provider. Could happen because of one of:
// 1. An active watch face complication is changed

// to use this provider

// 2. A complication using this provider becomes
// active

// 3. The UPDATE_PERIOD_ SECONDS (manifest) has
// elapsed

// 4. Manually: an update via

// ProviderUpdateRequester.requestUpdate()

override fun onComplicationUpdate(
complicationId: Int, dataType: Int,
complicationManager: ComplicationManager) {
Log.d(TAG,

356 CHAPTER 13: Hardware

"onComplicationUpdate() $complicationId")
// ... add code for data generation ...

var complicationData: ComplicationData? = null
when (dataType) {
ComplicationData.TYPE_SHORT TEXT ->
complicationData = ComplicationData.
Builder(ComplicationData.TYPE_SHORT_TEXT)
... create datum ...
.build()
ComplicationData.TYPE_LONG TEXT ->
complicationData = ComplicationData.
Builder(ComplicationData.TYPE_LONG_TEXT)

ComplicationData.TYPE_RANGED VALUE ->
complicationData = ComplicationData.
Builder(ComplicationData.
TYPE_RANGED_VALUE)

else -»
Log.w("LOG",
"Unexpected complication type $dataType")

}
if (complicationData != null) {
complicationManager.updateComplicationData(
complicationId, complicationData)
} else {
// Even if no data is sent, we inform the
// ComplicationManager
complicationManager.noUpdateRequired(
complicationId)
}
}
override
fun onComplicationDeactivated(complicationId: Int) {
Log.d("LOG",
"onComplicationDeactivated(): $complicationId")
}
}

To manually fire requests for the system to inquire about new complication data, you use the
ProviderUpdateRequester class as follows:

val compName =
ComponentName (applicationContext,
MyService::class.java)

val providerUpdateRequester =
ProviderUpdateRequester(
applicationContext, componentName)

CHAPTER 13: Hardware 357

providerUpdateRequester.requestUpdate(
complicationId)

// To instead all complications, instead use

// providerUpdateRequester.requestUpdateAll()

Notifications on Wearables

Notifications on wearables can run in bridged mode and in stand-alone mode. In bridged
mode, notifications get automatically synchronized with a paired smartphone; in stand-alone
mode, the Wear device shows notifications independently.

To start creating your own notifications, begin with a Wear project using a blank Wear
activity in the project setup wizard. Then, inside the module’s build.gradle file, update the
dependencies to read as follows (with the line breaks at - removed):

dependencies {
implementation fileTree(dir: 'libs', include: ['*.jar
)
implementation "org.jetbrains.kotlin: -
kotlin-stdlib-jre7:$kotlin_version"
implementation -
"com.google.android.support:wearable:2.3.0'
implementation 'com.google.android.gms: -
play-services-wearable:12.0.1'
implementation -
'com.android.support:percent:27.1.1'
implementation -
"com.android.support:support-v13:27.1.1"
implementation -
"com.android.support:recyclerview-v7:27.1.1"
implementation -
'com.android.support:wear:27.1.1'
compileOnly -
"com.google.android.wearable:wearable:2.3.0'
}

Change the layout file to add a button for creating a notification, as follows:

<?xml version="1.0" encoding="utf-8"?>

<android.support.wear.widget.BoxInsetLayout
xmlns:android=

"http://schemas.android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:background="@color/dark grey"
android:padding="@dimen/box_inset layout padding"
tools:context=".MainActivity"
tools:devicelds="wear">

358 CHAPTER 13: Hardware

<LinearlLayout
android:layout width="match_parent"
android:layout height="match_parent"
android:padding=
"@dimen/inner_frame_layout_padding"
app:boxedEdges="all"
android:orientation="vertical">

<TextView

android:id="@+id/text"
android:layout width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/hello world"/>

<Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Go" android:onClick="go"/>

</Linearlayout>
</android.support.wear.widget.BoxInsetLayout>

The activity gets a function to react to the button press. Inside, we create and send a
notification.

class MainActivity : WearableActivity() {
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(activity main)
setAmbientEnabled() // Enables Always-on

}

fun go(v: View) {
val notificationIld = 1

// The channel ID of the notification.
val id = "my_channel 01"
if (Build.VERSION.SDK INT »>=
Build.VERSION_CODES.0) {
// Create the NotificationChannel
val name = "My channel”
val description = "Channel description”
val importance =
NotificationManager.IMPORTANCE DEFAULT
val mChannel = NotificationChannel(
id, name, importance)
mChannel.description = description
// Register the channel with the system
val notificationManager = getSystemService(
Context.NOTIFICATION SERVICE)
as NotificationManager

CHAPTER 13: Hardware 359

notificationManager.
createNotificationChannel(mChannel)

}

// Notification channel ID is ignored for Android
// 7.1.1 (API level 25) and lower.
val notificationBuilder =
NotificationCompat.Builder(this, id)
.setSmallIcon(android.R.drawable.ic_media_play)
.setContentTitle("Title")
.setContentText("Content Text")

// Get NotificationManager service
val notificationManager =
NotificationManagerCompat.from(this)

// Issue the notification
notificationManager.notify(
notificationId, notificationBuilder.build())
}

}

If you start this app, it shows a simple Ul with a text and a button. Pressing the button leads
to shortly displaying the notification icon, which is a “play” rectangle in our example. Using
the back button and swiping up, the notification shows up with the title and contents. Also,
the face your user uses might have a notification preview added. See Figure 13-1.

>

Title

Content Text

Figure 13-1. Notification on Wear

You can also add a PendingIntent to your code and register it with setContentIntent(...)
inside the builder to allow for sending an intent once the user clicks an appearing
notification. Also, inside the builder, you can add action icons by using addAction(...)

or addActions(...).

Wearable-specific features can be added to a notification by constructing a
NotificationCompat.WearableExtender object and calling extent(...) on the builder
passing this extender object. Note that by adding actions to the WearbleExtender object
instead of the builder, you can make sure the actions show up only on a wearable.

360 CHAPTER 13: Hardware

To add voice features to Wear notifications using predefined text responses and special
features to be used in the bridge mode, please see the online documentation for wearable
notifications.

Controlling App Visibility on Wearables

Wear OS devices since Android 5.1 allow for running Wear apps in the foreground even
when the power-saving, or ambient, mode is engaged. You have two options for handling
the ambient mode.

Use the AmbientModeSupport class.
Use the WearableActivity class.

To use the AmbientModeSupport class, implement a subclass of Activity, implement the
AmbientCallbackProvider interface, and declare and save AmbientController as follows:

class MainActivity : FragmentActivity(),
AmbientModeSupport.AmbientCallbackProvider {
override
fun getAmbientCallback():
AmbientModeSupport.AmbientCallback

{
}

lateinit
var mAmbientController:
AmbientModeSupport.AmbientController

override
fun onCreate(savedInstanceState:Bundle?) {
super.onCreate(savedInstanceState)

mAmbientController =
AmbientModeSupport.attach(this)

}
}

Inside the getAmbientCallback() function, create and return a subclass of
AmbientModeSupport.AmbientCallback. This callback is then responsible for the switch
between the standard and ambient modes. What ambient mode actually does is up to you
as a developer, but you should engage power-saving measures such as dimmed and black-
and-white graphics, augmented update intervals, and so on.

The second possibility to allow for ambient mode is to let your activity inherit from class
WearableActivity, call setAmbientEnabled() in its onCreate(...) callback, and overwrite
onEnterAmbient() and onExitAmbient(). If you also overwrite onUpdateAmbient(), you can
put your screen-updating logic there and let the system decide which update frequency to
use in ambient mode.

CHAPTER 13: Hardware 361

Authentication in Wear

With Wear apps being able to run in stand-alone mode, authentication becomes more
important for Wear apps. Describing the appropriate procedures for this matter are out of
scope for this book, but the page “Authentication in Wear” in the online documentation gives
you detailed information about authentication in Wear.

Voice Capabilities in Wear

Adding voice capabilities to Wear devices makes a lot of sense since other methods for user
input are limited because of the small device dimensions. You have two options: connect
your app to one or more of the system-provided voice actions or define your own actions.

Caution The Wear emulator cannot handle voice commands; you have to use real devices to test it.

Connecting system voice events to activities that your app provides is easy. All you have to
do is to add an intent filter to your activity as follows:

<intent-filter>
<action android:name=
"android.intent.action.SEND" />
<category android:name=
"com.google.android.voicesearch.SELF_NOTE" />
</intent-filter>

Table 13-1 lists the possible voice keys.

Table 13-1. System Voice Commands

Command Manifest Key Extras

“OK Google, get me a taxi” com.google.android.gms.actions.

“OK Google, call me a car” RESERVE_TAXI_RESERVATION

“OK Google, take a note” android.intent.action.SEND android.content.Intent.EXTRA

“OK Google, note to self” Category: TEXT: A string with note body
com.android.voicesearch.SELF_NOTE

“OK Google, set an alarm android.intent.action.SET_ALARM android.provider.AlarmClock.

for 8 a.m.” EXTRA_HOUR: An integer with the
“OK Google, wake me up hour of the alarm
at 6 tomorrow” android.provider.AlarmClock.

EXTRA_MINUTES: An integer with the
minute of the alarm

(continued)

362 CHAPTER 13: Hardware

Table 13-1. (continued)

Command

Manifest

Key Extras

“OK Google, set a timer
for 10 minutes”

“OK Google, start
stopwatch”

“OK Google, start cycling”

“OK Google, start my bike
ride”

“OK Google, stop cycling”

“OK Google, track my run”
“OK Google, start running”
“OK Google, stop running”

“OK Google, start a
workout”

“OK Google, track my
workout”

“OK Google, stop
workout”

“OK Google, what’s my
heart rate?”

“OK Google, what’s my
bpm?”

“OK Google, how many
steps have | taken?”

“OK Google, what’s my
step count?”

android.intent.action.SET_TIMER

com.google

.android.wearable.

action.STOPWATCH

vnd.google

MIME type:
vnd.google.

biking

vnd.google.
MIME type:
vnd.google.

running

vnd.google.
MIME type:
vnd.google.

other

vnd.google.
MIME type:

vnd.google.
com.google.

vnd.google.
MIME type:

vnd.google.
com.google.

.fitness.TRACK

fitness.activity/

fitness.TRACK

fitness.activity/

fitness.TRACK

fitness.activity/

fitness.VIEW

fitness.data_type/
heart_rate.bpm

fitness.VIEW

fitness.data_type/
step_count.cumulative

android.provider.AlarmClock.
EXTRA_LENGTH: An integer in the
range of 1 to 86400 (number of

seconds in 24 hours) representing

the length of the timer

actionStatus: A string with a
value of ActiveActionStatus
when starting and
CompletedActionStatus when
stopping

actionStatus: A string with a
value of ActiveActionStatus
when starting and
CompletedActionStatus when
stopping

actionStatus: A string with
the value ActiveActionStatus
when starting and
CompletedActionStatus when
stopping

Extra data can be extracted from incoming intents as usual via one of the various
Intent.get*Extra(...) methods.

You may also provide app-defined voice actions that can start custom activities. To do so, in

AndroidManifest.xml define each <action> element in question as follows:

<activity android:name="MyActivity" android:label="

MyRunningApp">
<intent-filter>

<action android:name="android.intent.action.MAIN"

/>

CHAPTER 13: Hardware 363

<category android:name="android.intent.category.
LAUNCHER" />
</intent-filter>
</activity>

This by virtue of the label attribute will allow you to say “Start MyRunningApp” to start
the activity.

You can also let speech recognition fill in the edit fields. For this purpose, write the following:

val SPEECH REQUEST_CODE = 42
val intent = Intent(
RecognizerIntent.ACTION RECOGNIZE SPEECH).apply {
putExtra(RecognizerIntent.EXTRA_LANGUAGE_MODEL,
RecognizerIntent.LANGUAGE MODEL FREE_FORM)

}.run {
startActivityForResult(this, SPEECH REQUEST CODE)

}

Then fetch the result in the overwritten onActivityResult(...) callback.

fun onActivityResult(requestCode:Int, resultCode:Int,
data:Intent) {
if (requestCode and OXFFFF == SPEECH REQUEST CODE
88 resultCode == RESULT OK) {
val results = data.getStringArraylListExtra(
RecognizerIntent.EXTRA_RESULTS)
String spokenText = results[0]
// ... do something with spoken text
}
super.onActivityResult(
requestCode, resultCode, data)

Speakers on Wearables

If you want to use the speakers connected to a Wear device to play some audio, you first
check whether the Wear app can connect to speakers.

fun hasSpeakers(): Boolean {
val packageManager = context.getPackageManager()
val audioManager =
context.getSystemService(
Context.AUDIO_SERVICE) as AudioManager

if (Build.VERSION.SDK INT >= Build.VERSION CODES.M) {
// Check FEATURE_AUDIO OUTPUT to guard against
// false positives.
if (!packageManager.hasSystemFeature(
PackageManager.FEATURE_AUDIO OUTPUT)) {
return false

364 CHAPTER 13: Hardware

val devices =
audioManager.getDevices(
AudioManager.GET_DEVICES_OUTPUTS)
for (device in devices) {
if (device.type ==
AudioDeviceInfo.TYPE BUILTIN SPEAKER) {
return true

}
}

return false

}

You can then play sound the same way as for any other app on any other device. This is
described in detail in the section “Playing Audio.”

Location in Wear

To use location detection in a Wear device, you must first check whether the location
data is available.

fun hasGps():Boolean {
return packageManager.hasSystemFeature(
PackageManager.FEATURE_LOCATION GPS);
}

If the wearable has no own location sensor, you must instead constantly check whether the
wearable is connected. You do so by handling callbacks as follows:

var wearableConnected = false
fun onCreate(savedInstanceState: Bundle?) {

Wearable.getNodeClient(this@MainActivity).
connectedNodes.addOnSuccessListener {
wearableConnected = it.any {
it.isNearby
}

}.addOnCompletelistener {
}.addOnFailurelistener {

}
}

Starting from there you can handle location detection using the fused location provider as
described in Chapter 8.

http://dx.doi.org/10.1007/978-1-4842-3820-2_8

CHAPTER 13: Hardware 365

Data Communication in Wear

Data communication in Wear OS happens in one of two ways.

Direct network communication: This is for Wear devices able to connect
to a network by themselves, wanting to talk to nonpaired devices.

Using the wearable data layer API: This is for communication to paired
handheld devices.

For a direct network communication, use class android.net.ConnectivityManager for
both checking for capabilities such as bandwidth and requesting new capabilities such as
increased bandwidth. Please see the classes in the online APl documentation for details.
To actually perform network communication, use the classes and interfaces from package
android.net.

The rest of this section is for describing the wearable data layer API for communication to
paired handhelds.

To access the wearable data layer API, retrieve a DataClient or MessageClient via the
following from inside an activity:

val dataClient = Wearable.getDataClient(this)
val msgClient = Wearable.getMessageClient(this)

You can do this often because both calls are inexpensive. A message client is best used for
data with a small payload; for a larger payload, use a data client instead. Also, a data client
is a reliable means of synchronizing data between Wear devices and handhelds, while the
message client use a fire-and-forget mode. A message client thus does not know whether
sent data actually arrives.

For sending data items using a data client, create a PutDataMapRequest object, call
getDataMap() on it, and use one of the various put. .. () methods to add data. Finally, call
asPutDataRequest() and use its result to call DataClient.putDataltem(...). The latter starts
the synchronization with other devices and returns a com.google.android.gms.tasks.Task
object to which you can add listeners to watch the communication.

On the receiver side, you can observe data synchronization by extending your activity with
DataClient.OnDataChangedListener and implementing the fun onDataChanged(dataEvents:D
ataEventBuffer) function.

For larger binary data sets like images, you can use an Asset as a data type to be sent over
the data client, as follows:

fun createAssetFromBitmap(bitmap: Bitmap): Asset {
val byteStream = ByteArrayOutputStream()
bitmap.compress(Bitmap.CompressFormat.PNG, 100,
byteStream)
return Asset.createFromBytes(byteStream.
toByteArray())
}

val bitmap = BitmapFactory.decodeResource(
getResources(), android.R.drawable.ic_media_play)
val asset = createAssetFromBitmap(bitmap)

http://android.net
http://android.net

366 CHAPTER 13: Hardware

val dataMap = PutDataMapRequest.create("/image")

dataMap.getDataMap() .putAsset("profileImage", asset)

val request = dataMap.asPutDataRequest()

val putTask: Task<DataItem> =
Wearable.getDataClient(this).putDataIltem(request)

To instead use a message client, we first need to find suitable message receivers. You do
so by first assigning capabilities to suitable handheld apps. This can be accomplished by
adding a file wear.xml to res/values with the following content:

<resources>

<string-array name="android wear capabilities">
<item>my capabilityi</item>
<item>my capability2</item>

</string-array>
</resources>

To find a handheld (or network node) with suitable capabilities and then send messages 1o it,
you write the following:

val capabilityInfo = Tasks.await(
Wearable.getCapabilityClient(this).getCapability(
"my_capability1",
CapabilityClient.FILTER REACHABLE))
capabilityInfo.nodes.find {
it.isNearby
}?.run {
msgClient.sendMessage(
this.id,"/msg/path","Hello".toByteArray())
}

Instead of this, you could also add a CapabilityClient.OnCapabilityChangedlListener
listener directly to the client as follows:

Wearable.getCapabilityClient(this).addListener ({
it.nodes.find {
it.isNearby
}Y2.run {
msgClient.sendMessage(
this.id,"/msg/path","Hello".toByteArray())
}

}, "my capability1")

To receive such a message, anywhere in an app installed on a handheld, register a message
event listener via the following:

Wearable.getMessageClient(this).addListener {
messageEvent ->
// do s.th. with the message event

CHAPTER 13: Hardware 367

Programming with Android TV

App development targeting an Android TV device does not substantially differ from
development on smartphones. However, because of the user expectation coming

from decades of TV consumption, conventions are stricter compared to smartphones.
Fortunately, the project builder wizard of Android Studio helps you get started. And in this
section too we will be talking about important aspects of Android TV development.

Android TV Use Cases

The following are typical use cases for an Android TV app:
Playback of video and music data streams and files
A catalog to help users find content
A game that can be played on Android TV (without touchscreen)

Presenting channels with content

Starting an Android TV Studio Project

If you start a new Android TV project in Android Studio, the following are the prominent
points of interest:

Inside the manifest file, the items will make sure the app could also
work on a smartphone with a touchscreen and that the leanback user
interface needed by Android TV gets included.

<uses-feature
android:name="android.hardware.touchscreen"
android:required="false"/>

<uses-feature
android:name="android.software.leanback"
android:required="true"/>

Still inside the manifest file, you will see the start activity to have an
intent filter like this:

<intent-filter>
<action android:name=
"android.intent.action.MAIN"/>
<category android:name=
"android.intent.category.LEANBACK_LAUNCHER"/>
</intent-filter>

The category shown here is important; otherwise, Android TV will not properly recognize the
app. The activity also needs to have an android:banner attribute, which points to a banner
prominently shown on the Android TV user interface.

368 CHAPTER 13: Hardware

Inside the module’s build.gradle file, the leanback support library gets
added inside the dependencies section.

implementation 'com.android.support:leanback-
v17:27.1.1"

For development you can either use a virtual or use a real device. Virtual devices get
installed via the AVD Manager in the Tools menu. For real devices, tap seven times on the
build number in Settings » Device » About. Then in Settings, go to Preferences and enable
debugging in the Developer Options.

Android TV Hardware Features

To find out whether an app is running on an Android TV, you can use UiModeManager as
follows:

val isRunnigOnTv =
(getSystemService(Context.UI MODE_SERVICE)
as UiModeManager).currentModeType ==
Configuration.UI_MODE_TYPE_TELEVISION

Also, available features vary from device to device. If your app needs certain hardware
features, you can check the availability as follows:

getPackageManager ().
hasSystemFeature(PackageManager.FEATURE_*)

For all possible features, see the APl documentation of PackageManager.

User input on Android TV devices normally happens via a D-pad controller. To build stable
apps, you should react on changes of the availability of the D-pad controller. So, inside the
AndroidManifest.xml file, add android: configChanges = "keyboard|keyboardHidden|naviga
tion" as an activity attribute. The app then gets informed about configuration changes via the
overwritten callback function fun onConfigurationChanged(newConfig : Configuration).

Ul Development for Android TV
For Android TV development, using the leanback theme is suggested. For this aim, replace
the theme attribute in the <application> element of the AndroidManifest.xml file with this:

android:theme="@style/Theme.Leanback"

This implies not using an action bar, which makes sense since Android TV does not support
action bars. Also, the activity must not extend AppCompatActivity; instead, extend android.
support.v4.app.FragmentActivity.

CHAPTER 13: Hardware 369

Another specialty of Android TV apps is that an occasional overscan might happen.
Depending on the pixel size and aspect ratio, Android TV might clip away parts of the
screen. To avoid your layout from being destroyed, adding a margin of 48dp x 27dp to the
main container is suggested, as follows:

<Relativelayout xmlns:android=
"http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_marginTop="27dp"
android:layout_marginBottom="27dp"
android:layout_marginlLeft="48dp"
android:layout marginRight="48dp">

<!-- Screen elements ... -->
</Relativelayout>

Besides, for Android TV, developing for 1920 x 1080 pixels is suggested. With other
hardware pixel sizes, Android will then automatically downscale layout elements if
necessary.

Since users cannot navigate through tappable Ul elements and instead use a D-pad for
navigation, an alternative way to switch between Ul elements is needed for Android TV. This
can easily be accomplished by adding the nextFocusUp, nextFocusDown, nextFocusLeft,

and nextFocusRight attributes to Ul elements. The arguments are then ID specifications of
navigate-to elements, as in @+id/xyzElement.

For TV playback components, the leanback library provides a couple of classes and
concepts that come in handy as listed here:

For a media browser, let your fragment extend android.support.vi7.
leanback.app.BrowseSupportFragment. The project builder wizard
instead creates a deprecated BrowseFragment, but you can walk through
the APl documentation of BrowseSupportFragment to learn the new
methodology.

The actual media items to be presented inside the media browser
are governed by a card view. The corresponding class to overwrite is
android.support.vi7.leanback.widget.Presenter.

To show details of a selected media item, extend class android.
support.vi7.leanback.app.DetailsSupportFragment. The wizard
creates the deprecated DetailFragment instead, but their usage is
similar, and you can take a look at the APl documentation for more
details.

For a Ul element showing video playback, use one of android.support.
v17.leanback.app.PlaybackFragment or android.support.vi7.
leanback.app.VideoFragment.

Use class android.media.session.MediaSession to configure a “Now
Playing” card.

370 CHAPTER 13: Hardware

Direct rendering of a video stream onto a Ul element is supported by
class android.media.tv.TvInputService. Calling onTune(...) will start
rendering the direct video stream.

If your app needs a guide using several steps, for example to present a
purchasing workflow to the user, you can use class android.support.
v17.leanback.app.GuidedStepSupportFragment.

To present an app to the first-time user in a noninteractive way, use
class android. support.v17.leanback.app.OnboardingSupportFragment.

Recommendation Channels for Content Search

Recommendations shown to users come in two forms: as a recommendation row before
Android 8.0 and as recommendation channels starting with Android 8.0 (API level 26). To not
miss users, your app should serve both in a switch, as follows:

if (android.os.Build.VERSION.SDK INT »>=
Build.VERSION CODES.0) {
// Recommendation channels API ...
} else {
// Recommendations row API ...

}

For Android 8.0 and up, the Android TV home screen shows a global Play Next row at the
top of the channel list and a number of channels each belonging to a certain app. A channel
other than the Play Next row cannot belong to more than one app. Each app can define a
default channel, which automatically shows up in the channel view. For all other channels an
app might define, the user must approve them first before the channel gets shown on the
home screen.

An app needs to have the following permissions to be able to manage channels:

<uses-permission android:name=
"com.android.providers.tv.permission.READ_EPG DATA"
/>

<uses-permission android:name=
"com.android.providers.tv.permission.WRITE_EPG_DATA"
/>

So, add them to file AndroidManifest.xml.

