
Beginning
Apache Spark 2

With Resilient Distributed Datasets,
Spark SQL, Structured Streaming and
Spark Machine Learning library
—
Hien Luu

www.allitebooks.com

http://www.allitebooks.org

Beginning
Apache Spark 2

With Resilient Distributed
Datasets, Spark SQL, Structured

Streaming and Spark Machine
Learning library

Hien Luu

www.allitebooks.com

http://www.allitebooks.org

Beginning Apache Spark 2: With Resilient Distributed Datasets, Spark SQL,
Structured Streaming and Spark Machine Learning library

ISBN-13 (pbk): 978-1-4842-3578-2 ISBN-13 (electronic): 978-1-4842-3579-9
https://doi.org/10.1007/978-1-4842-3579-9

Library of Congress Control Number: 2018953881

Copyright © 2018 by Hien Luu

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole
member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc
is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights,
please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484235782. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Hien Luu
SAN JOSE, California, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3579-9
http://www.allitebooks.org

iii

About the Author ��� ix

About the Technical Reviewer ��� xi

Table of Contents

Chapter 1: Introduction to Apache Spark ��� 1

Overview ��� 1

History ��� 2

Spark Core Concepts and Architecture ��� 3

Spark Clusters and the Resource Management System ��� 4

Spark Application �� 5

Spark Driver and Executor ��� 5

Spark Unified Stack �� 6

Spark Core ��� 7

Spark SQL �� 8

Spark Structured Streaming and Streaming ��� 9

Spark MLlib ��� 10

Spark Graphx ��� 11

SparkR ��� 11

Apache Spark Applications ��� 12

Example Spark Application ��� 12

Summary ��� 13

Chapter 2: Working with Apache Spark�� 15

Downloading and Installing Spark �� 15

Downloading Spark ��� 15

Installing Spark�� 16

www.allitebooks.com

http://www.allitebooks.org

iv

Having Fun with the Spark Scala Shell ��� 19

Useful Spark Scala Shell Commands and Tips �� 19

Basic Interactions with Scala and Spark ��� 22

Introduction to Databricks ��� 30

Creating a Cluster �� 33

Creating a Folder ��� 36

Creating a Notebook �� 39

Setting Up the Spark Source Code �� 47

Summary��� 49

Chapter 3: Resilient Distributed Datasets ��� 51

Introduction to RDDs ��� 51

Immutable ��� 52

Fault Tolerant ��� 52

Parallel Data Structures��� 52

In-Memory Computing ��� 53

Data Partitioning and Placement ��� 53

Rich Set of Operations ��� 54

RDD Operations ��� 54

Creating RDDs ��� 56

Transformations ��� 57

Transformation Examples �� 58

Actions ��� 68

Action Examples �� 69

Working with Key/Value Pair RDD ��� 74

Creating Key/Value Pair RDD ��� 75

Key/Value Pair RDD Transformations ��� 76

Key/Value Pair RDD Actions ��� 81

Understand Data Shuffling �� 83

Having Fun with RDD Persistence ��� 83

Summary��� 85

Table of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

v

Chapter 4: Spark SQL (Foundations) ��� 87

Introduction to DataFrames �� 88

Creating DataFrames �� 89

Creating DataFrames from RDDs ��� 89

Creating DataFrames from a Range of Numbers ��� 92

Creating DataFrames from Data Sources �� 95

Working with Structured Operations ��� 109

Introduction to Datasets �� 130

Creating Datasets �� 132

Working with Datasets �� 133

Using SQL in Spark SQL �� 135

Running SQL in Spark �� 136

Writing Data Out to Storage Systems �� 139

The Trio: DataFrames, Datasets, and SQL ��� 142

DataFrame Persistence ��� 143

Summary��� 144

Chapter 5: Spark SQL (Advanced) ��� 147

Aggregations ��� 147

Aggregation Functions��� 148

Aggregation with Grouping �� 156

Aggregation with Pivoting ��� 161

Joins ��� 163

Join Expressions and Join Types ��� 164

Working with Joins �� 165

Dealing with Duplicate Column Names ��� 173

Overview of a Join Implementation ��� 175

Functions �� 178

Working with Built-in Functions �� 178

Working with User-Defined Functions ��� 194

Table of ConTenTs

vi

Advanced Analytics Functions �� 196

Aggregation with Rollups and Cubes��� 196

Aggregation with Time Windows ��� 200

Window Functions ��� 203

Catalyst Optimizer ��� 211

Logical Plan ��� 212

Physical Plan ��� 213

Catalyst in Action ��� 213

Project Tungsten ��� 215

Summary��� 216

Chapter 6: Spark Streaming ��� 219

Stream Processing �� 220

Concepts �� 222

Stream Processing Engine Landscape �� 227

Spark Streaming Overview ��� 230

Spark DStream �� 230

Spark Structured Streaming ��� 232

Overview �� 233

Core Concepts ��� 235

Structured Streaming Application ��� 242

Streaming DataFrame Operations ��� 248

Working with Data Sources ��� 251

Working with Data Sinks ��� 264

Deep Dive on Output Modes �� 275

Deep Dive on Triggers�� 280

Summary��� 285

Chapter 7: Spark Streaming (Advanced) �� 287

Event Time �� 287

Fixed Window Aggregation Over an Event Time �� 289

Sliding Window Aggregation Over an Event Time �� 291

Table of ConTenTs

vii

Aggregation State �� 295

Watermarking: Limit State and Handle Late Data�� 296

Arbitrary Stateful Processing �� 300

Arbitrary Stateful Processing with Structured Streaming ��� 300

Handling State Timeouts ��� 303

Arbitrary State Processing in Action �� 304

Handling Duplicate Data ��� 316

Fault Tolerance �� 319

Streaming Application Code Change ��� 320

Spark Runtime Change �� 320

Streaming Query Metrics and Monitoring ��� 320

Streaming Query Metrics ��� 321

Monitoring Streaming Queries ��� 324

Summary��� 325

Chapter 8: Machine Learning with Spark ��� 327

Machine Learning Overview ��� 329

Machine Learning Terminologies ��� 330

Machine Learning Types �� 331

Machine Learning Process �� 335

Spark Machine Learning Library ��� 338

Machine Learning Pipelines �� 338

Machine Learning Tasks in Action ��� 367

Classification ��� 367

Regression ��� 370

Recommendation �� 374

Deep Learning Pipeline ��� 381

Summary��� 383

Index ��� 385

Table of ConTenTs

ix

About the Author

Hien Luu has extensive working experience in designing and building big data

applications and scalable web-based applications. He is particularly passionate about

the intersection between big data and machine learning. Hien enjoys working with open

source software and has contributed to Apache Pig and Azkaban. Teaching is one of his

passions, and he serves as an instructor at the UCSC Silicon Valley Extension school

teaching Apache Spark. He has given presentations at various conferences such a QCon

SF, QCon London, Seattle Data Day, Hadoop Summit, and JavaOne.

xi

About the Technical Reviewer

Karpur Shukla is a research fellow at the Centre for

Mathematical Modeling at FLAME University in Pune, India.

His current research interests focus on topological quantum

computation, nonequilibrium and finite-temperature

aspects of topological quantum field theories, and

applications of quantum materials effects for reversible

computing. He received an M.Sc. in physics from Carnegie

Mellon University, with a background in theoretical analysis

of materials for spintronics applications as well as Monte

Carlo simulations for the renormalization group of

finite-temperature spin lattice systems.

1
© Hien Luu 2018
H. Luu, Beginning Apache Spark 2, https://doi.org/10.1007/978-1-4842-3579-9_1

CHAPTER 1

Introduction to
Apache Spark
There is no better time to learn Spark than now. Spark has become one of the critical

components in the big data stack because of its ease of use, speed, and flexibility. This

scalable data processing system is being widely adopted across many industries by

many small and big companies, including Facebook, Microsoft, Netflix, and LinkedIn.

This chapter provides a high-level overview of Spark, including the core concepts, the

architecture, and the various components inside the Apache Spark stack.

 Overview
Spark is a general distributed data processing engine built for speed, ease of use, and

flexibility. The combination of these three properties is what makes Spark so popular

and widely adopted in the industry.

The Apache Spark website claims it can run a certain data processing job up to 100

times faster than Hadoop MapReduce. In fact, in 2014, Spark won the Daytona GraySort

contest, which is an industry benchmark for sorting 100TB of data (one trillion records).

The submission from Databricks claimed Spark was able to sort 100TB of data three

times faster and using ten times fewer resources than the previous world record set by

Hadoop MapReduce.

Since the inception of the Spark project, the ease of use has been one of the main

focuses of the Spark creators. It offers more than 80 high-level, commonly needed

data processing operators to make it easy for developers, data scientists, and data

analysts to build all kinds of interesting data applications. In addition, these operators

are available in multiple languages, namely, Scala, Java, Python, and R. Software

engineers, data scientists, and data analysts can pick and choose their favorite

language to solve large- scale data processing problems with Spark.

2

In terms of flexibility, Spark offers a single unified data processing stack that can be

used to solve multiple types of data processing workloads, including batch processing,

interactive queries, iterative processing needed by machine learning algorithms, and

real-time streaming processing to extract actionable insights at near real-time. Before

the existence of Spark, each of these types of workload required a different solution and

technology. Now companies can just leverage Spark for most of their data processing

needs. Using a single technology stack will help with dramatically reducing the

operational cost and resources.

A big data ecosystem consists of many pieces of technology including a distributed

storage engine called HDFS, a cluster management system to efficiently manage a cluster

of machines, and different file formats to store a large amount of data efficiently in binary

and columnar format. Spark integrates really well with the big data ecosystem. This is

another reason why Spark adoption has been growing at a really fast pace.

Another really cool thing about Spark is it is open source; therefore, anyone can

download the source code to examine the code, to figure out how a certain feature was

implemented, or to extend its functionalities. In some cases, it can dramatically help

with reducing the time to debug problems.

 History
Spark started out as a research project at Berkeley AMPLab in 2009. At that time, the

researchers of this project observed the inefficiencies of the Hadoop MapReduce

framework in handling interactive and iterative data processing use cases, so they came

up with ways to overcome those inefficiencies by introducing ideas such as in-memory

computation and an efficient way of dealing with fault recovery. Once this research

project proved to be a viable solution that outperformed MapReduce, it was open

sourced in 2010 and became the Apache top-level project in 2013. A group of researchers

working on this research project got together and founded a company called Databricks;

they raised more than $43 million in 2013. Databricks is the primary commercial

steward behind Spark. In 2015, IBM announced a major investment in building a Spark

technology center to advance Apache Spark by working closely with the open source

community and building Spark into the core of its company’s analytics and commerce

platforms.

Chapter 1 IntroduCtIon to apaChe Spark

3

Two popular research papers about Spark are “Spark: Cluster Computing with

Working Sets” and “Resilient Distributed Datasets: A Fault-Tolerant Abstraction for

In- Memory Cluster Computing.” These papers were well received at academic

conferences and provide good foundations for anyone who would like to learn and

understand Spark. You can find them at http://people.csail.mit.edu/matei/

papers/2010/hotcloud_spark.pdf and http://people.csail.mit.edu/matei/

papers/2012/nsdi_spark.pdf, respectively.

Since its inception, the Spark open source project has been an active project with

a vibrant community. The number of contributors has increased to more than 1,000 in

2016, and there are more than 200,000 Apache Spark meetups. In fact, the number of

Apache Spark contributors has exceeded the number of contributors of one of the most

popular open source projects called Apache Hadoop. Spark is so popular now that it

has its own summit called Spark Summit, which is held annually in North America and

Europe. The summit attendance has doubled each year since its inception.

The creators of Spark selected the Scala programming language for their project

because of the combination of Scala’s conciseness and static typing. Now Spark is

considered to be one of the largest applications written in Scala, and its popularity

certainly has helped Scala to become a mainstream programming language.

 Spark Core Concepts and Architecture
Before diving into the details of Spark, it is important to have a high-level understanding

of the core concepts and the various core components in Spark. This section will cover

the following:

• Spark clusters

• The resource management system

• Spark applications

• Spark drivers

• Spark executors

Chapter 1 IntroduCtIon to apaChe Spark

http://people.csail.mit.edu/matei/papers/2010/hotcloud_spark.pdf
http://people.csail.mit.edu/matei/papers/2010/hotcloud_spark.pdf
http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf
http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf

4

 Spark Clusters and the Resource Management System
Spark is essentially a distributed system that was designed to process a large volume

of data efficiently and quickly. This distributed system is typically deployed onto a

collection of machines, which is known as a Spark cluster. A cluster size can be as small

as a few machines or as large as thousands of machines. The largest publicly announced

Spark cluster in the world has more than 8,000 machines. To efficiently and intelligently

manage a collection of machines, companies rely on a resource management system

such as Apache YARN or Apache Mesos. The two main components in a typical resource

management system are the cluster manager and the worker. The cluster manager

knows where the workers are located, how much memory they have, and the number

of CPU cores each one has. One of the main responsibilities of the cluster manager is to

orchestrate the work by assigning it to each worker. Each worker offers resources (memory,

CPU, etc.) to the cluster manager and performs the assigned work. An example of the

type of work is to launch a particular process and monitor its health. Spark is designed to

easily interoperate with these systems. Most companies that have been adopting big data

technologies in recent years usually already have a YARN cluster to run MapReduce jobs

or other data processing frameworks such as Apache Pig or Apache Hive.

Startup companies that fully adopt Spark can just use the out-of-the-box Spark

cluster manager to manage a set of dedicated machines to perform data processing

using Spark. Figure 1-1 depicts this type of setup.

Figure 1-1. Interactions between a Spark application and a cluster manager

Chapter 1 IntroduCtIon to apaChe Spark

5

 Spark Application
A Spark application consists of two parts. The first is the application data processing

logic expressed using Spark APIs, and the other is the Spark driver. The application data

processing logic can be as simple as a few lines of code to perform a few data processing

operations or can be as complex as training a large machine learning model that

requires many iterations and could run for many hours to complete. The Spark driver

is the central coordinator of a Spark application, and it interacts with a cluster manager

to figure out which machines to run the data processing logic on. For each one of those

machines, the Spark driver requests that the cluster manager launch a process called the

Spark executor. Another important job of the Spark driver is to manage and distribute

Spark tasks onto each executor on behalf of the application. If the data processing

logic requires the Spark driver to display the computed results to a user, then it will

coordinate with each Spark executor to collect the computed result and merge them

together. The entry point into a Spark application is through a class called SparkSession,

which provides facilities for setting up configurations as well as APIs for expressing data

processing logic.

 Spark Driver and Executor
Each Spark executor is a JVM process and is exclusively allocated to a specific Spark

application. This was a conscious design decision to avoid sharing a Spark executor

between multiple Spark applications in order to isolate them from each other so one badly

behaving Spark application wouldn’t affect other Spark applications. The lifetime of a

Spark executor is the duration of a Spark application, which could run for a few minutes or

for a few days. Since Spark applications are running in separate Spark executors, sharing

data between them will require writing the data to an external storage system like HDFS.

As depicted in Figure 1-2, Spark employs a master-slave architecture, where the

Spark driver is the master and the Spark executor is the slave. Each of these components

runs as an independent process on a Spark cluster. A Spark application consists of one

and only one Spark driver and one or more Spark executors. Playing the slave role, each

Spark executor does what it is told, which is to execute the data processing logic in the

form of tasks. Each task is executed on a separate CPU core. This is how Spark can speed

up the processing of a large amount of data by processing it in parallel. In addition to

executing assigned tasks, each Spark executor has the responsibility of caching a portion

of the data in memory and/or on disk when it is told to do so by the application logic.

Chapter 1 IntroduCtIon to apaChe Spark

6

At the time of launching a Spark application, you can request how many Spark

executors an application needs and how much memory and the number of CPU cores

each executor should have. Figuring out an appropriate number of Spark executors,

the amount of memory, and the number of CPU requires some understanding of the

amount of data that will be processed, the complexity of the data processing logic, and

the desired duration by which a Spark application should complete the processing logic.

 Spark Unified Stack
Unlike its predecessors, Spark provides a unified data processing engine known as the

Spark stack. Similar to other well-designed systems, this stack is built on top of a strong

foundation called Spark Core, which provides all the necessary functionalities to manage

and run distributed applications such as scheduling, coordination, and fault tolerance.

In addition, it provides a powerful and generic programming abstraction for data

processing called resilient distributed datasets (RDDs). On top of this strong foundation

is a collection of components where each one is designed for a specific data processing

workload, as shown in Figure 1-3. Spark SQL is for batch as well as interactive data

processing. Spark Streaming is for real-time stream data processing. Spark GraphX is for

graph processing. Spark MLlib is for machine learning. Spark R is for running machine

learning tasks using the R shell.

Figure 1-2. A small Spark cluster with three executors

Chapter 1 IntroduCtIon to apaChe Spark

7

This unified engine brings several important benefits to the task of building scalable

and intelligent big data applications. First, applications are simpler to develop and

deploy because they use a unified set of APIs and run on a single engine. Second, it is

way more efficient to combine different types of data processing (batch, streaming, etc.)

because Spark can run those different sets of APIs over the same data without writing

the intermediate data out to a storage system. Finally, the most exciting benefit is Spark

enables new applications that were not possible before because of its ease of composing

different sets of data processing types within a Spark application. For example, it can

run interactive queries over the results of machine learning predictions of real-time

data streams. An analogy that everyone can relate to is the smartphone, which consists

of a powerful camera, cell phone, and GPS device. By combining the functions of these

components, a smartphone enables innovative applications such as Waze, a traffic and

navigation application.

 Spark Core
Spark Core is the bedrock of the Spark distributed data processing engine. It consists

of two parts: the distributed computing infrastructure and the RDD programming

abstraction.

Figure 1-3. Spark unified stack

Chapter 1 IntroduCtIon to apaChe Spark

8

The distributed computing infrastructure is responsible for the distribution,

coordination, and scheduling of computing tasks across many machines in the

cluster. This enables the ability to perform parallel data processing of a large volume

of data efficiently and quickly on a large cluster of machines. Two other important

responsibilities of the distributed computing infrastructure are handling of computing

task failures and efficiently moving data across machines, which is known as data

shuffling. Advanced users of Spark need to have intimate knowledge of the Spark

distributed computing infrastructure to be effective at designing highly performant

Spark applications.

The key programming abstraction in Spark is called RDD, and it is something every

Spark developer should have some knowledge of, especially its APIs and main concepts.

The technical definition of an RDD is that it is an immutable and fault-tolerant collection

of objects partitioned across a cluster that can be manipulated in parallel. Essentially, it

provides a set of APIs for Spark application developers to easily and efficiently perform

large-scale data processing without worrying where data resides on the cluster or dealing

with machine failures. For example, say you have a 1.5TB log file that resides on HDFS

and you need to find out the number of lines containing the word Exception. You can

create an instance of RDD to represent all the log statements in that log file, and Spark

can partition them across the nodes in the cluster such that filtering and counting logic

can be executed in parallel to speed up the search and counting logic.

The RDD APIs are exposed in multiple programming languages (Scala, Java, and

Python), and they allow users to pass local functions to run on the cluster, which is

something that is powerful and unique. RDDs will be covered in detail in Chapter 3.

The rest of the components in the Spark stack are designed to run on top of Spark

Core. Therefore, any improvements or optimizations done in Spark Core between

versions of Spark will be automatically available to the other components.

 Spark SQL
Spark SQL is a component built on top of Spark Core, and it is designed for structured

data processing at scale. Its popularity has skyrocketed since its inception because it

brings a new level of flexibility, ease of use, and performance.

Chapter 1 IntroduCtIon to apaChe Spark

9

Structured Query Language (SQL) has been the lingua franca for data processing

because it is fairly easy for users to express their intent, and the execution engine then

performs the necessary intelligent optimizations. Spark SQL brings that to the world of

data processing at the petabyte level. Spark users now can issue SQL queries to perform

data processing or use the high-level abstraction exposed through the DataFrames

APIs. A DataFrame is effectively a distributed collection of data organized into named

columns. This is not a novel idea; in fact, this idea was inspired by data frames in R and

Python. An easier way to think about a DataFrame is that it is conceptually equivalent to

a table in a relational database.

Behind the scenes, Spark SQL leverages the Catalyst optimizer to perform the kinds

of the optimizations that are commonly done in many analytical database engines.

Another feature Spark SQL provides is the ability to read data from and write data

to various structured formats and storage systems, such as JavaScript Object Notation

(JSON), comma-separated value (CSV) files, Parquet or ORC files, relational databases,

Hive, and others. This feature really helps in elevating the level of versatility of Spark

because Spark SQL can be used as a data converter tool to easily convert data from one

format to another.

According to a 2016 Spark survey, Spark SQL was the fastest-growing component.

This makes sense because Spark SQL enables a wider audience beyond big data

engineers to leverage the power of distributed data processing (i.e., data analysts or

anyone who is familiar with SQL).

The motto for Spark SQL is to write less code, read less data, and let the optimizer do

the hard work.

 Spark Structured Streaming and Streaming
It has been said that “Data in motion has equal or greater value than historical data.”

The ability to process data as it arrives is becoming a competitive advantage for many

companies in highly competitive industries. The Spark Streaming module enables

the ability to process real-time streaming data from various data sources in a high-

throughput and fault-tolerant manner. Data can be ingested from sources such as Kafka,

Flume, Kinesis, Twitter, HDFS, or TCP sockets.

Chapter 1 IntroduCtIon to apaChe Spark

10

The main abstraction in the first generation of the Spark Streaming processing

engine is called discretized stream (DStream), which implements an incremental

stream processing model by splitting the input data into small batches (based on a time

interval) that can regularly combine the current processing state to produce new results.

In other words, once the incoming data is split into small batches, each batch is treated

as an RDD and replicated out onto the cluster so they can be processed accordingly.

Stream processing sometimes involves joining with data at rest, and Spark makes it

easy to do so. In other words, combining batch and interactive queries with streaming

processing can be easily done in Spark because of the unified Spark stack.

A new scalable and fault-tolerant streaming processing engine called Structured

Streaming was introduced in Spark 2.1, and it was built on top of the Spark SQL engine.

This engine further simplifies the life of streaming processing application developers

by treating streaming computation the same way as one would express a batch

computation on static data. This new engine will automatically execute the streaming

processing logic incrementally and continuously as new streaming data continues to

arrive. A new and important feature that Structured Streaming provides is the ability to

process incoming streaming data based on the event time, which is necessary for many

of the new streaming processing use cases. Another unique feature in the Structured

Streaming engine is the end-to-end, exactly once guarantee, which will make a big data

engineer’s life much easier than before in terms of saving data to a storage system such

as a relational database or a NoSQL database.

As this new engine matures, undoubtedly it will enable a new class of streaming

processing applications that are easy to develop and maintain.

According to Reynold Xin, Databricks’ chief architect, the simplest way to perform

streaming analytics is not having to reason about streaming.

 Spark MLlib
In addition to providing more than 50 common machine learning algorithms, the

Spark MLlib library provides abstractions for managing and simplifying many of the

machine learning model building tasks, such as featurization, pipeline for constructing,

evaluating and tuning model, and persistence of models to help with moving the model

from development to production.

Chapter 1 IntroduCtIon to apaChe Spark

11

Starting with Spark 2.0, the MLlib APIs will be based on DataFrames to take

advantage of the user friendliness and many optimizations provided by the Catalyst and

Tungsten components in the Spark SQL engine.

Machine learning algorithms are iterative in nature, meaning they run through

many iterations until a desired objective is achieved. Spark makes it extremely easy

to implement those algorithms and run them in a scalable manner through a cluster

of machines. Commonly used machine learning algorithms such as classification,

regression, clustering, and collaborative filtering are available out of the box for data

scientists and engineers to use.

 Spark Graphx
Graph processing operates on data structures consisting of vertices and edges

connecting them. A graph data structure is often used to represent real-life networks of

interconnected entities, including professional social networks on LinkedIn, networks

of connected web pages on the Internet, and so on. Spark GraphX is a component

that enables graph-parallel computations by providing an abstraction of a directed

multigraph with properties attached to each vertex and edge. The GraphX component

includes a collection of common graph processing algorithms including page ranks,

connected components, shortest paths, and others.

 SparkR
SparkR is an R package that provides a light-weight front end to use Apache Spark.

R is a popular statistical programming language that supports data processing and

machine learning tasks. However, R was not designed to handle large datasets that

can’t fit on a single machine. SparkR leverages Spark’s distributed computing engine to

enable large- scale data analysis using the familiar R shell and popular APIs that many

data scientists love.

Chapter 1 IntroduCtIon to apaChe Spark

12

 Apache Spark Applications
Spark is a versatile, fast, and scalable data processing engine. It was designed to be a

general engine since the beginning days and has proven that it can be used to solve

various use cases. Many companies in various industries are using Spark to solve real-life

use cases. The following is a small list of applications that were developed using Spark:

• Customer intelligence applications

• Data warehouse solutions

• Real-time streaming solutions

• Recommendation engines

• Log processing

• User-facing services

• Fraud detection

 Example Spark Application
In the world of big data processing, the canonical example application is a word count

application. This tradition started with the introduction of the MapReduce framework.

Since then, every big data processing technology book must follow this unwritten

tradition by including this canonical example. The problem space in the word count

example application is easy for everyone to understand since all it does is count how

many times a particular word appears in a given set of documents, whether that is a

chapter of a book or hundreds of terabytes of web pages from the Internet. Listing 1-1

contains the word count example written in Spark using Scala APIs.

Listing 1-1. Word Count Example Application in Spark in the Scala Language

val textFiles = sc.textFile("hdfs://<folder contains text files")

val words = textFiles.flatMap(line => line.split(" "))

val wordTuples = words.map(word => (word, 1))

val wordCounts = wordTuples.reduceByKey(_ + _)

wordCounts.saveAsTextFile("hdfs://<outoupt folder>")

Chapter 1 IntroduCtIon to apaChe Spark

13

There is a lot going on behind these five lines of code. The first line is responsible for

reading in the text files in the specified folder. The second line iterates through each line

in each of the files, tokenizes each line into an array of words, and finally flattens each

array into one word per line. To count the number of words across all the documents, the

third line attaches a count of 1 to each word. The fourth line performs the summation

of the count of each word. Finally, the last line saves the result in the specified folder.

Ideally this gives you a general sense of the ease of use of Spark to perform data

processing. Future chapters will go into much more detail about what each of these lines

of code does.

 Summary
In this chapter, you learned the following:

• Apache Spark has certainly produced many sparks since its

inception. It has created much excitement and many opportunities

in the world of big data. More important, it allows you to create

many new and innovating big data applications to solve a diverse

set of use cases.

• The three important properties of Spark to note are ease of use,

speed, and flexibility.

• The Spark distributed computing infrastructure employs a master-

slave architecture. Each Spark application consists of a driver, which

plays the master role, and one or more executors, which are the

slaves, to process data in parallel.

• Spark provides a unified scalable and distributed data processing

engine that can be used for batch processing, interactive and

exploratory data processing, real-time streaming processing, training

machine learning models and performing predictions, and graph

processing.

• Spark applications can be written in multiple programming

languages including Scala, Java, Python, and R.

Chapter 1 IntroduCtIon to apaChe Spark

15
© Hien Luu 2018
H. Luu, Beginning Apache Spark 2, https://doi.org/10.1007/978-1-4842-3579-9_2

CHAPTER 2

Working with Apache Spark
This chapter provides details about the different ways of working with Spark, including

using the Spark shell, submitting a Spark application from the command line, and using

a hosted cloud platform called Databricks. The last part of this chapter is geared toward

software engineers who want to set up the Apache Spark source code on a local machine

to examine the Spark code and learn how certain features were implemented.

 Downloading and Installing Spark
For the purposes of learning or experimenting with Spark, it is good to install Spark

locally on your computer. This way you can easily try the Spark features or test your data

processing logic with small datasets. By having Spark locally installed on your laptop,

you can learn Spark from anywhere, including in your comfortable living room, on the

beach, or at a bar in Mexico.

Spark is written in the Scala programming language, and it is packaged in such a way

that it can be run on both Windows and Unix-like systems (e.g., Linux and macOS).

All that is needed is to have Java installed on your computer.

Setting up a multitenant Spark production cluster requires a lot more details and

resources and is beyond the scope of this book.

 Downloading Spark
The Download section of the Apache Spark website (http://spark.apache.org/

downloads.html) has detailed instructions for downloading the prepackaged Spark

binary file. At the time of writing this book, the latest version is 2.3.0. In terms of the

package type, choose the one with the latest version of Hadoop. Figure 2-1 shows

the various options for downloading Spark. The important thing is to download the

prepackaged binary file because it contains the necessary JAR files to run Spark on your

http://spark.apache.org/downloads.html
http://spark.apache.org/downloads.html

16

computer. Clicking the link on line 4 will trigger the binary file download process. There

is a way to manually package the Spark binary from source code, and the instructions for

how to do that will be available later in the chapter.

Figure 2-1. Apache Spark download options

 Installing Spark
Once the binary file is successfully downloaded onto your computer, the next

step is to uncompress it. The downloaded file, spark-2.x.x-bin-hadoop2.7.tgz, is in a

GZIP- compressed tar archive file, so you need to use the right tool to uncompress it.

For Linux or Mac computers, the tar command should already exist. So, run the

following command to uncompress the downloaded file:

tar xvf spark-2.x.x-bin-hadoop2.7.tgz

For Windows computers, you can use either the WinZip or 7-zip tool to unzip the

downloaded file.

Once the uncompressing is successfully finished, there should be a directory

called spark-2.x.x-bin-hadoop2.7. From here on, this directory is referred to as the

Spark directory.

Note If a different version of Spark was downloaded, the directory name will be
slightly different.

Chapter 2 WorkIng WIth apaChe Spark

17

There are about a dozen directories underneath the Spark directory. Table 2-1 lists

the ones you should know.

Table 2-1. Subdirectories Inside the spark-2.1.1-bin-hadoop2.7 Directory

Name Description

bin Contains the various executable files to bring up a Spark shell in Scala or python,

submit Spark applications, and run Spark examples

data Contains small sample data files for various Spark examples

examples Contains both the source code and binary file for all Spark examples

jars Contains the necessary binaries that are needed to run Spark

sbin Contains the executable files to manage the Spark cluster

After the uncompressing step, the next step is to test the installation by bringing up

the Spark shell.

A Spark shell is like a Unix shell, but it is for Spark. It provides an interactive

environment to make it easy to learn the Spark APIs and to analyze data interactively.

The cool thing is that it is available in either Scala or Python. If you are a data scientist

and Python is your cup of tea, then you will be at home. The following sections will show

how to bring up the Spark Scala and Spark Python shells.

Note the Scala programming language is a JVM language, and thus it is easy for
Scala to use existing Java libraries.

 Spark Scala Shell

To start a Spark Scala shell, enter this command in the Spark directory:

./bin/spark-shell

Chapter 2 WorkIng WIth apaChe Spark

18

After a few seconds, you should see something similar to Figure 2-2.

Figure 2-2. Scala Spark shell output

To exit the Scala Spark shell, type :quit or :q.

Note the Spark Scala shell requires Java 1.8.x installed on your machine.

 Spark Python Shell

To start up a Spark Python shell, enter this command in the Spark directory:

./bin/pyspark

After a few seconds, you should see something similar to Figure 2-3.

Figure 2-3. Output of the Python Spark shell

Chapter 2 WorkIng WIth apaChe Spark

19

To exit the Python Spark shell, press Ctrl+D.

Note the Spark python shell requires python 2.6.x or newer installed on your
machine.

Both the Spark Scala shell and the Spark Python shell are extensions of Scala

REPL and Python REPL, respectively. REPL is an acronym for read-eval-print loop. It

is basically an interactive computer programming environment that takes user input,

evaluates it, and returns the result to the user. Once a line of code is entered, the REPL

will immediately provide feedback about whether there was a syntactic error. If there

are no syntactic errors, that line of code will evaluated, and the output is displayed in

the shell if there is any. The interactive and immediate feedback environment allows

developers to be very productive by bypassing the code compilation step in the normal

software development process.

For the purpose of learning Spark, the Spark shell is a convenient tool to use on

your local computer anytime and anywhere. It doesn’t have any external dependencies,

other than the data files you would like to process. However, if you have an Internet

connection, then it is possible to access those remote data files, but it will be slow.

The remaining chapters of this book will use the Spark Scala shell.

 Having Fun with the Spark Scala Shell
This section will provide detailed information about the Scala Spark shell and a set of

useful commands to know to be effective at using it for exploratory data analysis or for

building Spark applications interactively.

The command ./bin/spark-shell effectively starts a Spark application and

provides an environment where you can interactively call Spark Scala APIs to easily

perform exploratory data processing. Since the Spark Scala shell is an extension of the

Scala REPL, it is a great way to use it to learn Scala and Spark at the same time.

 Useful Spark Scala Shell Commands and Tips
Once a Spark Scala shell is started, it puts you in an interactive environment where you

can enter shell commands and Scala code. This section will cover the various useful

commands and a few tips for working with this shell.

Chapter 2 WorkIng WIth apaChe Spark

20

Once you are inside the Spark shell, type the following to bring up a complete list of

available commands:

scala> :help

Figure 2-4 shows the output of the previous command.

Figure 2-4. List of available shell commands

Some commands are used more often than others because of their usefulness.

Table 2-2 describes the commonly used commands.

Table 2-2. Useful Spark Shell Commands to Know

Name Description

:history this command displays what was entered during the previous Spark shell session as

well as the current session. It is useful for copying purposes.

:load this command loads and executes the code in the provided file. this is particular

useful when the data processing gets a bit long. It is a bit easier to keep track of the

logic and what’s going in a file than in the shell.

:reset after experimenting with the various Scala or Spark apIs for a while, you may lose

track of the value of various variables. this command resets the shell to a clean state

to make it easy to reason about.

(continued)

Chapter 2 WorkIng WIth apaChe Spark

21

In addition to these commands, a helpful feature for improving developer

productivity is the code completion feature. Similar to popular integrated development

environments (IDEs) like Eclipse or IntelliJ, the code completion feature helps

developers by exploring the possible options and reducing typing errors.

Inside the shell, type spa and then hit the Tab key. The environment will add

characters to transform spa to spark. In addition, it will show a list of possible matches

for spark, as shown in Figure 2-5.

scala> spa <tab>

Name Description

:silent this is for an advanced user who is a bit tired at looking at the output of each Scala

or Spark apI that was entered in the shell. the command will stop the shell from

displaying the default output after evaluating an expression. to re-enable the output,

simply type :silent again.

:quit this is a pretty self-explanatory command but useful to know. oftentimes, people try

to quit the shell by entering :exit, which doesn’t work.

:type this command displays the type of a variable, for example, :type <variable name>.

Table 2-2. (continued)

Figure 2-5. Tab completion output of spa

In addition to completing the name of a partially entered word, the tab completion

feature can show the available member variables and functions of an object.

Inside the shell, type spark. and then hit the Tab key. This will display a list of

available member variable and functions of the Scala object represented by the spark

variable, as shown in Figure 2-6.

Chapter 2 WorkIng WIth apaChe Spark

22

The command :history displays the previously entered commands or lines of code.

This suggests that the Spark shell maintains a record of what was entered. One way to

quickly display or recall what was entered recently is by pressing the up arrow key. Once

you scroll up to the line you would like to execute, simply just hit Enter to execute it.

 Basic Interactions with Scala and Spark
Now that you know how to navigate around the Spark shell, this section will introduce

a few fundamental ways of working with Scala and Spark in the Spark shell. This

fundamental knowledge will be really helpful in future chapters, which go into much

deeper details of topics such as Spark RDDs, Spark SQL, and so on.

 Basic Interactions with Scala

Let’s start working with Scala in the Spark Scala shell, which provides a full-blown

environment for learning Scala. Think of the Spark Scala shell as a Scala application

with an empty body, which is where you come in. You fill this empty body with Scala

functions and logic for your application. The intention of this section is to demonstrate

a few simple Scala examples in the Spark shell. Scala is a fascinating programming

language that is powerful, concise, and elegant. (Please refer to Scala-related books to

learn more about the Scala programming language.)

Let’s begin with some basic Scala. The canonical example for learning any

programming language is the “Hello World” example, which entails printing out a

message, so let’s do that. Enter the following line into the Spark Scala shell; the output

should look something like Figure 2-7:

scala> println("Hello from Spark Scala shell")

Figure 2-6. List of available member variables and functions of the object called spark

Chapter 2 WorkIng WIth apaChe Spark

23

The next example is to define an array of ages and print those element values in the

Spark shell. In addition, this example illustrates the code completion feature that was

mentioned in the previous section.

To define an array of ages and assign it to an immutable variable, enter the following

into the Spark shell. See Figure 2-8 for the evaluation output.

scala> val ages = Array(20, 50, 35, 41)

Figure 2-7. Output of the “Hello World” example

Figure 2-8. Output of defining an array of ages

Now you can refer to the variable ages, as in the following line of code. Let’s pretend

that you can’t exactly remember a function name in the Array class that you can use to

iterate through the elements in the array, but you know it starts with fo. Then you can

just enter the following and hit Tab to see how the Spark shell can help you:

scala> ages.fo

After you press the Tab key, the Spark shell displays the output shown in Figure 2-9.

Figure 2-9. Output of code completion

Aha—what you need is the foreach function to iterate through the elements in the

array. Let’s use it to print the ages.

scala> ages.foreach(println)

Chapter 2 WorkIng WIth apaChe Spark

24

Figure 2-10 shows the expected output.

Figure 2-10. Output from printing the ages

The previous line of code may look a bit cryptic for those who are new to Scala;

however, you can intuitively guess what it does. As the function foreach iterates through

each element in the ages array, it passes that element to the println function to print

the value to the console. You will use this style quite a bit in the coming chapters.

The last example in this section is to define a Scala function to determine whether an

age is an odd or even number, and then you will use it to find out what the odd-number

ages are in the array.

scala> def isOddAge(age:Int) : Boolean = {

 (age % 2) == 1

}

If you are coming from a Java programming background, the previous function

signature may look a bit strange, but it is not too difficult to decipher what the function

does. Notice the function doesn’t use the return keyword to return the value of the

expression in its body. In Scala, it is not necessary to add the return keyword. The output

of the last statement in a function body will be returned to the caller (if that functions was

defined to return a value). See Figure 2-11 for the output from the Spark shell.

Figure 2-11. If there is not a syntax error, the Spark shell returns the function
signature

To figure out what the odd-number ages are in the ages array, you will leverage the

filter function in the Array class.

scala> ages.filter(age => isOddAge(age)).foreach(println)

Chapter 2 WorkIng WIth apaChe Spark

25

The previous line of code does the filtering and then iterates through the result to

print out the odd ages. It is a common practice in Scala to use function chaining to make

the code concise. See Figure 2-12 for the output from the Spark shell.

Figure 2-12. Output of filtering and printing only the ages that are odd numbers

Now let’s try the shell command called :type on a Scala variable and function that

was defined earlier. This command comes in handy after you have been using the Spark

shell for a while and lose track of the data type of a certain variable or the return type of a

function. See Figure 2-13 for examples of using the:type command.