In addition, inside your module’s build.gradle file, add the following to the dependencies
section (on one line):

implementation
"com.android.support:support-tv-provider:27.1.1"

CHAPTER 13: Hardware 3n

To create a channel, add a channel logo, possibly make it the default channel, and write the
following:

val builder = Channel.Builder()
// Intent to execute when the app link gets tapped.
val applLink = Intent(...).toUri(Intent.URI_INTENT SCHEME)

// You must use type "TYPE_PREVIEW

builder.setType(TvContractCompat.Channels.TYPE PREVIEW)
.setDisplayName("Channel Name")
.setAppLinkIntentUri(Uri.parse(appLink))

val channel = builder.build()

val channelUri = contentResolver.insert(
TvContractCompat.Channels.CONTENT URI,
channel.toContentValues())

val channelld = ContentUris.parseId(channelUri)

// Choose one or the other

ChannellogoUtils.storeChannellogo(this, channelld,
/*Uri*/ logoUri)

ChannellogoUtils.storeChannellogo(this, channelld,
/*Bitmap*/ logoBitmap)

// optional, make it the default channel
if (Build.VERSION.SDK INT >= Build.VERSION CODES.O)
TvContractCompat.requestChannelBrowsable(this,
channelld)

To update or delete a channel, you use the channel ID gathered from the channel creation
step and then write the following:

// to update:

contentResolver.update(
TvContractCompat.buildChannelUri(channelld),
channel.toContentValues(), null, null)

// to delete:

contentResolver.delete(
TvContractCompat.buildChannelUri(channelld),
null, null)

To add a program, use the following:

val pbuilder = PreviewProgram.Builder()
// Intent to launch when a program gets selected
val proglLink = Intent().toUri(Intent.URI_INTENT_ SCHEME)

pbuilder.setChannelld(channelld)
.setType(TvContractCompat.PreviewPrograms.TYPE CLIP)
.setTitle("Title")
.setDescription("Program description")
.setPosterArtUri(largePosterArtUri)

372 CHAPTER 13: Hardware

.setIntentUri(Uri.parse(proglink))
.setInternalProviderId(appProgramId)
val previewProgram = pbuilder.build()
val programUri = contentResolver.insert(
TvContractCompat.PreviewPrograms.CONTENT_URI,
previewProgram.toContentValues())
val programId = ContentUris.parseld(programUri)

To instead add a program to the Play Next row, you somewhat similarly use
WatchNextProgram.Builder and write the following:

val wnbuilder = WatchNextProgram.Builder()
val watchNextType = TvContractCompat.
WatchNextPrograms.WATCH_NEXT_TYPE_CONTINUE
wnbuilder.setType(
TvContractCompat.WatchNextPrograms.TYPE CLIP)
.sethWatchNextType (watchNextType)
.setlLastEngagementTimeUtcMillis(time)
.setTitle("Title")
.setDescription("Program description")
.setPosterArtUri(largePosterArtUri)
.setIntentUri(Uri.parse(proglink))
.setInternalProviderId(appProgramId)
val watchNextProgram = wnbuilder.build()
val watchNextProgramUri = contentResolver
.insert(
TvContractCompat.WatchNextPrograms.CONTENT URI,
watchNextProgram.toContentValues())
val watchnextProgramld =
ContentUris.parseId(watchNextProgramUri)

For watchNextType, you can use one of the following constants from TvContractCompat.
WatchNextPrograms:

WATCH_NEXT_TYPE_CONTINUE: The user stopped while watching content
and can resume here.

WATCH_NEXT_TYPE_NEXT: The next available program in a series is
available.

WATCH_NEXT_TYPE_NEW: The next available program in a series is newly
available.

WATCH_NEXT_TYPE_WATCHLIST: This is inserted by the system or the app
when the user saves a program.

To update or delete a program, use the program ID you memorized from the program
generation.

// to update:
contentResolver.update(
TvContractCompat.
buildPreviewProgramUri(programld),
watchNextProgram.toContentValues(), null, null)

CHAPTER 13: Hardware

// to delete:
contentResolver.delete(
TvContractCompat.
buildPreviewProgramUri(programld),
null, null)

A Recommendation Row for Content Search

For Android up to version 7.1 (API level 25), recommendations were handled by a special
recommendation row. You must not use a recommendation row for any later version.

For an app to participate in the recommendation row for the pre-8.0 Android versions, we
first create a new recommendation service as follows:

class UpdateRecommendationsService :

IntentService("RecommendationService") {

companion object {
private val TAG = "UpdateRecommendationsService"
private val MAX RECOMMENDATIONS = 3

}

override fun onHandleIntent(intent: Intent?) {
Log.d("LOG", "Updating recommendation cards")

val recommendations:List<Movie> =
ArraylList<Movie>()
// TODO: fill recommendation movie list...

var count = 0
val notificationManager =
getSystemService(Context.NOTIFICATION_SERVICE)
as NotificationManager
val notificationld = 42
for (movie in recommendations) {
Log.d("LOG", "Recommendation - " +
movie.title!!)
val builder = RecommendationBuilder(
context = applicationContext,
smallIcon = R.drawable.video by icon,
id = count+1,
priority = MAX RECOMMENDATIONS - count,
title = movie.title ?: "",
description = "Description”,
image = getBitmapFromURL(
movie.cardImageUrl ?:""),
intent = buildPendingIntent(movie))
val notification = builder.build()
notificationManager.notify(
notificationId, notification)

373

374 CHAPTER 13: Hardware

if (++count >= MAX_RECOMMENDATIONS) {
break
}
}
}

private fun getBitmapFromURL(src: String): Bitmap {
val url = URL(src)
return (url.openConnection() as HttpURLConnection).
apply {
doInput = true
}.1let {
it.connect()
BitmapFactory.decodeStream(it.inputStream)

}

private fun buildPendingIntent(movie: Movie):
PendingIntent {
val detailsIntent =
Intent(this, DetailsActivity::class.java)
detailsIntent.putExtra("Movie", movie)

val stackBuilder = TaskStackBuilder.create(this)

stackBuilder.addParentStack(
DetailsActivity::class.java)

stackBuilder.addNextIntent(detailsIntent)

// Ensure a unique PendingIntents, otherwise all

// recommendations end up with the same

// PendingIntent

detailsIntent.action = movie.id.toString()

return stackBuilder.getPendingIntent(
0, PendingIntent.FLAG UPDATE_CURRENT)
}
}

The corresponding entry in AndroidManifest.xml reads as follows:

<service
android:name=".UpdateRecommendationsService"
android:enabled="true" />

RecommendationBuilder in the code refers to a wrapper class around a notification builder.

class RecommendationBuilder(
val id:Int = 0,
val context:Context,
val title:String,
val description:String,
var priority:Int = 0,
val image: Bitmap,

CHAPTER 13: Hardware 375

val smallIcon: Int = O,

val intent: PendingIntent,

val extras:Bundle? = null

) {
fun build(): Notification {
val notification:Notification =
NotificationCompat.BigPictureStyle(
NotificationCompat.Builder(context)
.setContentTitle(title)
.setContentText(description)
.setPriority(priority)
.setlocalOnly(true)
.setOngoing(true)
.setColor(...)
.setCategory(
Notification.CATEGORY RECOMMENDATION)
.setlargeIcon(image)
.setSmallIcon(smallIcon)
.setContentIntent(intent)
.setExtras(extras))
.build()
return notification

}

We need it because creating and passing a notification is the way to tell the system about a
recommendation.

What is left is a component that starts at system bootup and then regularly sends the
recommendation. An example would use a broadcast receiver and an alarm for the periodic
updates.

class RecommendationBootup : BroadcastReceiver() {
companion object {
private val TAG = "BootupActivity"
private val INITIAL DELAY: Long = 5000

}

override
fun onReceive(context: Context, intent: Intent) {
Log.d(TAG, "BootupActivity initiated")
if (intent.action!!.endsWith(
Intent.ACTION BOOT COMPLETED)) {
scheduleRecommendationUpdate(context)

}

private
fun scheduleRecommendationUpdate(context: Context) {
Log.d(TAG, "Scheduling recommendations update")

376 CHAPTER 13: Hardware

val alarmManager =

context.getSystemService(

Context.ALARM SERVICE) as AlarmManager
val recommendationIntent = Intent(context,

UpdateRecommendationsService::class.java)
val alarmIntent =

PendingIntent.getService(

context, 0, recommendationIntent, 0)

alarmManager.setInexactRepeating(
AlarmManager.ELAPSED REALTIME WAKEUP,
INITIAL DELAY,
AlarmManager.INTERVAL HALF HOUR,
alarmIntent)
}
}

Here’s the corresponding entry in AndroidManifest.xml:

<receiver android:name=".RecommendationBootup"
android:enabled="true"
android:exported="false">
<intent-filter>
<action android:name=
"android.intent.action.BOOT_COMPLETED"/>
</intent-filter>
</receiver>

For this to work, you need this permission:

<uses-permission android:name=
"android.permission.RECEIVE_BOOT COMPLETED"/>

Android TV Content Search

Your Android TV app may contribute to the Android search framework. We described it in
Chapter 8. In this section, we point out peculiarities for using search in a TV app.

Table 13-2 describes the search item fields important for TV search suggestions; the left
column lists constant names from the SearchManager class. You can use them in your

database as shown, or at least you must provide a mapping mechanism inside the app.

http://dx.doi.org/10.1007/978-1-4842-3820-2_8

CHAPTER 13: Hardware 377

Table 13-2. TV Search Fields

Field Description

SUGGEST_COLUMN_TEXT_1 Required. The name of your content.
SUGGEST_COLUMN_TEXT_2 A text description of your content.
SUGGEST_COLUMN_RESULT_CARD_IMAGE An image/poster/cover for your content.
SUGGEST_COLUMN_CONTENT_TYPE Required. The MIME type of your media.
SUGGEST_COLUMN_VIDEO_WIDTH The width of your media.
SUGGEST_COLUMN_VIDEO_HEIGHT The height of your media.
SUGGEST_COLUMN_PRODUCTION_YEAR Required. The production year.
SUGGEST_COLUMN_DURATION Required. The duration in milliseconds.

As for any other search provider, create a content provider for the search suggestions inside
your app.

As soon as the user submits the search dialog to actually perform a search query, the
search framework fires an intent with the action SEARCH, so you can write an activity with the
appropriate intent filter as follows:

<activity
android:name=".DetailsActivity"
android:exported="true">

<!-- Receives the search request. -->
<intent-filter>
<action android:name=
"android.intent.action.SEARCH" />
</intent-filter>

<!-- Points to searchable meta data. -->
<meta-data android:name="android.app.searchable"
android:resource="@xml/searchable" />
</activity>

Android TV Games

While games development seems appealing at first because of the large display, it is
important to keep these points in mind:

B TVs are always in landscape mode, so make sure your app is good at
using landscape mode.

B For a multiplayer game, it is normally not possible to hide things from
users, for example in a card game. You could connect TV apps to
companion apps running on smartphones to remedy this.

378 CHAPTER 13: Hardware

Your TV game should support gamepads, and it should prominently tell
the users how to use them. Inside the AndroidManifest.xml file, you
better declare <uses-feature android:name = "android.hardware.
gamepad" android:required = "false"/>. If instead you write required
= "true", you make your app uninstallable for users who don’t own
gamepads.

Android TV Channels

The handling of live content, that is, the presentation of continuous, channel-based

content, is governed by the TV Input Framework and various classes in the com.android.tv,
com.android.providers.tv, and android.media.tv packages. It primarily addresses OEM
manufacturers to serve as an aid to connect the TV system of Android to live streaming data.
For details, please take a look at the APl documentation of these packages or enter

Android Building TV Channels in your favorite search engine.

Programming with Android Auto

Android Auto is for transferring the Android OS to a compatible car user interface. By 2018
dozens of car manufacturers have included or plan to include Android Auto in at least some
of their models, so extending your app to include Android Auto features gives you new
possibilities for distributing your app and improving the user experience. As an alternative
mode of operation, an Android Auto app may also run on a smartphone or tablet somehow
mounted in your car, which makes it usable for any type of car, with or without a compatible
user interface.

Android Auto is currently limited to the following features of Android OS to be used in a car:
Playing audio
Messaging

Android Auto is for devices starting with Android 5.0 (API level 21). In addition, you must

provide a file called automotive_app_desc.xml in the res/xml folder with the following
content (or ones of the lines):

<automotiveApp>

<uses name="media" />

<uses name="notification" />
</automotiveApp>

In addition, in AndroidManifest.xml add the following in the <application> element:

<meta-data android:name=
"com.google.android.gms.car.application”
android:resource=
"@xml/automotive app_desc"/>

CHAPTER 13: Hardware 379

Developing for Android Auto

To develop apps for Android Auto, use Android Studio like with any other Android app. Make
sure you are targeting API level 21 or higher and that you have the v4 support library added
to the module’s build.gradle file in the dependencies section (on one line).

implementation
"com.android.support:support-v4:27.1.1"

Testing Android Auto for a Phone Screen

To test running Android Auto on your handheld, you must install the Android Auto app from
Google Play. Then, inside the menu, tap Info and then tap ten or more times on the activity
header (attention, no feedback!) until a toast notification appears to enable the developer
mode. Now, tap the new menu item “Developer settings” and select the “Unknown sources
option. Restart Android Auto. On the device, enable USB debugging by tapping seven times
on the build number in the Settings » About screen. Afterward, in Settings » Developer
Options, enable USB debugging.

Testing Android Auto for a Car Screen

You can test an Auto app in the Desktop Head Unit (DHU) tool. This emulates a car user
interface on your handheld. To install it, on the device, first enable USB debugging by
tapping seven times on the build number in the Settings » About screen. Afterward, in
Settings » Developer Options, enable USB debugging. After that, install the Android Auto
app on your handheld.

In Android Studio, open the SDK Manager in the Tools menu and download and install the
Android Auto Desktop Head Unit emulator. You'll find this option in Android SDK » SDK Tools.

To run the DHU on Linux, you must install the following packages: 1ibsd12-2.0-0, 1ibsdl12-
ttf-2.0-0, libportaudio2, and 1ibpng12-0. In Android Auto, enable the developer options
as described earlier in the section “Testing Android Auto for a Phone Screen.”

Unless it’s already running, inside the Android Auto app’s menu, select “Start head unit
server.” In Settings, tap “Connected cars” and make sure the “Add new cars to Android
Auto” option is enabled.

Connect the handheld to the development machine via a USB cable, and with a terminal
open and inside the Android SDK folder, advance to the platform-tools folder and issue the
following command:

./adb forward tcp:5277 tcp:5277

You can now start the DHU tool by entering the following:
cd <sdk>/extras/google/auto

./desktop-head-unit

or ./desktop-head-unit -i controller
for rotary control

380 CHAPTER 13: Hardware

The DHU tool should now appear on your development machine’s screen, as shown in
Figure 13-2.

Android Auto - Desktop Head Unit

¥l 1415

22"
Leipzig
Sonnig

Figure 13-2. The DHU screen

Also, the last command opened a shell to the DHU tool, so commands can be entered and
sent to it. Here are some interesting use cases for the shell:

B Day and night modes

Enter daynight in the console. Click the DHU screen to give it the focus
and press N on the keyboard to toggle between day and night.

B Simulated microphone input

Enter mic play /path/to/sound/file/file.wav to send a sound file as
simulated microphone input. Common voice commands can be found in
<sdk>/extras/google/auto/voice/.

m Sleep
Enter sleep <N> to cause the system to sleep for N seconds.
B Tap

Enter tap <X> <Y> to simulate a tap event at some coordinates (useful
for test scripts).

If you have engaged the rotary controller mode, entering dpad and any of the following will
simulate a rotary control action:

B up, down, left, or right: Simulates moving. This is the same as the
arrow keys.

B soft left or soft right: Simulates pressing the side buttons (only on
some devices). This is the same as using Shift and the arrow keys.

B click: Simulates pressing the controller. This is the same as pressing Return.

CHAPTER 13: Hardware 381

back: Simulates pressing the Back button (only on some devices). This is
the same as pressing Backspace.

rotate left or rotate right: Simulates a controller rotation. This is the
same as pressing 1 or 2.

flick left or flick right: Simulates a fast spin of the controller. This
is the same as pressing Shift+1 or Shift+2.

Develop Audio Playback on Auto

If your app provides audio services to Android Auto, you define a media browser service in
the file AndroidManifest.xml as follows:

<service android:name=".MyMediaBrowserService"
android:exported="true">
<intent-filter>
<action android:name=
"android.media.browse.MediaBrowserService"/>
</intent-filter>
</service>

To additionally define a notification icon for your app in <application>, write the following:

<meta-data android:name=
"com.google.android.gms.car.notification.SmallIcon"
android:resource=
"@drawable/ic_notification" />

We’ll take care of an implementation for a media browser service soon, but first we will talk
about some status inquiry methods. First, if your app needs to find out whether an Android
Auto user got connected to your app, you add a broadcast receiver with the intent filter com.
google.android.gms.car.media.STATUS. The onReceive(...) method of the receiver class
will then get an intent with an extra value keyed by media_connection_status. The value of
this extra field might, for example, read media_connected to indicate a connection event.

In addition, the app can find out whether it is running in car mode by using the following query:

fun isCarUiMode(c:Context):Boolean {
val uiModeManager =
c.getSystemService(Context.UI_MODE_SERVICE) as
UiModeManager
return uiModeManager.getCurrentModeType() ==
Configuration.UI_MODE_TYPE CAR

382 CHAPTER 13: Hardware

Now let’s get back to the media browser implementation. The most important thing to do is
let the service implement the abstract class MediaBrowserServiceCompat. In its overwritten
onCreate(...) method, you create and register a MediaSessionCompat object.

public void onCreate() {
super.onCreate()

// Start a MediaSession

val mSession = MediaSessionCompat(
this, "my session tag")

val token:MediaSessionCompat.Token =
mSession.sessionToken

// Set a callback object to handle play
/control requests
mSession.setCallback(
object : MediaSessionCompat.Callback() {
// overwrite methods here for
// playback controls...

1)
=

In this service, you must implement the following methods:
onGetRoot(...)
This is supposed to give back the top node of your content hierarchy.
onLoadChildren(...)
Here you return the children of a node inside the hierarchy.

To minimize the car driver’s distraction, your app should be able to listen to voice
commands. To enable voice commands like “Play XYZ or APP_NAME,” just add the
following to the file AndroidManifest.xml:

<activity>
<intent-filter>
<action android:name=
"android.media.action.MEDIA_PLAY_FROM_SEARCH" />
<category android:name=
"android.intent.category.DEFAULT" />
</intent-filter>
</activity>

This will let the framework call the onPlayFromSearch(...) callback from the
MediaSessionCompat.Callback listener you added to the session. The second parameter
passed in there may as a Bundle contain extra search select information you can use to filter
the results you want to return in your app. Use one of the MediaStore.EXTRA * constants to
retrieve values from that Bundle parameter.

CHAPTER 13: Hardware 383

To allow for playback voice control actions like “Next song” or “Resume music,” add the
following as flags to the media session object:

mSession.setFlags(
MediaSession.FLAG_HANDLES MEDIA BUTTONS or
MediaSession.FLAG HANDLES TRANSPORT CONTROLS)

Develop Messaging on Auto

Your Auto app may contribute to Android Auto messaging. More precisely, you can do one
or more of the following:

Post a notification to Android Auto. The notification consists of

the message itself and a conversation ID, which is used to group
messages. You don’t have to do that grouping yourself, but assigning
a conversation ID to the notification is important, so the framework
can let the user know a notification belongs to a conversation with one
dedicated communication partner.

When the user listens to the message, the framework will fire a
“message read” intent that your app can catch.

The user can send a reply using the Auto framework. This gets
accompanied by another “message reply” intent fired by the framework
and catchable by your app.

To catch “message read” and “message reply” events, you write receivers as indicated by
the following entries in AndroidManifest.xml:

<application»

<receiver android:name=".MyMessageReadReceiver"
android:exported="false">
<intent-filter>
<action android:name=
"com.myapp.auto.MY_ACTION MESSAGE_READ"/>
</intent-filter>
</receiver>

<receiver android:name=".MyMessageReplyReceiver"
android:exported="false">
<intent-filter>
<action android:name=
"com.myapp.auto.MY_ACTION_MESSAGE_REPLY"/>
</intent-filter>
</receiver>

</application>

384 CHAPTER 13: Hardware

You must tell Auto that you want to receive such events. You do so by preparing appropriate
PendingIntent objects as follows:

val msgReadIntent = Intent().apply {
addFlags(Intent.FLAG _INCLUDE STOPPED PACKAGES)
setAction("com.myapp.auto.MY_ACTION MESSAGE READ")
putExtra("conversation _id", thisConversationId)
setPackage("com.myapp.auto")
}.let {
PendingIntent.getBroadcast(applicationContext,
thisConversationId,
it,
PendingIntent.FLAG UPDATE_CURRENT)
}

val msgReplyIntent = Intent().apply {
addFlags(Intent.FLAG_INCLUDE_STOPPED PACKAGES)
setAction("com.myapp.auto.MY ACTION MESSAGE REPLY")
putExtra("conversation id", thisConversationId)
setPackage("com.myapp.auto™")
}.let {
PendingIntent.getBroadcast(applicationContext,
thisConversationId,
it,
PendingIntent.FLAG UPDATE_CURRENT)
}

Here, com.myapp.auto is the package name associated with your app. You have to
appropriately substitute it.

To further handle the interaction with Android Auto, we need an UnreadConversation object
that you can generate as follows:

// Build a RemoteInput for receiving voice input

// in a Car Notification

val remoteInput =
RemoteInput.Builder (MY VOICE REPLY KEY)
.setlLabel("The label")
.build()

val unreadConvBuilder =
UnreadConversation.Builder(conversationName)
.setReadPendingIntent(msgReadIntent)
.setReplyAction(msgReplyIntent, remoteInput)

Here, conversationName is the name of the conversation shown to the Auto user. This could
also be a comma-separated list of identifiers if the conversation is with more than one user.

CHAPTER 13: Hardware 385

The UnreadConversation builder is not ready yet. We first add the message as follows:

unreadConvBuilder.addMessage(messageString)
.setlatestTimestamp(currentTimestamp)

Next we prepare a NotificationCompat.Builder object. To that builder we add the
unreadConvBuilder builder from earlier, fetch a NotificationManager from the system, and
finally send the message.

val notificationBuilder =
NotificationCompat.Builder(applicationContext)
.setSmallIcon(smallIconResourcelID)
.setlargeIcon(largeIconBitmap)

notificationBuilder.extend(CarExtender()
.setUnreadConversation(unreadConvBuilder.build())

NotificationManagerCompat.from(/*context*/this).run {
notify(notificationTag,
notificationId,
notificationBuilder.build())

What is left is handling the “message read” and “message reply” events, if you registered
for them. For this you write corresponding BroadcastReceiver classes, as indicated by the
entries in AndroidManifest.xml. Note that for the “message reply” action you need to use a
certain way to get hold of the message.

val remoteInput =
RemoteInput.getResultsFromIntent(intent)?.let {
it.getCharSequence(MY_VOICE REPLY KEY)
} ?: nn

Playing and Recording Sound
Playing sound in Android means one or two things, or both together:

Short sound snippets: You typically play them as a feedback to user
interface actions, such as pressing a button or entering something in

an edit field. Another use case is games, where certain events could be
mapped to short audio fragments. Especially for Ul reactivity, make sure
you don’t annoy users and provide for a possibility to readily mute audio
output.

Music playback: You want to play music pieces with a duration longer
than a few seconds.

For short audio snippets, you use a SoundPool; for music pieces, you use a MediaPlayer.
We talk about them and also audio recording in the following sections.

386 CHAPTER 13: Hardware

Short Sound Snippets

For short sound snippets, you use a SoundPool and preload the sounds during initialization.
You cannot immediately use the sound snippets after you load them using one of the
SoundPool.load(...) methods. Instead, you have to wait until all sounds are loaded. The
suggested way is not to wait for some time as you frequently can read in some blogs.
Instead, listen to sound load events and count finished snippets. You can let a custom class
do that, as follows:

class SoundLoadManager(val ctx:Context) {
var scheduled = 0
var loaded = 0
val sndPool:SoundPool
val soundPoolMap = mutableMapOf<Int,Int>()
init {
sndPool =
if (Build.VERSION.SDK INT >=
Build.VERSION CODES.LOLLIPOP) {
SoundPool.Builder()
.setMaxStreams(4)
.setAudioAttributes(
AudioAttributes.Builder()
.setUsage(
AudioAttributes.USAGE_MEDIA)
.setContentType(
AudioAttributes.CONTENT TYPE MUSIC)
.build()
).build()
} else {
SoundPool (4,
AudioManager.STREAM_MUSIC,
100)
}
sndPool.setOnLoadCompletelistener ({
sndPool, sampleld, status ->
if(status != 0) {
Log.e("LOG",
"Sound could not be loaded")

} else {
Log.i("LOG", "Loaded sample " +
sampleId + ", status = " +
status)
}
loaded++
1)
}
fun load(resourceld:Int) {
scheduled++

soundPoolMap[resourceld] =
sndPool.load(ctx, resourceld, 1)

CHAPTER 13: Hardware 387

fun allloaded() = scheduled == loaded

fun play(rsrcId: Int, loop: Boolean):Int {
return soundPoolMap[rsrcId]?.run {
val audioManager = ctx.getSystemService(
Context.AUDIO SERVICE) as AudioManager
val curVolume = audioManager.
getStreamVolume(
AudioManager.STREAM MUSIC)
val maxVolume = audioManager.
getStreamMaxVolume(
AudioManager.STREAM_MUSIC)
val leftVolume = 1f * curVolume / maxVolume
val rightVolume = 1f * curVolume / maxVolume
val priority = 1
val nolLoop = if(loop) -1 else 0
val normalPlaybackRate = 1f
sndPool.play(this, leftVolume, rightVolume,
priority, nolLoop, normalPlaybackRate)
Y21
}
}

Note the following about this class:

Loads and saves an instance of SoundPool. The constructor is
deprecated, which is why we use different ways of initializing it,
dependent on the Android API level. The parameters shown here may
be adapted according to your needs; please see the APl documentation
of SoundPool, SoundPool.Builder, and AudioAttributes.Builder.