Figure 2-13. Output of the :type command

For the purpose of learning Spark, it is not absolutely necessary to master the Scala

programming language. However, you must be comfortable with knowing and working

with the basics of Scala. Here is a good resource about learning just enough Scala to

learn Spark: https://github.com/deanwampler/JustEnoughScalaForSpark. This

resource was presented at various Spark-related conferences.

 Spark UI and Basic Interactions with Spark

In the previous section, I mentioned the Spark shell is a Scala application. That is only

partially true. The Spark shell is actually a Spark application written in Scala. When the

Spark shell is started, a few things are initialized and set up for you to use, including

Spark UI and a few important variables.

Chapter 2 WorkIng WIth apaChe Spark

https://github.com/deanwampler/JustEnoughScalaForSpark

26

Spark UI

If you carefully examine the Spark shell output in either Figure 2-2 or Figure 2-3, you will

see a line that looks something like the following. The URL may look a bit different for

your Spark shell, but the important thing is the URL.

Spark context Web UI available at http://192.168.1.73:4042

If you point your browser to that URL in your Spark shell, your browser will display

something like Figure 2-14.

Figure 2-14. The Spark UI

The Spark UI is a web application designed to help with monitoring and debugging

Spark applications. It contains detailed runtime information and various resource

consumptions of a Spark application. The runtime includes various metrics that are

tremendously helpful in diagnosing performance issues in your Spark applications. One

thing to note is that the Spark UI is available only while a Spark application is running.

The navigation bar at the top of the Spark UI contains links to the various tabs

including jobs, stages, storage, environment, executors, and SQL. For now, I will briefly

cover the Environment and Executors tabs and will describe the remaining tabs in later

chapters.

The Environment tab contains the basic information about the environment that a

Spark application is running in. The sections are Runtime Information, Spark Properties,

System Properties, and Classpath Entries. Table 2-3 provides some details about each of

these areas.

Chapter 2 WorkIng WIth apaChe Spark

27

The Executors tab contains the summary and breakdown information for each of the

executors that is supporting a Spark application. This information includes the capacity

of certain resources as well as how much is being used in each executor. The resources

include memory, disk, CPU, and so on. The Summary section provides a bird’s-eye view

of the resource consumption across all the executors in a Spark application. See

Figure 2- 15 for more details.

Table 2-3. Information About the Various Sections Inside the Environment Tab

Name Description

runtime

Information

this section contains the locations and versions of the various components that

Spark depends on, including Java and Scala.

Spark

properties

this area contains the basic and advanced properties that are configured in a Spark

application. the basic properties include the basic information about an application

such as application ID, name, etc. the advanced properties are meant to turn on

or off certain features of Spark or to tweak them in certain ways that are best for

a particular application. See https://spark.apache.org/docs/latest/

configuration.html for a comprehensive list of configurable properties.

System

properties

these properties are mainly at the oS and Java level and are not Spark specific.

Classpath

entries

this area contains a list of classpaths and Jar files that are used in a Spark

application.

Chapter 2 WorkIng WIth apaChe Spark

https://spark.apache.org/docs/latest/configuration.html
https://spark.apache.org/docs/latest/configuration.html

28

Basic Interactions with Spark

Once a Spark shell is successfully started, a notable variable called spark is initialized

and ready to be used in the Spark shell. This spark variable is an instance of a class

called SparkSession. Let’s use the :type command to verify this.

scala>:type spark

The Spark shell displays its type, as shown in Figure 2-16.

Figure 2-15. Executors tab of a Spark application that uses only a single executor

Figure 2-16. Showing the type of the spark variable

Chapter 2 WorkIng WIth apaChe Spark

29

The SparkSession class was introduced in Spark 2.0 to provide a single point of entry

to interact with underlying Spark functionalities. This class has APIs for reading data

from an unstructured text file as well as structured and binary data in various formats

including JSON, CSV, Parquet, ORC, and so on. In addition, SparkSession provides a

facility for retrieving and setting Spark-related configurations.

Let’s start interacting with the spark variable in the Spark shell to print out a few

useful pieces of information, such as the version and existing configurations. From the

Spark shell, type the following code to print the Spark version (see Figure 2-17 for the

output):

scala> spark.version

Figure 2-17. Spark version output

To be a little more formal, you can use the println function that you learned in the

previous section to print out the Spark version, as shown in Figure 2-18.

scala> println("Spark version:" + spark.version)

Figure 2-18. Displaying the Spark version using the println function

To see the default configuration that was configured in the Spark shell, you access

the conf variable of spark. Here is the code to display the default configuration in the

Spark shell (the output is shown in Figure 2-19):

scala> spark.conf.getAll.foreach(println)

Chapter 2 WorkIng WIth apaChe Spark

30

To see the complete set of available objects you can access from spark, you can

leverage the Spark shell code completion features.

scala> spark.<tab>

Figure 2-20 contains the result of the previous command.

Figure 2-19. Default configuration in the Spark shell application

Figure 2-20. A complete list of variables that can be accessed from the spark
variable

Future chapters will have more examples of using spark to interact with the

underlying Spark functionalities.

 Introduction to Databricks
Databricks is a commercial product that is offered by a company called Databricks,

which is the main driving force behind Apache Spark. According to its product

documentation, Databricks is a just-in-time data platform that runs in the cloud and is

fully managed. The main goal of this platform is to make big data simple and empower

anyone to easily build and deploy advanced analytics solutions. It is built around Apache

Spark and provides four main value propositions to customers around the world. See

Figure 2-21 for more details.

Chapter 2 WorkIng WIth apaChe Spark

31

• Fully managed Spark clusters

• An interactive workspace for exploration and visualization

• A production pipeline scheduler

• A platform for powering your favorite Spark-based applications

Figure 2-21. Databricks platform

The Databricks product has two versions, the full platform and the community

edition. The full platform is a paid product for companies to leverage all the advanced

features in the Databricks product. The community edition is free and ideal for those

who want to try Databricks and to learn Apache Spark.

The following section will cover the basic features of the Databricks community

edition so you can use Databricks to learn Apache Spark. Once you are familiar with

Databricks, you will find it easy and intuitive to learn Spark, to perform data analysis, or

to build Spark applications. This section is not intended to be a comprehensive guide

about the Databricks product. All future examples will be done in a Spark shell. For a

comprehensive guide about DataBricks, please refer to https://docs.databricks.com/

user-guide/index.html.

The first step to use Databricks is to sign up for a free account on the Databricks

community edition at https://accounts.cloud.databricks.com/registration.

html#signup/community. This process is pretty simple and quick, and an account can

Chapter 2 WorkIng WIth apaChe Spark

https://docs.databricks.com/user-guide/index.html
https://docs.databricks.com/user-guide/index.html
https://accounts.cloud.databricks.com/registration.html#signup/community
https://accounts.cloud.databricks.com/registration.html#signup/community

32

be created in a matter of minutes. Once the necessary information is provided and

submitted in the sign-up form, you will receive an email from Databricks to confirm your

email, which looks something like Figure 2-22.

Figure 2-22. Databricks email to confirm your email address

By clicking the link in the previous email, you will be taken to the Databricks sign-in

form, as shown in Figure 2-23.

Figure 2-23. Databricks sign-in page

Chapter 2 WorkIng WIth apaChe Spark

33

After a successful sign-in using the email and password that you provided during the

sign-up step, you will see the Databricks welcome page, as shown in Figure 2-24.

Figure 2-24. Databricks welcome page

Over time, the welcome page may evolve, so it may not look exactly like Figure 2-24.

Feel free to explore by going into those featured notebooks at the top.

The goal of this section is to create a notebook in Databricks so you can learn

the commands that were covered in the previous section. To this, you need to do the

following:

 1. Create a cluster.

 2. Create a folder.

 3. Create a notebook.

 Creating a Cluster
One of the coolest features of the Databricks community edition (CE) is that it provides a

single-node Spark cluster with 6GB of memory for free. At the time of writing this book,

this single-node cluster is hosted on the AWS cloud. Each Databricks CE account can

Chapter 2 WorkIng WIth apaChe Spark

34

create only one cluster at a time. A cluster will continue to stay up as long as it is being

used. Databricks will automatically shut it down if it is idle for a certain amount of time

(two hours). This means you can either shut down the cluster yourself or let Databricks

do it on your behalf.

To create a cluster, click the Clusters icon in the vertical navigation bar on the left

side of the page. The Clusters page looks like Figure 2-25.

Figure 2-25. Databricks Clusters page with no active clusters

Now click the Create Cluster button to bring up the New Cluster form, as shown in

Figure 2-26.

Chapter 2 WorkIng WIth apaChe Spark

35

The only required field on this form is the cluster name. Table 2-4 briefly describes

all the fields.

Figure 2-26. Create Cluster form

Table 2-4. Fields on the Databricks New Cluster Form

Name Description

Cluster name this is a unique name to identify your cluster. the name can have a space

between each word. For example, it can be named “my spark cluster.”

Databricks runtime

Version

Databricks supports many versions of Spark. For learning purposes, select

the latest version, which was automatically filled in for you. each version

is tied to a specific aWS image.

Instance For the Ce edition, no other choices are available.

aWS – availability Zone this allows you to decide which aWS availability zone your single-node

cluster will run in. the options may look different based on your location.

Spark – Spark Config this allows you to specify any application-specific configurations that

should be included to launch the Spark cluster. examples of this include

JVM configurations, the ability to turn on certain Spark features, and so on.

Chapter 2 WorkIng WIth apaChe Spark

36

Once the Cluster Name field is filled in, click the Create Cluster button. Depending

on the day, it can take from one minute to ten minutes to create your single-node Spark

cluster. Once the Spark cluster was successfully created, a green dot appears next to your

cluster name, as shown in Figure 2-27.

Figure 2-27. After a cluster is created successfully

Feel free to explore by clicking the name of your cluster or various links on this

page. Notice if you try to create another Spark cluster by following the previous steps,

Databricks will not allow you to do so while there is already a running cluster.

To stop an active Spark cluster, click the square in the Actions column.

For more information on creating and managing Spark clusters on Databricks, see

https://docs.databricks.com/user-guide/clusters/index.html.

Let’s move on to the next step, which is to create a folder.

 Creating a Folder
Before going into how to create folder, it is worth taking a moment to describe the

workspace concept in Databricks. The easiest way to think about a workspace is to treat

it as the root folder on your computer, which means you can put files there or create

folders to help you organize your files in a specific manner.

To create a folder, click the Workspace icon in the vertical navigation bar on the left

side of the page. The Workspace column will slide out, as shown in Figure 2-28.

Chapter 2 WorkIng WIth apaChe Spark

https://docs.databricks.com/user-guide/clusters/index.html

37

Now click the downward arrow in the upper right of the Workspace column, and a

cascading drop-down menu will appear, as shown in Figure 2-29.

Figure 2-28. Workspace column

Figure 2-29. Menu item for creating a folder

Chapter 2 WorkIng WIth apaChe Spark

38

Selecting the Folder menu item will bring up the New Folder Name dialog box, as

shown in Figure 2-30.

Figure 2-30. New Folder Name dialog box

Now you can enter a folder name, such as Chapter 2, and click the Create Folder

button to complete the process. The Chapter 2 folder should now appear in the

Workspace column, as shown in Figure 2-31.

Figure 2-31. Chapter 2 folder appears in the Workspace column

Before moving on to create a notebook, it is worth mentioning there is an alternative

way to create a folder, which is by placing the mouse pointer anywhere in the Workspace

column and right-clicking; then the same menu options will appear.

For more details on using workspaces and creating folders, please check out

https://docs.databricks.com/user-guide/workspace.html.

Chapter 2 WorkIng WIth apaChe Spark

https://docs.databricks.com/user-guide/workspace.html

39

 Creating a Notebook
Next you want to create a Scala notebook in the Chapter 2 folder. First select the

Chapter 2 folder in the Workspace column. The Chapter 2 column slides out after the

Workspace column, and it looks something like Figure 2-32.

Figure 2-32. The Chapter 2 column appears to the right of the Workspace column

Now you can either click the downward arrow in the upper-right corner of the

Chapter 2 column or right-click anywhere in the Chapter 2 column to bring up the

menu, as shown in Figure 2-33.

Chapter 2 WorkIng WIth apaChe Spark

40

Selecting the Notebook menu item will bring up the Create Notebook dialog box.

Give your notebook a name and make sure to select the Scala option for the Language

field. The value for the cluster should be filled in automatically because the Databricks

CE edition can have only one cluster a time. Your dialog box should look something like

Figure 2-34.

Figure 2-33. Creating a notebook menu item

Figure 2-34. Create Notebook dialog box with the Scala language option selected

Chapter 2 WorkIng WIth apaChe Spark

41

If you have never worked with IPython Notebook, the notebook concept may seem a

bit strange at first. However, once you get used to it, you will love it.

A notebook is essentially an interactive computational environment (similar to the

Spark shell but way better) in which you can execute Spark code, document your code

with rich text using Markdown or HTML, and visualize the result of your data analysis

with various types of charts and graphs.

The following section will cover only a few essential instructions to help you be

productive at using Spark notebooks. For a comprehensive list of instructions on how to

use and interact with Databricks notebooks, please see https://docs.databricks.com/

user-guide/notebooks/index.html.

A Spark notebook contains a collection of cells, where each one contains a block of

code either to execute or to mark up for documentation purposes.

Once the Create button is clicked, a new notebook is created, as shown in Figure 2- 35.

Figure 2-35. New Scala notebook

Chapter 2 WorkIng WIth apaChe Spark

https://docs.databricks.com/user-guide/notebooks/index.html
https://docs.databricks.com/user-guide/notebooks/index.html

42

Note a good practice of using a Spark notebook is to break your data processing
logic into multiple logical groups so each group resides in one or more cells. this is
similar to the practice of developing maintainable software applications.

You are going to divide your notebook into two parts. The first part will contain the

code snippets you typed in the earlier “Basic Interactions with Scala” section, and the

second part will contain the code snippets you typed in the earlier “Basic Interactions

with Spark” section.

Let’s start with adding a markdown statement into the first cell of the notebook by

enter the following (see Figure 2-36):

%md #### Basic Interactions with Scala

To execute that markup statement, first make sure the mouse cursor is in cell 1 and

then hold down the Shift key and hit the Enter key. That is the shortcut for running code

or markup statements in a cell. The result should look like Figure 2-37.

Figure 2-36. Cell containing section header markup statement

Chapter 2 WorkIng WIth apaChe Spark

43

Notice the Shift+Enter key combination not only executed what’s in that cell but also

created a new cell below it. Now let’s type the “Hello World” example from earlier into

the second cell and execute that cell. The output should look like Figure 2-38.

Figure 2-37. The output of executing a markup statement in a cell

Figure 2-38. Output of executing the println statement

Chapter 2 WorkIng WIth apaChe Spark

44

Copy the remaining three code statements in the “Interactions with Scala” section

into the notebook, as shown in Figure 2-39.

Just like the Spark Scala shell, a Scala notebook is a full-blown Scala interactive

environment where you can execute Scala code.

Now let’s enter the second markup statement to denote the beginning of the second

part of the notebook and then paste the remaining code snippets from the “Interactions

with Spark” section. See Figure 2-40 for the output.

%md #### Basic Interactions with Spark

Figure 2-39. The remaining code statements from the “Interactions with Scala”
section

Chapter 2 WorkIng WIth apaChe Spark

45

There are a few important notes to know when working with a Spark notebook.

One of the convenient features in a Spark notebook is autosaving. The content of the

notebook is automatically saved as you enter market statements or code snippets. In fact,

the available menu items under the File menu item don’t even have an option for saving

a notebook.

Sometimes there is a need to create a new cell between two existing cells. One way

to do this is to move the mouse cursor to the space between two existing cells; then click

the plus icon that appears to create a new cell. See Figure 2-41 to see what the plus icon

looks like.

Figure 2-41. Using a plus icon to insert a new cell between two existing cells

Figure 2-40. Output of the code snippets from the “Interactions with Spark” section

Chapter 2 WorkIng WIth apaChe Spark

46

Sometimes you will want to share your notebook with a co-worker who works

in a remote office or with other collaborators to either show off your awesome Spark

knowledge or get their feedback on your analysis of certain datasets. Databricks makes

it easy to do that. Simply click the File menu item at the top of your Spark notebook and

select the Publish submenu item, as shown in Figure 2-42.

Clicking the Publish submenu item will bring up the confirmation dialog box

(Figure 2-43), and if you follow through with it, then the Notebook Published dialog box

(Figure 2-44) provides a URL that you can send to anyone in the world. With that URL,

your co-worker or collaborators will have access to the read-only view of your book plus

the options of importing it into their Databricks accounts.

Figure 2-43. Publishing confirmation dialog box

Figure 2-42. Notebook publishing menu item

Chapter 2 WorkIng WIth apaChe Spark

47

Figure 2-44. Notebook published URL

This section covered only the essential parts of using Databricks. There are other

advanced features that make it really enticing to use Databricks as the platform of choice

for performing interactive data analysis or building advanced data solutions.

The Databricks CE has made it much easier than ever before to learn Spark. I highly

recommend giving Databricks a try in your journey of learning Spark.

 Setting Up the Spark Source Code
This section is geared toward software developers or anyone who is interested in

learning how Spark works at the code level. Since Apache Spark is an open source

project, its source code is public and available for you to download, examine, and study

how certain features were implemented. The Spark code was written in Scala by some of

the smartest Scala programmers on the planet, so examining the Spark code is another

way of improving your Scala programming skills and knowledge.

There are two ways to download the Apache Spark source code to your computer. The

first way is to download it from the Spark download page (http://spark.apache.org/

downloads.html), which is the same page you used earlier to download the Spark

binary file. This time choose the Source Code package type, as shown in Figure 2-45.

Chapter 2 WorkIng WIth apaChe Spark

http://spark.apache.org/downloads.html
http://spark.apache.org/downloads.html

48

To complete the source code download process, click the link on line 4 to download

the compressed source code file. The final step is to uncompress that file into your

choice of directory.

The second way to download the Apache Spark source code is to use the git clone

command. This requires an installation of git on your computer. You can download

git from https://git-scm.com/downloads; the installation instructions are available

at https://git-scm.com/book/en/v2/Getting-Started-Installing-Git. Once git is

properly installed on your computer, issue the following command to clone the Apache

Spark git repository on GitHub (https://github.com/apache/spark):

git clone git://github.com/apache/spark.git

There are roughly about 2,600 Scala files in Spark, so it will take a minute or two to

download all those files.

Once the Apache Spark source code is downloaded on your computer, check

http://spark.apache.org/developer-tools.html for the details about how to import

them into your favorite IDE.

Figure 2-45. Apache Spark source download option

Chapter 2 WorkIng WIth apaChe Spark

https://git-scm.com/downloads
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://github.com/apache/spark
http://spark.apache.org/developer-tools.html

49

 Summary
In this chapter, you learned the following:

• There are a few tools to use to learn Spark. You can either use the

locally installed Spark or use a Databricks CE account. These tools

make it easy for anyone to learn Spark.

• The Spark shell is a powerful and interactive environment to learn

Spark or to analyze data interactively. There are two types of Spark

shell: the Spark Scala shell and the Spark Python shell.

• The Spark shell provides a set of commands to help its users become

productive.

• Databricks is a fully managed data platform designed to make big

data simple and to empower anyone to easily build and deploy

advanced analytics solutions. The interactive workspace helps

you organize notebooks into folders. Each notebook contains a

combination of markup statements and Spark code snippets. Sharing

a notebook with others requires only a few mouse clicks.

• For software developers who are really interested in learning about

the internals of Spark, downloading and examining the Apache Spark

source code is a great way to satisfy that curiosity.