Provides for a 1load() method with a resource ID as an argument. This
could, for example, be a WAV file inside the res/raw folder.

Provides for an allLoaded() method that you can use to check whether
all sounds have been loaded.

Provides for a play() method that you can use to play a loaded sound.
This will do nothing if the sound is not loaded yet. This will return the
stream ID if the sound gets actually played, or else -1.

To use the class, create a field with an instance. Upon initialization, for example, in an
activity’s onCreate(...) method, load the sounds and invoke play() to start playing.

lateinit var soundLoadManager:SoundLoadManager
override
fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)
setContentView(R.layout.activity main)

388 CHAPTER 13: Hardware

soundLoadManager = SoundLoadManager(this)
with(soundLoadManager) {
load(R.raw.click)
// more ...

}
}

fun go(v: View) {
Log.e("LOG", "All sounds loaded = " +
soundLoadManager.allloaded())
val strmId = soundLoadManager.play(
R.raw.click, false)
Log.e("LOG", "Stream ID = " + strmId.toString())

}

The SoundPool class also allows for stopping and resuming sounds. You can appropriately
extend the SoundLoadManager class to take that into account if you need it.

Playing Media

The class MediaPlayer is all you need to register and play a music clip of arbitrary length and
arbitrary origin. It is a state engine and as such not particularly easy to handle, but we first
talk about permissions we might need to operate a media player.

If your app needs to play media originating on the Internet, you
must allow Internet access by adding the following to the file
AndroidManifest.xml:

<uses-permission android:name=
"android.permission.INTERNET" />

If you want to prevent your playback from being interrupted by the
device going asleep, you need to acquire wake locks. We will be talking
more about that in a moment, but for this to be possible at all, you need
to add the following permission to AndroidManifest.xml:

<uses-permission android:name=
"android.permission.WAKE_LOCK" />

To see what to do further to acquire permissions in your code, please refer to Chapter 7.

With the necessary permissions set up, we can now handle the MediaPlayer class. As
already mentioned, an instance of it creates a state machine, and the transitions from state
to state correspond to various playback states. In more detail, the object can be in one of
the following states:

Idle

Once constructed by the default constructor or after a reset(), the
player is in idle state.

http://dx.doi.org/10.1007/978-1-4842-3820-2_7

CHAPTER 13: Hardware

Note that the various static create(...) factory methods gather several transitions. For

Initialized

Once the data source gets set via setDataSource(...), the
player is in initialized state. Unless you first use a reset(), calling
setDataSource(...) again results in an error.

Prepared

The preparation transition prepares some resources and data streams to
be used for the playback. Because it might take some time, especially

for stream resources originating from data sources on the Internet, there
are two possibilities to engage that transition: the prepare() method
executes that step and blocks the program flow until it finishes, while the
prepareAsync() method sends the preparation to the background. In the
latter case, you have to register a listener via setOnPreparedListener(...)
to find out when the preparation step actually finished. You must do the
preparation before you can start after initialization, and you must do it
again after a stop() method before you can start the playback again.

Started

After a successful preparation, the playback can be started by calling
start().

Paused

After a start(), you can temporarily suspend the playback by calling pause.
Calling start again resumes the playback at the current playback position.

Stopped

You can stop the playback, either while it is running or while it is paused,
by invoking stop(). Once stopped, it is not allowed to start again, unless
the preparation step got repeated first.

Completed

Once the playback is completed and no looping is active, the completed
state gets entered. You can either stop from here or start again.

details, please see the API documentation.

To give you an example, a basic player Ul interface for playing a music file from inside the

389

assets folder, utilizing a synchronous preparation and with a start/pause button and a stop
button, looks like this:

var mPlayer: MediaPlayer? = null
fun btnText(playing:Boolean) {

}

startBtn.text = if(playing) "Pause" else "Play"

fun goStart(v:View) {

mPlayer = mPlayer?.run {
btnText(!isPlaying)
if(isPlaying)

pause()

390 CHAPTER 13: Hardware

else
start()
this
} ?: MediaPlayer().apply {
setOnCompletionListener {
btnText(false)
release()
mPlayer = null

val fd: AssetFileDescriptor =
assets.openFd("tunel.mp3")

setDataSource(fd.fileDescriptor)

prepare() // synchronous

start()

btnText(true)

}
}

fun goStop(v:View) {
mPlayer?.run {
stop()

prepare()
btnText(false)

}

The code is mostly self-explanatory. The goStart() and goStop() methods get called once
the buttons get pressed, and btnText(...) is used to indicate state changes. The construct
used here might look strange first, but all it does is: if the mPlayer object is not null, do (A)
and finally perform a void assignment to itself. Otherwise, construct it, and then apply (B) to it.

mPlayer = mPlayer?.run {
(A)
this

} ?: MediaPlayer().apply {
(B)

}

For that example to work, you must have buttons with IDs startBtn and stopBtn in your
layout, connect them via android:onclick="goStop" and android:onclick="goStart", and
have a file called tune1.mp3 inside your assets/ folder. The example switches the button text
between the “Play” and “Pause” labels; you could of course instead use ImageButton views
here and change icons once pressed.

To use any other data source, including online streams from the Internet, apply one of the
various setDataSource(...) alternatives or use one of the static create(...) methods. To
monitor the various state transitions, add appropriate listeners via setOn...Listener(...).
It is further suggested to immediately call release() on a MediaPlayer object once you are
done with it to free no longer used system resources.

CHAPTER 13: Hardware 391

The playback of some music can also be handled in the background, for example using a
service instead of an activity. In such a case, if you want to avoid the device interrupting a
playback because it decides to go into a sleep mode, you acquire wake locks as follows to
avoid the CPU going to sleep:

mPlayer.setWakeMode (applicationContext,
PowerManager .PARTIAL_WAKE_LOCK)

This avoids the network connection being interrupted:

val wifilock = (applicationContext.getSystemService(

Context.WIFI_SERVICE) as WifiManager)
.createWifilock(WifiManager.WIFI_MODE_FULL, "

myWifilock")

.run {
acquire()
this

}

... later:

wifilock.release()

Recording Audio

For recording audio, you use the class MediaRecorder. Using it is rather straightforward, as
shown here:

val mRecorder = MediaRecorder().apply {
setAudioSource(MediaRecorder.AudioSource.MIC)
setOutputFormat(MediaRecorder.OutputFormat.THREE_GPP)
setOutputFile(mFileName)
setAudioEncoder(MediaRecorder.AudioEncoder.AMR_NB)

}

mRecorder.prepare()
mRecorder.start()

... later:
mRecorder.stop()

For other options regarding input, media format, and output, please see the API
documentation of class MediaRecorder.

Using the Camera

An application showing things to the user always has been a predominant application area
of computers. First it was text, later pictures, and even later movies. Only during the last
decades has the opposite, letting the user show things, gained considerable attention.
With handhelds being equipped with cameras of increasing quality, the need for apps that
are able to handle camera data has come up. Android helps a lot here; an app can tell

392 CHAPTER 13: Hardware

the Android OS to take a picture or record a movie and save it somewhere, or it can take
complete control over the camera hardware and continuously monitor camera data and
change zoom, exposure, and focus on demand.

We will be talking about all that in the following sections. If you need features or settings
that aren’t described here, the APl documentation serves as a starting point for extended
research.

Taking a Picture

A high-level approach to communicate with the camera hardware is the IT counterpart of
this order: “Take a picture and save it somewhere | tell you.” To accomplish that, assuming
the handheld actually has a camera and you have the permission to use it, you call a certain
intent telling the path name where to save the image. Upon intent result retrieval, you have
access to the image data, both directly to a low-resolution thumbnail and to the full image
data at the place requested.

We start by telling Android that our app needs a camera. This happens via an
<uses-feature> element inside the file AndroidManifest.xml.

<uses-feature android:name="android.hardware.camera"
android:required="true" />

Inside your app, you will then do a runtime check and act accordingly.

if (!packageManager.hasSystemFeature(
PackageManager.FEATURE_CAMERA)) {

}

To declare the permissions necessary, you write inside the manifest file AndroidManifrest.xml
in the <manifest> element.

<uses-permission android:name=
"android.permission.CAMERA" />

To check that permission and in case acquire it, see Chapter 7. If you want to save the
picture to a publicly available store so other apps can see it, you additionally need the
permission android.permission.WRITE_EXTERNAL STORAGE declared and acquired the same
way. To instead save the picture data to a space private to the app, you declare a slightly
different permission, as shown here:

<uses-permission android:name=
"android.permission.WRITE_EXTERNAL_ STORAGE"

android:maxSdkVersion="18"/>

This declaration is necessary only up to Android 4.4 (API level 18).

http://dx.doi.org/10.1007/978-1-4842-3820-2_7

CHAPTER 13: Hardware 393

We need to do some extra work to access the image data storage. Apart from the
permission we just described, we need access to the storage on a content provider security
level. This means, inside the <application> element of AndroidManifest.xml, add the
following:

<provider
android:name=
"android.support.v4.content.FileProvider"
android:authorities=
"com.example.autho.fileprovider"
android:exported="false"
android:grantUriPermissions="true">
<meta-data
android:name=
"android.support.FILE_PROVIDER PATHS"
android:resource="@xml/file paths">
</meta-data>
</provider>

Inside a file res/xml/file_paths.xml, write the following:

<?xml version="1.0" encoding="utf-8"?>
<paths xmlns:android=
"http://schemas.android.com/apk/res/android">
<external-path name="my images" path=
"Android/data/com.example.pckg.name/files/Pictures”
/>
</paths>

The value inside the path attribute depends on whether we save the pictures in the publicly
available storage or in the app’s private data space.

Use Android/data/com.example.package.name/files/Pictures if you
want to save the image to the app’s private data space.

Use Pictures if you want to save the image to the public data space.

Note If you use the app’s private data space, all pictures will be deleted if the app gets
uninstalled.

To start the system’s camera, first create an empty file to write the picture taken and then
create and fire an intent as follows:

val REQUEST TAKE PHOTO = 42
var photoFile:File? = null
fun dispatchTakePictureIntent() {
fun createImageFile():File {
val timeStamp =
SimpleDateFormat("yyyyMMdd HHmmss SSS",

394 CHAPTER 13: Hardware

}

Locale.US).format(Date())
val imageFileName = "JPEG_" + timeStamp + "_"

val storageDir =
Environment.getExternalStoragePublicDirectory(
Environment.DIRECTORY PICTURES)

// To instead take the App's private space:

// val storageDir =

// getExternalFilesDir(

// Environment.DIRECTORY PICTURES)

val image = File.createTempFile(
imageFileName,
".jpg",
storageDir)
return image

val takePictureIntent =

Intent(MediaStore.ACTION IMAGE CAPTURE)

val canHandleIntent = takePicturelIntent.

resolveActivity(packageManager) != null

if (canHandleIntent) {

}

photoFile = createImageFile()
Log.e("LOG","Photo output File: ${photoFile}")
val photoURI = FileProvider.getUriForFile(this,
"com.example.autho.fileprovider",
photoFile!!)
Log.e("LOG","Photo output URI: ${photoURI}")
takePictureIntent.putExtra(
MediaStore.EXTRA OUTPUT, photoURTI)
startActivityForResult(takePictureIntent,
REQUEST _TAKE_PHOTO)
}

dispatchTakePictureIntent()

Note that the second parameter in FileProvider.getUriForFile() designates the authority
and as such must also show up in the file AndroidManifest.xml inside the <provider>

element, as shown earlier.

After the photo has been taken, the app’s onActivityResult() can be used to fetch the

image data.

override
fun onActivityResult(requestCode: Int, resultCode: Int,

data: Intent) {
if ((requestCode and OxFFFF) == REQUEST TAKE PHOTO
88 resultCode == Activity.RESULT OK) {
val bmOptions = BitmapFactory.Options()
BitmapFactory.decodeFile(

CHAPTER 13: Hardware 395

photoFile?.getAbsolutePath(), bmOptions)?.run {
imgView.setImageBitmap(this)

}
}
}

Here, imgView points to an ImageView element inside the Ul layout.

Caution Although it is implied in the API documentation, the returned intent does not reliably
contain a thumbnail image in its data field. Some devices do that, but others do not.

Since we use the photoFile field to transport the image file’s name, we must take care that it
can survive activity restarts. To make sure it gets persisted, write the following:

override
fun onSavelInstanceState(outState: Bundle?) {
super.onSaveInstanceState(outState)
photoFile?.run{
outState?.putString("imgFile", absolutePath)
}
}

and inside onCreate(...) add:

savedInstanceState?.run {
photoFile = getString("imgFile")?.let {File(it)}
}

Only if you used publicly available space to store the picture can you advertise the image to
the system’s media scanner. Do so by writing the following:

val mediaScanIntent =

Intent(Intent.ACTION _MEDIA SCANNER SCAN FILE)
val contentUri = Uri.fromFile(photoFile)
mediaScanIntent.setData(contentUri)
sendBroadcast(mediaScanIntent)

Recording a Video

Recording a video using the system’s app does not substantially differ from taking a picture,
as described in the preceding section. The rest of this section assumes you worked through
that section already.

First, we need a different entry inside file res/xml/file_paths.xml. Since we are now
addressing the video section, write the following:

<?xml version="1.0" encoding="utf-8"?>
<paths xmlns:android=
"http://schemas.android.com/apk/res/android">

396 CHAPTER 13: Hardware

<external-path name="my_videos"
path="Android/data/de.pspaeth.camera/
files/Movies" />
</paths>

To save videos in the app’s private data space or to instead use the public data space
available to all apps, use this:

<?xml version="1.0" encoding="utf-8"?>
<paths xmlns:android=
"http://schemas.android.com/apk/res/android">
<external-path name="my videos"
path="Movies" />
</paths>

Then, to tell the Android OS to start recording a video and save the data to a file of our
choice, write the following:

var videoFile:File? = null
val REQUEST VIDEO_CAPTURE = 43

fun dispatchRecordVideoIntent() {
fun createVideoFile(): File {

val timeStamp =
SimpleDateFormat("yyyyMMdd HHmmss SSS",
Locale.US).format(Date())

val imageFileName = "MP4_" + timeStamp +

val storageDir =
Environment.getExternalStoragePublicDirectory(
Environment.DIRECTORY_ MOVIES)

// To instead tke the App's private space:

// val storageDir = getExternalFilesDir(

// Environment.DIRECTORY_MOVIES)

val image = File.createTempFile(
imageFileName,
".mp4”,
storageDir)

return image

}

val takeVideoIntent =
Intent(MediaStore.ACTION VIDEO CAPTURE)
if (takeVideoIntent.resolveActivity(packageManager)
I= null) {
videoFile = createVideoFile()
val videoURI = FileProvider.getUriForFile(this,
"com.example.autho.fileprovider",
videoFile!!)
Log.e("LOG","Video output URI: ${videoURI}")
takeVideoIntent.putExtra(MediaStore.EXTRA _OUTPUT,
videoURT)

CHAPTER 13: Hardware 397

startActivityForResult(
takeVideoIntent, REQUEST VIDEO CAPTURE)
}
}

dispatchRecordvideoIntent()

To eventually fetch the video data after the recording completes, add the following to
onActivityResult(...):

if((requestCode == REQUEST VIDEO CAPTURE and OxFFFF) &&
resultCode == Activity.RESULT OK) {
videoView.setVideoPath(videoFile!!.absolutePath)
videoView.start()

}

Here, videoView points to a VideoView inside your layout file.

Also, since we need to make sure the videoFile member survives an activity restart, add it
to onSaveInstanceState(...) and onCreate() as shown earlier for the photoFile field.

Writing Your Own Camera App

Using intents to tell the Android OS to take a picture for us or record a video might be fine
for many use cases. But as soon as you need to have more control over the camera or the
GUI, you need to write your own camera access code using the camera API. In this section,
| will show you an app that can do both—show you a preview and let you take a still image.

Note In this book, we mostly allow for Android versions 4.1 or higher. In the current section, we
deviate a little from this policy. The deprecated camera API before API level 21 (Android 5.0) differs
a lot from the new camera API since level 21. That is why here we choose to use the new AP,
which by mid-2018 addresses 85 percent or more of all devices. For the old API, please see the
online documentation.

We start with three utility classes. The first class is an extension of a TextureView. We use a
TextureView since it allows for a more rapid connection between the camera hardware and
the screen, and we extend it so it gets adapted better to the fixed ratio output of the camera.
The listing reads as follows:

Vs

* A custom TextureView which is able to automatically

* crop its size according to an aspect ratio set

*/

class AutoFitTextureView : TextureView {
constructor(context: Context) : super(context)
constructor(context: Context, attrs: AttributeSet?) :

super(context, attrs)

constructor(context: Context, attrs: AttributeSet?,

398 CHAPTER 13: Hardware

attributeSetId: Int) :
super(context, attrs, attributeSetId)

var mRatioWidth = 0
var mRatioHeight = 0

/**

Sets the aspect ratio for this view. The size of
the view will be measured based on the ratio
calculated from the parameters. Note that the
actual sizes of parameters don't matter, that
is, calling setAspectRatio(2, 3) and
setAspectRatio(4, 6) make the same result.

* X X X X X ¥ ¥

@param width Relative horizontal size
* @param height Relative vertical size
*/

fun setAspectRatio(width:Int, height:Int) {

if (width < 0 || height < 0) {
throw IllegalArgumentException(
"Size cannot be negative.");
}
mRatioWidth = width;
mRatioHeight = height;
requestLayout()
}

override
fun onMeasure(widthMeasureSpec:Int,
heightMeasureSpec:Int) {
super.onMeasure(
widthMeasureSpec, heightMeasureSpec)
val width = MeasureSpec.getSize(widthMeasureSpec)
val height = MeasureSpec.getSize(heightMeasureSpec)
if (0 == mRatioWidth || 0 == mRatioHeight) {
setMeasuredDimension(width, height)
} else {
val ratio = 1.0 * mRatioWidth / mRatioHeight
if (width < height * ratio) {
setMeasuredDimension(
width, (width / ratio).toInt())
} else {
setMeasuredDimension(
(height * ratio).toInt(), height)

CHAPTER 13: Hardware 399

The next utility class queries the system for a back camera and once found stores its
characteristics. It reads as follows:
J¥*
* Find a backface camera
*/
class BackfaceCamera(context:Context) {

var camerald: String? = null
var characteristics: CameraCharacteristics? = null

init {
val manager = context.getSystemService(
Context.CAMERA SERVICE) as CameraManager
try {
manager.cameraldList.find {
manager .getCameraCharacteristics(it).
get(CameraCharacteristics.LENS_FACING) ==
CameraCharacteristics.LENS_FACING BACK
}.run {
camerald = this
characteristics = manager.
getCameraCharacteristics(this)

} catch (e: CameraAccessException) {
Log.e("LOG", "Cannot access camera", e)
}

}
}

The third utility class performs a couple of calculations that help us to appropriately map
camera output dimensions to the texture view size. It reads as follows:

/**

* Calculates and holds preview dimensions
*/

class PreviewDimension {

companion object {
val LOG KEY = "PreviewDimension"

// Max preview width guaranteed by Camera2 API
val MAX_PREVIEW WIDTH = 1920

// Max preview height guaranteed by Camera2 API
val MAX PREVIEW HEIGHT = 1080

val ORIENTATIONS = SparseIntArray().apply {
append(Surface.ROTATION 0, 90);
append(Surface.ROTATION 90, 0);
append(Surface.ROTATION 180, 270);
append(Surface.ROTATION 270, 180);

400 CHAPTER 13: Hardware

As a companion function, we need a method that, given sizes supported by a camera,
chooses the smallest one that is at least as large as the respective texture view size, that is
at most as large as the respective max size, and whose aspect ratio matches the specified
value. If such a size doesn’t exist, it chooses the largest one that is at most as large as the
respective max size and whose aspect ratio matches with the specified value.

Vaia
* Calculate the optimal size.

@return The optimal size, or an arbitrary one
if none were big enough

*
* @param choices The list of sizes

* that the camera supports for the intended

* output class

* @param textureViewWidth The width of the

* texture view relative to sensor coordinate
* @param textureViewHeight The height of the
* texture view relative to sensor coordinate
* @param maxWidth The maximum width

* that can be chosen

* @param maxHeight The maximum height
* that can be chosen

* @param aspectRatio The aspect ratio

*

*

*/
fun chooseOptimalSize(choices: Array<Size»?,
textureViewWidth: Int,
textureViewHeight: Int,
maxWidth: Int, maxHeight: Int,
aspectRatio: Size): Size {

// Collect the supported resolutions that are
// at least as big as the preview Surface
val bigEnough = Arraylist<Size>()
// Collect the supported resolutions that are
// smaller than the preview Surface
val notBigEnough = Arraylist<Size>()
val w = aspectRatio.width
val h = aspectRatio.height
choices?.forEach { option ->
if (option.width <= maxWidth &&
option.height <= maxHeight &&
option.height ==
option.width * h / w) {
if (option.width >= textureViewWidth
8& option.height »>=
textureViewHeight) {
bigEnough.add(option)
} else {
notBigEnough.add(option)
}

CHAPTER 13: Hardware

// Pick the
// there is
// largest o
if (bigEnoug
return C
Col
} else if (n
return C
Col
} else {
Log.e(LO
"C

}

/**
* Compa
*/
class Co
over
fun

}

internal var
internal var
internal var
internal var
internal var
internal var

smallest of those big enough. If
no one big enough, pick the

f those not big enough.

h.size » 0) {
ollections.min(bigEnough,
mpareSizesByArea())
otBigEnough.size > 0) {
ollections.max(notBigEnough,
mpareSizesByArea())

G_KEY,
ouldn't find any suitable size")
return Size(textureViewWidth,
textureViewHeight)

res two sizes based on their areas.

mpareSizesByArea : Comparator<Size> {
ride
compare(lhs: Size, rhs: Size): Int {
// We cast here to ensure the
// multiplications won't overflow
return Long.signum(1lhs.width.toLong() *
lhs.height -
rhs.width.tolLong() * rhs.height)

rotatedPreviewhidth: Int = 0
rotatedPreviewHeight: Int = 0
maxPreviewWidth: Int = 0
maxPreviewHeight: Int = 0
sensorOrientation: Int = 0
previewSize: Size? = null

401

We need a method that calculates the preview dimension, including the sensor orientation.
The method calcPreviewDimension() does exactly that.

fun calcPreviewD

imension(width: Int, height: Int,

activity: Activity, bc: BackfaceCamera) {

// Find out

// the previ

val displayR
activity

sensorOrient
get(Came
var swappedD

if we need to swap dimension to get

ew size relative to sensor coordinate.
otation =
.windowManager.defaultDisplay.rotation

ation = bc.characteristics!!.
raCharacteristics.SENSOR_ORIENTATION)
imensions = false

402 CHAPTER 13: Hardware

when (displayRotation) {
Surface.ROTATION 0, Surface.ROTATION 180 ->
if (sensorOrientation == 90 ||
sensorOrientation == 270) {
swappedDimensions = true
}
Surface.ROTATION 90, Surface.ROTATION 270 ->
if (sensorOrientation == 0 ||
sensorOrientation == 180) {
swappedDimensions = true

else -> Log.e("LOG",
"Display rotation is invalid: " +
displayRotation)
}

val displaySize = Point()
activity.windowManager.defaultDisplay.
getSize(displaySize)
rotatedPreviewWidth = width
rotatedPreviewHeight = height
maxPreviewWidth = displaySize.x
maxPreviewHeight = displaySize.y

if (swappedDimensions) {
rotatedPreviewhidth = height
rotatedPreviewHeight = width
maxPreviewWidth = displaySize.y
maxPreviewHeight = displaySize.x

}

if (maxPreviewWidth > MAX PREVIEW WIDTH) {
maxPreviewWidth = MAX_PREVIEW WIDTH
}

if (maxPreviewHeight > MAX_PREVIEW HEIGHT) {
maxPreviewHeight = MAX PREVIEW HEIGHT
}

}

/**

* Retrieves the JPEG orientation from the specified

* screen rotation.

*

* @param rotation The screen rotation.

* @return The JPEG orientation

* (one of 0, 90, 270, and 360)

*/

fun getOrientation(rotation: Int): Int {

// Sensor orientation is 90 for most devices, or
// 270 for some devices (eg. Nexus 5X). We have
// to take that into account and rotate JPEG

CHAPTER 13: Hardware

}

// properly. For devices with orientation of 90,

// we simply return our mapping from ORIENTATIONS.

// For devices with orientation of 270, we need

// to rotate the JPEG 180 degrees.

return (ORIENTATIONS.get(rotation) +
sensorOrientation + 270) % 360

To allow for a correct preview image presentation, we use the method
getTransformationMatrix(), as shown here:

fun getTransformationMatrix(activity: Activity,

}

viewWidth: Int, viewHeight: Int): Matrix {
val matrix = Matrix()
val rotation = activity.windowManager.
defaultDisplay.rotation
val viewRect = RectF(of, of,
viewWidth.toFloat(), viewHeight.toFloat())
val bufferRect = RectF(of, of,
previewSize!!.height.toFloat(),
previewSize!!.width.toFloat())
val centerX = viewRect.centerX()
val centerY = viewRect.centerY()
if (Surface.ROTATION 90 == rotation
|| Surface.ROTATION 270 == rotation) {
bufferRect.offset(
centerX - bufferRect.centerX(),
centerY - bufferRect.centerY())
matrix.setRectToRect(viewRect, bufferRect,
Matrix.ScaleToFit.FILL)
val scale = Math.max(
viewHeight.toFloat() / previewSize!!.height,
viewWidth.toFloat() / previewSize!!.width)
matrix.postScale(
scale, scale, centerX, centerY)
matrix.postRotate(
(90 * (rotation - 2)).toFloat(),
centerX, centerY)
} else if (Surface.ROTATION 180 == rotation) {
matrix.postRotate(180f, centerX, centerY)
}

return matrix

}

As in the preceding sections, we need to make sure we can acquire the necessary
permissions. For this aim, add the following inside AndroidManifest.xml:

<uses-permission android:name=

"android.permission.CAMERA"/>

403

404 CHAPTER 13: Hardware

Next we write an activity, which checks and possibly acquires the permissions necessary,
opens a Camera object whose class we will define in a moment, adds a still image capture
button and a captured still image consumer callback, and takes care of a transformation
matrix to have the TextureView object show the correctly sized preview picture. It will look
like this:

class MainActivity : AppCompatActivity() {
companion object {
val LOG KEY = "main"
val PERM_REQUEST CAMERA = 642

}

lateinit var previewDim:PreviewDimension
lateinit var camera:Camera

override

fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity main)

val permissionl =
ContextCompat.checkSelfPermission(
this, Manifest.permission.CAMERA)
if (permission1 !=
PackageManager.PERMISSION GRANTED) {
ActivityCompat.requestPermissions(this,
arrayOf(Manifest.permission.CAMERA),
PERM_REQUEST_CAMERA)
telse{
start()
}

}

override fun onDestroy() {
super.onDestroy()
camera.close()

}

fun go(v: View) {
camera.takePicture()
}

The method start() is used to correctly handle the camera object and set up the preview
canvas. Note that when the screen is turned off and turned back on, SurfaceTexture is
already available, and onSurfaceTextureAvailable will not be called. In that case, we can
open a camera and start a preview from here. Otherwise, we wait until the surface is ready in
SurfaceTexturelListener.

private fun start() {
previewDim = PreviewDimension()
camera = Camera(

CHAPTER 13: Hardware

this, previewDim, cameraTexture).apply {
addPreviewSizelistener { w,h ->
Log.e(LOG_KEY,
"Preview size by PreviewSizelistener:
${w} ${h}")
cameraTexture.setAspectRatio(w,h)

}
addStillImageConsumer(::dataArrived)

}

// Correctly handle the screen turned off and
// turned back on.
if (cameraTexture.isAvailable()) {
camera.openCamera(cameraTexture.width,
cameraTexture.height)
configureTransform(cameraTexture.width,
cameraTexture.height)
} else {
cameraTexture.surfaceTexturelListener = object :
TextureView.SurfaceTexturelListener {
override
fun onSurfaceTextureSizeChanged(
surface: SurfaceTexture?,
width: Int, height: Int) {
configureTransform(width, height)
}
override
fun onSurfaceTextureUpdated(
surface: SurfaceTexture?) {
}

override
fun onSurfaceTextureDestroyed(
surface: SurfaceTexture?): Boolean {
return true
}
override
fun onSurfaceTextureAvailable(
surface: SurfaceTexture?,
width: Int, height: Int) {
camera.openCamera(width, height)
configureTransform(width, height)

}
}
}

private fun dataArrived(it: ByteArray) {
Log.e(LOG_KEY, "Data arrived: " + it.size)
// do more with the picture...

405

406 CHAPTER 13: Hardware

private fun configureTransform(
viewWidth: Int, viewHeight: Int) {
val matrix =
previewDim.getTransformationMatrix(
this, viewWidth, viewHeight)
cameraTexture.setTransform(matrix)

}

The onRequestPermissionsResult() callback is used to start the preview after the permission
check returns from the corresponding system call.

override
fun onRequestPermissionsResult(requestCode: Int,
permissions: Array<out String>,
grantResults: IntArray) {
super.onRequestPermissionsResult(requestCode,
permissions, grantResults)
when (requestCode) {
PERM _REQUEST_CAMERA -> {

if(grantResults[0] ==
PackageManager.PERMISSION GRANTED) {
start()
}
}
}
}

}

A corresponding layout file with a “take picture” button and the custom ciTextureView Ul
element reads as follows:

<?xml version="1.0" encoding="utf-8"?>

<Linearlayout
xmlns:android=

"http://schemas.android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".MainActivity"
android:orientation="vertical">

<Button
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="Go"
android:onClick="go"/>

<de.pspaeth.camera2.AutoFitTextureView
android:id="@+id/cameraTexture"
android:layout_width="400dp"

android:layout_height="200dp"
android:layout marginTop="8dp"
/>

</LinearlLayout>

CHAPTER 13: Hardware

407

Here, instead of de.pspaeth.camera2.AutoFitTextureView, you have to use your own class’s

fully qualified path.

The Camera class makes sure we put important activities into the background, prepares a
space where the still image capture data can be put, and builds a camera session object.

It also takes care of a couple sizing issues.

/**
* A camera with a preview sent to a TextureView
*/
class Camera(val activity: Activity,
val previewDim:PreviewDimension,
val textureView:TextureView) {
companion object {
val LOG KEY = "camera"
val STILL_IMAGE_FORMAT = ImageFormat.JPEG
val STILL IMAGE MIN WIDTH = 480
val STILL IMAGE MIN HEIGHT = 480

}

private val previewSizelisteners =
mutablelListOf<(Int,Int) -> Unit>()
fun addPreviewSizelistener(
1: (Int,Int) -> Unit) {
previewSizelisteners.add(1l)

}

private val stillImageConsumers =
mutablelListOf<(ByteArray) -> Unit>()
fun addStillImageConsumer (
1: (ByteArray) -> Unit) {
stillImageConsumers.add(1)
}

/¥
* An additional thread and handler for running

* tasks that shouldn't block the UI.

*/

private var mBackgroundThread: HandlerThread? = null
private var mBackgroundHandler: Handler? = null

private var cameraDevice: CameraDevice? = null
private val backfaceCamera =
BackfaceCamera(activity)
// Holds the backface camera's ID

/**

408 CHAPTER 13: Hardware

* A [Semaphore] to prevent the app from exiting
* before closing the camera.

*/
private val cameraOpenCloselock = Semaphore(1)

private var imageReader:ImageReader? = null
private var paused = false

private var flashSupported = false

private var activeArraySize: Rect? = null
private var cameraSession:CameraSession? = null
private var stillImageBytes:ByteArray? = null

The openCamera() method checks for permissions, connects to the camera data output, and
initiates the connection to the camera.

fun openCamera(width: Int, height: Int) {
startBackgroundThread()

val permissionl =
ContextCompat.checkSelfPermission(
activity, Manifest.permission.CAMERA)
if (permissioni !=
PackageManager.PERMISSION GRANTED) {
Log.e(LOG_KEY,
"Internal error: "+
"Camera permission missing")

}

setUpCameraOutputs(width, height)
val manager = activity.getSystemService(
Context.CAMERA SERVICE)
as CameraManager
try {
if (!cameraOpenCloselock.tryAcquire(
2500, TimeUnit.MILLISECONDS)) {
throw RuntimeException(
"Time out waiting.")
}
val mStateCallback = object :
CameraDevice.StateCallback() {
override
fun onOpened(cameraDev: CameraDevice) {
// This method is called when the
// camera is opened. We start camera
// preview here.

CHAPTER 13: Hardware

cameraOpenCloseLock.release()
cameraDevice = cameraDev
createCameraSession()

}

override
fun onDisconnected(
cameraDev: CameraDevice) {
cameraOpenCloselock.release()
cameraDevice?.close()
cameraDevice = null

}

override
fun onError(cameraDev: CameraDevice,
error: Int) {
Log.e(LOG_KEY,
"Camera on error callback:
+ error);
cameraOpenCloselock.release()
cameraDevice?.close()
cameraDevice = null

}
}
manager .openCamera (
backfaceCamera.camerald,
mStateCallback,
mBackgroundHandler)

} catch (e: CameraAccessException) {

Log.e(LOG_KEY,"Could not access camera", e)

} catch (e: InterruptedException) {

}

¥k

Log.e(LOG_KEY,
"Interrupted while camera opening.", e)

* Initiate a still image capture.

*/

fun takePicture() {
cameraSession?.takePicture()

}

fun close() {
stopBackgroundThread()
cameraSession?.run {

}

close()

409

410 CHAPTER 13: Hardware

imageReader?.run {
surface.release()
close()
imageReader = null

}

The following are a couple of private methods to handle the background threads and the
camera session:

[17177717177717771777711777117717771177117177111771117711717711177
IIL11771771077711171717777111171777771171177711111171711117

/**
* Starts a background thread and its [Handler].
*/
private fun startBackgroundThread() {
mBackgroundThread =
HandlerThread("CameraBackground")
mBackgroundThread?.start()
mBackgroundHandler = Handler(
mBackgroundThread!!.getLooper())
}

Jx*
* Stops the background thread and its [Handler].
*/
private fun stopBackgroundThread() {
mBackgroundThread?.run {
quitSafely()

try {
join()
mBackgroundThread = null
mBackgroundHandler = null
} catch (e: InterruptedException) {
}

}

private fun createCameraSession() {
cameraSession = CameraSession(mBackgroundHandler!!,

cameraOpenCloselock,

backfaceCamera.characteristics,

textureView,

imageReader!!,

cameraDevice!!,

previewDim,

activity.windowManager.defaultDisplay.
rotation,

activeArraySize!!,

1.0).apply {

createCameraSession()
addStillImageTakenConsumer {
//Log.e(LOG_KEY, "!!1l PICTURE TAKEN!!!™")
for (cons in stillImageConsumers) {
mBackgroundHandler?.post(
Runnable {
stillImageBytes?.run{
cons(this)
}
H

}

The setUpCameraOutputs() method performs the hard work of connecting to the camera

data output.

Vak
* Sets up member variables related to camera:
activeArraySize, imageReader, previewDim,

flashSupported

ES
ES
*
* @param width The width of available size for
* camera preview
* @param height The height of available size for
* camera preview
*/
private fun setUpCameraOutputs(
width: Int, height: Int) {
activeArraySize = backfaceCamera.
characteristics?.
get(CameraCharacteristics.
SENSOR_INFO_ACTIVE_ARRAY_ SIZE)

val map =
backfaceCamera.characteristics!!.get(
CameraCharacteristics.
SCALER_STREAM_CONFIGURATION_MAP)

val stillSize = calcStillImageSize(map)
imageReader =
ImageReader.newInstance(
stillSize.width,
stillSize.height,
STILL_IMAGE_FORMAT, 3).apply {
setOnImageAvailablelistener(
ImageReader.OnImageAvailablelListener {
reader ->
if (paused)
return@nImageAvailablelistener
val img = reader.acquireNextImage()

CHAPTER 13: Hardware

41

412 CHAPTER 13: Hardware

val buffer = img.planes[0].buffer
stillImageBytes =
ByteArray(buffer.remaining())
buffer.get(stillImageBytes)
img.close()
}, mBackgroundHandler)
}

previewDim.calcPreviewDimension(width, height,
activity, backfaceCamera)

val texOutputSizes =
map? .getOutputSizes(
SurfaceTexture::class.java)
val optimalSize =
PreviewDimension.chooseOptimalSize(
texOutputSizes,
previewDim.rotatedPreviewWidth,
previewDim.rotatedPreviewHeight,
previewDim.maxPreviewWidth,
previewDim.maxPreviewHeight,
stillSize)
previewDim.previewSize = optimalSize

// We fit the aspect ratio of TextureView
// to the size of preview we picked.
val orientation =
activity.resources.configuration.
orientation
if (orientation ==
Configuration.ORIENTATION LANDSCAPE) {
previewSizelisteners.forEach{
it(optimalSize.width,
optimalSize.height) }
} else {
previewSizelisteners.forEach{
it(optimalSize.height,
optimalSize.width) }
}

// Check if the flash is supported.
val available =
backfaceCamera.characteristics?.
get(CameraCharacteristics.
FLASH_ INFO AVAILABLE)
flashSupported = available ?: false

CHAPTER 13: Hardware 413

One last private method calculates the still image size. This plays a role once the trigger gets
pressed or a trigger press gets simulated.

private fun calcStillImageSize(
map: StreamConfigurationMap): Size {
// For still image captures, we use the smallest
// one at least some width x height
val jpegSizes =
map.getOutputSizes(ImageFormat.JPEG)
var stillSize: Size? = null
for (s in jpegSizes) {
if (s.height >= STILL IMAGE MIN HEIGHT
88 s.width >= STILL IMAGE MIN WIDTH) {
if (stillSize == null) {
stillSize = s
} else {
val f =
(s.width * s.height).toFloat()
val still =
(stillSize.width *
stillSize.height).toFloat()
if (f < still) {
stillSize = s
}

}
}
return stillSize ?: Size(100,100)
}
}

The last and maybe most complex class we need is CameraSession. It is a state machine
that handles the various camera states including autofocus and auto-exposure, and it serves
two data drains: the preview texture and the captured still image storage. Before | explain a
couple of constructs used here, | present the listing:

Vaia
* A camera session class.
*/
class CameraSession(val handler: Handler,
val cameraOpenCloselock:Semaphore,
val cameraCharacteristics:CameraCharacteristics?,
val textureView: TextureView,
val imageReader: ImageReader,
val cameraDevice: CameraDevice,
val previewDim: PreviewDimension,
val rotation:Int,
val activeArraySize: Rect,
val zoom: Double = 1.0) {
companion object {
val LOG_KEY = "Session"

114 CHAPTER 13: Hardware

enum class State {

STATE_PREVIENW,

// Showing camera preview.
STATE_WAITING LOCK,

// Waiting for the focus to be locked.
STATE_WAITING PRECAPTURE,

// Waiting for the exposure to be

// precapture state.
STATE_WAITING_NON_PRECAPTURE,

// Waiting for the exposure state to

// be something other than precapture
STATE_PICTURE_TAKEN

// Picture was taken.

}

var mState:State = State.STATE_PREVIEW

The inner class MyCaptureCallback is responsible for handling both cases, the preview and
the still image capture. For the preview, however, state transitions are limited to on and off.

inner class MyCaptureCallback :
CameraCaptureSession.CaptureCallback() {
private fun process(result: CaptureResult) {
if(captSess == null)
return
when (mState) {
State.STATE_PREVIEW -> {
// We have nothing to do when the
// camera preview is working normally.
}
State.STATE_WAITING LOCK -> {
val afState = result.get(
CaptureResult.CONTROL_AF_STATE)
if (CaptureResult.
CONTROL_AF_STATE_FOCUSED_LOCKED
== afState
|| CaptureResult.
CONTROL_AF_STATE_NOT_FOCUSED_LOCKED
== afState
|| CaptureResult.
CONTROL_AF_STATE_PASSIVE_FOCUSED
== afState) {
if(cameraHasAutoExposure) {
mState =
State.STATE_WAITING_PRECAPTURE
runPrecaptureSequence()
} else {

CHAPTER 13: Hardware

mState =
State.STATE_PICTURE_TAKEN
captureStillPicture()

}
}
State.STATE_WAITING PRECAPTURE -> {
val aeState = result.get(
CaptureResult.CONTROL_AE_STATE)
if (aeState == null ||
aeState == CaptureResult.
CONTROL_AE_STATE_PRECAPTURE
I
aeState == CaptureRequest.
CONTROL_AE_STATE_FLASH_REQUIRED) {
mState =
State.STATE_WAITING NON_PRECAPTURE
}
}

State.STATE_WAITING NON_PRECAPTURE -> {
val aeState = result.get(
CaptureResult.CONTROL_AE_STATE)
if (aeState == null ||
aeState != CaptureResult.
CONTROL_AE_STATE_PRECAPTURE) {
mState = State.STATE_PICTURE_TAKEN
captureStillPicture()
}
}
else -> {}

}

override
fun onCaptureProgressed(
session: CameraCaptureSession,
request: CaptureRequest,
partialResult: CaptureResult) {
//...

}

override
fun onCaptureCompleted(
session: CameraCaptureSession,
request: CaptureRequest,
result: TotalCaptureResult) {
process(result)

415

416

CHAPTER 13: Hardware

var captSess: CameraCaptureSession? = null
var cameraHasAutoFocus = false

var cameraHasAutoExposure = false

val captureCallback = MyCaptureCallback()

private val stillImageTakenConsumers =

mutablelistOf<() -> Unit>()

fun addStillImageTakenConsumer(l: () -> Unit) {

}

An autofocus action is limited to camera devices supporting it. This is checked at the
beginning of createCameraSession(). Likewise, an auto-exposure action is limited to

stillImageTakenConsumers.add(1l)

appropriate devices.

/**

* Creates a new [CameraCaptureSession] for camera
* preview and taking pictures.

*/
fun

createCameraSession() {
//Log.e(LOG_KEY, "Starting preview session")

cameraHasAutoFocus = cameraCharacteristics?.
get(CameraCharacteristics.
CONTROL_AF_AVAILABLE MODES)?.let {
it.any{ it ==
CameraMetadata.CONTROL_AF MODE_AUTO }
} ?: false

cameraHasAutoExposure = cameraCharacteristics?.

get(CameraCharacteristics.
CONTROL_AE_AVAILABLE MODES)?.let {
it.any{ it == CameraMetadata.
CONTROL_AE_MODE_ON ||
it == CameraMetadata.
CONTROL_AE_MODE_ON_ALWAYS FLASH ||
it == CameraMetadata.
CONTROL_AE_MODE_ON_AUTO_FLASH ||
it == CameraMetadata.
CONTROL_AE_MODE_ON_AUTO_FLASH_REDEYE }
} ?: false

try {

val texture = textureView.getSurfaceTexture()

// We configure the size of default buffer

// to be the size of camera preview we want.

texture.setDefaultBufferSize(
previewDim.previewSize!!.width,
previewDim!!.previewSize!!.height)

// This is the output Surface we need to start

// preview.

CHAPTER 13: Hardware 17

val previewSurface = Surface(texture)
val takePictureSurface = imageReader.surface

There are two camera output consumers: the texture for the preview and an image reader for
the still image capture. Both are constructor parameters, and both are used for creating the
session object; see cameraDevice.createCaptureSession(...).

// Here, we create a CameraCaptureSession for
// both camera preview and taking a picture
cameraDevice.
createCaptureSession(Arrays.asList(
previewSurface, takePictureSurface),
object : CameraCaptureSession.
StateCallback() {
override
fun onConfigured(cameraCaptureSession:
CameraCaptureSession) {
// When the session is ready, we
// start displaying the preview.
captSess = cameraCaptureSession
try {

val captReq =
buildPreviewCaptureRequest()
captSess?.
setRepeatingRequest(captReq,
captureCallback,
handler)
} catch (e: Exception) {
Log.e(LOG_KEY,
"Cannot access camera "+
"in onConfigured()", e)

}
}
override fun onConfigureFailed(
cameraCaptureSession:
CameraCaptureSession) {
Log.e(LOG_KEY,
"Camera Configuration Failed")
}

override fun onActive(
sess: CameraCaptureSession) {
}

override fun onCaptureQueueEmpty(
sess: CameraCaptureSession) {
}

override fun onClosed(
sess: CameraCaptureSession) {
}

override fun onReady(
sess: CameraCaptureSession) {
}

418 CHAPTER 13: Hardware

override fun onSurfacePrepared(
sess: CameraCaptureSession, surface: Surface) {

}
}, handler

} catch (e: Exception) {
Log.e(LOG_KEY, "Camera access failed", e)
}

}

Vs
* Initiate a still image capture.
*/

fun takePicture() {

lockFocusOrTakePicture()

}
fun close() {
try {
cameraOpenCloselock.acquire()
captSess?.run {
stopRepeating()
abortCaptures()
close()
captSess = null
}
cameraDevice.run {
close()
}
} catch (e: InterruptedException) {
Log.e(LOG_KEY,
"Interrupted while trying to lock " +
"camera closing.", e)
} catch (e: CameraAccessException) {
Log.e(LOG_KEY, "Camera access exception " +
"while closing.", e)
} finally {
cameraOpenCloselock.release()
}
}

The following are the private methods. The various build*CaptureRequest() methods show
how to prepare a request, which then get sent to the camera hardware.

[I110777777777771771777777177717777117711711177117711171117
[ITIL77TT1170077777177077771177777717117117771711111117

private fun buildPreviewCaptureRequest():
CaptureRequest {
val texture = textureView.getSurfaceTexture()
val surface = Surface(texture)

// We set up a CaptureRequest.Builder with the
// preview output Surface.

val reqBuilder = cameraDevice.
createCaptureRequest(
CameraDevice.TEMPLATE PREVIEW)

reqBuilder.addTarget(surface)

// Zooming

val cropRect = calcCropRect()

reqBuilder.set(
CaptureRequest.SCALER_CROP_REGION,
cropRect)

// Flash off
reqBuilder.set(CaptureRequest.FLASH MODE,
CameraMetadata.FLASH MODE_OFF)

// Continuous autofocus
reqBuilder.set(CaptureRequest.CONTROL_AF_MODE,
CaptureRequest.
CONTROL_AF_MODE_CONTINUOUS PICTURE)
return reqBuilder.build()

}

private fun buildTakePictureCaptureRequest() :
CaptureRequest {

// This is the CaptureRequest.Builder that we use

// to take a picture.

val captureBuilder =
cameraDevice.createCaptureRequest(
CameraDevice.TEMPLATE_STILL_CAPTURE)

captureBuilder.addTarget(imageReader.getSurface())

// Autofocus mode

captureBuilder.set(CaptureRequest.CONTROL_AF_MODE,

CaptureRequest.
CONTROL_AF_MODE_CONTINUOUS PICTURE)

// Flash auto

captureBuilder.set(CaptureRequest.CONTROL AE_MODE,

CaptureRequest.
CONTROL_AE_MODE_ON_AUTO_FLASH)

// captureBuilder.set(CaptureRequest.FLASH MODE,

// CameraMetadata.FLASH_MODE_OFF)

// Zoom

val cropRect = calcCropRect()

captureBuilder.set(CaptureRequest.
SCALER_CROP_REGION, cropRect)

CHAPTER 13: Hardware

419

420 CHAPTER 13: Hardware

// Orientation
captureBuilder.set(CaptureRequest.
JPEG_ORIENTATION,
previewDim.getOrientation(rotation))
return captureBuilder.build()

}

private fun buildPreCaptureRequest() :
CaptureRequest {
val surface = imageReader.surface
val reqBuilder =
cameraDevice.createCaptureRequest(
CameraDevice.TEMPLATE STILL CAPTURE)
reqBuilder.addTarget(surface)
reqBuilder.set(CaptureRequest.
CONTROL_AE_PRECAPTURE_TRIGGER,
CaptureRequest. CONTROL AE_PRECAPTURE_TRIGGER START)
return reqBuilder.build()
}

private fun buildLockFocusRequest() :
CaptureRequest {
val surface = imageReader.surface
val reqBuilder =
cameraDevice.createCaptureRequest(
CameraDevice.TEMPLATE STILL CAPTURE)
reqBuilder.addTarget(surface)
reqBuilder.set(CaptureRequest.
CONTROL_AF_TRIGGER,
CameraMetadata.CONTROL_AF_TRIGGER START)
return reqBuilder.build()
}

private fun buildCancelTriggerRequest() :
CaptureRequest {
val texture = textureView.getSurfaceTexture()
val surface = Surface(texture)

val reqBuilder =
cameraDevice.createCaptureRequest(
CameraDevice.TEMPLATE_PREVIEW)
reqBuilder.addTarget(surface)
reqBuilder.set(CaptureRequest.CONTROL AF_TRIGGER,
CameraMetadata.CONTROL_AF_TRIGGER_CANCEL)
return reqBuilder.build()

CHAPTER 13: Hardware a1

Capturing a still picture gets handled by the method captureStillpPicture(). Note that,
like for many of the other camera-related functionalities, appropriate tasks get sent to the
background, and callbacks handle the background processing results.

private fun captureStillPicture() {
val captureRequest =
buildTakePictureCaptureRequest()
if (captSess != null) {
try {
val captureCallback = object :
CameraCaptureSession.CaptureCallback() {
override fun onCaptureCompleted(
session: CameraCaptureSession,
request: CaptureRequest,
result: TotalCaptureResult) {
//Util.showToast(activity,
//"Acquired still image")
stillImageTakenConsumers.forEach {
it() }

unlockFocusAndBackToPreview()

}
}
captSess?.run {
stopRepeating()
capture(captureRequest,
captureCallback, null)
}

} catch (e: Exception) {
Log.e(LOG_KEY,
"Cannot capture picture", e)

}

private fun lockFocusOrTakePicture() {
if(cameraHasAutoFocus) {
captSess?.run {
try {
val captureRequest =
buildLockFocusRequest()
mState = State.STATE WAITING LOCK
capture(captureRequest,
captureCallback,
handler)
} catch (e: Exception) {
Log.e(LOG_KEY,
"Cannot lock focus", e)

422 CHAPTER 13: Hardware

} else {
if(cameraHasAutoExposure) {
mState = State.STATE_WAITING PRECAPTURE
runPrecaptureSequence()

} else {
mState = State.STATE_PICTURE_TAKEN

captureStillPicture()

}

/**
* Unlock the focus. This method should be called when
* still image capture sequence is finished.
*/
private fun unlockFocusAndBackToPreview() {
captSess?.run {
try {
mState = State.STATE_PREVIEW
val cancelAfTriggerRequest =
buildCancelTriggerRequest()
val previewRequest =
buildPreviewCaptureRequest()
capture(cancelAfTriggerRequest,
captureCallback,
handler)
setRepeatingRequest(previewRequest,
captureCallback,
handler)
} catch (e: Exception) {
Log.e(LOG_KEY,
"Cannot go back to preview mode", e)

}

Running the precapture sequence for capturing a still image gets performed by the method
runPrecaptureSequence(). This method should be called when we get a response in
captureCallback from the method lockFocusThenTakePicture().