Chapter 2 WorkIng WIth apaChe Spark

51
© Hien Luu 2018
H. Luu, Beginning Apache Spark 2, https://doi.org/10.1007/978-1-4842-3579-9_3

CHAPTER 3

Resilient Distributed
Datasets
This chapter covers the oldest foundational concept in Spark called resilient distributed

datasets (RDDs). To truly understand how Spark works, you must understand the

essence of RDDs. They provide an extremely solid foundation that other abstractions are

built upon. The ideas behind RDDs are pretty unique in the distributed data processing

framework landscape, and they were introduced in a timely manner to solve the pressing

needs of dealing with the complexity and efficiency of iterative and interactive data

processing use cases. Starting with Spark 2.0, Spark users will have fewer needs for

directly interacting with RDD, but having a strong mental model of how RDD works is

essential. In a nutshell, Spark revolves around the concept of RDDs.

 Introduction to RDDs
RDDs represent both the idea of how a large dataset is represented in Spark and the

abstraction for working with it. This section will cover the former part, and the following

sections will cover the latter part.

According to the seminal paper on Spark,1 RDDs are immutable, fault-tolerant,

parallel data structures that let users explicitly persist intermediate results in memory,

control their partitioning to optimize data placement, and manipulate them using a rich

set of operators. Let’s dissect this description to truly understand the ideas behind the

RDD concept.

1 “Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing”

52

 Immutable
RDDs are designed to be immutable, which means you can’t specifically modify a

particular row in the dataset represented by that RDD. You can call one of the available

RDD operations to manipulate the rows in the RDD into the way you want, but that

operation will return a new RDD. The basic RDD will stay unchanged, and the new RDD

will contain the data in the way that you want. The immutability of RDDs essentially

requires an RDD to carry its lineage information that Spark leverages to efficiently

provide the fault tolerance capability.

 Fault Tolerant
The ability to process multiple datasets in parallel usually requires a cluster of machines

to host and execute the computational logic. If one or more of those machines dies or

becomes extremely slow because of unexpected circumstances, then how will that affect

the overall data processing of those datasets? The good news is that Spark automatically

takes care of handling the failure on behalf of its users by rebuilding the failed portion

using the lineage information, which will be discussed later in this chapter.

 Parallel Data Structures
Imagine the use case where someone gives you a large log file that is 1TB size and you

are asked to find out how many log statements contain the word exception in it. A slow

solution would be to iterate through that log file from the beginning to the end and

execute the logic of determining whether a particular log statement contains the word

exception. A faster solution would be to divide that 1TB file into several chunks and

execute the aforementioned logic on each chunk in a parallelized manner to speed up

the overall processing time. Each chunk contains a collection of rows.

The collection of rows is essentially the data structure that holds a set of rows and

provides the ability to iterate through each row. Each chunk contains a collection of

rows, and all the chunks are being processed in parallel. This is where the phrase parallel

data structures comes from.

Chapter 3 resilient DistributeD Datasets

53

 In-Memory Computing
The idea of speeding up the computation of large datasets that reside on disks in a

parallelized manner using a cluster of machines was introduced by a MapReduce paper2

from Google. This idea was implemented and is made available in the Hadoop open

source project. Building on that solid foundation, RDD pushes the speed boundary by

introducing a novel idea, which is the ability to do distributed in-memory computation.

It is always fascinating to examine the stories that led up the creation of an

innovative idea. In the world of big data processing, once you are able to extract insights

from large datasets in a reliable manner using a set of rudimentary techniques, then you

want to use more sophisticated techniques as well to reduce the amount of time it takes

to do that. This is where distributed in-memory computation helps. The sophisticated

technique I am referring to is using machine learning to perform various predictions

or to extract patterns out of large datasets. Machine learning algorithms are iterative in

nature, meaning they need to go through many iterations to arrive at an optimal state.

This is where distributed in-memory computation can help in reducing the completion

time from days to hours. Another use case that can hugely benefit from distributed

in-memory computation is interactive data mining, where multiple ad hoc queries are

performed on the same subset of data. If that subset of data is persisted in memory,

those queries will take seconds and not minutes to complete.

 Data Partitioning and Placement
The information about how the rows in a dataset are partitioned into chunks and about

their physical location is considered to be the dataset metadata. This information helps

Spark perform optimizations while executing the computational logic.

For example, while joining two datasets, the data partition information is useful

to determine whether it is necessary to move the rows from various chunks of the two

datasets to the same location to perform the join. Moving data across machines is an

expensive operation, and therefore minimizing it would dramatically reduce the overall

processing time.

Data placement information helps to reinforce the data locality concept, which

means bringing the computation to where the data lives. Knowing where the chunks

2 “MapReduce: Simplified Data Processing on Large Clusters”. https://static.
googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf

Chapter 3 resilient DistributeD Datasets

https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf

54

are located on a cluster, Spark can use those machines to host and execute the

computational logic on those chunks, and therefore the time to read the rows from those

chunks would be much less than reading them from a different node on the cluster.

 Rich Set of Operations
RDDs provide a rich set of commonly needed data processing operations. They include the

ability to perform data transformation, filtering, grouping, joining, aggregation, sorting, and

counting. These operations will be covered in more detail in the second half of this chapter.

One thing to note about these operations is that they operate at the coarse-grained

level, meaning the same operation is applied to many rows, not to any specific row.

In summary, an RDD is represented as an abstraction and is defined by the following

five pieces of information:

• A set of partitions, which are the chunks that make up the entire dataset

• A set of dependencies on parent RDDs

• A function for computing all the rows in the data set

• Metadata about the partitioning scheme (optional)

• Where the data lives on the cluster (optional); if the data lives on

HDFS, then it would be where the block locations are located

The Spark runtime uses these five pieces of information to schedule and execute the

user data processing logic that is expressed via the RDD operations, which are described

in the following section.

The first three pieces of information make up the lineage information, which Spark

uses for two purposes. The first one is determining the order of execution of RDDs, and

the second one is for failure recovery purposes.

 RDD Operations
This section will go into detail about the commonly used RDD operations and their behavior.

Before going into the details, it is imperative to internalize a few core concepts about them.

The RDD operations operate at a coarse-grained level, which was described earlier.

Each row in a dataset is represented as a Java object, and the structure of this Java object

is opaque to Spark. The user of RDD has complete control over how to manipulate this

Chapter 3 resilient DistributeD Datasets

55

Java object. This flexibility comes with a lot of responsibilities, meaning some of the

commonly needed operations such as the computing average will have to be hand-

crafted. Higher-level abstractions such as the Spark SQL component will provide this

functionality out of the box.

The RDD operations are classified into two types: transformations and actions.

Table 3-1 describes the main differences between them.

Table 3-1. Main Differences Between Transformations and Actions

Type Evaluation Returned Value

transformation lazy another rDD

action eager some result or write result to disk

Transformation operations are lazily evaluated, meaning Spark will delay the

evaluations of the invoked operations until an action is taken. In other words, the

transformation operations merely record the specified transformation logic and will

apply them at a later point. On the other hand, invoking an action operation will trigger

the evaluation of all the transformations that preceded it, and it will either return some

result to the driver or write data to a storage system, such as HDFS or the local file

system.

The lazy evaluation design makes sense in the world of big data. It is not desirable

to immediately trigger an evaluation of every single filtering operation when a dataset

is large in size. The typical end goal of a data processing task is to write the result out

to some external storage system or to see how many records there are. This is when it

makes sense to evaluate all the previously specified computational logic. One important

optimization technique behind the lazy evaluation concept is the ability to collapse or

combine similar transformations into a single operation during execution time.

In short, RDDs are immutable, RDD transformations are lazily evaluated, and RDD

actions are eagerly evaluated and trigger the computation of your data processing logic.

Chapter 3 resilient DistributeD Datasets

56

 Creating RDDs
Before invoking any transformation or action operations, you must have an RDD in

hand. There are three ways to create an RDD.

The first way to create an RDD is to parallelize an object collection, meaning

converting it to a distributed dataset that can be operated in parallel. This is a great way

to get started in learning Spark because it is simple and doesn’t require any data files.

This approach is often used to quickly try a feature or do some experimenting in Spark.

The way to parallelize an object collection is to call the parallelize method of the

SparkContext class. See Listing 3-1 for an example.

Listing 3-1. Creating an RDD from an Object Collection

val stringList = Array("Spark is awesome","Spark is cool")

val stringRDD = spark.sparkContext.parallelize(stringList)

The stringRDD variable represents an RDD that you can apply transformation or

action operations to.

The second way to create an RDD is to read a dataset from a storage system, which

can be a local computer file system, HDFS, Cassandra, Amazon S3, and so on. Listing 3-2

shows an example of reading a text file called data.txt from the local computer file system

in the /tmp directory.

Listing 3-2. Creating an RDD from a File Data Source

val fileRDD = spark.sparkContext.textFile("/tmp/data.txt")

The first argument of the textFile method is an URI that points to a path or a file on

the local machine or to a remote storage system. When it starts with an hdfs:// prefix, it

points to a path or a file that resides on HDFS, and when it starts with an s3n:// prefix,

then it points to a path or a file that resides on AWS S3. If a URI points to a directory, then

the textFile method will read all the files in that directory.

The textFile method assumes each file is a text file and each line is delimited by

a new line. The textFile method returns an RDD that represents all the lines in all the

files. One important to note for Spark beginners is that the textFile method is lazily

evaluated, which means if you made the mistake of specifying a wrong file or path or

misspelling a directory name, then this problem would not surface until one of the

actions is taken.

Chapter 3 resilient DistributeD Datasets

57

The third way to create an RDD is by invoking one of the transformation operations

on an existing RDD. Once you start becoming competent with Spark, you will do this all

the time without thinking twice about it.

 Transformations
Table 3-2 describes commonly used transformations. For a complete list of

transformations, refer to the RDD API documentation at https://spark.apache.

org/docs/latest/api/scala/index.html#org.apache.spark.rdd. Remember, these

transformations operate on the dataset being associated with an RDD instance and

return a new RDD.

By going through the following examples, ideally you get a sense of how easy it is to

manipulate small and large datasets using the functional APIs provided by RDD.

Table 3-2. Common Transformations

Name Description

map(func) this applies the provided function to each row as iterating

through the rows in the dataset. the returned rDD will

contain whatever the provided func returns.

flatMap(func) similar to map(func), the func should return a

collection rather than a single element, and this method

will flatten out the returned collection. this allows an input

item to map to zero or more output items.

filter(func) Only the elements that the func function returns true will

be collected in the returned rDD. in other words, collect

only the rows that meet the condition defined in the given

func function.

mapPartitions(func) similar to map(func), but this applies at the partition

(chunk) level. this requires the func function to take the

input as an iterator to iterate through each row in the

partition.

(continued)

Chapter 3 resilient DistributeD Datasets

https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.rdd
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.rdd

58

Note the func argument in each of the transformations listed in table 3-2
represents either an anonymous function or a fully defined function definition.

 Transformation Examples
The following examples build on the stringRDD created in the “Creating RDDs” section.

 map(func)

The most fundamental, versatile, and commonly used transformation is the map

operation. It is used to transform some aspect of the data per row to something else.

Listing 3-3 shows a simple example to convert each line to uppercase.

Listing 3-3. Using a Map Transformation to Convert All Characters in the String

to Uppercase

val allCapsRDD = stringRDD.map(line => line.toUpperCase)

allCapsRDD.collect().foreach(println)

Name Description

mapParitionsWithIndex(func) this is similar to mapPartitions, but an additional

partition index number is provided to the func function.

union(otherRDD) this transformation does what it sounds like. it combines

the rows in the source rDD with otherRDD.

intersection(otherRDD) Only the rows that exist in both the source rDD and

otherRDD are returned.

substract(otherRDD) this subtracts the rows in otherRDD from the source

rDD.

distinct([numTasks]) this removes duplicate rows from the source rDD.

sample(withReplace, fraction,

seed)

this is usually used to reduce a large dataset to a smaller

one by randomly selecting a fraction of rows using the

given seed and with or without replacements.

Table 3-2. (continued)

Chapter 3 resilient DistributeD Datasets

59

The second statement will collect all the rows in allCapsRDD and transfer them to

the driver side, then they will be printed out one per line. Listing 3-4 displays the output.

Listing 3-4. Output After the Converting All the Strings to Uppercase

SPARK IS COOL

SPARK IS AWESOME

Sometimes the transformation logic is complex and requires calling other APIs. In

that case, it is best to define a function to encapsulate that complexity. See Listing 3-5 for

an example of defining a function and using it in the map transformation.

Listing 3-5. Defining a Function and Using It in the Map Transformation

def toUpperCase(line:String) : String = { line.toUpperCase }

stringRDD.map(l => toUpperCase(l)).collect.foreach(println)

The output of the second line should be identical to the output in Listing 3-4.

By abstracting the complex logic in a function, it will be easier to test that logic in an

independent manner as well as improve the readability and maintainability of the data

processing logic.

Another common usage of the map transformation is to convert data in text format

to a Scala object via a case class. The will improve the readability and maintainability

of the data processing logic because the logic can refer to the actual parameter name.

See Listing 3-6 for an example.

Listing 3-6. Using a map Transformation to Convert Text Data into Scala Contact

Objects

case class Contact(id:Long, name:String, email:String)

val contactData = Array("1#John Doe#jdoe@domain.com","2#Mary

Jane#mjane@domain.com")

val contactDataRDD = spark.sparkContext.parallelize(contactData)

val contactRDD = contactDataRDD.map(l => {

 val contactArray = l.split("#")

 Contact(contactArray(0).toLong, contactArray(1), contactArray(2))

})

contactRDD.collect.foreach(println)

Chapter 3 resilient DistributeD Datasets

60

The output should look something like Listing 3-7.

Listing 3-7. Output of the Contact Data from Contact Objects

Contact(1,John Doe,jdoe@domain.com)

Contact(2,Mary Jane,mjane@domain.com)

Note in the context of data processing in spark using scala apis, the case class
is often used as a light-weight and immutable data object.

One last note about the map transformation is that the input type and the return type

of func don’t have to be of the same type. To illustrate this behavior, Listing 3-8 uses a

map transformation to transform a collection of strings to a collection of integers. The

stringRDD is RDD[String], and the stringLenRDD is RDD[Int].

Listing 3-8. Transforming from a Collection of Strings to a Collection of Integers

val stringLenRDD = stringRDD.map(l => l.length)

stringLenRDD.collect.foreach(println)

 flatMap(func)

The second most commonly used transformation is flatMap. Let’s say you want to

transform the stringRDD from a collection of strings to a collection of words. The

flatMap transformation is perfect for this use case. See Listing 3-9 for an example.

Listing 3-9. Using the flatMap Transformation to Transform Lines into Words

val wordRDD = stringRDD.flatMap(line => line.split(" "))

wordRDD.collect().foreach(println)

The output will look something like Listing 3-10.

Chapter 3 resilient DistributeD Datasets

61

Listing 3-10. Output of the flatMap Transformation Operation

Spark

is

awesome

Spark

is

cool

It is extremely important to have a clear understanding of the behavior differences

between the map and flatMap transformations. See Listing 3-11 for an example and then

closely examine the output in Listing 3-12 and Listing 3-13 to see the output differences.

Listing 3-11. The Behavior of map vs. flatMap

stringRDD.map(line => line.split(" ")).collect

stringRDD.flatMap(line => line.split(" ")).collect

Listing 3-12. The Output of the map Transformation

Array[Array[String]] = Array(Array(Spark, is, awesome), Array(Spark, is, cool))

Listing 3-13. The Output of the flatMap Transformation

Array[String] = Array(Spark, is, awesome, Spark, is, cool)

The logic inside both the map and flatMap methods is identical, but their output

is very different. When a line of words is split by a space, its output contains an array

of words, and that’s why there are two arrays in Listing 3-12. flatMap transformation

flattens the array, and therefore its output contains only the single array of words.

flatMap is a powerful and useful transformation to know, so make sure to grok it.

 filter(func)

Another commonly used transformation is the filter transformation. It does what its

name sounds like, which is to filter a dataset down to the rows that meet the conditions

defined inside the given func.

A simple example is to find out how many lines in the stringRDD contain the word

awesome. Another example is to filter a 1TB log file down to only the lines that contain

the word Exception. See Listing 3-14 for an example.

Chapter 3 resilient DistributeD Datasets

62

Listing 3-14. Filtering for Lines That Contain the Word Awesome

val awesomeLineRDD = stringRDD.filter(line => line.contains("awesome"))

awesomeLineRDD.collect

There should be only one line in the output, as shown in Listing 3-15.

Listing 3-15. Output After the Filtering

Array(Spark is awesome)

In the simple example, the anonymous function has only one Boolean predicate. The

filtering logic can be as complex as it needs to be, just as long as the given func returns a

Boolean value.

 mapPartitions(func)/mapPartitionsWithIndex(index, func)

Both mapPartitions and mapPartitionsWithIndex are useful transformations for

situations where there is a need to perform some expensive and required setups before

the transformation of each row starts. Instead of performing this expensive operation per

row, you can reduce it to just the number of partitions. An example of an expensive setup

could be creating a database connection or creating an HttpClient or JSON parser. In

general, the number of partitions in an RDD is way smaller than the number of rows in a

dataset; therefore, reducing the number of expensive setup operations to just the number

of partitions is preferred. The mapPartition transformation calls the provided func once

per partition. If an RDD has ten partitions, then the given func will be called exactly ten

times. Each time it is called, the mapPartition transformation passes an iterator to the

given func for it to loop through each of the rows in that particular partition.

The method signature of the given func must be func(Iterator[T]) =>

Iterator[U]), which means it takes an iterator of type T and returns an iterator of type U,

where type U and type T don’t necessarily have to the same.

One small difference between the mapPartitionWithIndex and mapPartition

transformations is that the partition number is available to the former transformation.

In short, the mapPartitions and mapPartitionsWithIndex transformations are used

to optimize the performance of your data processing logic by reducing the number of

times the expensive setup step is called.

Chapter 3 resilient DistributeD Datasets

63

Listing 3-16 first creates an RDD with two partitions and then creates a random

generator per partitions before iterating through each row. Finally, as it iterates through

the row, it adds a random number to each row in each partition in the RDD. Listing 3-17

shows the output after collecting. Your output maybe different because of the random

number generator.

Listing 3-16. Performing a Setup Before Performing a Transformation on Each Row

import scala.util.Random

val sampleList = Array("One", "Two", "Three", "Four","Five")

val sampleRDD = spark.sparkContext.parallelize(sampleList, 2)

val result = sampleRDD.mapPartitions((itr:Iterator[String]) => {

 val rand = new Random(System.currentTimeMillis +

Random.nextInt)

 itr.map(l => l + ":" + rand.nextInt)

 }

result.collect()

Listing 3-17. Output After Collecting

Array[String] = Array(One : -570064612, Two : -171309453,

Three : -1918855253, Four : 1535308064, Five : 1033042948)

If the processing logic inside the mapPartitions and mapPartitionsWitIndex

transformations is complex and becoming difficult to read, it is better to abstract that

logic into a function. That approach not only improves the readability but makes it easier

to test that logic.

See Listing 3-18 for an example of defining a function and how it is used; Listing 3-19

shows the output.

Listing 3-18. Creating a Function to Encapsulate the Logic of Adding Random

Numbers to Each Row

import scala.util.Random

def addRandomNumber(rows:Iterator[String]) = {

 val rand = new Random(System.currentTimeMillis + Random.nextInt)

 rows.map(l => l + " : " + rand.nextInt)

}

Chapter 3 resilient DistributeD Datasets

64

You can call the function defined in Listing 3-18 inside the mapPartitions

transformation.

Listing 3-19. Using the addRandomNumber Function in the mapPartitions

Transformation

val result = sampleRDD.mapPartitions((rows:Iterator[String]) =>

addRandomNumber(rows))

A silly example of using the mapPartitionsWithIndex transformation is to see which

numbers belong to each partition. See Listing 3-20 for how to do that.