/**

* Run the precapture sequence for capturing a still

* image.

*/

private fun runPrecaptureSequence() {

try {
captSess?.run {
val captureRequest = buildPreCaptureRequest()
mState = State.STATE_WAITING_PRECAPTURE
capture(captureRequest, captureCallback,
handler)

CHAPTER 13: Hardware

} catch (e: Exception) {
Log.e(LOG_KEY, "Cannot access camera", e)
}

}

private fun calcCropRect(): Rect {
with(activeArraySize) {

val cropW = width() / zoom
val cropH = height() / zoom
val top = centerY() - (cropH / 2f).toInt()
val left = centerX() - (cropW / 2f).toInt()
val right = centerX() + (cropW / 2f).toInt()
val bottom = centerY() + (cropH / 2f).toInt()
return Rect(left, top, right, bottom)

}

Here are a couple of notes on the CameraSession class:

The emulators don’t exhibit autofocus capabilities. The code takes care
of that.

The term precapture is just another name for auto-exposure.

Using the flash is a todo in this class. To enable flashing, see the places
where the flash gets mentioned in the code.

By virtue of a listener chain starting in CameraSession, the still image
capture data eventually arrives in the dataArrived(...) method of
MainActivity. It is there where you can start writing further processing
algorithms such as saving, sending, converting, reading, and so on.

Android and NFC

NFC adapters, provided the Android device has one, allow for short-range wireless
communication with other NFC-capable devices or NFC tags. We talked about NFC in
Chapter 12.

Android and Bluetooth

Most if not all modern Android devices have Bluetooth built in. Via Bluetooth they can
wirelessly communicate with other Bluetooth devices. For details, please see Chapter 12.

423

http://dx.doi.org/10.1007/978-1-4842-3820-2_12
http://dx.doi.org/10.1007/978-1-4842-3820-2_12

424 CHAPTER 13: Hardware

Android Sensors
Android devices provide various bits of information about their environment to apps, listed here:
Orientation as determined by a compass or gyroscope
Motion as given by acceleration forces
Gravitational forces
Air temperature, pressure, humidity
lllumination
Proximity, for example to find out the distance to the user’s ear

The exact geospatial position of a device is not detected by a sensor. For the detection of
positional coordinates using GPS, instead see Chapter 8.

Retrieving Sensor Capabilities

Beginning with Android 4.0 (API level 14), Android devices are supposed to provide all
sensor types as defined by the various android.hardware.Sensor.TYPE * constants. To see a
list of all sensors including various information about them, use the following code snippet:

val sensorManager = getSystemService(
Context.SENSOR_SERVICE) as SensorManager
val deviceSensors =
sensorManager.getSensorList(Sensor.TYPE_ALL)
deviceSensors.forEach { sensor ->
Log.e("LOG", "+++" + sensor.toString())

}
To fetch a certain sensor instead, use the following:

val magneticFieldSensor = sensorManager.getDefaultSensor(
Sensor.TYPE_MAGNETIC_FIELD)

Once you have a Sensor object, you can obtain various information about it. Please see the
APl documentation of android.hardware.Sensor for details. To find out sensor values, see
the following section.

Listening to Sensor Events
Android allows for the following two sensor event listeners:
Changes in a sensor’s accuracy

Changes in a sensor’s value

http://dx.doi.org/10.1007/978-1-4842-3820-2_8

CHAPTER 13: Hardware 425

To register for a listener, fetch the sensor manager and the sensor, as described in the
preceding section, and then use something like the following inside the activity:

val sensorManager = getSystemService(
Context.SENSOR_SERVICE) as SensorManager

val magneticFieldSensor = sensorManager.getDefaultSensor(
Sensor.TYPE_MAGNETIC FIELD)

sensorManager.registerListener(this,
magneticFieldSensor,
SensorManager.SENSOR_DELAY_NORMAL)

For the temporal resolution, you can also use one of the other delay specifications:
SensorManager . SENSOR_DELAY_*.

The activity must then overwrite android.hardware.SensorEventListener and implement it.

class MainActivity : AppCompatActivity(),
SensorEventListener {
private lateinit var sensorManager:SensorManager
private lateinit var magneticFieldSensor:Sensor

override fun onCreate(savedInstanceState: Bundle?) {

sensorManager =
getSystemService(Context.SENSOR_SERVICE)
as SensorManager
magneticFieldSensor =
sensorManager.getDefaultSensor (
Sensor.TYPE_MAGNETIC_FIELD)
}

override

fun onAccuracyChanged(sensor: Sensor, accuracy: Int) {
// Do something here if sensor accuracy changes.

}

override

fun onSensorChanged(event: SensorEvent) {
Log.e("LOG", Arrays.toString(event.values))
// Do something with this sensor value.

}

override
fun onResume() {
super.onResume()
sensorManager.registerListener(this,
magneticFieldSensor,
SensorManager.SENSOR_DELAY NORMAL)

426 CHAPTER 13: Hardware

override
fun onPause() {
super.onPause()

sensorManager.unregisterListener(this)

}
}

As shown in this example, it is important to unregister sensor event listeners when no longer
needed since sensors may substantially drain battery power.

Note Other than the name suggests, onSensorChanged events might be fired even when there
is not really a sensor value change.

All possible sensor values you get from SensorEvent.values inside onSensorChanged() are

listed in Table 13-3.

Table 13-3. Sensor Event Values

Type

Values

TYPE_ACCELEROMETER

TYPE_AMBIENT TEMPERATURE
TYPE_GRAVITY
TYPE_GYROSCOPE
TYPE_LIGHT

TYPE_LINEAR ACCELERATION
TYPE_MAGNETIC_FIELD
TYPE_ORIENTATION
TYPE_PRESSURE
TYPE_PROXIMITY
TYPE_RELATIVE_HUMIDITY
TYPE_ROTATION_VECTOR
TYPE_SIGNIFICAT MOTION

TYPE_STEP_COUNTER

TYPE_STEP_DETECTOR
TYPE_TEMPERATURE

Vector3: Acceleration along the x-y-z axes in m/s2. Includes
gravity.

Scalar: The ambient air temperature in °C.

Vector3: Gravitational force along the x-y-z axes in m/s2.
Vector3: Rate of rotation around each of the x-y-z axes, in rad/s.
Scalar: llluminance in Ix.

Vector3: Acceleration along the x-y-z axes in m/s2. Without gravity.
Vector3: Strength of the geomagnetic field in uT.

Vector3: Azimutz, pitch, roll in degrees.

Scalar: Ambient air pressure in hP a.

Scalar: Distance from object in cm.

Scalar: Ambient relative humidity in %.

Vector4: Rotation vector as a quaternion.

The event gets fired each time a significant motion is detected.
To catch this event, you must register via SensorManager.
requestTriggerSensor(...).

Scalar: Accumulated step count since reboot and while the sensor
is activated.

The event gets fired each time a step is detected.

Deprecated. Scalar: The device’s temperature in °C.

CHAPTER 13: Hardware 427

Some sensors have an uncalibrated version, which means they show changes more
accurately but less accurately relate to a fixed point:

TYPE_ACCELEROMETER_UNCALIBRATED
TYPE_GYROSCOPE_UNCALIBRATED
TYPE_MAGNETIC FIELD_UNCALIBRATED.
Instead of the TYPE_ROTATION VECTOR sensor, you can also use one of the following:
TYPE_GAME_ROTATION VECTOR
TYPE_GEOMAGNETIC ROTATION VECTOR

The first one does not use a gyroscope and is more accurate for detecting changes, but not
so accurate to find out where north is. The second one uses the magnetic field instead of a
gyroscope; it is less accurate but also needs less battery power.

Interacting with Phone Calls

Android allows for a couple of ways to interact with incoming or outgoing phone calls
and the dialing process. The following are the most prominent use cases your app might
implement for telephony:

Monitor state changes of the telephone, like being informed of incoming
and outgoing calls

Initiate a dialing process to start outgoing calls
Provide its own Ul for managing a call

You can find telephony relevant classes and interfaces inside the packages android.telecom
and android.telephony and their subpackages.

Monitoring Phone State Changes

To monitor phone state changes, add the following permissions to AndroidManifest.xml:

<uses-permission android:name=
"android.permission.READ_PHONE_STATE" />

<uses-permission android:name=
"android.permission.PROCESS OUTGOING_CALLS"/>

The READ_PHONE_STATE permission allows you to detect the status of ongoing calls. The
PROCESS OUTGOING CALLS permission lets your app see the number of outgoing calls or even
use a different number or cancel calls.

To learn how to acquire permissions from within your app, please see Chapter 7.

http://dx.doi.org/10.1007/978-1-4842-3820-2_7

428 CHAPTER 13: Hardware

To listen to phone-related events, you then add a broadcast receiver inside
AndroidManifest.xml.

<application>

<receiver android:name=".CallMonitor">
<intent-filter>
<action android:name=
"android.intent.action.PHONE_STATE" />
</intent-filter>
<intent-filter>
<action android:name=
"android.intent.action.NEW_OUTGOING CALL" />
</intent-filter>
</receiver>
</application>

You implement it, for example, as follows:

package ...
import android.telephony.TelephonyManager as TM
import .

class CallMonitor : BroadcastReceiver() {
companion object {
private var lastState = TM.CALL_STATE_IDLE
private var callStartTime: Date? = null
private var isIncoming: Boolean = false
private var savedNumber: String? = null

}
The onReceive() callback handles incoming broadcasts, this time an incoming or outgoing call.

override
fun onReceive(context: Context, intent: Intent) {
if (intent.action ==
Intent.ACTION NEW OUTGOING CALL) {
savedNumber = intent.extras!!.
getString(Intent.EXTRA_PHONE_NUMBER)
} else {
val stateStr = intent.extras!!.
getString(TM.EXTRA_STATE)
val number = intent.extras!!.
getString(TM.EXTRA_INCOMING_NUMBER)
val state = when(stateStr) {
TM.EXTRA_STATE_IDLE ->
TM.CALL_STATE_IDLE
TM.EXTRA_STATE_OFFHOOK ->
TM.CALL_STATE_OFFHOOK
TM.EXTRA_STATE_RINGING ->
TM.CALL_STATE_RINGING
else -> 0

CHAPTER 13: Hardware

callStateChanged(context, state, number)

}

protected fun onIncomingCallReceived(
ctx: Context, number: String?, start: Date){
Log.e("LOG",
"IncomingCallReceived ${number} ${start}")
}

protected fun onIncomingCallAnswered(
ctx: Context, number: String?, start: Date) {
Log.e("LOG",
"IncomingCallAnswered ${number} ${start}")
}

protected fun onIncomingCallEnded(
ctx: Context, number: String?,
start: Date?, end: Date) {
Log.e("LOG",
"IncomingCallEnded ${number} ${start}")
}

protected fun onOutgoingCallStarted(
ctx: Context, number: String?, start: Date) {
Log.e("LOG",
"OutgoingCallStarted ${number} ${start}")
}

protected fun onOutgoingCallEnded(
ctx: Context, number: String?,
start: Date?, end: Date) {
Log.e("LOG",
"OutgoingCallEnded ${number} ${start}")
}

protected fun onMissedCall(
ctx: Context, number: String?, start: Date?) {
Log.e("LOG",
"MissedCall ${number} ${start}")
}

429

The private method callStateChanged() reacts on the various state changes corresponding

to phone calls.

/**
* Incoming call:
* IDLE -> RINGING when it rings,
-> OFFHOOK when it's answered,
-> IDLE when its hung up
Outgoing call:
IDLE -> OFFHOOK when it dials out,

* X ¥ ¥

430 CHAPTER 13: Hardware

* -> IDLE when hung up
**/
private fun callStateChanged(
context: Context, state: Int, number: String?) {
if (lastState == state) {
return // no change in state
}

when (state) {
TM.CALL_STATE_RINGING -> {
isIncoming = true
callStartTime = Date()
savedNumber = number
onIncomingCallReceived(
context, number, callStartTime!!)
}
TM.CALL_STATE_OFFHOOK ->
if (lastState != TM.CALL STATE RINGING) {
isIncoming = false
callStartTime = Date()
onOutgoingCallStarted(context,
savedNumber, callStartTime!!)

} else {
isIncoming = true
callStartTime = Date()
onIncomingCallAnswered(context,
savedNumber, callStartTime!!)
}
TM.CALL_STATE_IDLE ->
if (lastState == TM.CALL STATE_RINGING) {
//Ring but no pickup- a miss
onMissedCall(context,
savedNumber, callStartTime)
} else if (isIncoming) {
onIncomingCallEnded(context,
savedNumber, callStartTime,
Date())
} else {
onOutgoingCallEnded(context,
savedNumber, callStartTime,
Date())
}
}
lastState = state

}

Using such a listener, you can gather statistical information about phone usage, create
a priority phone number list, or do other interesting things. To connect phone calls with
contact information, see Chapter 8.

http://dx.doi.org/10.1007/978-1-4842-3820-2_8

CHAPTER 13: Hardware 431

Initiate a Dialing Process
To initiate a dialing process from within your app, you basically have two options.

Start a dialing process; the user sees and can change the called
number.

Start a dialing process; the user cannot change the called number.

For the first case, showing the user the number and letting them change it, you don’t need
any special permission. Just write the following:

val num = "+34111222333"

val intent = Intent(Intent.ACTION DIAL,
Uri.fromParts("tel", num, null))

startActivity(intent)

To start a dialing process with a prescribed number, you need the following as an additional
permission:

<uses-permission android:name=
"android.permission.CALL_PHONE" />

To learn how to acquire it, see Chapter 7. The calling process then can be initiated via the
following:

val num = "+34111222333"

val intent = Intent(Intent.ACTION CALL,
Uri.fromParts("tel", num, null))

startActivity(intent)

Create a Phone Call Custom Ul

Creating your own phone-calling activity including its own Ul is described in the online page
“Build a calling app” in the Android documentation.

Fingerprint Authentication

Fingerprint authentication entered the Android framework with Android version 6.0 (API
level 23). Before that, you had to use vendor-specific APIs. The following assumes you are
targeting Android 6.0 or newer.

Using a fingerprint scanner makes sense only if your user’s device has one. To check
whether this is the case, use the following snippet:

val useFingerprint =
if (Build.VERSION.SDK INT »>= Build.VERSION CODES.M) {
(getSystemService(Context.FINGERPRINT SERVICE)
as FingerprintManager).let {

http://dx.doi.org/10.1007/978-1-4842-3820-2_7

432 CHAPTER 13: Hardware

it.isHardwareDetected &&
it.hasEnrolledFingerprints()

}

} else false

This is deprecated in Android P. The substitute starting at Android P is trying to perform an
authentication and catch appropriate error messages.

To now actually start a fingerprint authentication process, you first must decide whether you
want to use the now deprecated FingerPrintManager class or the new FingerprintDialog
starting at Android P.

To use the deprecated FingerPrintManager class for authentication, you can provide a
callback and then call the authenticate(...) method on it.

val mngr = getSystemService(Context.FINGERPRINT SERVICE)
as FingerprintManager
val cb = object :
FingerprintManager.AuthenticationCallback() {
override
fun onAuthenticationSucceeded(
result: FingerprintManager.AuthenticationResult) {

}

override
fun onAuthenticationFailed() {

}
}

val cs = CancellationSignal()
mngr.authenticate(null, cs, 0, cb, null)

To instead use FingerprintDialog, you similarly start an authentication process, calling
authenticate() and reacting to authentication results appropriately.

Note As of April 2018, there only exists a developer preview of FingerprintDialog.

Chapter

Testing

A lot has been said about testing in information technology. There are three reasons for the
attention testing has gained during the last decades.

Testing is the interface between the developers and the users.
Testing can be engineered to some extent.
Testing helps increase profits.

Developers tend to have a biased view of their software. No offense is intended by saying
that. It is just natural that if you spend a lot of time with some subject, you potentially lose
the ability to anticipate what is going on in a new user’s mind. It is therefore strongly advised
to regularly step out of your developer role and ask yourself the question, “Suppose | didn’t
know anything about the app—if | enter this GUI workflow, does it make sense, is it easy to
follow, and is it hard to make unrecoverable mistakes?” Testing helps with that. It forces the
developer to take on this end-user role and ask this question.

Development is far from being an industrially engineered science. This is good news

and bad news. If it had a strong engineering path, it would be easier to follow agreed-on
development patterns, and other developers would much more readily understand what

you are doing. On the other hand, not being that precisely engineerable also opens the
realm to more creativity and allows for development to become an art. Good developers
know that they are constantly swaying between those limits. Testing nowadays tends to
prioritize engineerability. This stems from the fact that you can precisely say what software is
supposed to do, totally ignorant of a single line of code. So, parts of the tests just don’t care
how things were accomplished on the coding level, taking away the plethora of possibilities
of how development demands were satisfied. This is not true for low-level unit tests, but
even for those you can see a strong overlap of software artifact contracts and testing
methodologies. So, testing the grade of engineerability is somewhat higher compared to
mere developing. However, because testing is just one aspect of the development process,
it is still possible to have an interesting job as a developer and live in both worlds. You can
be an artist during developing code and an engineer while writing tests.

© Peter Spath 2018 433
P. Spath, Pro Android with Kotlin, https://doi.org/10.1007/978-1-4842-3820-2_14

http://dx.doi.org/10.1007/978-1-4842-3820-2_14

434 CHAPTER 14: Testing

On the other side of the development chain, depending on your intention, you might want to
have end users spend some money for your app. Testing obviously helps to avoid frustration
because of bugs you didn’t anticipate, allowing for the public to more readily buy your app.

A lot has been said about testing for Android, and you can find good information and
introductory or advanced-level videos in the official Android documentation. The rest of this
chapter should be seen as advice and a collection of empirical know-how on the matter of
testing. | do not intend to give an introduction to testing, covering each and every aspect of
it, but | hope | can give you a starting point for your own, deeper research.

Unit Tests

Unit tests aim at the class level and test low-level functional aspects of your app. By
“functional” | mean unit tests usually check deterministic relations between input and output
of a method call, maybe but not necessarily including state variables of class instances in a
deterministic, straightforward manner.

Standard Unit Tests

In an Android environment, standard unit tests run without dependency on the device
hardware or any Android framework classes and are thus executed on the development
machine.

They are typically useful for libraries and not so much GUI-related functionalities, which is
why the applicability of this kind of unit test is somewhat limited for most Android apps.

However, if your app’s classes contain method calls and you can anticipate the call result
given various sets of inputs, using standard unit tests makes sense. It is easy to add unit

tests to your app. In fact, if you start a new project using Android Studio, unit testing is all
set up for you, and you even get a sample test class, as shown in Figure 14-1.

CHAPTER 14: Testing

v

>

v

>

< app
manifests
java
v % com.example.myapp
v & MainActivity
m onCreate(savedinstanceState: Bundle?)
» [n com.example.myapp (androidTest)
v Eu com.example.myapp (test)
» ExampleUnitTest
=res

v (@ Gradle Scripts

® build.gradle (Project: unittests2)

(& build.gradle (Module: app)
n1gradle-wrapper.properties (Gradle Version)
proguard-rules.pro (ProGuard Rules for app)
i1 gradle.properties (Project Properties)

@ settings.gradle (Project Settings)

i local.properties (SDK Location)

Figure 14-1. Initial unit test setup

435

So, you immediately can start writing unit tests using that test class as an example; just add
more test classes to the test section of the source code.

Note While not technically necessary, a common convention is to use the same names for the
test classes as the classes under test, with Test appended. So, the test class for com.example.
myapp . TheClass should be called com.example.myapp.TheClassTest.

To run the unit tests inside Android Studio, right-click the test section and select Run Tests

in or Debug Tests in.

Unit Tests with Stubbed Android Framework

By default, the Gradle plugin used for executing unit tests contains a stubbed version of the

Android framework,

throwing an exception whenever an Android class gets called.

436 CHAPTER 14: Testing

You can change this behavior by adding the following to the app’s build.gradle file:
android {

testOptions {
unitTests.returnDefaultValues = true
}
}

Any call of an Android class’s method then does nothing and returns null on demand.

Unit Tests with Simulated Android Framework

If you need to access Android classes from inside your unit tests and expect them to

do real things, using the community-supported Robolectric frameworks as a unit test
implementation is a valid option. With Robolectric you can simulate clicking buttons,
reading and writing text, and lots of other GUI-related activities. Still, all that runs on your
development machine, which considerably speeds up testing.

To allow your project to use Robolectric, add the following to your app’s build.gradle file:

android {
testOptions {
unitTests {
includeAndroidResources = true
}

}
}

dependencies {

//testImplementation 'junit:junit:4.12'
testImplementation "org.robolectric:robolectric:3.8"

}

As an example, a test class that simulates the click on a Button and then checks whether
the click action has updated a TextView looks like this:

package com.example.robolectric

import org.junit.runner.RunWith

import org.robolectric.RobolectricTestRunner
import org.robolectric.shadows.ShadowApplication
import android.content.Intent

import android.widget.Button

import android.widget.TextView

import org.junit.Test

import org.robolectric.Robolectric

import org.junit.Assert.*

CHAPTER 14: Testing 437

@RunWith(RobolectricTestRunner::class)
class MainActivityTest {
@Test
fun clickingGo shouldWriteToTextView() {
val activity = Robolectric.setupActivity(
MainActivity::class.javall)
activity.findViewById<Button>(R.id.go).
performClick()
assertEquals("Clicked",
activity.findViewById<TextView>(
R.id.tv).text)

}
}

You start that test like any normal unit test by right-clicking the test section and selecting
Run Tests in or Debug Tests in.

For more test options and details, please see the home page of Robolectric at www.
robolectric.org.

Unit Tests with Mocking

Mocking means you let the test hook into the call of the Android OS functions and simulate
their execution by mimicking their functioning.

If you want to include mocking in unit tests, the Android developer documentation suggests

that you use the Mockito test library. | suggest going one step further and using PowerMock
instead, which sits on top of Mockito but adds more power to it like mocking of static or final
classes.

To enable PowerMock, add the following to your app’s build.gradle file (remove the line
break after powermock:):

android {

testOptions {
unitTests.returnDefaultValues = true
}

}
dependencies {

testImplementation ('org.powermock:
powermock-mockito-release-full:1.6.1") {
exclude module: "hamcrest-core'
exclude module: 'objenesis'
}
testImplementation 'org.reflections:reflections:0.9.11'
}
}

http://www.robolectric.org/
http://www.robolectric.org/

438 CHAPTER 14: Testing

Do not remove or comment out the testImplementation 'junit:junit:4.12" line inside
the dependencies section, because it still is needed. The unitTests.returnDefaultValues
= true entry takes care of the stub Android implementation for unit tests not to throw
exceptions, just in case. The reflections package is for scanning through packages to
search for test classes.

As a nontrivial example, | present an activity that writes an entry to a database. We are going
to mock out the actual database implementation but still want to make sure necessary
tables get created and the insert statement gets executed. The activity looks like the
following:

class MainActivity : AppCompatActivity() {

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity main)

}

fun save(v: View) {
saveInDb(et.text.toString())
}

fun count(v: View) {
val db = openOrCreateDatabase("MyDb",
MODE_PRIVATE, null)
with(db) {
val resultSet = rawQuery(
"Select * from MyItems", null)
val cnt = resultSet.count
Toast.makeText(this@MainActivity,
"Count: ${cnt}", Toast.LENGTH_LONG).
show()

}
db.close()

private fun saveInDb(item:String) {
val tm = System.currentTimeMillis() / 1000
val db = openOrCreateDatabase("MyDb",
MODE_PRIVATE, null)
with(db) {
execSOL("CREATE TABLE IF NOT EXISTS " +
"MyItems(Item VARCHAR,timestamp INT);")
execSQL("INSERT INTO MyItems VALUES(?,?);",
arrayOf(item, tm))

}
db.close()

}
}

CHAPTER 14: Testing 439

The corresponding layout file reads as follows:

<?xml version="1.0" encoding="utf-8"?>

<LinearlLayout
xmlns:android=

"http://schemas.android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match_parent"
android:layout_height="match_parent"
tools:context="com.example.powermock.MainActivity"
android:orientation="vertical">

<EditText
android:id="@+id/et"
android:layout_width="match_parent"
android:layout_height="wrap_content
android:text=""/>

<Button
android:id="@+id/btnSave"
android:text="Save"
android:layout_width="match_parent"
android:layout_height="wrap_content
android:onClick="save"/>

<Button
android:id="@+id/btnCount"
android:text="Count"
android:layout width="match_parent"
android:layout_height="wrap_content
android:onClick="count"/>

</Linearlayout>

It contains an EditText view element with ID et and two buttons that call the methods
save() and count() of the activity.

For the test itself, create a class MainActivityTest inside the test section of the sources.
Let it read as follows:

import android.database.sqlite.SQLiteDatabase

import org.junit.Test

import org.junit.runner.RunWith

import org.mockito.ArgumentMatcher

import org.powermock.core.classloader.annotations.
PrepareForTest

import org.powermock.modules.junit4.PowerMockRunner

import org.mockito.BDDMockito.*

import org.mockito.Matchers

import org.powermock.reflect.Whitebox

@RunWith(PowerMockRunner: :class)
@PrepareForTest(MainActivity::class)
class MainActivityTest {

440 CHAPTER 14: Testing

@Test
fun table created() {
val activity = MainActivity()
val activitySpy = spy(activity)
val db = mock(SQLiteDatabase::class.java)

// given
given(activitySpy.openOrCreateDatabase(
anyString(), anyInt(), any())).willReturn(db)

// when
Whitebox.invokeMethod<Unit>(
activitySpy, "saveInDb","hello")

// then
verify(db).execSQL(Matchers.argThat(
object : ArgumentMatcher<String>() {
override
fun matches(arg:Any):Boolean {
return arg.toString().matches(
Regex("(?1i)create table.*\\bMyItems\\b.*"))

1)

@Test
fun item inserted() {
val activity = MainActivity()
val activitySpy = spy(activity)
val db = mock(SQLiteDatabase::class.java)

// given
given(activitySpy.openOrCreateDatabase(
anyString(), anyInt(), any())).willReturn(db)

// when
Whitebox.invokeMethod<Unit>(
activitySpy,"saveInDb","hello")

// then
verify(db).execSQL(Matchers.argThat(
object : ArgumentMatcher<String>() {
override
fun matches(arg:Any):Boolean {
return arg.toString().matches(
Regex("(?1i)insert into MyItems\\b.*"))

}), Matchers.argThat(
object : ArgumentMatcher<Array<Any>>() {
override
fun matches(arg:Any):Boolean {

CHAPTER 14: Testing a1

val arr = arg as Array<Any>
return arr[0] == "hello" 8&
arr[1] is Number

}
1)

}

@RunWith(PowerMockRunner: :class) will make sure PowerMock gets used as a unit test
runner, and @PrepareForTest(MainActivity::class) prepares the MainActivity class, so it
can be mocked even though it is marked final (something that Kotlin does by default).

The first function, table created(), is supposed to make sure the table gets created if
necessary. It acts as follows:

We instantiate MainActivity, which is possible since the instantiation
does not call Android framework classes.

We wrap the MainActivity instance into a spy. This allows us to hook
into method calls to mock out the actual implementation.

We create a mock of SQLiteDatabase so we can hook into database
operations without actually using a real database.

The following //given, //when, and //then sections follow the BDD style
of development.

Inside the //given section, we mock out the openOrCreateDatabase()
call of the activity and instead let it return our mock database.

Inside //when we call the private method saveInDb() of the activity
class. Calling private methods is frowned upon in test development,
but here we have no other chance because we can’t use the save()
method and let it access the EditText view without more complex
work. Because of all that mocking preparation, this call reaches the real
activity class but will use the mocked database instead of the real one.

In the //then section, we can check whether the call of saveInDb()
invokes the appropriate database operation to create the necessary
table. For this aim we use an ArgMatcher, which allows us to check for
appropriate method call arguments.

The test function item inserted() does almost the same but instead checks whether an
appropriate insert statement gets fired to the database.

Using PowerMock as a unit test runner with Kotlin inside Android Studio has a drawback:
normally you can use the context menu of the package to run all unit tests inside, but for
some reason that does not work for PowerMock and Kotlin. As a workaround, | present a
single test class as a suite that calls all the test classes it can find in the package. That is
why we added testImplementation 'org.reflections:reflections:0.9.11"' in the Gradle
build file.

442 CHAPTER 14: Testing

@RunWith(TestAll.TestAllRunner::class)
class TestAll {
class TestAllRunner(klass: Class<*>?,
runners0: List<Runnery) :
ParentRunner<Runners>(klass) {
private val runners: List<Runner>

constructor(clazz: Class<*>) : t
his(clazz, listOf<Runner>()) {
}

init {
val classloaderslList = arrayOf(
ClasspathHelper.contextClassLoader(),
ClasspathHelper.staticClassLoader())

val reflections = Reflections(
ConfigurationBuilder()

.setScanners(SubTypesScanner(false),
TypeAnnotationsScanner())

.setUrls(ClasspathHelper.
forClassLoader(
*classLoaderslList))

.filterInputsBy(FilterBuilder().
include(FilterBuilder.
prefix(
javaClass. package™ .name))))

runners = reflections.getTypesAnnotatedWith(
RunWith::class.java).filter {
clazz ->
clazz.getAnnotation(RunWith::class.java).
value.toString().
contains(".PowerMockRunner")
}.map { PowerMockRunner(it) }

}

override fun getChildren(): List<Runner> = runners

override fun describeChild(child: Runner):
Description = child.description

override fun runChild(runner: Runner,
notifier: RunNotifier) {
runner.run(notifier)

}

This class provides its own test runner implementation, which uses the reflections library
inside the init ... block to scan through the package for test classes. You can now run the
test on this TestAll class, and it will in turn run all the test classes it can find in the package.

CHAPTER 14: Testing 443

Integration Tests

Integration tests sit between unit tests that do fine-grained testing work on the development
machine and fully fledged user interface tests running on real or virtual devices. Integration
tests run on a device, too, but they do not test the app as a whole but instead test selected
components in an isolated execution environment.

Integration tests happen inside the androidTest section of the source code. You also need to
add a couple of packages to the app’s build.gradle file, as shown here (with the line breaks
after androidTestImplementation removed):

dependencies {

androidTestImplementation
"com.android.support:support-annotations:27.1.1"

androidTestImplementation
"com.android.support.test:runner:1.0.2"

androidTestImplementation
"com.android.support.test:rules:1.0.2"

Testing Services

To test a service with a binding, write something like this:

@RunWith(AndroidJUnit4::class)
class ServiceTest {

// A @Rule wraps around the test invocation - here we
// use the 'ServiceTestRule' which makes sure the

// service gets started and stopped correctly.

@Rule @JvmField

val mServiceRule = ServiceTestRule()

@Test
fun testWithBoundService() {
val servicelntent = Intent(
InstrumentationRegistry.getTargetContext(),
MyService::class.java
)-apply {
// If needed, data can be passed to the
// service via the Intent.
putExtra("IN VAL", 42L)

}

// Bind the service and grab a reference to the

// binder.

val binder: IBinder = mServiceRule.
bindService(servicelntent)

444 CHAPTER 14: Testing

// Get the reference to the service
val service: MyService =
(binder as MyService.MyBinder).getService()

// Verify that the service is working correctly.
assertThat(service.add(11,27), “is (38))
}
}

This tests a simple service called MyService with an add(Int, Int) service method.

class MyService : Service() {
class MyBinder(val servc:MyService) : Binder() {
fun getService():MyService {
return servc
}

}
private val binder: IBinder = MyBinder(this)

override fun onBind(intent: Intent): IBinder = binder

fun add(a:Int, b:Int) =a + b
}

To run the integration test, right-click the androidTest section of the sources and choose
Run Tests in. This will create and upload an APK file, by virtue of InstrumentationRegistry.
getTargetContext() creating an integration test context, and then run the test on the device.

Testing Intent Services

Other than the official documentation claims, services based on the IntentService class
can be subject to integration tests as well. You just cannot use @Rule ServiceTestRule for
handling the service lifecycle because intent services have their own ideas of when to start
and stop. But you can handle the lifecycle yourself. As an example, | present a test for a
simple intent service working for ten seconds and continuously sending back data through a
ResultReceiver.

The service itself reads as follows:

class MyIntentService() :
IntentService("MyIntentService") {
class MyResultReceiver(val cb: (Double) -> Unit) :
ResultReceiver(null) {
companion object {
val RESULT_CODE = 42
val INTENT KEY = "my.result.receiver"
val DATA KEY = "data.key"
}
override
fun onReceiveResult(resultCode: Int,
resultData: Bundle?) {

CHAPTER 14: Testing

super.onReceiveResult(resultCode, resultData)
val d = resultData?.get(DATA KEY) as Double
cb(d)
}
}

var status = 0.0
override fun onHandleIntent(intent: Intent) {
val myReceiver = intent.
getParcelableExtra<ResultReceiver>(
MyResultReceiver.INTENT_KEY)
for (i in 0..100) {
Thread.sleep(100)
val bndl = Bundle().apply {
putDouble(MyResultReceiver.DATA KEY,
i * 0.01)
}

myReceiver.send(MyResultReceiver .RESULT_CODE, bndl)

}
}

Here is the test class, again inside the androidTest section of the sources:

@RunWith(AndroidJUnit4::class)
class MyIntentServiceTest {

@Test
fun testIntentService() {
var serviceVal = 0.0

val ctx = InstrumentationRegistry.
getTargetContext()
val servicelntent = Intent(ctx,
MyIntentService::class.java
)-apply {
“package” = ctx.packageName
putExtra(
MyIntentService.MyResultReceiver.
INTENT_KEY,
MyIntentService.MyResultReceiver({ d->
servicevVal = d
)
}

ctx.startService(serviceIntent)

val tmo = System.currentTimeMillis() / 1000

var ok = false

while(System.currentTimeMillis() / 1000 - tmo
< 20) {

if(serviceval == 1.0) {
ok = true
break

445

446 CHAPTER 14: Testing

}
Thread.sleep(1000)
}
assertThat(ok, “is™(true))
}
}

This test calls the service, listens to its result for a while, and when it detects that the service
did its work as expected, lets the test pass.

Testing Content Providers

For testing content providers, Android provides for a special class called ProviderTestCase2
that starts an isolated temporary environment so the testing won’t interfere with a user’s
data. A test case, for example, reads as follows:

@RunWith(AndroidJUnit4::class)

class MyContentProviderTest :
ProviderTestCase2<MyContentProvider>(
MyContentProvider::class.java,
"com.example.database.provider.MyContentProvider") {

@Before public override // "public" necessary!
fun setUp() {
context = InstrumentationRegistry.
getTargetContext()
super.setUp()

val mockRslv: ContentResolver = mockContentResolver
mockRs1lv.delete(MyContentProvider.CONTENT URI,
"1=1", arrayOf())
}

@Test
fun test_inserted() {
val mockCtx: Context = mockContext
val mockRslv: ContentResolver = mockContentResolver

// add an entry

val cv = ContentValues()

cv.put(MyContentProvider.COLUMN PRODUCTNAME,
"Milk")

cv.put(MyContentProvider.COLUMN QUANTITY,
27)

val newItem = mockRslv.insert(
MyContentProvider.CONTENT_URI, cv)

// query all
val cursor = mockRslv.query(
MyContentProvider.CONTENT URI,

CHAPTER 14: Testing 447

null, null, null)
assertThat(cursor.count, “is” (1))

cursor.moveToFirst()
val ind = cursor.getColumnIndex(
MyContentProvider.COLUMN_PRODUCTNAME)
assertThat(cursor.getString(ind), “is”("Milk"))
}
}

Column names, the authority, and the URI used are biased by the content provider.
Important for the test case is that you use the mocked content resolver for talking to the
content provider.

Note Observe the order of the first two lines in setUp (). This is different from what you can read
in the Android developer docs from May 2018. The docs are wrong here.

Testing Broadcast Receivers

For testing broadcast receivers, the Android testing framework does not pay particular
attention. It is also crucial what the broadcast receiver under test actually does. Provided
it performs some kind of side effect, for example writing something to a database, you can
mock out that database operation by using the same testing context we used earlier for
content providers.

For example, if you look at the following test case from inside the androidTest source section:

import android.support.test.InstrumentationRegistry
import android.support.test.runner.AndroidJUnit4
import org.junit.Test

import org.junit.runner.RunWith

import org.junit.Assert.*

import org.hamcrest.Matchers.*

import android.content.Intent

@RunWith(AndroidJUnit4::class)
class BroadcastTest {
@Test
fun testBroadcastReceiver() {
val context = InstrumentationRegistry.
getTargetContext()

val intent = Intent(context,
MyReceiver::class.java)

intent.putExtra("data", "Hello World!")

context.sendBroadcast(intent)

// Give the receiver some time to do its work
Thread.sleep(5000)

4438 CHAPTER 14: Testing

// Check the DB for the entry added

// by the broadcast receiver

val db = MyDBHandler(context)

val p = db.findProduct("Milk")
assertThat(p, isA(Product::class.java))
assertThat(p!!.productName, ~is™("Milk"))

}
}

you can see that we used the context provided by InstrumentationRegistry.
getTargetContext (). This will make sure the database used by the broadcast receiver and
later by the test uses a temporary space for its data.

You start this test like any other integration test by right-clicking it or the package it resides
in and then selecting Run or Run Tests in.

User Interface Tests

Conducting user interface tests, you can work through user stories and see whether your
app as a whole acts as expected. These are two frameworks:

Espresso

Use Espresso to write tests targeting your app, disregarding any interapp
activities. With Espresso you can do things such as when a certain

View (Button, TextView, EditText, and so on) shows up, do something
(enter text, perform a click), and then you can check whether some
postconditions occur.

Ul Automator

Use Ul Automator to write tests that span several apps. With Ul Automator
you can inspect layouts to find out the Ul structure of activities, simulate
actions on activities, and do checks on Ul elements.

For details on how to use either of them, please consult the online documentation. For
example, enter android automating ui tests in your favorite search engine to find resources.

Chapter

Troubleshooting

In the previous chapter, we talked about ways to test your app. If tests fail, the logs usually
tell you what exactly happens, and if this is not enough, you can extend the logging of your
app to see where things went wrong.

But even with the best possible testing concept, it might still happen that your app doesn’t
exactly behave as it is supposed to. First, it might just sometimes not do the right things
from a functional perspective. Second, it might be ill-behaving from a nonfunctional
perspective, which means it eats up memory resources as time goes by, or it might perform
badly in terms of speed.

In this chapter, we talk about techniques to remedy problems that your app might expose.
We will talk about logging, debugging, and monitoring, as well as the tools in Android Studio
and the SDK that help us with respect to those topics.

Logging

Logging in Android is easy; you just import android.util. Log, and inside your code you
write statements like Log.e("LOG", "Message") to issue logging messages. Android Studio
then helps you to gather, filter, and analyze the logging.

Although for developing using this logging is extremely handy, when it comes to publishing
your app, it gets problematic. You don’t want to thwart the performance of your app, and
the documentation suggests removing all logging, basically negating all the work you

put into the logging. If your users later report problems, you add logging statements for
troubleshooting, remove them later again after the fix has been done, and so on.

To rectify this procedure, | suggest instead adding a simple wrapper around the logging from
the beginning.

class Log {
companion object {
fun v(tag: String, msg: String) {
randroid.util.log.v(tag, msg)
}

© Peter Spath 2018 449
P. Spath, Pro Android with Kotlin, https://doi.org/10.1007/978-1-4842-3820-2_15

http://dx.doi.org/10.1007/978-1-4842-3820-2_15

450 CHAPTER 15: Troubleshooting

fun v(tag: String, msg: String, tr: Throwable) {
android.util.log.v(tag, msg, tr)

fun d(tag: String, msg: String) {
android.util.Log.d(tag, msg)

fun d(tag: String, msg: String, tr: Throwable) {
android.util.Log.d(tag, msg, tr)

fun i(tag: String, msg: String) {
android.util.log.i(tag, msg)

fun i(tag: String, msg: String, tr: Throwable) {
android.util.log.i(tag, msg, tr)

fun w(tag: String, msg: String) {
android.util.Llog.w(tag, msg)

fun w(tag: String, msg: String, tr: Throwable) {
android.util.log.w(tag, msg, tr)

fun w(tag: String, tr: Throwable) {
android.util.log.w(tag, tr)

fun e(tag: String, msg: String) {
android.util.Llog.e(tag, msg)

fun e(tag: String, msg: String, tr: Throwable) {
android.util.Log.e(tag, msg, tr)

}
}

You can then use the same simple logging notation as for the Android standard, but you are
free later to change the logging implementation without touching the rest of your code. You
could, for example, add a simple switch as follows:

class Log {
companion object {
val ENABLED = true

fun v(tag: String, msg: String) {
if(!ENABLED) return

CHAPTER 15: Troubleshooting 451

// <- add this to all the other statements
android.util.Llog.v(tag, msg)

}
}

Or, you could enable logging only for virtual devices. Unfortunately, there is no easy and
reliable way to find out whether your app is running on a virtual device. All the solutions
presented in blogs have their pros and cons and are subject to change for new Android
versions. What you could do instead is to transport build variables to your app. To do so,
add the following in your app’s build.gradle file:

buildTypes {
release {

buildConfigField "boolean", "LOG", "false"

}
debug {

buildConfigField "boolean", "LOG", "true"
}

}

All you have to do then in your logging implementation is replace this:
val ENABLED = BuildConfig.LOG

which switches on the logging for debugging APKs and otherwise turns it off.

Using a completely different logging implementation is possible as well. For example, to
switch the logging to Log4j, add the following inside the dependencies section of your app’s
build.gradle file (removing the line breaks after implementation):

implementation
"de.mindpipe.android:android-logging-log4j:1.0.3"
implementation
'log4j:log4j:1.2.17"

To actually configure the logging, add the following inside your custom Log class:

companion object {

private val mLogConfigrator = LogConfigurator().apply {

fileName = Environment.
getExternalStorageDirectory().toString() +
"/" + "log4j.log"

maxFileSize = (1024 * 1024).tolLong()

filePattern = "%d - [%c] - %p : %m%n"

maxBackupSize = 10

isUselLogCatAppender = true

configure()

452 CHAPTER 15: Troubleshooting

private var ENABLED = true // or, see above
// private var ENABLED = BuildConfig.LOG

fun v(tag: String, msg: String) {
if(!ENABLED) return
Logger.getlogger(tag).trace(msg)
// <- add similar lines to all the other
// statements

}

This example writes the logs to the directory returned by Environment.
getExternalStorageDirectory(), which on the device usually maps to /sdcard. You could
do this in other places as well. If you use external storage as shown here, don’t forget to
check and possibly acquire the appropriate write permissions! More precisely, you need the

following in your AndroidManifest.xml file:

<uses-permission android:name=
"android.permission.WRITE_EXTERNAL_STORAGE"/>

Once your app starts logging to a file inside the device, you can easily access the log file
from inside Android Studio by using the file explorer. Start it via View » Tool Windows »
Device File Explorer. You can then open the log file by double-clicking it, as shown in

Figure 15-1.

wm activity_main.xml & MainActivity.kt # logdj.log

~E) | Device File Explorer

12018-05-13 11:25:32,795 - [LOG] - ERROR : Message

Figure 15-1. Accessing log files on the device

B

¥| 58 Emulator Nexus_6_API_27 Android 8.1.0, AP1 27

Name

C

sdcard
Alarms
Android
DCIM
Download
Movies
Music
Motifications
Pictures
Podcasts
Ringtones

— = logdj.log

storage
emulated
self

Perm... Date Size

lrwxrw: 1970-01-01(218
drwxrw 2018-05-10(4KB
drwxrw 2018-05-10(4KB
drwxrw 2018-05-10(4 KB
drwxrw 2018-05-10(4 KB
drwxrw 2018-05-10(4 KB
drwxrw 2018-05-10(4 KB
drwxrw 2018-05-10t 4KB
drwxrw 2018-05-10(4KB
drwxrw 2018-05-10(4 KB
drwxrw 2018-05-10(4KB
Tw-rw- 2018-05-13° 50B
drwxr-» 2018-05-10(80B
drwx-x 2018-05-10t 4KB
drwxr-» 2018-05-10(608

One final measure you could take to improve performance is to use lambdas for logging
activities. For this to work, use logging methods as follows in your custom logger:

fun v(tag: String, msg: ()->String) {
if(!ENABLED) return
Logger.getlogger(tag).trace(msg.invoke())

. similar for the other statements

CHAPTER 15: Troubleshooting 453

Inside your code, you then issue log messages as follows:
Log.v("LOG",
{-> "Number of items added = " + calculate()})

The advantage of this approach is that the logging message will not be calculated if logging
is not enabled, adding some performance boost to production versions of your app.

Debugging

There is not much to say about debugging from inside Android Studio; it just works as
expected.

You set breakpoints inside your code, and once the program flow reaches a breakpoint,
you can step through the rest of the program and observe what the program does and how
variables change their values.

Performance Monitoring

Android Studio has a quite powerful performance monitor that lets you analyze performance
matters down to the method level. To use it, you must first find a way to run that part of your
code that is subject to performance issues inside a loop. You can try to use tests for that,
but temporarily adding artificial loops to your code is feasible as well.

Then, with that loop running, inside Android Studio open View » Tool Windows » Android
Profiler. The profiler first complains that advanced profiling is not enabled, as shown in
Figure 15-2.

Advanced profiling is unavailable for the selected process
iConfigure this setting in the Run Configuration:

Figure 15-2. Advanced profiling alert

Enable it by clicking the blue Run Configuration link. Make sure the box is selected, as
shown in Figure 15-3, and then click OK.

& Enable advanced profiling (required for API level < 26 only)

Allows the profilers to track data such as network payloads, application events and
object counts, but it might have a minor performance impact on your build speeds.

Figure 15-3. Advanced profiling setting

The profiler monitor then shows up, as shown in Figure 15-4. In addition to CPU profiling, it
contains memory usage profiling and a network monitor.

454 CHAPTER 15: Troubleshooting

MainActivity
CPU
100 %
MEMORY
256 MB
NETWORK
48/s

Figure 15-4. Profiler lanes

There clicking the CPU lane narrows the view to the performance monitor diagram you see
in Figure 15-5.

MainActivity

Binder:30326_2

Binder:30326_3

Profile Saver

Thread-3

Thread-4 e 5 | I—|
RenderThread

Binder:30326_4

RenderThread

Figure 15-5. The CPU profiling section

Scrolling through the threads in the lower pane, you can then try to find suspicious threads.
For the example | am running here, you can see that Thread-4 does quite a lot of work.
Renaming it to PiCalcThread (the app calculates pi) and then clicking it shows a message
that no data has been captured yet, as shown in Figure 15-6.

CHAPTER 15: Troubleshooting 455

< cpu ~ |Sampled (Java) v| @

MainActivity
CPU

Thread-3

— —

RenderThread
RenderThread

Ws 1m25.00s 1m30.00s 1m35.00s 1m40.0C

Thread details unavailable
Click the record button @ to start CPU profiling
or select a capture in the timeline.

Figure 15-6. CPU profiling a thread

On top of the pane, you can see the capturing control, as shown in Figure 15-7.

CPU v |Sampled (Java) - @
Figure 15-7. The CPU profiling capture control

For the capturing that we are going to start soon, you can choose from these options:

B Sampled (Java): Select this to capture the app’s call stack based on a
regular interval. This is the least invasive way of capturing, and you will
usually choose this.