Listing 3-20. Using the mapPartitionsWithIndex Transformation

val numberRDD = spark.sparkContext.parallelize(List(1,2,3,4,5,6,7,8,9,10), 2)

numberRDD.mapPartitionsWithIndex((idx:Int, itr:Iterator[Int]) => {

 itr.map(n => (idx, n))

 }).collect()

Listing 3-21 shows the output where each row is a tuple; the first element is the

partition number, and the second element is the original integer value.

Listing 3-21. Output of the mapPartitionsWithIndex Transformation

Array[(Int, Int)] = Array((0,1), (0,2), (0,3), (0,4), (0,5), (1,6), (1,7),

(1,8), (1,9), (1,10))

Based on the output in Listing 3-21, you know that the partition number starts with

0 rather than 1. By rearranging the numbers in the format in Listing 3-21, you can easily

determine how many integers each partition has. This knowledge is useful to determine

whether it is necessary to repartition the numbers so they are evenly distributed across

the partitions. This will help speed up the data processing logic.

The next three transformations belong to a category called set operations. They are

union, intersection, and subtract.

Chapter 3 resilient DistributeD Datasets

65

 union(otherRDD)

Unlike previous transformations that take a function as an argument, a union

transformation takes another RDD as an argument, and it will return an RDD that

combines the rows from both RDDs. This is useful for situations when there is a need to

append some rows to an existing RDD. This transformation does not remove duplicate

rows of the resulting RDD.

See Listing 3-22 for how to combine rows from two RDDs.

Listing 3-22. Combining Rows from Two RDDs

val rdd1 = spark.sparkContext.parallelize(Array(1,2,3,4,5))

val rdd2 = spark.sparkContext.parallelize(Array(1,6,7,8))

val rdd3 = rdd1.union(rdd2)

rdd3.collect()

See Listing 3-23 for the output from the union transformation.

Listing 3-23. Output of the union Transformation

Array[Int] = Array(1, 2, 3, 4, 5, 1, 6, 7, 8)

 intersection(otherRDD)

If there were two RDDs and there is a need to find out which rows exist in both of them,

then this is the right transformation to use. The way this transformation figures out

which rows exist in both RDDs is by comparing their hash codes. This transformation

guarantees the returned RDD will not contain any duplicate rows. Unlike the map and

filter transformations, the implementation of this transformation moves rows with the

same hash code to the same executor to perform the intersection. See Listing 3-24 for an

example of using the intersection transformation.

Listing 3-24. Performing an Intersection of Two RDDs

val rdd1 = spark.sparkContext.parallelize(Array("One", "Two", "Three"))

val rdd2 = spark.sparkContext.parallelize(Array("two","One","threed","One"))

val rdd3 = rdd1.intersection(rdd2)

rdd3.collect()

Chapter 3 resilient DistributeD Datasets

66

As expected, the output in Listing 3-25 shows the only value that appears in the

output is One.

Listing 3-25. Output of an Intersection Transformation

Array[Int] = Array(One)

Note if you are curious about the implementation of the intersection transformation,
take a look at that function in the RDD.scala file at https://github.com/
apache/spark. You will see that it uses a cogroup with a null value.

 substract(otherRDD)

A good use case for this transformation is when there is a need to compute the statistics

of word usage in a certain book or a set of speeches. A typical first task in this process is

to remove the stop words, which refers to a set of commonly used words in a language. In

the English language, examples of stop words are is, it, the, and and. So, if you have one

RDD that contains all the words in a book and another RDD that contains just the list of

stop words, then subtracting the first one from the second one will yield another RDD

that contains only nonstop words. See Listing 3-26 for an example of using the subtract

transformation.

Listing 3-26. Removing Stop Words Using the subtract Transformation

val words = spark.sparkContext.parallelize(List("The amazing thing about

spark is that it is very simple to learn")).flatMap(l => l.split(" ")).

map(w => w.toLowerCase)

val stopWords = spark.sparkContext.parallelize(List("the it is to that")).

flatMap(l => l.split(" "))

val realWords = words.substract(stopWords)

realWords.collect()

The output in Listing 3-27 should not contain any of the stop words.

Chapter 3 resilient DistributeD Datasets

https://github.com/apache/spark
https://github.com/apache/spark

67

Listing 3-27. Output of the subtract Transformation

Array[String] = Array(simple, learn, amazing, spark, about, very, thing)

 distinct()

The distinct transformation represents another flavor of transformation where it

doesn’t take any function or another RDD as an input parameter. Instead, it is a directive

to the source RDD to remove any duplicate rows. The question is, how does it determine

whether two rows are the same? A common approach is to transpose the content of each

row into a numeric value by computing the hash code of the content. That is exactly what

Spark does. To remove duplicate rows in an RDD, it simply computes the hash code of

each row and compares them to determine whether two rows are identical.

See Listing 3-28 for an example of the distinct transformation.

Listing 3-28. Removing Duplicates Using the distinct Transformation

val duplicateValueRDD = spark.sparkContext.parallelize(List("one", 1,

"two", 2, "three", "one", "two", 1, 2)

duplicateValueRDD.distinct().collect

As expected, the output contains only unique rows. See Listing 3-29 for the output.

Listing 3-29. Output of the distinct Transformation

Array[Any] = Array(1, 2, two, one, three)

 sample(withReplacement, fraction, seed)

Sampling is a common technique used in statistical analysis or machine learning to

either reduce a large dataset to a more manageable size or to split the input dataset

into a training set and a validation set when training a machine learning model.

This transformation performs the sampling of the rows in the source RDD based

on the following three inputs: with replacement, fraction, and seed values. The

withReplacement parameter determines whether an already sampled row will be placed

back into RDD for the next sampling. If the withReplacement parameter value is true,

it means a particular row may appear multiple times in the output. The given fraction

Chapter 3 resilient DistributeD Datasets

68

value must be between 0 and 1, and it is not guaranteed that the returned RDD will have

the exact fraction number of rows of the original RDD. The optional seed parameter is

used to seed the random generator, and it has a default value if one is not provided.

The example in Listing 3-30 first creates an RDD with ten numbers, which are placed

in two partitions; then it will try to sample the withReplacement value as true and the

fraction as 0.3.

Listing 3-30. Sampling with Replacement

val numbers = spark.sparkContext.parallelize(List(1,2,3,4,5,6,7,8,9,10), 2)

numbers.sample(true, 0.3).collect

If you run the second statement multiple times, you will see a value may appear

multiple times in the output and the number of elements may be less than or more than

fraction 0.3. See Listing 3-31 for a few sample outputs.

Listing 3-31. Output of Sampling

Array[Int] = Array(1, 7, 7, 8)

Array[Int] = Array(1, 6, 6, 7, 8, 9, 10)

Note to visually understand how rDD transformations and actions work, check out
the visual diagrams provided by Jeff thompson at http://training.databricks.
com/visualapi.pdf.

 Actions
The data processing logic in a typical Spark application will contain one or more actions,

which tell Spark to start executing all the transformation logic that led up to a particular

action. Since an action is what triggers the execution of the transformation logic in an

application, the absence of actions in a Spark application would mean that the application

does absolutely nothing. In exploratory data analysis, it is fairly common either to want to

know the size of the input dataset or to see what the first few rows look like. Spark provides

a set of diverse actions to help with these use cases. One way to distinguish whether an

RDD API is an action or a transformation is that an action will either write the content of

an RDD out to a storage system or return all or a subset of the content to the user, but it

doesn’t return an RDD. Table 3-3 lists the commonly used actions.

Chapter 3 resilient DistributeD Datasets

http://training.databricks.com/visualapi.pdf
http://training.databricks.com/visualapi.pdf

69

 Action Examples
The following section will provide more details and working examples of the previous

actions.

 collect()

This is a fairly easy-to-understand action because it does exactly what it sounds like.

It collects all the rows from each of the partitions in an RDD and brings them over to

the driver program. If your RDD contains 100 million rows, then it is not a good idea to

Table 3-3. Common Actions

Name Description

collect() Collects all the rows in the dataset from executors. all the

rows will be sent from executors to the driver program. the

collect action is usually used after the dataset is filtered

down to a small dataset.

count() returns the number of rows in the dataset.

first() returns the first row in the dataset to the driver program.

take(n) returns the first n rows in the dataset to the driver

program. first() is equivalent to take(1).

reduce(func) performs an aggregation on the rows in the dataset using

the provided func. the provided func should follow the

commutative and associative rule for the result to be

correctly computed in parallel.

takeSample(withReplacement,

n, [seed])

randomly samples up to n rows with either a replacement

or not and returns them to the driver program.

takeOrdered(n, [ordering]) returns the first n rows in the dataset to the driver

program and orders them by either natural ordering or

custom ordering.

top(n, [ordering]) returns the top n elements in the dataset.

saveAsTextFile(path) Writes all the rows in the dataset as a text file into the

provided directory. each row will be converted to a string

using the toString() method.

Chapter 3 resilient DistributeD Datasets

70

invoke the collect action because the driver program most likely doesn’t have sufficient

memory to hold all those rows. As a result, the driver will most likely run into an out-of-

memory error and your Spark application or shell will die. This action is typically used

once the RDD is filtered down to a smaller size that can fit the memory size of the driver

program. See Listing 3-32 for an example of using this action. Listing 3-33 shows the

output.

Listing 3-32. Using the collect Action to See the Rows in the Small RDD

val numberRDD = spark.sparkContext.parallelize(List(1,2,3,4,5,6,7,8,9,10), 2)

numberRDD.collect()

Listing 3-33. The Output of the collect Action: An Array of Integers

Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

 count()

Similar to the collect action, this action does exactly what it sounds like. It returns the

number of rows in an RDD by getting the count from all partitions and finally sums them up.

See Listing 3-34 for an example of using the count action. Listing 3-35 shows the output.

Listing 3-34. Counting the Number of Rows in an RDD

val numberRDD = spark.sparkContext.parallelize(List(1,2,3,4,5,6,7,8,9,10), 2)

numberRDD.count()

Listing 3-35. Output of the count Action: A long

Long = 10

 first()

This action returns the first row in an RDD. Now you may be wondering, what does the

first row mean? Is there any ordering involved? It turns out it literally means the first row

in the first partition. However, be careful about calling this action if your RDD is empty.

In that case, this action will throw an exception. See Listing 3-36 for an example of using

this action. Listing 3-37 shows the output.

Chapter 3 resilient DistributeD Datasets

71

Listing 3-36. Getting the First Row in an RDD

val numberRDD = spark.sparkContext.parallelize(List(1,2,3,4,5,6,7,8,9,10), 2)

numberRDD.first()

Listing 3-37. The Output of the first Action

Int = 1

 take(n)

This action returns the first n rows in the RDD by collecting rows from the first partition

and then moves to the next partition until the number of rows matches n or the last

partition is reached. If n is larger than the number of rows in the dataset, then it will

return all the rows. take(1) is equivalent to the first() action. See Listing 3-38 for an

example of using this action. Listing 3-39 shows the output.

Listing 3-38. Getting the First Row in an RDD

val numberRDD = spark.sparkContext.parallelize(List(1,2,3,4,5,6,7,8,9,10), 2)

numberRDD.take(6)

Listing 3-39. The Output of the take(6) Action

Array[Int] = Array(1, 2, 3, 4, 5, 6)

 reduce(func)

Compared to other actions, this one is pretty different. It reduces all the rows in the

dataset to a single value using the provided function. A common use case is to perform

a sum of all the integers in the dataset. There are two rules that the provided functions

must follow. The first one is it must be a binary operator, meaning it must take two

arguments of the same type, and it produces an output of the same type. The second one

is it must follow the commutative and associative properties in order for the result to be

computed correctly in a parallel manner. See the following note for more details about

the commutative and associative properties.

If you haven’t worked with Scala collection APIs much, then it can be kind of

confusing to understand what’s going on. Let’s say you have an RDD of integers like

Listing 3-40.

Chapter 3 resilient DistributeD Datasets

72

Listing 3-40. Defining an RDD of Integers

val numberRDD = spark.sparkContext.parallelize(List(1,2,3,4,5,6,7,8,9,10), 2)

The provided function to the reduce action will need to have a function signature

like in Listing 3-41.

Listing 3-41. Defining a function to perform addition

def add(v1:Int, v2:Int) : Int = {

 println(s"v1: $v1, v2: $v2 => (${v1 + v2})")

 v1 + v2

 }

Now let’s call the reduce action on the numberRDD. See Listing 3-42.

Listing 3-42. Using the Function add as an Argument for the reduce Action

numberRDD.reduce(add)

You should see output similar to Listing 3-43.

Listing 3-43. The Output from Calling the reduce Action

v1: 1, v2: 2 => (3)

v1: 6, v2: 7 => (13)

v1: 3, v2: 3 => (6)

v1: 13, v2: 8 => (21)

v1: 6, v2: 4 => (10)

v1: 10, v2: 5 => (15)

v1: 21, v2: 9 => (30)

v1: 30, v2: 10 => (40)

v1: 15, v2: 40 => (55)

res62: Int = 55

As expected, the sum of the integers from 1 to 10 is 55. Now if you closely inspect the

first line in the output, you will see that the inputs are basically the first two values of 1

and 2. On the third line, the first value is the sum of 1 and 2, and the second value is 3.

Chapter 3 resilient DistributeD Datasets

73

Basically, at the beginning of each partition it takes the first two numbers and passes them

into the provided function. For the remaining numbers in the partition, it takes the output

of the function and passes it in as the first argument, and the value of the second argument

is the next number in the partition.

Note in mathematics, the commutative property of a binary operation implies
that changing the order of the operands has no impact on the result. On the other
hand, the associative property says that changing how the operands are grouped
has no impact on the result. examples of binary operations that obey both the
commutative and associative properties are addition and multiplication.

 takeSample(withReplacement, n, [seed])

The behavior of this action is similar to the behavior of the sample transformation. The

main difference is this action returns an array of sampled rows to the driver program.

The same caution for the collect action is applicable here in terms of the large number

of returned rows.

 takeOrdered(n, [ordering])

This action returns n rows in a certain order. The default ordering for this action is the

natural ordering. If the rows are integers, then the default ordering is ascending. If you

need to return n rows with the values in descending order, then you specify the reverse

ordering. See Listing 3-44 for an example of using this action with both ascending and

descending order. Listing 3-45 shows the output.

Listing 3-44. Examples of the takeOrdered Action with Ascending and

Descending Order

val numberRDD = spark.sparkContext.parallelize(List(1,2,3,4,5,6,7,8,9,10), 2)

numberRDD.takeOrdered(4)

numberRDD.takeOrdered(4)(Ordering[Int].reverse)

Chapter 3 resilient DistributeD Datasets

74

Listing 3-45. Output for the takeOrdered Action with Ascending and Descending

Order

Array[Int] = Array(1, 2, 3, 4)

Array[Int] = Array(10, 9, 8, 7)

 top(n, [ordering])

A good use case for using this action is for figure out the top k (largest) rows in an RDD as

defined by the implicit ordering. This action does the opposite of the takeOrdered action.

See Listing 3-46 for an example of using this action. Listing 3-47 shows the output.

Listing 3-46. Using the top Action

val numberRDD = spark.sparkContext.parallelize(List(1,2,3,4,5,6,7,8,9,10), 2)

numberRDD.top(4)

Listing 3-47. Output of Using the top Action

Array[Int] = Array(10, 9, 8, 7)

 saveAsTextFile(path)

Unlike previous actions, this one does not return anything to the driver program.

Instead, it will write out each row in the RDD as a string to the specified path. If an RDD

has five partitions, the saveAsTextFile action will write out the rows in each partition

in its own file; therefore, there will be five part files in the specified path. Notice that

this action takes a path name rather than a file name, and it will fail if the specified path

already exists. The intention for this behavior is to prevent the accidental overwriting of

existing data.

 Working with Key/Value Pair RDD
Up until now, you’ve worked with RDDs where each row represents a single value, such

as an integer or a string. There are many use cases where there is a need to perform

grouping by a certain key or aggregate or join two RDDs. For example, if you have a

dataset that contains the population at the city level and you want to roll up at the state

level, then you need to group those rows by state and sum the population of all the cities

Chapter 3 resilient DistributeD Datasets

75

in each state. Spark provides a specific RDD type called a key/value pair RDD for these

use cases. To qualify as a key/value pair RDD, each row must consist of a tuple where the

first element represents the key and the second element represents the value. The type of

both key and value can be a simple type such as an integer or string or can be a complex

type such as an object or a collection of values or another tuple.

The pair RDD comes with a set of APIs to allow you to perform general operations

around the key such as grouping, aggregation, and joining. The following sections cover

how to create key/value pair RDDs and use the associated transformations and actions.

 Creating Key/Value Pair RDD
In Scala, the simplest way to create a pair RDD is to arrange the data of each row into

two parts: key and value. Then use the built-in Scala class called Tuple2, which is a

shorthand version of using parentheses. See Listing 3-48 for an example of creating a

pair RDD.

Listing 3-48. Creating a Pair RDD

val rdd = sc.parallelize(List("Spark","is","an", "amazing", "piece",

"of","technology"))

val pairRDD = rdd.map(w => (w.length,w))

pairRDD.collect().foreach(println)

Listing 3-48 creates a tuple for each row, where the key is the length and the value is

the word. They are wrapped inside a pair of parentheses. Once each row is arranged in

such a manner, then you can easily discover words with the same length by grouping by

key. See Listing 3-49 for the output of calling the collect action on pairRDD.

Listing 3-49. Output of Pair RDD

(5,Spark)

(2,is)

(2,an)

(7,amazing)

(5,piece)

(2,of)

(10,technology)

Chapter 3 resilient DistributeD Datasets

76

The key and value in a pair RDD can be a scalar value or a complex value, which can

be an object, collection of objects, or another tuple. So, it is quite flexible.

Note When using a custom object as the key in the pair rDD, the class of that
object must have both custom equals() and hashCode() methods defined.

 Key/Value Pair RDD Transformations
In addition to the transformations listed in Table 3-4, a key/value pair RDD has

additional transformations that are designed to operate on keys.

Table 3-4. Common Transformations for Pair RDD

Name Description

groupByKey([numTasks]) Groups all the values of the same key together. For a

dataset of (K,V) pairs, the returned rDD has the type

(K, Iterable<V>).

reduceByKey(func,

[numTasks])

First performs the grouping of values with the same key and then

applies the specified func to return the list of values down to a

single value. For a dataset of (K,V) pairs, the returned rDD has

the type of (K, V).

sortByKey([ascending],

[numTasks])

sorts the rows according to the keys. by default, the keys are

sorted in ascending order.

join(otherRDD,

[numTasks])

Joins the rows in both rDDs by matching their keys. each row

of the returned rDD contains a tuple where the first element is

the key and the second element is another tuple containing the

values from both rDDs.

Some of the transformations listed in Table 3-4 have an optional numTasks

parameter, which is used to control the degree of parallelism when Spark performs the

transformation on the parent RDD. By default, the degree of parallelism is the number

of partitions of the parent RDD. During the tuning process, if there is a belief the

transformation will be completed sooner by increasing the degree of parallelism, then

you can specify a value for the numTasks that is larger than the number of partitions of

the parent RDD.

Chapter 3 resilient DistributeD Datasets

77

The following section provides an example of using the pair RDD transformations

listed in Table 3-4.

 groupByKey([numTasks])

This transformation does exactly what it sounds like. It will group all the rows with the

same key into a single row. Essentially the number of rows in the returned RDD will be

the same as the number of unique keys in the parent RDD. Each row in the returned

RDD contains a unique key and a list of values of that same key. See Listing 3-50 for an

example of using this transformation; Listing 3-51 shows the output.