B Instrumented (Java): Select this to collect data for each and every
method call inside your app. This will introduce a high-performance
impact by itself and will collect a lot of data. Choose this if the Sampled
variant does not give you enough information.

B Sampled (Native): This is available only on devices starting with
Android 8 (API level 26). It will sample native calls. This goes deep into
the internals of Android, and you will usually use this only for a deep
analysis.

Once you’ve chosen your capturing mode, start the capturing by clicking the red ball. Let
the capturing run for a while and then end it and start analyzing the collected data. Android
Studio provides you with different views of the collected data for each thread, and each has
its own merit. See Figure 15-8 for a flame chart, and see Figure 15-9 for a top-down chart.

456 CHAPTER 15: Troubleshooting

_ _E!-I
B getunscaiecVaue_jmB.mukply | va. |

Figure 15-8. A flame chart

|[Name | Total (ps)|| %
— m PiCalcThread() () 12,454,599 | 100.00
L@ run() (java.lang.Thread) 12,454,597 |100.00

La run() (com.example.perfmonitor.MainActivitySonCreate$1) 12,454,596 | 100.00
Lm calcPiSdefault() (com.example.perfmonitor.MainActivity) 12,454,595 | 100.00

Lom calcPi() (com.example.perfmonitor.MainActivity) 12,454,594 | 100.00
m divide() (java.math.BigDecimal) 4,664,916 | 37.46
L divide() (java.math.BigDecimal) 4,664,915 | 37.46

m divideBigintegers() (java.math.BigDecimal) 4,169,726 | 33.48

m divideAndRemainder() (java.math.Biginteger) 2,453,961 | 19.70

m abs() (java.math.Biginteger) 563,523 4.52

Figure 15-9. A top-down chart

For this example, scanning through the charts shows you that a considerable amount of
the CPU power gets spent in BigDecimal.divide(). To improve the performance for this
example, you could try to avoid calling this method too often, or you could try to find a
substitute.

As an extra aid for the analysis, you can switch on a filter. Click the filter symbol on the right
of the controller pane, as shown in Figure 15-10. Android Studio then highlights matching
entries inside the charts, as shown in Figure 15-11.

wallClock Time « (® 00:02:18.981 - 00:02:31.709 Y

Figure 15-10. The profiling filter

CHAPTER 15: Troubleshooting 457

Figure 15-11. The profiling filter switched on

For more information and details about performance monitoring, please see Android Studio’s
documentation.

Memory Usage Monitoring

In addition to profiling the app’s performance, as shown in the previous chapter, the

Android Studio’s profiler helps you find memory leaks or issues related to poor memory
management. Again, put the parts of the code subject to problems into a loop and start it.
Open the profiler via View » Tool Windows » Android Profiler. Choose the memory lane,
and immediately the profiler shows you a memory usage diagram, as shown in Figure 15-12.

€ [MEmMOrY ~ @ @ Endsession © @ @
MainActivity

MEMORY Total: 461 M8 [l Jove: 122M8 [Mative: 166ME [l Graphics:0MB [l Stsck:0.3M8 [l Code: 162MB [l Others: 0B MB == Aliocated: B4177
64 MB 100000

32

Figure 15-12. The Memory Monitor

458 CHAPTER 15: Troubleshooting

After this runs for a while, you can see that the memory usage rises. This is because in the
sample app | added an artificial memory leak. See Figure 15-13.

€ |mMemory + T B endsession (@] ® ©
MainActivity

MEMORY Total: 521MB [l Java:205MB [l Mative: 257MB [Graphics:0MB [l Stack:0.3MB [l Code: 47TMB [l Others: 08 MB == Allocated: 281636
64MB 400000

Figure 15-13. Memory profiling, longer period

To start an analysis, select an appropriate region using the mouse. The view then
immediately switches to a usage statistics view, as shown in Figure 15-14.

& |MEMORY ~ ® (3 EndSession © @ @ Live Ml
MainActivity

MEMORY Total:534M8 [l Java:21.2ME [l Native: 263MB [l Graphics: OMB [l Stack: 0.3MB [Code: 48MB | [l Others: 0.8 MB == Allocated: 340920
64MB 400000

Im 2m 3m 4m Sm 6m Tm
Live Allocation |appheap ~ lArrange By class ® 00:05:04.377 - 00:06:00.275 Y
Class Name Allocati...| Dealloc...| TotalC...| Shall...~
= app heap 38680 0 | 245671 | 8098357
i— @ String (java.lang) 38680 0 | 245206 | 7846592
—© class (java.lang) 0] 464 | 251741
— @ weakReference (jova.lang.ref) 0 0 1 24

Figure 15-14. Memory profiling, selected

CHAPTER 15: Troubleshooting 459

To find the leak, switch from the “Arrange by class” mode to “Arrange by callstack.” Dive
into the tree by clicking, double-clicking, and/or pressing the Enter key. The final result might
look like Figure 15-15.

& MEMORY v T © Endsession | © @ Live I

MainActivity

rotAEMORY M Jova:436MB [l Native:504MB [Graphics:0MB [l Stack:0.3MB [l Code: 41MB [l Others: 09MB == Allocated: 1011373

64 MB 400000

im 2m 3m 4m 5m (4] Tm

Live Allocation |app heap ~ /Arrangebycallstack » © 00:05:04.377 - 00:06:00.275 Y
Callstack Name I\ Allocations | Deall...| Total Count) Shallow size » |

= app heap 38680 0 245671 8098357

E <thread unknown> 0 0 8959 523581

E <Thread Thread-4> 38680 0 236711 7574752

L run() (java.lang. Thread) 38680 0 236711 7574752

v run() (com.example.perfmonitor.ASgos1) 0 236711 7574752

@ toString() (java.lang.StringBuilder) 38680 0 236711 7574752

Le String 38680 0 236711 7574752

H <Thread FinalizerDaemon> 0 0 1 24

Figure 15-15. Memory profiling, details

The orange line with almost 40,000 allocations belongs to run() (com.example.
perfmonitor.Ago1, which is exactly the point where I’'ve put the memory leak.

class A {
fun go(1l:MutablelList<String>) {
Thread {
while (true) {
l.add("" + System.currentTimeMillis())
Thread.sleep(1)

}
}.start()

460 CHAPTER 15: Troubleshooting

If this is not enough to troubleshoot memory problems, you can acquire a heap dump. To do so,
click the Heap Dump symbol in the header of the profiler window, as shown in Figure 15-16.

Android Profiler | pymp Java heap
¢ MEMory v W |

Figure 15-16. Taking a heap dump

You can then use the same techniques as described earlier or export the heap as an HPROF
file and use other tools to analyze the dump. To perform such an export, click the Export
icon in the left-top corner of the Heap Dump view, as shown in Figure 15-17.

[T HeapDump app heap +» Arrange by class o

Figure 15-17. Saving a heap dump

Note Such a heap dump allows you to determine object reference relationships—something that
goes beyond the memory analysis of Android Studio. This gives you the maximum insight into the
memory structure, but it takes some time to get acquainted with heap dump analysis tools and to
find the correct answers.

Chapter

Distributing Apps

If you have finished your app, you need to find a way to distribute it. The primary place where
to go for that purpose is the Google Play store, but it is also possible to use other distribution
channels if you can convince your users to allow app installations from “other sources.” | do
not present a list of distribution channels here, nor do | present detailed instructions for using
the Google Play store. There are just too many options depending on which market you are
targeting. Also, this book is not intended to be an introduction into app marketing in general.

Your Own App Store

Now that devices allow users to install apps from sources other than the Google Play store,
APK files can be presented from any server including your own corporate servers. Note that
the process is different depending on the Android version used.

Up to Android 7 (API level 25), there is a system-wide setting in the
“security” section to allow app installation from other sources than
Google Play.
Starting with Android 8 (API level 26), the permission to install apps from
other sources is handled on a per-app basis, for example a setting in the
browser.
No matter which distribution channel you choose, you must first generate a signed APK via

Build » Generate Signed APK. Then, copy it to the server and make sure the file gets
assigned the MIME type application/vnd.android.package-archive.

Note Although Android Studio automatically uploads debug versions of your app to virtual devices
or devices connected by USB, for virtual devices you can also test the signed APK installation
procedure. If you have a server running on your local development machine, inside the virtual
device use the IP 10.0.2.2 to connect to the development machine. Better first uninstall versions
installed by the development build process.

© Peter Spath 2018 461
P. Spath, Pro Android with Kotlin, https://doi.org/10.1007/978-1-4842-3820-2_16

http://dx.doi.org/10.1007/978-1-4842-3820-2_16

462 CHAPTER 16: Distributing Apps

You can then use the device’s browser to download and install APK files.

The Google Play Store

Despite this not being an introduction into how to use the Google Play store, here are a
couple of additional points for the technical aspects of distribution:

As stated, you must sign your app before it can be distributed to Google
Play.

The online documentation suggests removing all logging statements
from inside your app prior to distributing it. As a less destructive
alternative, follow the instructions from Chapter 15 and create a custom
logger.

If your app uses a database, provide for update mechanisms when the
database schema changes. See the class SQLiteOpenHelper. If you
forget that, updating apps and upgrading the database from version to
version can become really cumbersome.

It is possible to distribute different APKs for different devices. This
feature was somewhat neglected in this book, because nowadays with
modern devices the size of an app no longer plays a vital role, and

you usually can put everything into a single APK file. If you still want to
provide multiple APKs, please consult the online documentation. Search
for android multiple apk or similar using your favorite search engine.

If you test your app on a real device, things become a little easier if

on your device you use a different Google account compared to the
account you use for distributing the app. Google otherwise won’t let you
install your app using the Play store. Do this early because changing the
Google account of a device later might be complicated.

Localize all text shown to the user! In this book, localization was not
used for brevity reasons, but you definitely should do that for your app.
The LINT checker included with Android Studio helps find localization
deficiencies, and using the custom locale switcher included with the
emulators lets you do a check as well.

Although developing just for a smartphone form factor (screen size,
resolution) is somewhat tempting, you should check your design for
other form factors. The various emulators help you with that. You should
at least also test your app for a tablet.

http://dx.doi.org/10.1007/978-1-4842-3820-2_15

Chapter

Instant Apps

Instant apps allow a device user to use apps without actually installing them. On the Google
Play store, the “Try it” button you sometimes see starts such an instant app.

Developinginstant Apps

To develop instant apps, there is a switch you can use while creating an Android app, as
shown in Figure 17-1.

Create New Project

L

W Target Android Devices

Select the form factors and minimum SDK

Some devices require additional SDKs. Low API levels tas
features.

& Phone and Tablet
API 21: Android 5.0 (Lollipop)

By targeting API 21 and later, your app willrun o1
devices.

& lInclude Android Instant App support

Figure 17-1. Adding instant app features

© Peter Spath 2018 463
P. Spath, Pro Android with Kotlin, https://doi.org/10.1007/978-1-4842-3820-2_17

http://dx.doi.org/10.1007/978-1-4842-3820-2_17

464 CHAPTER 17: Instant Apps

Say you named the project instantapp; the wizard creates four modules, as shown here:
base

Contains the basis for both the normal installable app variant and the
instant app. In contrast to what many blogs suggest, you need not put
anything important here. Android Studio creates just two files inside this
module: a build.gradle file that as its main characteristics contains the
marker baseFeature true and a very basic AndroidManifest.xml file you
don’t need to adjust while adding components and code. By virtue of the
build file, the base module depends on both the installable app and the
instant app variant.

Note: For clean design purists, both the installable app and the instant app depend on the
base module in turn, which smells like a circular dependency. The dependency is not to be
understood as a Java package dependency, though!

app

Contains the build instructions for the installable app. This does not contain
code since both the installable app and the instant app share the same
code basis, which goes into the feature module.

instantapp

Contains the build instructions for the instant app. This does not contain
code either.

feature
The shared code for the installable app and the instant app goes here.

As of May 2018, there is a mismatch between the wizard’s output and what the Google Play
store expects. To avoid problems later when you want to roll out your instant app, change
the AndroidManifest.xml file of the feature module and add another <data> element for the
http scheme as follows:

<data
android:host="myfirstinstantapp.your server.com"
android:pathPattern="/instapp"
android:scheme="https"/>

<data
android:scheme="http"/>

Also, the intent filters must have the attribute android:autoVerify = "true" added. The Play
store will check for it and complain if it is missing.

The rest of the development does not substantially differ from normal Android app
development. Just running the instant app is different from what you know. We will talk
about that in the following sections.

CHAPTER 17: Instant Apps 465

Testing Instant Apps on an Emulator

Instant apps can be tested on an emulator. To do so, make sure the run configuration

chosen shows instantapp, as shown in Figure 17-2.

A |[&instantapp ~ | p

Figure 17-2. Run configuration

Also, if you open Edit Configuration from inside the menu that pops up when you press the
small gray triangle, you should see the URL launch method selected, as shown in Figure 17-3.

x Run/Debug Configurations

e [Name: |instantapp
¥ [% Android App
[=app General | Miscellaneous | Debugger | Profiling

[Zinstantapp

Module: % instantapp -
» 9 Defaults

Installation Options
Deploy: |Default APK
Install Flags:

Launch Options

Launch: |URL

Share

URL: [https:,“,"myﬁrstinstantapp.your.ser\rer,com,’instapp

Launch Flags:
Deployment Target Options

Target: Open Select Deployment Target Dialog ~

7| Use same device for Future launches

~ Before launch: Gradle-aware Make, Instant App Provision, Activate tool window
+
Gradle-aware Make

Show this page @ Activate tool window

Help OK Cancel
L

Figure 17-3. Launch method

Apply

466 CHAPTER 17: Instant Apps

For running on an emulated device, it doesn’t matter whether the URL entered exists, but it
must match the host specification inside the intent filter from AndroidManifest.xml of the
module feature. Otherwise, the configuration screen will complain.

Caution For development, adding an android: port attribute will lead to problems. Depending
on your circumstances, you might need one later when you want to roll out your app, but during
development don’t use one, or comment it out!

Building Deployment Artifacts

Before an instant app can be rolled out, you must build signed APKs for both the installable
app and the instant app.

Caution Both variants and also the base module need to have the same version info as shown
inside their build.gradle files.

To create the deployment artifacts, go to Build » Generate signed APK twice, for both app
and instantapp.

The deployment artifact for the installable app is as usual an .apk file, and for the instant app
it is a zip file.

Preparing Deep Links

Deep links are URLs that show up in web pages or apps and are linked to features of instant
apps. Whenever a user clicks or taps a URL that by virtue of the intent filters of a rolled-out
instant app maps to it, the corresponding feature gets downloaded and started immediately
without the need to install it.

For production apps, the URLs connected to instant apps must exist, and the domain must
have at its root a file called .well-known/assetlinks.json. By the way, Google verifies that
the domain you are referring to exists and is yours. The structure of this file gets explained
in the online documentation, but Android Studio also has a wizard for it: go to Tools » App
Links assistant.

If you generate the file assetlinks.json manually, you need to enter the certificate
fingerprint. Unless you already have it, you can get it via the following:

keytool -list -v -keystore my-release-key.keystore

CHAPTER 17: Instant Apps

An example for such a file is as follows, with the fingerprint cropped:

[{
"relation":
["delegate permission/common.handle all urls"],
"target": {
"namespace": "android app",
"package_name": "com.example",
"sha256_cert_fingerprints":
["14:6D:E9:83:C5:73:06...50"]
}
1

Rolling Out Instant Apps

467

To roll out instant apps with the Google Play console, you must create a new app and then

roll out both the installable app and the instant app.

During the process, the Play console will perform various checks to see if everything is

configured the right way inside your app, and it will also check whether your server was set

up correctly as described in the previous section.

Chapter

CLI

In this chapter, we summarize the command-line tools that you can use for building,
administering, and maintaining tasks running outside Android Studio.

Note

These tools in part are kind of “semi” official; you might find them
at slightly different locations inside the SDK folder, and the online
documentation is not necessarily up-to-date.

The tools shown here are part of the Linux distribution. For other 0Ss,
counterparts are provided, and their usage will be similar.

The list is not exhaustive; it might differ from your installation if you have
fewer or more SDK packages installed.

The SDK Tools

Table 18-1 describes the platform-independent tools provided in this folder:

SDK_INST/tools/bin

© Peter Spath 2018 469
P. Spath, Pro Android with Kotlin, https://doi.org/10.1007/978-1-4842-3820-2_18

http://dx.doi.org/10.1007/978-1-4842-3820-2_18

470 CHAPTER 18: CLI

Table 18-1. SDK Tools

Command Description

apkanalyzer Use this to analyze the APK files that you can find, for example, in the PROJECT-
DIR/PROJECT/release folder (PROJECT quite often reads app). Invoking the
command without an argument, as shown here, displays usage information:
./apkanalyzer

archquery This is a simple tool to query your OS’s architecture.
./archquery
This outputs, for example, x86_64.

avdmanager Use this to manage virtual devices (AVD = Android virtual devices). You can
create, move, and delete devices, and you can list devices, targets, and AVDs.
Invoking the command without an argument, as shown here, displays usage
information:
./avdmanager
You can find the data files for virtual devices handled by this command
in ~/.android/avd. The system images used for creating devices are in
SDK_INST/system-images.

jobb Use this to manage Opaque Binary Blob (OBB) files. Those are APK expansion
files that go on an external storage, for example an SD card, and are accessible
only from inside your app. Invoking the command without an argument, as
shown here, displays usage information:
./job

lint This is the LINT tool for code inspection. Invoking the command without an
argument, as shown here, displays usage information.
./lint

monkeyrunner This is a powerful testing tool for controlling Android apps by use of a Python
script on your PC. Invoking the following shows usage information:
./monkeyrunner
Starting it without an argument launches a Jython shell. You can find more
details about monkeyrunner in Chapter 14.

screenshot2 Use this to take a screenshot from devices or emulators. Invoking the command

without an argument, as shown here, displays usage information:

./screenshot2

(continued)

http://dx.doi.org/10.1007/978-1-4842-3820-2_14

CHAPTER 18: CLI amn

Table 18-1. (continued)

Command

Description

sdkmanager

This tool helps you manage packages for the Android SDK. You can install,
uninstall, or update SDK packages, and you can use it to list installed and
available packages. Invoking

./sdkmanager --help

shows verbose usage information. For example, to list installed and available
packages, including build tools, platforms, documentation, sources, system
images, and more SDK components, invoke this:

./sdkmanager --list

To install new components, the tool needs to download them. A couple of flags
exist; see the output of-help to find out how to specify proxies or disable the
usage of HTTPS.

uiautomatorviewer This opens the Ul Automator GUI.

./uiautomatorviewer

See Chapter 14 for more information.

The tools focus on the management of virtual devices, the SDK itself, and various testing
and artifact management tasks.

In the parent directory, shown here:

SDK_INST/tools

you will find a couple of more tools. See Table 18-2 for a summary of them.

Table 18-2. More SDK Tools

Command Description
android Deprecated. Invoke it without an argument to see a synopsis.
emulator The emulator management tool. We talked about the emulator in Chapter 1. Invoke

emulator-check

mksdcard

./emulator -help

to get usage information for this command.

A diagnosis tool for the host system. See the output of
./emulator-check -h

for a synopsis.

Creates a FAT32 image to be used as an emulator image. Invoke it without an
argument for usage information, as shown here:

./mksdcard

(continued)

http://dx.doi.org/10.1007/978-1-4842-3820-2_14
http://dx.doi.org/10.1007/978-1-4842-3820-2_1

472 CHAPTER 18: CLI

Table 18-2. (continued)

Command Description

monitor Starts the graphical device monitor. This is the same device monitor as the one
invoked from inside Android Studio at Tools » Android » Android Device Monitor.
Note that if you run this command while an instance of Android Studio is running,
you might get an error message.

proguard Inside this directory the Proguard program resides. With Proguard you can shrink
APK files by disregarding files, classes, fields, and methods. Find “Shrink Your
Code and Resources” inside the online documentation to learn how Proguard
works.

The SDK Build Tools

Table 18-3 lists the build tools provided inside this folder:
SDK_INST/build-tools/[VERSION]

Table 18-3. SDK Tools

Command Description

aapt This is the Android asset packaging tool. Invoking the command
without an argument, as shown here, displays usage information:

./aapt

The tool is able to list the contents of an APK file, and it can extract
information from it. Furthermore, it is able to package assets, add to,
and remove elements from an APK file. The tool is also responsible
for creating the R class, which maps resources to resource IDs usable
from inside the code (Android Studio does that automatically for you).

aapt2 This is the successor of the aapt tool described earlier. Invoking the
command without an argument, as shown here, displays some basic
usage information:

./aapt2

Invoking any of ./aapt2 CMD -h with CMD one of compile, 1ink, dump,
diff, optimize, or version gives more detailed information. Cross-
checking with the help of the aapt command gives extra aid.

aarch64-linux-android-1d A special linker for Android object files, targeting at devices with a 64-
bit ARM architecture. Invoking the command displays verbose usage
information, as shown here:

./aarch64-linux-android-1d --help

Normally you don’t have to invoke that tool directly if you use Android
Studio because it takes care of both compiling and linking for you.

(continued)

CHAPTER 18: CLI 473

Table 18-3. (continued)

Command

Description

aidl

apksigner

arm-linux-androideabi-1d

bcc_compat

dexdump

dx

i686-1inux-android-1d

AIDL is the Android Interface Definition Language handling low-

level interprocess communication between Bound Service classes

of different apps. The aidl tool can be used to compile an *.aidl
interface definition file to the Java language interface files defining
the interface. Invoking the command without arguments shows usage
information.

./aidl

Manages APK file signing. APK files need to be signed before they
can be published. Android Studio helps you with that process (see
Build » Generate Signed APK), but you can also use this tool. Invoke
it as follows for usage information:

./apksigner -h

A special linker for Android object files, targeting at devices with
32-bit ARM architecture and for object files that have been generated
by the ABI compiler. Invoking the command shows verbose usage
information.

./arm-linux-androideabi-1d --help

Normally you don’t have to invoke that tool directly if you use Android
Studio, because it takes care of both compiling and linking for you.

A BCC compiler used for renderscript by Android. Invoking the
command as follows shows usage information:

./bcc_compat --help

A tool for investigating DEX files that live inside an APK file and
contain the classes. Invoking without arguments, as shown here,
displays usage information:

./dexdump

A tool for managing DEX files. You can, for example, create DEX files
or dump their contents. Invoke the following to get usage information:

./dx --help

A linker for Android object files, targeting devices with an x86
architecture. Invoking the command, as shown here, displays verbose
usage information:

./1686-1inux-android-1d --help

Normally you don’t have to invoke that tool directly if you use Android
Studio because it takes care of both compiling and linking for you.

(continued)

474 CHAPTER 18: CLI

Table 18-3. (continued)

Command Description

1lvm-rs-cc The renderscript source compiler (offline mode). Invoke
./11vm-rs-cc --help
to see some usage information.

mainDexClasses This is for legacy application wanting to allow —multi-dex on

mipsel-linux-android-1d

split-select

x86_64-1inux-android-1d

zipalign

command dx and load the multiple files using the com.android.
multidex.installer library. The mainDexClasses script will provide the
content of the file to give to dx in -main-dex-1ist.

A linker for Android object files, targeting at devices with an MIPS
architecture. Invoking the command

./mipsel-linux-android-1d --help

shows verbose usage information. Normally you don’t have to invoke
that tool directly if you use Android Studio because it takes care of
both compiling and linking for you.

Allows for generating the logic for selecting a split APK given a target
device configuration. Invoking the command

./split-select --help

shows some usage information.

A linker for Android object files, targeting devices with an x86 64 bit
architecture. Invoking the command

./x86_64-1inux-android-1d --help

shows verbose usage information. Normally you don’t have to invoke
that tool directly if you use Android Studio because it takes care of
both compiling and linking for you.

ZIP alignment utility. Something developers are not necessarily used
to is the fact that an operating system might depend on elements

of an archive file aligned a certain way, for example entries always
starting at 32-bit boundaries. This tool can be used to accordingly
adapt a ZIP file. Invoking

./zipalign -h

shows usage information.

Contained are linkers, compilers, APK file tools, and an Android Interface Definition
Language (AIDL) management tool.

CHAPTER 18: CLI 475

The SDK Platform Tools

Table 18-4 describes the platform-dependent tools provided inside this folder:

SDK_INST/platform-tools

Table 18-4. SDK Platform Tools

Command

Description

adb

dmtracedump

e2fsdroid

etcitool

fastboot

hprof-conv

make f2fs

mke2fs

sload f2fs

sqlite3

The Android Debug Bridge. See the text after the table for a description of the adb
command.

Creates graphical call-stack diagrams from a trace dump. The trace file must have
been acquired with the android.os.Debug class. Invoke it without arguments, as
shown here, to get information about the command:

./dmstracedump

Mount an image file. Currently broken.

Use this to convert between the PNG and ETC1 image format. Invoke

./etcltool --help

to see usage information.