Listing 3-50. Using the groupByKey Transformation to Group Words by Their

Length

val rdd = sc.parallelize(List("Spark","is","an", "amazing", "piece",

"of","technology"))

val pairRDD = rdd.map(w => (w.length,w))

val wordByLenRDD = pairRDD.groupByKey()

wordByLenRDD.collect().foreach(println)

Listing 3-51. Output of the groupByKey Transformation After Grouping Words

by Their Length

(10,CompactBuffer(technology))

(2,CompactBuffer(is, an, of))

(5,CompactBuffer(Spark, piece))

(7,CompactBuffer(amazing))

Oftentimes there is a need to perform some processing on the list of values of each

key after the groupByKey transformation is performed. If that processing is done using a

binary operation that complies with the commutative and associated properties, then it

is best to use the reduceByKey transformation to speed up the processing logic. You can

find more details about this in the following section.

Chapter 3 resilient DistributeD Datasets

78

 reduceByKey(func, [numTasks])

This transformation is often used to reduce all the values of the same key to a single

value. The process is carried out in two steps, as depicted in Figure 3-1. The first one

is to group the values of the same key together, and the second step is to apply the

given reduce function to the list of values of each key. The implementation of this

transformation contains a built-in optimization to perform this two-step process at two

levels. The first level is at each individual partition, and the second level is across all the

partitions. By applying this transformation at each individual partition first, it therefore

collapses all the rows with the same key in the same partition to a single row, and as a

result, the amount of data that needs to be moved across many partitions is dramatically

reduced. See Listing 3-52 for an example of using this transformation; Listing 3-53 shows

the output.

Partition #1

(candy1, 7.2)

(candy1, 9.2)

(candy2, 3.5)
(candy2, 6.0)

(candy2, 9.5)

(candy1, 9.2)
(candy2, 9.5)
(candy3, 3.0)

(candy1, 2.0)
(candy3, 3.0)

(candy3, 3.0)

Partition #2

output

Figure 3-1. The two-step process in the reduceByKey transformation

Chapter 3 resilient DistributeD Datasets

79

Listing 3-52. Using the reduceByKey Transformation to Tally the Price

val candyTx = sc.parallelize(List(("candy1", 5.2), ("candy2", 3.5),

 ("candy1", 2.0),

("candy2", 6.0),

("candy3", 3.0))

val summaryTx = candyTx.reduceByKey((total, value) => total + value)

summaryTx.collect()

Listing 3-53. Output of reduceByKey After Tallying the Price

(candy1,7.2)

(candy2,9.5)

(candy3,3.0)

 sortByKey([ascending],[numTasks])

This transformation is simple to understand. It sorts the rows according the key,

and there is an option to specify whether the result should be in ascending (default)

or descending order. Building on the example in Listing 3-52, the key and value are

swapped so you can sort the rows based on the transaction amount. See Listing 3-54 for

an example of sorting by the transaction amount; Listing 3-55 shows the output.

Listing 3-54. Using the sortByKey Transformation to Sort by Price

val summaryByPrice = summaryTx.map(t => (t._2, t._1)).sortByKey()

summaryByPrice.collect

Listing 3-55. Output of Using the sortByKey Transformation to Sort Based on Price

Array[(Double, String)] = Array((3.0,candy3), (7.2,candy1), (9.5,candy2))

If you want to sort the price in descending order, then you just need to set the value

of the first parameter to false. See Listing 3-56 for an example of sorting in descending

order, and see Listing 3-57 for the output.

Listing 3-56. Using the sortByKey transformation Based on Price in Descending

Order

val summaryByPrice = summaryTx.map(t => (t._2, t._1)).sortByKey(false)

summaryByPrice.collect

Chapter 3 resilient DistributeD Datasets

80

Listing 3-57. Output of Using the sortByKey Transformation to Sort Based on

Price in Descending Order

(9.5,candy2)

(7.2,candy1)

(3.0,candy3)

 join(otherRDD)

Performing any meaningful data analysis usually involves joining two or more datasets.

The join transformation is used to combine the information of two datasets to enable

rich data analysis or to extract insights. For example, if one dataset contains the

transaction information and it has a member ID and details of the transaction and

another dataset contains the member information, by joining these two datasets you can

answer questions such as, what is the breakdown of the transactions by the age group,

and which age group made the largest number of transactions?

By joining the dataset of type (K,V) and dataset (K,W), the result of the joined

dataset is (K,(V,W)). There are several variations of joining two datasets, like left and

right outer joins. For more details on the behavior of these types of join, please refer to

https://en.wikipedia.org/wiki/Join_(SQL).

The example in Listing 3-58 has two datasets that are already set up as key/value pair

RDDs. The first one contains the member transaction. The second contains information

about each member ID and a group each member belongs to.

Listing 3-58. Join of Member Transaction Dataset and Member Group Dataset

val memberTx = sc.parallelize(List((110, 50.35), (127, 305.2), (126, 211.0),

 (105, 6.0),(165, 31.0), (110, 40.11)))

val memberInfo = sc.parallelize(List((110, "a"), (127, "b"), (126, "b"),

(105, "a"),(165, "c")))

val memberTxInfo = memberTx.join(memberInfo)

memberTxInfo.collect().foreach(println)

The join in Listing 3-58 is the inner join type, where the output contains only the

rows with matching keys from both datasets. See Listing 3-59 for the output.

Chapter 3 resilient DistributeD Datasets

https://en.wikipedia.org/wiki/Join_(SQL

81

Listing 3-59. Output of the Join Transformation

(105,(6.0,a))

(165,(31.0,c))

(110,(50.35,a))

(110,(40.11,a))

(126,(211.0,b))

(127,(305.2,b))

 Key/Value Pair RDD Actions
In addition to the actions listed in Table 3-5, pair RDD has a small set of actions. This

section provides some details and working examples of these actions. These actions will

bring the result back to the driver side, so be careful about the amount of data that will

be brought back.

Table 3-5. Actions for Pair RDD

Name Description

countByKey() returns a map where each entry contains the key and a count of values

collectAsMap() similar behavior as the collect action; return type is a map

lookup(key) performs a look by key and returns all values that have the same specified key

The following section provides an example for each of the actions listed in Table 3-5.

 countByKey()

For a given pair RDD, this action ignores the value of each row and reports only the number

of values with the same key for each key to the driver. See Listing 3-60 for an example and

Listing 3-61 for the output. Notice the returned data is a Scala map data structure.

Listing 3-60. Using countByKey to count the number of elements for each key

val candyTx = sc.parallelize(List(("candy1", 5.2), ("candy2", 3.5),

("candy1", 2.0), ("candy3", 6.0)))

candyTx.countByKey()

Chapter 3 resilient DistributeD Datasets

82

Listing 3-61. Using countByKey

scala.collection.Map[String,Long] = Map(candy1 -> 2, candy2 -> 1, candy3 -> 1)

 collectAsMap()

Similar to the collect action, this one brings the entire dataset to the driver side as a

map, where each entry represents a row. See Listing 3-62 for the example and Listing 3- 63

for the output.

Listing 3-62. Using the collectAsMap Action

val candyTx = sc.parallelize(List(("candy1", 5.2), ("candy2", 3.5),

("candy1", 2.0), ("candy3", 6.0)))

candyTx.collectAsMap()

Listing 3-63. Output of the collectAsMap Action

scala.collection.Map[String,Double] = Map(candy2 -> 3.5, candy1 -> 2.0,

candy3 -> 6.0)

Notice if the dataset contains multiple rows with the same key, it will be collapsed

into a single entry in the map. There are four rows in the candyTx pair RDD; however,

there are only three rows in the output. Two candy1 rows are collapsed into a single row.

 lookup(key)

This action can be used as a quick way to verify whether a particular key exists in the

RDD. See Listing 3-64 for an example and Listing 3-65 for the output. If there is more

than one row with the same key, then the value of all those rows will be returned.

Listing 3-64. Using the lookup Action

val candyTx = sc.parallelize(List(("candy1", 5.2), ("candy2", 3.5),

("candy1", 2.0), ("candy3", 6.0)))

candyTx.lookup("candy1")

candyTx.lookup("candy2")

candyTx.lookup("candy5")

Chapter 3 resilient DistributeD Datasets

83

Listing 3-65. Output of the lookup Examples in Listing 3-64

Seq[Double] = WrappedArray(5.2, 2.0)

Seq[Double] = WrappedArray(3.5)

Seq[Double] = WrappedArray()

 Understand Data Shuffling
Certain key/value transformations and actions require moving data from multiple

partitions to other partitions, meaning across executors and machines. This process

is known as the shuffle, which is quite important to be familiar with because it is an

expensive operation. During the shuffling process, the data needs to be serialized,

written to disk, transferred over the network, and finally deserialized. It is not possible

to completely avoid the shuffling, but there are techniques or best practices to minimize

the need to shuffle the data. Shuffling data will add latency to the completion of the data

processing in your Spark jobs.

Let’s take the reduceByKey transformation as an example to understand the shuffle.

This transformation needs to read data from all partitions to find all the values for

all keys in the RDD, and for each key it brings all the values from different partitions

together to compute the final value. To prepare for the shuffle, each partition prepares

the data by sorting them based on the targeted partition and then writing them to a

single file. On the targeted partition, it will read the relevant blocks of this file based on

its partition index.

In general, any transformation or action that performs some sort of grouping,

aggregating, or joining by key will need to perform data shuffling. Here is a subset of the

transformations that fall into this category: groupByKey, reduceByKey, aggregateByKey,

and join.

 Having Fun with RDD Persistence
One of the distinguishing features of Spark from other data processing engines or

frameworks is the ability to persist the data of an RDD in memory across all the

executors in a cluster. Once the data of an RDD is persisted in memory, then any future

computations on that data will be really fast, often more than ten times the data that

is not in memory. There are two typical use cases that can tremendously benefit from

Chapter 3 resilient DistributeD Datasets

84

the data persisted in memory. The first one is data exploration or interactive analysis.

Let’s say there is a large service log file that is several hundred gigabytes, and there is

a need to perform analysis on various types of exceptions. The first step is to filter this

log file down to only the lines that contain the key word Exception and then cache that

dataset in memory. Subsequent exploratory and interactive analysis of various types

of exceptions can be done on that dataset in memory, and they will be very fast. The

second use case is the iterative algorithms. Machine learning algorithms are often

iterative in nature, meaning they will run through many iterations to optimize the loss

function. In this process, they might use one or more datasets that don’t change with

each iteration; therefore, if those datasets are persisted, then that will help speeding up

the time it takes for the algorithms to complete.

Persisting an RDD is extremely simple to do by calling the transformation persist()

or cache(). Since they are transformations, only once a subsequent action is taken will

the RDD be persisted in memory. By default, Spark will persist the dataset in memory.

One question to ask is what happens if there isn’t sufficient memory in all the executors

in your Spark applications to persist an RDD in memory. For instance, let’s say a Spark

application has ten executors and each one has 6GB of RAM. If the size of an RDD you

would like to persist in memory is 70GB, then that wouldn’t fit into 60GB of RAM. This

is where the storage-level concept comes in. There are two options that you can specify

when persisting the data of an RDD in memory: location and serialization. The location

option determines whether the data of an RDD should be stored in memory or on disk

or a combination of the two. The serialization option determines whether the data in

the RDD should be stored as a serialized object or not. These two options represent the

different types of trade-offs you are making: CPU time and memory usage. See Table 3-6

for the details of the two aforementioned options.

Table 3-6. Storage Options for Persisting RDD

Option Memory Space CPU Time In Memory On Disk

MEMORY_ONLY high low Yes no

MEMORY_AND_DISK high Medium some some

MEMORY_ONLY_SER low high Yes no

MEMORY_AND_DISK_SER low high some some

DISK_ONLY low high no Yes

Chapter 3 resilient DistributeD Datasets

85

If the data of an RDD is no longer needed to be persisted in memory, then you can

use the unpersist() function to remove it from memory to make room for other RDDs.

A Spark cluster usually has a limited amount of memory; if you keep persisting RDDs,

Spark will use the LRU eviction policy to automatically evict the RDDs that have not been

recently accessed.

 Summary
You learned the following in this chapter:

• In Spark, RDD is the foundational abstraction in terms of concepts

and programming model. Other programming abstractions are built

on top of RDD.

• RDD provides a rich set of operations to make it easy to perform

data analysis in Spark. Operations are classified into two types:

transformation and action. Transformations are designed to

be lazy evaluated to provide opportunities for Spark to perform

optimizations. Actions are eager evaluated, and they trigger the

computation of all the transformation logic that preceded the call to

an action.

• Pair RDD provides the additional capabilities of grouping,

aggregation, and joining of datasets based on key.

• The data shuffle is an expensive but necessary data movement

process, so it is important for Spark developers to be familiar with

it. The goal is to not eliminate the shuffle process but to minimize

the number of times the shuffling needs to happen in your Spark

application.

• RDD persistence is a great way to speed the computation logic in

your Spark jobs. Understanding the various storage levels will give

you the confidence to pick the right one that is appropriate for your

use case and to make the right trade-off in terms of CPU time and

space efficiency.

Chapter 3 resilient DistributeD Datasets

86

RDD EXERCISES

the following exercises are based on the movies.tsv and movie-ratings.tsv files in the

chapter3/data/movies directory. the columns in these files are delimited by a tab.

each line in the movies.tsv file represents an actor who played in a movie. if a movie has

ten actors in it, then there will be ten rows for that particular movie.

 1. Compute the number of movies produced in each year. the output should have

two columns: year and count. the output should be ordered by the count in

descending order.

 2. Compute the number of movies each actor was in. the output should have

two columns: actor and count. the output should be ordered by the count in

descending order.

 3. Compute the highest-rated movie per year and include all the actors in that

movie. the output should have only one movie per year, and it should contain

four columns: year, movie title, rating, and a semicolon-separated list of

actor names. this question will require joining the movies.tsv and movie-

ratings.tsv files. there are two approaches to this problem. the first one

is to figure out the highest-rated movie per year first and then join with the list

of actors. the second one is to perform the join first and then figure out the

highest-rated movies per year along with a list of actors. the result of each

approach is different than the other one. Why do you think that is?

 4. Determine which pair of actors worked together most. Working together

is defined as appearing in the same movie. the output should have three

columns: actor 1, actor 2, and count. the output should be sorted by the count

in descending order. the solution to this question will require a self-join.

Chapter 3 resilient DistributeD Datasets

87
© Hien Luu 2018
H. Luu, Beginning Apache Spark 2, https://doi.org/10.1007/978-1-4842-3579-9_4

CHAPTER 4

Spark SQL (Foundations)
As Spark evolves as a unified data processing engine with more features in each

new release, its programming abstraction also evolves. The RDD was the initial core

programming abstraction when Spark was introduced to the world in 2012. In Spark

1.6, a new programming abstraction, called Structured APIs, was introduced. This is the

preferred way of performing data processing for the majority of use cases. The Structured

APIs were designed to enhance developers’ productivity with easy-to-use, intuitive, and

expressive APIs. In this new way of doing data processing, the data needs to be organized

into a structured format, and the data computation logic needs to follow a certain

structure. Armed with these two pieces of information, Spark can perform optimizations

to speed up data processing applications.

Figure 4-1 shows how the Spark SQL component is built on top of the good old

reliable Spark Core component. This layered architecture means any improvements in

the Spark Core component will be automatically available to the Spark SQL component.

Spark Shell

Spark Core

Spark SQL

Spark Applications

DataFrame API

Catalyst Optimizer

Figure 4-1. Spark SQL components

88

This chapter covers the Spark SQL module, which enables you to write less code

to get things done, and underneath the covers it intelligently performs optimizations.

The Spark SQL module consists of two main parts. The first one is the representation

of the Structure APIs, called DataFrames and Datasets, that define the high-level APIs

for working with structured data. The DataFrame concept was inspired by the Python

pandas DataFrame; the main difference is that a DataFrame in Spark can handle a large

volume of data that is spread across many machines. The second part of the Spark SQL

module is the Catalyst optimizer, which does all the hard work behind the scenes to

make your life easier and to speed up your data processing logic. One of the cool features

the Spark SQL module offers is the ability to execute SQL queries to perform data

processing. By virtue of this capability, Spark is able to gain a new group of users called

business analysts, who are familiar with the SQL language because it is one of the main

tools they use on a regular basis.

One main concept that differentiates structured data from unstructured data is

a schema, which defines the structure of the data in the form of column names and

associated data types. The schema concept is an integral part of the Spark Structured

APIs.

Structured data is often captured in a certain format. Some of the formats are text

based, and some of them are binary based. Common formats for text data are CSV, XML,

and JSON, and common formats for binary data are Avro, Parquet, and ORC. Out of the

box, the Spark SQL module makes it easy to read data and write data from and to any of

these formats. One unanticipated benefit comes out of this versatility is that Spark can be

used as a data format conversion tool.

 Introduction to DataFrames
A DataFrame is an immutable, distributed collection of data that is organized into

rows, where each one consists a set of columns and each column has a name and

an associated type. In other words, this distributed collection of data has a structure

defined by a schema. If you are familiar with the table concept in a relational database

management system (RDBMS), then you will realize that a DataFrame is essentially

equivalent. Each row in the DataFrame is represented by a generic Row object. Unlike

the RDD APIs, the DataFrame APIs offer a set of domain-specific operations that

are relational and have rich semantics. The details of the APIs will be covered in the

Chapter 4 Spark SQL (FoundationS)

89

following sections. Like the RDD APIs, the DataFrame APIs are classified into two

buckets: transformations and actions. The evaluation semantics are identical in RDDs.

Transformations are lazily evaluated, and actions are eagerly evaluated.

DataFrames can be created by reading data from the many structured data sources

mentioned previously as well as by reading data from tables in Hive and databases.

In addition, the Spark SQL module makes it easy to convert an RDD to a DataFrame by

providing the schema information about the data in the RDD. The DataFrame APIs are

available in Scala, Java, Python, and R.

 Creating DataFrames
There are many ways to create a DataFrame; one common thing among them is the need

to provide a schema, either implicitly or explicitly.

 Creating DataFrames from RDDs
Let’s start with creating a DataFrame from an RDD. Listing 4-1 first creates an RDD with

two columns of the integer type, and then it calls the toDF implicit function to convert an

RDD to a DataFrame using the specified column names. The column types are inferred

from the data in the RDD. Listing 4-2 shows two of the commonly used functions in a

DataFrame, printSchema and show. Function printSchema prints out the column names

and their associated type to the console. Function show prints the data in a DataFrame

out in a tabular format. By default, it displays 20 rows. To change the default number of

rows to display, you can pass in a number to the show function. See Listing 4-3 for an

example of specifying a number of rows to display.

Listing 4-1. Creating a DataFrame from an RDD of Numbers

import scala.util.Random

val rdd = spark.sparkContext.parallelize(1 to 10).map(x => (x,

Random.nextInt(100)* x))

val kvDF = rdd.toDF("key","value")

Chapter 4 Spark SQL (FoundationS)

90

Listing 4-2. Printing the Schema and Showing the Data of a DataFrame

kvDF.printSchema

|-- key: integer (nullable = false)

|-- value: integer (nullable = false)

kvDF.show

+---+-----+

|key|value|

+---+-----+

| 1| 58|

| 2| 18|

| 3| 237|

| 4| 32|

| 5| 80|

| 6| 210|

| 7| 567|

| 8| 360|

| 9| 288|

| 10| 260|

+---+-----+

Listing 4-3. Calling the Function show to Display Five Rows in Tabular Format

kvDF.show(5)

+---+-----+

|key|value|

+---+-----+

| 1| 59|

| 2| 60|

| 3| 66|

| 4| 280|

| 5| 40|

+---+-----+

Note the actual numbers in the value column may look different for you
because they are generated randomly by calling the Random.nextInt() function.

Chapter 4 Spark SQL (FoundationS)

91

Another way to create a DataFrame is by specifying an RDD with a schema

that is created programmatically. Listing 4-4 first creates an RDD using an array

of Row objects, where each Row object contains three columns; then it creates a

schema programmatically. Finally, it provides the RDD and schema to the function

createDataFrame to convert to a DataFrame. Listing 4-5 shows the schema and the data

in the peopleDF DataFrame.

Listing 4-4. Creating a DataFrame from an RDD with a Schema Created

Programmatically

import org.apache.spark.sql.Row

import org.apache.spark.sql.types._

val peopleRDD = spark.sparkContext.parallelize(Array(Row(1L, "John

Doe", 30L),

 Row(2L, "Mary Jane", 25L)))

val schema = StructType(Array(

 StructField("id", LongType, true),

 StructField("name", StringType, true),

 StructField("age", LongType, true)

))

val peopleDF = spark.createDataFrame(peopleRDD, schema)

Listing 4-5. Displaying the Schema of peopleDF and Its Data

peopleDF.printSchema

 |-- id: long (nullable = true)

 |-- name: string (nullable = true)

 |-- age: long (nullable = true)

peopleDF.show

+--+-----------+---+

|id| name|age|

+--+-----------+---+

| 1| John Doe| 30|

| 2| Mary Jane| 25|

+--+-----------+---+

Chapter 4 Spark SQL (FoundationS)

92

The ability to programmatically create a schema gives Spark applications the

flexibility to adjust the schema based on some external configuration.

Each StructField object has three pieces of information: name, type, and whether

the value is nullable.

The type of each column in a DataFrame is mapped to an internal Spark type, which

can be a simple scalar type or a complex type. Table 4-1 describes the available internal

Spark data types and associated Scala types.

 Creating DataFrames from a Range of Numbers
Spark 2.0 introduced a new entry point for Spark applications. It is represented by

a class called SparkSession, which has a convenient function called range that

can easily create a DataFrame with a single column with the name id and the type

Table 4-1. Spark Scala Types

Data Type Scala Type

BooleanType Boolean

ByteType Byte

ShortType Short

IntegerType Int

LongType Long

FloatType Float

DoubleType Double

DecimalType java.math.BigDecial

StringType String

BinaryType Array[Byte]

TimestampType java.sql.Timestamp

DateType java.sql.Date

ArrayType scala.collection.Seq

MapType scala.collection.Map

StructType org.apache.spark.sql.Row

Chapter 4 Spark SQL (FoundationS)

93

LongType. This function has a few variations that can take additional parameters

to specify the start and end of a range as well as the steps of the range. Listing 4-6

provides examples of using this function to create a DataFrame.

Listing 4-6. Using the SparkSession.range Function to Create a DataFrame

val df1 = spark.range(5).toDF("num").show

+---+

|num|

+---+

| 0|

| 1|

| 2|

| 3|

| 4|

+---+

spark.range(5,10).toDF("num").show

+---+

|num|

+---+

| 5|

| 6|

| 7|

| 8|

| 9|

+---+

spark.range(5,15,2).toDF("num").show

+---+

|num|

+---+

| 5|

| 7|

| 9|

| 11|

| 13|

+---+

Chapter 4 Spark SQL (FoundationS)

94

The previous version of the range function takes three parameters. The first one

represents the starting value, the second one represents the end value (exclusive), and

the last one represents the step size. Notice the range function can create only a single-

column DataFrame. Do you have any ideas about how to create a DataFrame with more

than one column?

One option to create a multicolumn DataFrame is to use Spark’s implicits that

convert a collection of tuples inside a Scala Seq collection. See Listing 4-7 for examples of

using Spark’s toDF implicit.

Listing 4-7. Converting a Collection Tuple to a DataFrame Using Spark’s toDF

Implicit

val movies = Seq(("Damon, Matt", "The Bourne Ultimatum", 2007L),

 ("Damon, Matt", "Good Will Hunting", 1997L))

val moviesDF = movies.toDF("actor", "title", "year")

moviesDF.printSchema

|-- actor: string (nullable = true)

|-- title: string (nullable = true)

|-- year: long (nullable = false)

moviesDF.show

+-----------+--------------------+----+

| actor| title|year|

+-----------+--------------------+----+

|Damon, Matt|The Bourne Ultimatum|2007|

|Damon, Matt| Good Will Hunting|1997|

+-----------+--------------------+----+

These fun ways of creating DataFrames make it easy to learn and to work with the

DataFrame APIs without needing to load the data from some external files. However,

when you start doing serious data analysis with large datasets, then it is imperative to

know how to load data from external data sources, which will be covered next.

Chapter 4 Spark SQL (FoundationS)

95

 Creating DataFrames from Data Sources
Out of the box, Spark SQL supports six built-in data sources, where each data source is

mapped to a data format. The data source layer in the Spark SQL module is designed to

be extensible, so custom data sources can be easily integrated into the DataFrame APIs.

There are hundreds of custom data sources written by the Spark community, and it is not

too difficult to implement them.

The two main classes in Spark SQL for reading and writing data are DataFrameReader

and DataFrameWriter, respectively. This section will cover the details of working with

the APIs in the DataFrameReader class and the various available options when reading

data from a specific data source.

An instance of the DataFrameReader class is available as the read variable of the

SparkSession class. Listing 4-8 provides an example of referring to this variable.

Listing 4-8. Using read Variable from SparkSession

spark.read

The common pattern for interacting with DataFrameReader is described in

Listing 4-9.

Listing 4-9. Common Pattern for Interacting with DataFrameReader

spark.read.format(...).option("key", value").schema(...).load()

Table 4-2 describes the three main pieces of information that are used when reading

data: format, option, and schema. More specific details about these three pieces of

information will be provided in upcoming sections.

Chapter 4 Spark SQL (FoundationS)

96

Listing 4-10. Specifying the Data Source Format

spark.read.json("<path>")

spark.read.format("json")

spark.read.parquet("<path>")

spark.read.format("parquet")

spark.read.jdbc

spark.read.format("jdbc")

spark.read.orc("<path>")

spark.read.format("orc")

spark.read.csv("<path>")

spark.read.format("csv")

spark.read.text("<path>")

spark.read.format("text")

// custom data source – fully qualifed package name

spark.read.format("org.example.mysource")

Table 4-2. Three Main Pieces of Information for DataFrameReader

Name Optional Comments

format no this can be one of the built-in data sources or a custom format. For a built-in

format, you can use a short name (json, parquet, jdbc, orc, csv, text).

For a custom data source, you need to provide a fully qualified name. See

Listing 4-10 for details and examples.

option Yes DataFrameReader has a set of default options for each data source format.

You can override those default values by providing a value to the option

function.

schema Yes Some data sources have the schema embedded inside the data files, i.e.,

parquet and orC. in those cases, the schema is automatically inferred. For

other cases, you may need to provide a schema.

Chapter 4 Spark SQL (FoundationS)

97

Table 4-3 describes Spark’s six built-in data sources and provides comments for each

of them.

 Creating DataFrames by Reading Text Files

Text files contain unstructured data. As it is read into Spark, each line becomes a row in

the DataFrame. There are lots of free books available for download in plain-text format

at www.gutenberg.org/. For plain-text files, one common way to parse the words of

each line is by splitting it with a space as a delimiter. This is similar to how a typical word

count example works. See Listing 4-11 for an example of reading a text file.

Listing 4-11. Reading the README.md File As a Text File from a Spark Shell

val textFile = spark.read.text("README.md")

textFile.printSchema

|-- value: string (nullable = true)

// show 5 lines and don't truncate

textFile.show(5, false)

Table 4-3. Spark’s Built-in Data Sources

Name Data Format Comments

text

file

text no structure.

CSV text Comma-separated values. this can be used to specify another delimiter. the

column name can be referred from the header.

JSon text popular semistructured format. the column name and data type are inferred

automatically.

parquet Binary (default format.) popular binary format in the hadoop community.

orC Binary another popular binary format in the hadoop community.

JdBC Binary a common format for reading and writing to the rdBMS.

Chapter 4 Spark SQL (FoundationS)

http://www.gutenberg.org/

98

+---+

|value |

+---+

|# Apache Spark |

| |

|Spark is a fast and general cluster computing system for Big Data. It provides |

|high-level APIs in Scala, Java, Python, and R, and an optimized engine that |

|supports general computation graphs for data analysis. It also supports a |

+---+

If a text file contains a delimiter that you can use to parse the columns in each line,

then it is better to read it using the CSV format, which will be covered in the following

section.

 Creating DataFrames by Reading CSV Files

One of the popular text file formats is CSV, which stands for comma-separated values.

Popular tools such as Microsoft Excel can easily import and export data in CSV format.

The CSV parser in Spark is designed to be flexible such that it can parse a text file using

a user-provided delimiter. The comma delimiter just happens to be the default one. This

means you can use the CSV format to read tab- separated value text files or other text files

with an arbitrary delimiter.

Some CSV files have a header, and some don’t. Since a column value may contain

a comma, it is a good practice to escape it using a special character. Table 4-4 describes

commonly used options when working with the CSV format. For a complete list of

options, please see the CSVOptions class at Spark GitHub (https://github.com/apache/

spark).

Chapter 4 Spark SQL (FoundationS)

https://github.com/apache/spark
https://github.com/apache/spark

99

Table 4-4. CSV Common Options

Key Values Default Description

sep Single character , this is a single-character value used as a delimiter

for each column.

header true, false false if the value is true, it means the first line in the file

represents the column names.

escape any character \ this is the character to use to escape the character

in the column value that is the same as sep.

inferSchema true, false false this specifies whether Spark should try to infer the

column type based on column value.

Specifying the header and inferSchema options as true won’t require you to specify

a schema. Otherwise, you need to define a schema by hand or programmatically create it

and pass it into the schema function. If the inferSchema option is false and no schema is

provided, Spark will assume the data type of all the columns to be the string type.

The data file you are using as an example is called movies.csv in the folder data/

chapter4. This file contains a header for each column: actor, title, year. Listing 4-12

provides a few examples of reading a CSV file.

Listing 4-12. Reading CSV Files with Various Options

val movies = spark.read.option("header","true").csv("<path>/book/chapter4/

data/movies/movies.csv")

movies.printSchema

 |-- actor: string (nullable = true)

 |-- title: string (nullable = true)

 |-- year: string (nullable = true)

// now try to infer the schema

val movies2 = spark.read.option("header","true").

option("inferSchema","true")

 .csv("<path>/book/chapter4/data/movies/movies.csv")

Chapter 4 Spark SQL (FoundationS)

100

movies2.printSchema

 |-- actor: string (nullable = true)

 |-- title: string (nullable = true)

 |-- year: integer (nullable = true)

// now try to manually provide a schema

import org.apache.spark.sql.types._

val movieSchema = StructType(Array(StructField("actor_name", StringType, true),

 StructField("movie_title", StringType, true),

 StructField("produced_year", LongType, true)))

val movies3 = spark.read.option("header","true").schema(movieSchema)

 .csv("<path>/book/chapter4/data/movies/

movies.csv")

movies3.printSchema

 |-- actor_name: string (nullable = true)

 |-- movie_title: string (nullable = true)

 |-- produced_year: long (nullable = true)

movies3.show(5)

+-----------------+--------------+--------------+

| actor_name| movie_title| produced_year|

+-----------------+--------------+--------------+

|McClure, Marc (I)| Freaky Friday| 2003|

|McClure, Marc (I)| Coach Carter| 2005|

|McClure, Marc (I)| Superman II| 1980|

|McClure, Marc (I)| Apollo 13| 1995|

|McClure, Marc (I)| Superman| 1978|

+-----------------+--------------+--------------+

The first example reads the file movies.csv by specifying the first line as the header.

Spark was able to recognize the column names. However, since you didn’t specify the

inferSchema option, all the columns have the type as string. The second example

added the inferSchema option, and Spark was able to identify the column type. The third

example provides a schema with column names different than what is in the header, so

Spark uses the column names from the schema.

Chapter 4 Spark SQL (FoundationS)

101

Now let’s try to read in a text file with a delimiter that is different, not a comma.

Instead, it is a tab. In this case, you specify a value for the sep option that Spark will use.

See Listing 4-13 for an example of reading a file called movies.tsv in the folder data/

chapter4.

Listing 4-13. Reading a TSV File with the CSV Format

val movies4 = spark.read.option("header","true").option("sep", "\t")

 .schema(movieSchema).csv("<path>/book/chapter4/data/movies/movies.tsv")

movies.printSchema

|-- actor_name: string (nullable = true)

|-- movie_title: string (nullable = true)

|-- produced_year: long (nullable = true)

As you can see, it is quite easy to work with text files that have comma-separated

values as well as other- separated values.

 Creating DataFrames by Reading JSON Files

JSON is a well-known format in the JavaScript community. It is considered to be a

semistructured format because each object (aka row) has a structure and each column

has a name. In the web application development space, JSON is a widely used data

format for transferring data between the back-end server and the browser side. One of

the strengths of JSON is that it provides a flexible format that can model any use case;

it can also support a nested structure. JSON has one disadvantage that is related to

verbosity. The column names are repeated in each row in the data file (imagine your

data file has 1 million rows).

Spark makes it easy to read data in a JSON file. However, there is one thing that

you need to pay attention to. A JSON object can be expressed on a single line or across

multiple lines, and this is something you need to let Spark know. Given that a JSON data

file contains only column names and no data type, how is Spark able to come up with a

schema? Spark tries its best to infer the schema by parsing a set of sample records. The

number of records to sample is determined by the samplingRatio option, which has a

default value of 1.0. Therefore, it is quite expensive to read a large JSON file. In this case,

you can lower the samplingRatio value to speed up the data loading process. Table 4-5

describes the common options for the JSON format.

Chapter 4 Spark SQL (FoundationS)

102

Listing 4-14 shows two examples of reading JSON files. The first one simply reads

a JSON file without overriding any option value. Notice Spark automatically detects

the column name and data type based on the information in the JSON file. The second

example specifies a schema.

Listing 4-14. Various Examples of Reading a JSON File

val movies5 = spark.read.json("<path>/book/chapter4/data/movies/movies.json")

movies.printSchema

 |-- actor_name: string (nullable = true)

 |-- movie_title: string (nullable = true)

 |-- produced_year: long (nullable = true)

// specify a schema to override the Spark's inferring schema.

// producted_year is specified as integer type

import org.apache.spark.sql.types._

val movieSchema2 = StructType(Array(StructField("actor_name", StringType, true),

 StructField("movie_title", StringType, true),

 StructField("produced_year", IntegerType, true)))

val movies6 = spark.read.option("inferSchema","true").schema(movieSchema2)

 .json("<path>/book/chapter4/data/movies/

movies.json")

movies6.printSchema

 |-- actor_name: string (nullable = true)

 |-- movie_title: string (nullable = true)

 |-- produced_year: integer (nullable = true)

Table 4-5. JSON Common Options

Key Values Default Description

allowComments true, false false ignores comments in the JSon file

multiLine true, false false treats the entire file as a large JSon object that spans

many lines

samplingRatio 0.3 1.0 Specifies the sampling size to read to infer the schema

Chapter 4 Spark SQL (FoundationS)

103

What happens when a column data type specified in the schema doesn’t match up

with the value in the JSON file? By default, when Spark encounters a corrupted record or

runs into a parsing error, it will set the value of all the columns in that row to null. Instead

of getting null values, you can tell Spark to fail fast. Listing 4-15 tells Spark’s parsing logic

to fail fast by specifying the mode option as failFast.

Listing 4-15. Parsing Error and How to Tell Spark to Fail Fast

// set data type for actor_name as BooleanType

import org.apache.spark.sql.types._

val badMovieSchema = StructType(Array(StructField("actor_name",

BooleanType, true),

 StructField("movie_title",

StringType, true),

 StructField("produced_year",

IntegerType, true)))

val movies7 = spark.read.schema(badMovieSchema)

 . json("<path>/book/chapter4/data/movies/

movies.json")

movies7.printSchema

 |-- actor_name: boolean (nullable = true)

 |-- movie_title: string (nullable = true)

 |-- produced_year: integer (nullable = true)

movies7.show(5)

+----------+-----------+-------------+

|actor_name|movie_title|produced_year|

+----------+-----------+-------------+

| null| null| null|

| null| null| null|

| null| null| null|

| null| null| null|

| null| null| null|

+----------+-----------+-------------+

Chapter 4 Spark SQL (FoundationS)

104

// tell Spark to fail fast when facing a parsing error

val movies8 = spark.read.option("mode","failFast").schema(badMovieSchema)

 .json("<path>/book/chapter4/data/movies/

movies.json")

movies8.printSchema

 |-- actor_name: boolean (nullable = true)

 |-- movie_title: string (nullable = true)

 |-- produced_year: integer (nullable = true)

// Spark will throw a RuntimeException when executing an action

movies8.show(5)

ERROR Executor: Exception in task 0.0 in stage 3.0 (TID 3)

java.lang.RuntimeException: Failed to parse a value for data type

BooleanType (current token: VALUE_STRING).

 Creating DataFrames by Reading Parquet Files

Parquet is one of the most popular open source columnar storage formats in the Hadoop

ecosystem, and it was created at Twitter. Its popularity is because it is a self-describing

data format and it stores data in a highly compact structure by leveraging compressions.

The columnar storage format is designed to work well with a data analytics workload

where only a small subset of the columns are used during the data analysis. Parquet

stores the data of each column in a separate file; therefore, columns that are not needed

in a data analysis wouldn’t have to be unnecessarily read in. It is quite flexible when it

comes to supporting a complex data type with a nested structure. Text file formats such

as CVS and JSON are good for small files, and they are human-readable. For working

with large datasets that are stored in long-term storage, Parquet is a much better file

format to use to reduce storage costs and to speed up the reading step. If you take a peek

at the movies.parquet file in the chapter4/data/movies folder, you will see that its size

is about one-sixth the size of movies.csv.

Spark works extremely well with the Parquet file format, and in fact Parquet is the

default file format for reading and writing data in Spark. Since Parquet files are self-

contained, meaning the schema is stored inside the Parquet data file, it is easy to work

with Parquet in Spark. Listing 4-16 shows an example of reading a Parquet file. Notice

that you don’t need to provide a schema or ask Spark to infer the schema. Spark can

retrieve the schema from the Parquet file.

Chapter 4 Spark SQL (FoundationS)

105

One of the cool optimizations that Spark does when reading data from Parquet is that

it does decompression and decoding in column batches.

Listing 4-16. Reading a Parquet File in Spark

// Parquet is the default format, so we don't need to specify the format

when reading

val movies9 = spark.read.load("<path>/book/chapter4/data/movies/movies.

parquet")

movies9.printSchema

 |-- actor_name: string (nullable = true)

 |-- movie_title: string (nullable = true)

 |-- produced_year: long (nullable = true)

// If we want to be more explicit, we can specify the path to the parquet

function

val movies10 = spark.read.parquet("<path>/book/chapter4/data/movies/movies.

parquet")

movies10.printSchema

 |-- actor_name: string (nullable = true)

 |-- movie_title: string (nullable = true)

 |-- produced_year: long (nullable = true)

 Creating DataFrames by Reading ORC Files

Optimized Row Columnar (ORC) is another popular open source self-describing

columnar storage format in the Hadoop ecosystem. It was created by a company called

Cloudera as part of the initiative to massively speed up Hive. It is quite similar to Parquet

in terms of efficiency and speed and was designed for analytics workloads. Working with

ORC files is just as easy as working with Parquet files. Listing 4-17 shows an example of

creating a DataFrame from reading from an ORC file.