This is the fastboot program you can use to modify your device’s firmware. Invoke
./fastboot --help

for usage information.

Use this to convert the HPROF heap file you got from the Android OS tools to a
standard HPROF format. Invoke it without an argument, as shown here, to get
usage information:

./hprof-conv

Used to make an F2FS filesystem on some device. Invoke it without arguments,
as shown here, for usage information:

./make_f2fs

Generates a Linux Second Extended file system. Invoke it without arguments, as
shown here, to see options:

./mke2fs

Used to load files into a F2FS device. Invoke it without arguments, as shown here,
to see options:

./sload_f2fs

Starts a SQLite administration tool. Invoke it as shown here for usage information:

./sqlite3 -help

(continued)

476 CHAPTER 18: CLI

Table 18-4. (continued)

Command Description
systrace/ The graphical Systrace utility to investigate the Android system. The path where
systrace.py the tool adb resides must be part of the PATH environment variable, and you must

have Python installed. You can then run

python systrace/systrace.py -h

for a command synopsis.

The Android Debug Bridge (ADB) invoked by the adb command is a versatile tool to connect
your development PC to running emulators and devices connected via USB or Wi-Fi. It
consists of a client and transparent server process on the development PC and a daemon
running on the device. You can use adb to do the following:

B Query for accessible devices

Install and uninstall apps (APK files)
Copy files to or from a device

Perform backup and restore

Connect to the logging output of an app

Enable root access on a device

Start a shell on a device (to, for example, see and investigate your
app’s files)

Start and stop activities and services
Issue broadcasts

Start and stop profiling sessions
Dump heaps

Access the package manager on the device

Take screenshots and record videos
B Restart devices.

For more details, find the “Android Debug Bridge” page in the online documentation. Invoke
it via the following to show the help provided with the command:

./adb
For example, use this to list the connected devices:

./adb devices

CHAPTER 18: CLI 477

To open a shell on a device, use the following, with the DEVICE_NAME argument being one of
the entries from the first column from the devices list:

./adb -s DEVICE_NAME shell

If there is only one device, in the previous command you can omit the -s flag and the
device name.

Note You must enable debugging on real devices for ADB to successfully connect to them.

Index

A

Activities

declaring, 14
intent filters
action, 19
category, 19
component, 18
data, 20
explicit, 18
extra data, 21
flags, 21
implicit, 18
<intent-filter> element, 19
system, 21
lifecycle, 22-23
preserving state in, 24-25
returning data, 17-18
starting, 15-16
state transitions, 23-24
and tasks, 16

Advanced listeners, 265-266
Alarm Manager, 129

auxiliary methods, 140
events, 137

issuing, 138-139
states, 137

system service, 137
type:Int parameter, 138

Android Auto, programming

audio playback development, 381-383
develop apps, 379
messaging, 383-385

testing
car screen, 379
DHU tool, 379

phone screen, 379

© Peter Spath 2018
P. Spéth, Pro Android with Kotlin, https://doi.org/10.1007/978-1-4842-3820-2

Android Debug Bridge (ADB), 476
Android devices
Bluetooth, 423
NFC adapters, 423
sensor event listeners, 424-426
sensors, 424
Android library, 262
Android operating system, 1-3
Android RfComm Client
activity_main.xml, 321
AndroidManifest.xml, 320
BluetoothCommand
Service, 327, 330-331
BroadcastReceiver, 324
connectDevice(), 329
connection socket, 333
connection threads, 331-332
DevicelListActvity class, 323
device_list.xml, 322-323
device_name.xml, 323
doDiscovery() method, 326
MainActivity class, 327
onActivityResult(), 329
onCreate() callback method, 325, 327
onDestroy() callback method, 326
OnltemClickListener, 323
rfComm and sendMessage(), 328
scanDevices() method, 328
socket connection state changes, 334
thread implementation, 332
Android Runtime (ART), 1
Android TV
channels, 378
content search
recommendation channels, 370
recommendation row, 373
search fields, 377

479

http://dx.doi.org/10.1007/978-1-4842-3820-2

480 Index

Android TV (cont.) B
games, 377-378
hardware features, 368 BlueCove, 318
project in Android Studio, 367 Bluetooth, 317
Ul development, 368-370 Bluetooth RfComm Server, 317
use cases, 367 Broadcasts, 43
Application adding security to
activities, 7 explicit, 55-56
in Android OS, 7 implicit, 57-58
manifest, 9-11 explicit, 44
tasks, 9 local, 44-45
unzipped APK file, 8 remote, 45-46
Application program interfaces (APIs) sending to apps, 46-47
contacts implicit, 47
framework internals, 155 active/on-hold listening, 51-52
quick contact badge, 164-165 intent filter matching, 48, 50-51
reading, 156-157 listening to sytem, 54-55
synchronization, 163 programming, 47
system activities, 162 receiving, 53
writing, 158-162 sending, 52
databases (see Databases) information, 59
loaders, 140 sending from command line, 58
location build.gradle, 286
ADB to fetch location Building process
information, 183 files, 285-286
geocoding, 180 module configuration, 286-287
last known location, 176 running, 293-294
maps, 184 signing, 294-295
tracking position Build-related files, 285-286
updates, 178 Build types, 289-290
notifications Build variants
activity, 150 build types, 289-290
badges, 154 product flavors, 290
channel, 153-154 source sets, 291, 293
content, 144
creation, 145 C
expandable features, 150 Camera
grouping, 151-152 picture taking, 392-395
progress bar, 150 programming
reply, 147 build*CaptureRequest() methods, 418
showing, 145 calcPreviewDimension(), 401
smartphone, 144 Camera class, 407
preferences, 185 cameraDevice.
search framework (see Search createCaptureSession(...), 417
framework, API) CameraSession, 413, 423
App Store, 461-462 captureStillPicture(), 421
App widgets, 250 ciTextureView Ul element, 406

AsyncTask class, 192 createCameraSession(), 416-417

Index 481

getTransformationMatrix(), 403
lockFocusThenTakePicture(), 422
inner class MyCaptureCallback, 414
onRequestPermissionsResult()
callback, 406
onSurfaceTextureAvailable, 404

framework, 61-62
initializing, 63

modifying content, 65-66
providing content, 63
querying data, 63-64
registering, 67

openCamera() method, 408, 409
permissions, 404
runPrecaptureSequence(), 422
setUpCameraOutputs() method, 411
sizes, 400
start() method, 404
SurfaceTexturelListener, 404
TextureView, 397-398
utility class, 399
video recording, 395-397
Class extensions, 273-274
Communication
backends, 301
Bluetooth, 317
Bluetooth RfComm Server, 317 D
firebase cloud messaging (FCM), 299
HttpsURLConnection, 302
NFC (see NFC)
ResultReceiver classes, 297
test server, setting up, 306-307
Volley, networking, 304
Compatibility libraries, 268-269
Contacts synchronization, 163
Content providers
accessing system, 82
batch-accessing content data, 93
BlockedNumberContract, 82
CalendarContract, 83
CallLog, 84-86
ContactsContract, 86-88
DocumentsContract, 89
FontsContract, 89
media store, 89
settings, 90-91
SyncStateContract, 92
UserDictionary, 92
VoicemailContract, 92-93
consuming content, resolver, 80-82

content files, 76-78
Cursor class, 73-75
designing content URls, 70-71
dispatching URlIs, 76
informing listeners of data
changes, 79
interface contract, 71-73
<provider> element, 67-70
search framework, 95
securing, 93-95
Contextual action mode, 246
createNotificationChannel() method, 153
Custom suggestions, 171

Data access objects (DAOs), 116, 121, 123
Databases
clients, 125
DAOs, 122-123
@Database annotation, 117
entity classes, 117
indexes, 121
migration, 127
nested objects, 120
queries, 123-125
relationships, 118-119
Room architecture, 116
Room builder options, 126
Room library, 117
transaction, 127
Data classes, 277-278
Debugging, 453
Desktop head unit (DHU) tool, 379
Development
Android Studio, 3
compatibility libraries, 268-269
Kotlin practices

ContentProvider class, 66

documents provider, 95-101

extending, client access
consistency, 79, 80

class extensions, 273-275
data classes, 277-278
delegation pattern, 280
destructuring declaration, 278

482 Index

Development (cont.) H
functional programming, 271-272
functions and classes, 279 Handlers, 193
multiline string literals, 279 Host-based card emulation, 311
named arguments, 275 HttpsURLConnection-based
nullability, 277 communication, 302-303
renamed imports, 281
scoping functions, 275-276 I
strings interpolation, 279

Instant apps

this, 280 building deployment artifacts, 466
top-level functions and deep links, 466
data, 272-273 developing, 463
SDK, 6 PIng,
o . emulator, 465
virtual devices, 4-6 roll out. 467
2D animation ’
activity, transitions, 209-210 J
auto-animating layouts, 205
bitmap, 205 Java concurrency, 129, 192
property, 206 JavaScript
spring physics, 207 app’s build.gradle file, 283
transition framework, 208 dependsOn() declaration, 283
View Property animation, 207 injectedObject, 284
Direct network communication, 365 module, creation, 281-283
Drag-and-drop operation, 254 onCreate() callback, 284
Drag shadow, 254-255 Java threads, 129
draw() method, 216, 219 JobScheduler, 130
android.app.job.JobService, 130
E jobFinished(), 131
Joblnfo object, 131
Emulator, 465 Joblnfo builder options, 132-133
methodology, 29
F onStartJob() method, 131
Fingerprint authentication, 431-432 onStopJob() method, 131
Firebase Cloud Messaging
(FCM), 299 K
Firebase JobDispatcher, 129 Kotlin concurrency, 267
builder options, 136 Kotlin operators, 274-275
implementation, 134
Fragment, 248 L
G Last known location, 176
loadContactPhotoThumbnail() function, 165
Geocoding, 180 Loaders, 140, 193
go() method, 260 loadShader() function, 233
Google Cloud Messaging Logging
(GCM), 299 AndroidManifest.xml file, 452
Google Play store, 462 Android standard, 450

Google Wear apps, 337, 338 android.util.Log, 449

Index

app’s build.gradle file, 451

Environment.getExternalStorage
Directory(), 452

log file, 452

procedure, 449

Main thread, 191

Memory-based database, 125
Module common configuration, 288
Multiline string literals, 279
Multithreading, 266

Multitouch events, 258-259

Music playback, 385, 388

Named arguments, 275

Native development kit (NDK), 3

NFC

card emulation
AccountStorage, 316-317
aid_list.xml, 315-316
AndroidManifest.xml, 314
constants and utility
functions, 312-314

host-based card emulation, 311

onDeactivated() callback, 311

processCommandApdu()
method, 312

secure element, 311

sendResponseApdu() method, 312

dispatching process, 309
peer-to-peer data exchange, 310
tags, 308

Notification badge, 154

Notification channel, 153-154

0

onReceiveResult() function, 298

onTextChanged() callback method, 265

OpenGL ES
activity, 212

custom OpenGL view element, 212

description, 211
lighting, 232-235
motion, 232

projection
coordinates and indices, 228
draw() method, 223, 231, 232
index buffer, 224
init block, 222, 223, 230
matrices, 224, 226
MyGLSurfaceView, 226
onDrawFrame(), 226
onSurfaceCreated(), 225
renderer, 227
shader program, 223-224
Square class, 221
three-dimensional objects, 227
triangle and quad graphics, 221
triangle class, 224
uniform variables, 226
vertex buffer, 224

renderer, 220

textures, 235

triangle with vertex buffer, 214

user input, 241

versions, 211

vertex and index buffer, 216

P

Peer-to-peer NFC data exchange, 310
Performance monitoring

advanced profiling alert, 453
advanced profiling setting, 453
Android Studio, 453
BigDecimal.divide(), 456

CPU profiling, 454-455

flame chart, 456

profiler lanes, 453-454
profiling filter, 457

top-down chart, 456

Permissions
ActivityCompat.requestPermissions(..

method, 110
ActivityCompat.shouldShowRequest

483

)

PermissionRationale() method, 109

AndroidManifest.xml, 105

Android Studio, 106

asynchronous callback method, 110
definition, 104

feature requirements, 112-113
groups, 104

484 Index

Permissions (cont.)
onActivityResult(), 111
runtime permission inquiry, 109
system, 107-108
SYSTEM_ALERT_WINDOW, 111
terminal, 113
types, 103-104
WRITE_SETTINGS, 110
Phone calls interaction
custom Ul, 431
dialing process, 431
monitor phone state
changes, 427
Phong shading vectors, 235
Picture-in-picture mode, 259
Pixel densities, 194
Playing sound
music playback, 388
short sound snippets, 386
PowerMock, 437
Product flavors, 290
Programmatic Ul design, 196
Progress bars, 247
Property animation framework, 206

Q

Quick contact badges, 163

Recording audio, 391
Recycler views, 198, 200-201
Renderer, 220
ResultReceiver classes, 297
Reusabile libraries, writing

library module, creation, 261, 262

publishing, 264
testing, 263

S

Scheduling, APIs

Alarm Manager (see Alarm Manager)
Firebase JobDispatcher, 133, 135-136

JobScheduler, 130-133
Scoping functions, 275-276
Search framework, API

activity, 166-167

searchable configuration, 166

search dialog, 167-168
suggestions
custom, 171
recent queries, 170-171

widget, 168-169
Sensor capabilities, 424
Sensor event listeners, 424-426
Sensor event values, 426
Services, 27

background, 28-29

binding to, 33-37

characteristics, 42

classes, 32

data sent by, 37-39

declaring, 29-31

foreground, 28

lifecycle, 40-41

manifest flags, 30

starting, 32-33

subclasses, 39
Short sound snippets, 385-386
Single abstract method (SAM) class, 265
Software developer’s kit (SDK), 6

build tools, 472

platform tools, 475

tools, 469
SQLiteOpenHelper class, 462
startDragAndDrop(), 255
SyncAdapter, 129
SYSTEM_ALERT_WINDOW

permission, 111

System permissions, 107-108

T

Tasks, 9
Testing
broadcast receivers, 447
content providers, 446
developers, 433
development chain, 434
information technology, 433
intent services, 444
services, 443
user interface tests, 448
Text to speech framework, 259-260
Textures, 235
Troubleshooting
debugging, 453
memory usage monitoring, 457

Index

Uniform variables, 232
Unit tests
Android environment, 434
Android Studio, 434
GUI-related functionalities, 434
mocking, 437
setup, 435
simulated android framework, 436
stubbed android framework, 435
User interface (Ul)
adapters and list controls, 198
animation (see 2D animation)
App widgets, 250
device compatibility
detection, 195-196
pixel densities, 194
restricted screen support, 195
screen sizes, 194
drag and drop
definition, 254
drag shadow, 254-255
events, 256257
fonts in XML, 203
fragments
communicate, 250
creation, 248-249
handling, 249-250
menus and action bars
context menu, 245-246
contextual action mode, 246
options menu, 243-245
pop-up menu, 246
progress bars, 247
movable Ul elements, 242-243
multitouch events, 258-259
OpenGLES (see OpenGL ES)
picture-in-picture mode, 259
programmatic Ul design, 196
styles and themes, 201
text to speech framework, 259-260

vV

Volley, 304

WX YZ
Watch face, 340
Wearable data layer API, 365

Wearables apps
AmbientCallbackProvider
interface, 360
AmbientModeSupport class, 360
authentication, 361
complication data providers, 354
data communication, 365-366
development
Google maps wear activity, 339
pairing smartphone, 338
stand-alone mode, 338
watch face, 340
face complications
AndroidManifest.xml, 342
ComplicationConfigActivity, 348
configuration activity, 342
constants and utility
methods, 344
drawComplications(), 346
Face class, 342
getTappedComplicationld(), 346
init() method, 345
launchComplicationHelper
Activity(), 350
layout, 352-354
onClick(), 350

onComplicationDataUpdate(), 345

onComplicationTap(), 346
onCreate() and onDestroy()
callbacks, 349
onDraw(...), 343
onSurfaceChanged(...), 343

onTapCommand(...) function, 343

retrievelnitialComplications
Data(), 349

updateComplicationBounds(), 345

updateComplicationViews() and
onActivityResult(), 351, 352
faces, 341
getAmbientCallback() function, 360
Google’s design guidelines, 337
location detection, 364
notifications, 357
onEnterAmbient() and onExit
Ambient(), 360
speakers, 363
use cases, Google Wear apps, 338
user interface, 340-341
voice capabilities, 361-363
Wear face, 341

485

	Table of Contents
	About the Author
	About the Technical Reviewers
	Introduction
	Preface
	Chapter 1: System
	The Android Operating System
	 The Development System
	Android Studio
	 Virtual Devices
	 The SDK

	Chapter 2: Application
	Tasks
	The Application Manifest

	Chapter 3: Activities
	Declaring Activities
	Starting Activities
	Activities and Tasks
	Activities Returning Data
	Intent Filters
	Intent Action
	Intent Category
	Intent Data
	Intent Extra Data
	Intent Flags
	System Intent Filters

	Activities Lifecycle
	Preserving State in Activities

	Chapter 4: Services
	Foreground Services
	Background Services
	Declaring Services
	Service Classes
	Starting Services
	Binding to Services
	Data Sent by Services
	Service Subclasses
	Services Lifecycle
	More Service Characteristics

	Chapter 5: Broadcasts
	Explicit Broadcasts
	Explicit Local Broadcasts

	Explicit Remote Broadcasts
	Explicit Broadcasts Sending to Other Apps

	Implicit Broadcasts
	Intent Filter Matching
	Active or On-Hold Listening
	Sending Implicit Broadcasts
	Receiving Implicit Broadcasts
	Listening to System Broadcasts

	Adding Security to Broadcasts
	Securing Explicit Broadcasts
	Securing Implicit Broadcasts

	Sending Broadcasts from the Command Line
	Random Notes on Broadcasts

	Chapter 6: Content Providers
	The Content Provider Framework
	Providing Content
	Initializing the Provider
	Querying Data
	Modifying Content
	Finishing the ContentProvider Class

	Registering the Content Provider
	Designing Content URIs
	Building a Content Interface Contract
	A Cursor Class Based on AbstractCursor and Related Classes
	A Cursor Class Based on the Cursor Interface
	Dispatching URIs Inside the Provider Code
	Providing Content Files
	Informing Listeners of Data Changes

	Extending a Content Provider
	Client Access Consistency by URI Canonicalization

	Consuming Content
	Using the Content Resolver
	Accessing System Content Providers
	BlockedNumberContract
	CalendarContract
	CallLog
	ContactsContract
	DocumentsContract
	FontsContract
	MediaStore
	Settings
	SyncStateContract
	UserDictionary
	VoicemailContract

	Batch-Accessing Content Data

	Securing Content
	Providing Content for the Search Framework
	Documents Provider

	Chapter 7: Permissions
	Permission Types
	Defining Permissions
	Using Permissions
	Acquiring Permissions
	Acquiring Special Permissions
	Feature Requirements and Permissions
	Permissions Handling Using a Terminal

	Chapter 8: APIs
	Databases
	Configuring Your Environment for Room
	Room Architecture
	The Database
	Entities
	Relationships
	Nested Objects
	Using Indexes
	Data Access: DAOs
	Observable Queries
	Database Clients
	Transactions
	Migrating Databases

	Scheduling
	JobScheduler
	Firebase JobDispatcher
	Alarm Manager

	Loaders
	Notifications
	Creating and Showing Notifications
	Adding Direct Reply
	Notification Progress Bar
	Expandable Notifications
	Rectifying Activity Navigation
	Grouping Notifications
	Notification Channels
	Notification Badges

	Contacts
	Contacts Framework Internals
	Reading Contacts
	Writing Contacts
	Using Contacts System Activities
	Synchronizing Contacts
	Using Quick Contact Badges

	Search Framework
	The Searchable Configuration
	The Searchable Activity
	The Search Dialog
	The Search Widget
	Search Suggestions
	Recent Queries Suggestions
	Custom Suggestions

	Location and Maps
	Last Known Location
	Tracking Position Updates
	Geocoding
	Using ADB to Fetch Location Information
	Maps

	Preferences

	Chapter 9: User Interface
	Background Tasks
	Java Concurrency
	The AsyncTask Class
	Handlers
	Loaders

	Supporting Multiple Devices
	Screen Sizes
	Pixel Densities
	Declare Restricted Screen Support
	Detect Device Capabilities

	Programmatic UI Design
	Adapters and List Controls
	Styles and Themes
	Fonts in XML
	2D Animation
	Auto-animating Layouts
	Animated Bitmaps
	Property Animation
	View Property Animator
	Spring Physics
	Transitions
	Start an Activity Using Transitions

	Fast Graphics OpenGL ES
	Showing an OpenGL Surface in Your Activity
	Creating a Custom OpenGL View Element
	A Triangle with a Vertex Buffer
	A Quad with a Vertex Buffer and an Index Buffer
	Creating and Using a Renderer
	Projection
	Motion
	Light
	Textures
	User Input

	UI Design with Movable Items
	Menus and Action Bars
	Options Menu
	Context Menu
	Contextual Action Mode
	Pop-up Menus

	Progress Bars
	Working with Fragments
	Creating Fragments
	Handling Fragments from Activities
	Communicating with Fragments

	App Widgets
	Drag and Drop
	Defining Drag Data
	Defining a Drag Shadow
	Starting a Drag
	Listening to Drag Events

	Multitouch
	Picture-in-Picture Mode
	Text to Speech

	Chapter 10: Development
	Writing Reusable Libraries in Kotlin
	Starting a Library Module
	Creating the Library
	Testing the Library
	Using the Library
	Publishing the Library

	Advanced Listeners Using Kotlin
	Multithreading
	Compatibility Libraries
	Kotlin Best Practices
	Functional Programming
	Top-Level Functions and Data
	Class Extensions
	Named Arguments
	Scoping Functions
	Nullability
	Data Classes
	Destructuring
	Multiline String Literals
	Inner Functions and Classes
	String Interpolation
	Qualified “this”
	Delegation
	Renamed Imports

	Kotlin on JavaScript
	Creating a JavaScript Module
	Using the JavaScript Module

	Chapter 11: Building
	Build-Related Files
	Module Configuration
	Module Common Configuration
	Module Build Variants
	Build Types
	Product Flavors
	Source Sets

	Running a Build from the Console
	Signing

	Chapter 12: Communication
	ResultReceiver Classes
	Firebase Cloud Messaging
	Communication with Backends
	Communication with HttpsURLConnection
	Networking with Volley
	Setting Up a Test Server
	Android and NFC
	Talking to NFC Tags
	Peer-to-Peer NFC Data Exchange
	NFC Card Emulation
	Android and Bluetooth
	A Bluetooth RfComm Server
	An Android RfComm Client

	Chapter 13: Hardware
	Programming with Wearables
	Wearables Development
	Wearables App User Interface
	Wearables Faces
	Adding Face Complications
	Providing Complication Data
	Notifications on Wearables
	Controlling App Visibility on Wearables
	Authentication in Wear
	Voice Capabilities in Wear
	Speakers on Wearables
	Location in Wear
	Data Communication in Wear

	Programming with Android TV
	Android TV Use Cases
	Starting an Android TV Studio Project
	Android TV Hardware Features
	UI Development for Android TV
	Recommendation Channels for Content Search
	A Recommendation Row for Content Search
	Android TV Content Search
	Android TV Games
	Android TV Channels

	Programming with Android Auto
	Developing for Android Auto
	Testing Android Auto for a Phone Screen
	Testing Android Auto for a Car Screen
	Develop Audio Playback on Auto
	Develop Messaging on Auto

	Playing and Recording Sound
	Short Sound Snippets
	Playing Media

	Recording Audio
	Using the Camera
	Taking a Picture
	Recording a Video

	Writing Your Own Camera App
	Android and NFC
	Android and Bluetooth
	Android Sensors
	Retrieving Sensor Capabilities
	Listening to Sensor Events

	Interacting with Phone Calls
	Monitoring Phone State Changes
	Initiate a Dialing Process
	Create a Phone Call Custom UI

	Fingerprint Authentication

	Chapter 14: Testing
	Unit Tests
	Standard Unit Tests
	Unit Tests with Stubbed Android Framework
	Unit Tests with Simulated Android Framework
	Unit Tests with Mocking

	Integration Tests
	Testing Services
	Testing Intent Services
	Testing Content Providers
	Testing Broadcast Receivers

	User Interface Tests

	Chapter 15: Troubleshooting
	Logging
	Debugging
	Performance Monitoring
	Memory Usage Monitoring

	Chapter 16: Distributing Apps
	Your Own App Store
	The Google Play Store

	Chapter 17: Instant Apps
	DevelopingInstant Apps
	Testing Instant Apps on an Emulator
	Building Deployment Artifacts
	Preparing Deep Links
	Rolling Out Instant Apps

	Chapter 18: CLI
	The SDK Tools
	The SDK Build Tools
	The SDK Platform Tools

	Index