Chapter 4 Spark SQL (FoundationS)

106

Listing 4-17. Reading an ORC File in Spark

val movies11 = spark.read.orc("<path>/book/chapter4/data/movies/movies.orc")

movies11.printSchema

 |-- actor_name: string (nullable = true)

 |-- movie_title: string (nullable = true)

 |-- produced_year: long (nullable = true)

movies11.show(5)

+--------------------------+-------------------+--------------+

| actor_name| movie_title| produced_year|

+--------------------------+-------------------+--------------+

| McClure, Marc (I)| Coach Carter| 2005|

| McClure, Marc (I)| Superman II| 1980|

| McClure, Marc (I)| Apollo 13| 1995|

| McClure, Marc (I)| Superman| 1978|

| McClure, Marc (I)| Back to the Future| 1985|

+--------------------------+-------------------+--------------+

 Creating DataFrames from JDBC

JDBC is a standard application API for reading data from and writing data to a relational

database management system. Spark has support for JDBC data sources, which means

you can use Spark to read data from and write data to any of the existing RDBMSs such

as MySQL, PostgreSQL, Oracle, SQLite, and so on. There are a few important pieces of

information you need to provide when working with a JDBC data source: a JDBC driver

for your RDBMS, a connection URL, authentication information, and a table name.

For Spark to connect to an RDBMS, it must have access to the JDBC driver JAR file at

runtime. Therefore, you need to add the location of a JDBC driver to the Spark classpath.

Listing 4-18 shows how to connect to MySQL from the Spark shell.

Listing 4-18. Specifying a JDBC Driver When Starting a Spark Shell

 ./bin/spark-shell ../jdbc/mysql-connector-java-5.1.45/mysql-connector-

java-5.1.45-bin.jar --jars ../jdbc/mysql-connector-java-5.1.45/mysql-

connector-java-5.1.45-bin.jar

Chapter 4 Spark SQL (FoundationS)

107

Once the Spark shell is successfully started, you can quickly verify to see whether

Spark can connect to the RDBMS by using the java.sql.DriverManager class, as shown

in Listing 4-19. This example is trying to test a connection to MySQL. The URL format

will be a bit different if your RDBMS is not MySQL, so consult the documentation of the

JDBC driver you are using.

Listing 4-19. Testing the Connection to MySQL in the Spark Shell

import java.sql.DriverManager

val connectionURL = "jdbc:mysql://localhost:3306/<table>?user=<username>

&password=<password>"

val connection = DriverManager.getConnection(connectionURL)

connection.isClosed()

connection close()

If you didn’t get any exception about the connection, then the Spark shell was able to

successfully connect to your RDBMS.

Table 4-6 describes the main options that you need to specify when using a JDBC

data source. For a complete list of options, please consult https://spark.apache.org/

docs/latest/sql-programming-guide.html#jdbc-to- other-databases.

Table 4-6. Main Options for a JDBC Data Source

Key Description

url the JdBC urL for Spark to connect to. at the minimum, it should contain the host, port,

and database name. For MySQL, it may look something like this: jdbc:mysql://

localhost:3306/sakila.

dbtable the name of a database table for Spark to read data from or write data to.

driver the class name of the JdBC driver that Spark will instantiate to connect to the previous

urL. Consult the JdBC driver documentation that you are using. For the MySQL

Connector/J driver, the class name is com.mysql.jdbc.Driver.

Chapter 4 Spark SQL (FoundationS)

https://spark.apache.org/docs/latest/sql-programming-guide.html#jdbc-to-other-databases
https://spark.apache.org/docs/latest/sql-programming-guide.html#jdbc-to-other-databases

108

Listing 4-20 shows an example of reading data from a table called film of the sakila

database on a MySQL server that runs on localhost at port 3306.

Listing 4-20. Reading Data from a Table in MySQL Server

val mysqlURL= "jdbc:mysql://localhost:3306/sakila"
val filmDF = spark.read.format("jdbc").option("driver", "com.mysql.jdbc.
Driver")
 .option("url", mysqlURL)
 .option("dbtable", "film")
 .option("user", "<username>")
 .option("password","<password>")
 .load()

filmDF.printSchema
 |-- film_id: integer (nullable = false)
 |-- title: string (nullable = false)
 |-- description: string (nullable = true)
 |-- release_year: date (nullable = true)
 |-- language_id: integer (nullable = false)
 |-- original_language_id: integer (nullable = true)
 |-- rental_duration: integer (nullable = false)
 |-- rental_rate: decimal(4,2) (nullable = false)
 |-- length: integer (nullable = true)
 |-- replacement_cost: decimal(5,2) (nullable = false)
 |-- rating: string (nullable = true)
 |-- special_features: string (nullable = true)
 |-- last_update: timestamp (nullable = false)

filmDF.select("film_id","title").show(5)

+-------+-----------------+
|film_id| title|
+-------+-----------------+
1	ACADEMY DINOSAUR
2	ACE GOLDFINGER
3	ADAPTATION HOLES
4	AFFAIR PREJUDICE
5	AFRICAN EGG

+-------+-----------------+

Chapter 4 Spark SQL (FoundationS)

109

When working with a JDBC data source, Spark pushes the filter conditions all the way

down to the RDBMS as much as possible. By doing this, much of the data will be filtered

out at the RDBMS level, and therefore this will not only speed up the data filtering logic

but dramatically reduce the amount of data Spark needs to read. This optimization

technique is known as predicate pushdown, and Spark will often do this when it knows a

data source can support the filtering capability. Parquet is another data source that has

this capability. The “Catalyst Optimizer” section in chapter 5 will provide an example of

what this looks like.

 Working with Structured Operations
Now that you know how to create DataFrames, the next part is to learn how to

manipulate or transform them using the provided structured operations. Unlike the

RDD operations, the structured operations are designed to be more relational, meaning

these operations mirror the kind of expressions you can do with SQL, such as projection,

filtering, transforming, joining, and so on. Similar to RDD operations, the structured

operations are divided into two categories: transformation and action. The semantics

of the structured transformations and actions are identical to the ones in RDDs. In

other words, structured transformations are lazily evaluated, and structured actions are

eagerly evaluated.

Structured operations are sometimes described as a domain-specific language

(DSL) for distributed data manipulation. A DSL is a computer language specialized for

a particular application domain. In this case, the application domain is the distributed

data manipulation. If you have ever worked with SQL, then it is fairly easy to learn the

structured operations.

Table 4-7 describes the commonly used DataFrame structured transformations.

As a reminder, DataFrames are immutable, and their transformation operations always

return a new DataFrame.

Chapter 4 Spark SQL (FoundationS)

110

Table 4-7. Commonly Used DataFrame Structured Transformations

Operation Description

select this selects one or more columns from an existing set of columns in the

dataFrame. a more technical term for select is projection. during the

projection process, columns can be transformed and manipulated.

selectExpr this supports powerful SQL expressions in transforming columns while

performing projection.

filter

where

Both filter and where have the same semantics. where is more relational

than filter, and it is similar to the where condition in SQL. they are both

used for filtering rows based on the given Boolean conditions.

distinct

dropDuplicates

this removes duplicate rows from the dataFrame.

sort

orderBy

this sorts the dataFrame by the provided columns.

limit this returns a new dataFrame by taking the first n rows.

union this combines two dataFrames and return them as a new dataFrame.

withColumn this is used to add a new column or replace an existing column in the dataFrame.

withColumnRenamed this renames an existing column. if a given column name doesn’t exist in

the schema, then it is a no-op.

drop this drops one or more columns from a dataFrame. this operation does

nothing if a specified given column name doesn’t exist.

sample this randomly selects a set of rows based on the given fraction parameter,

an optional seed value, and an optional replacement option.

randomSplit this splits the dataFrames into one or more dataFrames based on the given

weights. it is commonly used to split the master data set into training and

test data sets in the machine learning model training process.

join this joins two dataFrames. Spark supports many types of joins. You can find

more details in Chapter 5.

(continued)

Chapter 4 Spark SQL (FoundationS)

111

 Working with Columns

Most of the DataFrame structured operations in Table 4-7 will require you to specify one

or more columns. For some of them, the columns are specified in the form of a string,

and for some the columns need to be specified as instances of the Column class. It is

completely fair to question why there are two options and when to use what. To answer

those questions, you need to understand the functionality the Column class provides. At a

high level, the functionalities that the Column class provides can be broken down into the

following categories:

• Mathematical operations such as addition, multiplication, and so on

• Logical comparisons between a column value or a literal such as

equality, greater than, less than, and so on

• String pattern matching such as like, starting with, ending with, and

so on

For a complete list of available functions in the Column class, please refer to the

Scala documentation at https://spark.apache.org/docs/latest/api/scala/index.

html#org.apache.spark.sql.Column.

With an understanding of the functionality that the Column class provides, you can

conclude that whenever there is a need to specify some kind of column expression, then

it is necessary to specify the column as an instance of the Column class rather than a

string. The upcoming examples will make this clear.

There are different ways of referring to a column, which has created confusion in the

Spark user community. A common question is when to use which one, and the answer is

it depends. Table 4-8 describes the available options.

Operation Description

groupBy this groups a dataFrame by one or more columns. a common pattern is to

perform some kind of aggregation after the groupBy operation. You can find

more details in Chapter 5.

describe this computes the common statistics about numeric and string columns in

the dataFrame. available statistics are count, mean, stddev, min, max, and

arbitrary approximate percentiles.

Table 4-7. (continued)

Chapter 4 Spark SQL (FoundationS)

https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.Column
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.Column

112

The col and column functions are synonymous, and both are available in the Scala

and Python Spark APIs. If you often switch between the Spark Scala and Python APIs,

then it makes sense to use the col function so there is a consistency in your code. If you

mostly or exclusively use the Spark Scala APIs, then my recommendation is to use ' (tick

mark) because there is only a single character to type. The DataFrame class has its own

col function, which is used to disambiguate between columns with the same name from

two or more DataFrames when performing a join. Listing 4-21 provides examples of

different ways to refer to a column.

Listing 4-21. Different Ways of Referring to a Column

import org.apache.spark.sql.functions._

val kvDF = Seq((1,2),(2,3)).toDF("key","value")

// to display column names in a DataFrame, we can call the columns function

kvDF.columns

Array[String] = Array(key, value)

kvDF.select("key")

kvDF.select(col("key"))

Table 4-8. Different Ways of Referring to a Column

Way Example Description

"" "columName" this refers to a column as a string type.

col col("columnName") the col function returns an instance of the

Column class.

column column("columnName") Similar to col, this function returns an instance

of the Column class.

$ $"columnName" this is a syntactic sugar way of constructing a

Column class in Scala.

' (tick mark) 'columnName this is a syntactic sugar way of constructing a

Column class in Scala by leveraging the Scala

symbolic literals feature.

Chapter 4 Spark SQL (FoundationS)

113

kvDF.select(column("key"))

kvDF.select($"key")

kvDF.select('key)

// using the col function of DataFrame

kvDF.select(kvDF.col("key"))

kvDF.select('key, 'key > 1).show

+---+----------+

|key| (key > 1)|

+---+----------+

| 1| false|

| 2| true|

+---+----------+

The previous example illustrates a column expression, and therefore it is required

to specify a column as an instance of the Column class. If the column was specified

as a string, then it would result in a type mismatch error. More examples of column

expressions will be shown in the following examples of using various DataFrame

structure operations.

 Working with Structured Transformations

This section provides examples of working with the structured transformations listed

in Table 4-7. All the examples will consistently use ' as a way to refer to columns in a

DataFrame. To reduce redundancy, most of the examples will refer to the same movies

DataFrame that was created from reading from a Parquet file, illustrated in Listing 4-22.

Listing 4-22. Creating the movies DataFrame from a Parquet File

val movies = spark.read.parquet("<path>/chapter4/data/movies/movies.parquet")

select(columns)

This transformation is commonly used to perform projection, meaning selecting all

or a subset of columns from a DataFrame. During the selection, each column can be

transformed via a column expression. There are two variations of this transformation.

Chapter 4 Spark SQL (FoundationS)

114

One takes the column as a string, and the other takes columns as the Column class. This

transformation does not permit you to mix the column type when using one of these two

variations. See Listing 4-23 for an example of the two variations.

Listing 4-23. Two Variations of the select Transformation

movies.select("movie_title","produced_year").show(5)

+-------------------+--------------+

| movie_title| produced_year|

+-------------------+--------------+

| Coach Carter| 2005|

| Superman II| 1980|

| Apollo 13| 1995|

| Superman| 1978|

| Back to the Future| 1985|

+-------------------+--------------+

// using a column expression to transform year to decade

movies.select('movie_title,('produced_year - ('produced_year % 10)).

as("produced_decade")).show(5)

+-------------------+----------------+

| movie_title| produced_decade|

+-------------------+----------------+

| Coach Carter| 2000|

| Superman II| 1980|

| Apollo 13| 1990|

| Superman| 1970|

| Back to the Future| 1980|

+-------------------+----------------+

The second example requires two column expressions: modulo and subtraction.

Both them are implemented by the modulo (%) and subtraction (-) functions in the

Column class (see the Scala documentation mentioned earlier). By default, Spark uses the

column expression as the name of the result column. To make it more readable, the as

function is commonly used to rename it to a more human-readable column name. As an

astute reader, you can probably figure out the select transformation can be used to add

one or more columns to a DataFrame.

Chapter 4 Spark SQL (FoundationS)

115

selectExpr(expressions)

This transformation is a variant of the select transformation. The one big difference

is that it accepts one or more SQL expressions, rather than columns. However, both

are essentially performing the same projection task. SQL expressions are powerful and

flexible constructs to allow you to express column transformation logic in a natural way,

just like the way you think. You can express SQL expressions in a string format, and Spark

will parse them into a logical tree so they will be evaluated in the right order. Let’s say

you want to create a new DataFrame that has all the columns in the movies DataFrame

and introduce a new column to represent the decade a movie was produced in; then you

would do something like in Listing 4-24.

Listing 4-24. Adding the decade Column to the movies DataFrame Using a SQL

Expression

movies.selectExpr("*","(produced_year - (produced_year % 10)) as decade").

show(5)

+-----------------+-------------------+--------------+-------+

| actor_name| movie_title| produced_year| decade|

+-----------------+-------------------+--------------+-------+

|McClure, Marc (I)| Coach Carter| 2005| 2000|

|McClure, Marc (I)| Superman II| 1980| 1980|

|McClure, Marc (I)| Apollo 13| 1995| 1990|

|McClure, Marc (I)| Superman| 1978| 1970|

|McClure, Marc (I)| Back to the Future| 1985| 1980|

+-----------------+-------------------+--------------+-------+

The combination of SQL expressions and built-in functions makes it easy to perform

certain data analysis that otherwise would take multiple steps. Listing 4-25 shows how

easy it is to determine the number of unique movie titles and unique actors in the

movies dataset in a single statement. The count function performs an aggregation over

the entire DataFrame.

Chapter 4 Spark SQL (FoundationS)

116

Listing 4-25. Using a SQL Expression and Built-in Functions

movies.selectExpr("count(distinct(movie_title)) as

movies","count(distinct(actor_name)) as actors").show

+-------+-------+

| movies| actors|

+-------+-------+

| 1409| 6527|

+-------+-------+

filler(condition), where(condition)

This transformation is a fairly straightforward one to understand. It is used to filter

out the rows that don’t meet the given condition, in other words, when the condition

evaluates to false. A different way of looking at the behavior of the filter transformation is

that it returns only the rows that meet the specified condition. The given condition can

simple or as complex as it needs to be. Using this transformation will require knowing

how to leverage a few logical comparison functions in the Column class, like equality,

less than, greater than, and inequality. Both the filter and where transformations have

the same behavior, so pick the one you are most comfortable with. The latter one is just

a bit more relational than the former. See Listing 4-26 for a few examples of performing

filtering.

Listing 4-26. Filter Rows with Logical Comparison Functions in the Column Class

movies.filter('produced_year < 2000)

movies.where('produced_year > 2000)

movies.filter('produced_year >= 2000)

movies.where('produced_year >= 2000)

Chapter 4 Spark SQL (FoundationS)

117

// equality comparison require 3 equal signs

movies.filter('produced_year === 2000).show(5)

+------------------+---------------------+--------------+

| actor_name| movie_title| produced_year|

+------------------+---------------------+--------------+

| Cooper, Chris (I)| Me, Myself & Irene| 2000|

| Cooper, Chris (I)| The Patriot| 2000|

| Jolie, Angelina| Gone in Sixty Sec...| 2000|

| Yip, Françoise| Romeo Must Die| 2000|

| Danner, Blythe| Meet the Parents| 2000|

+------------------+---------------------+--------------+

// inequality comparison uses an interesting looking operator =!=

movies.select("movie_title","produced_year").filter('produced_year =!=

2000).show(5)

+-------------------+--------------+

| movie_title| produced_year|

+-------------------+--------------+

| Coach Carter| 2005|

| Superman II| 1980|

| Apollo 13| 1995|

| Superman| 1978|

| Back to the Future| 1985|

+-------------------+--------------+

// to combine one or more comparison expressions, we will use either the OR

and AND expression operator

movies.filter('produced_year >= 2000 && length('movie_title) < 5).show(5)

+----------------+------------+--------------+

| actor_name| movie_title| produced_year|

+----------------+------------+--------------+

| Jolie, Angelina| Salt| 2010|

| Cueto, Esteban| xXx| 2002|

| Butters, Mike| Saw| 2004|

| Franko, Victor| 21| 2008|

| Ogbonna, Chuk| Salt| 2010|

+----------------+------------+--------------+

Chapter 4 Spark SQL (FoundationS)

118

// the other way of accomplishing the same result is by calling the filter

function two times

movies.filter('produced_year >= 2000).filter(length('movie_title) < 5).show(5)

distinct, dropDuplicates

These two transformations have identical behavior. However, dropDuplicates allows

you to control which columns should be used in deduplication logic. If none is specified,

the deduplication logic will use all the columns in the DataFrame. Listing 4-27 shows

different ways of counting how many movies are in the movies data set.

Listing 4-27. Using distinct and dropDuplicates to Achieve the Same Goal

movies.select("movie_title").distinct.selectExpr("count(movie_title) as

movies").show

movies.dropDuplicates("movie_title").selectExpr("count(movie_title) as

movies").show

+------+

|movies|

+------+

| 1409|

+------+

In terms of performance, there is no difference between these two approaches

because Spark will transform them into the same logical plan.

sort(columns), orderBy(columns)

Both of these transformations have the same semantics. The orderBy transformation is

more relational than the other one. By default, the sorting is in ascending order, and it is

fairly easy to change it to descending. When specifying more than one column, it is possible

to have a different order for each of the columns. See Listing 4-28 for some examples.

Listing 4-28. Sorting the DataFrame in Ascending and Descending Order

val movieTitles = movies.dropDuplicates("movie_title")

 .selectExpr("movie_title", "length(movie_title) as

title_length", , "produced_year")

Chapter 4 Spark SQL (FoundationS)

119

movieTitles.sort('title_length).show(5)

+-----------+-------------+--------------+

|movie_title| title_length| produced_year|

+-----------+-------------+--------------+

| RV| 2| 2006|

| 12| 2| 2007|

| Up| 2| 2009|

| X2| 2| 2003|

| 21| 2| 2008|

+-----------+-------------+--------------+

// sorting in descending order

movieTitles.orderBy('title_length.desc).show(5)

+---------------------+-------------+--------------+

| movie_title| title_length| produced_year|

+---------------------+-------------+--------------+

| Borat: Cultural L...| 83| 2006|

| The Chronicles of...| 62| 2005|

| Hannah Montana & ...| 57| 2008|

| The Chronicles of...| 56| 2010|

| Istoriya pro Rich...| 56| 1997|

+---------------------+-------------+--------------+

// sorting by two columns in different orders

movieTitles.orderBy('title_length.desc, 'produced_year).show(5)

+---------------------+-------------+--------------+

| movie_title| title_length| produced_year|

+---------------------+-------------+--------------+

| Borat: Cultural L...| 83| 2006|

| The Chronicles of...| 62| 2005|

| Hannah Montana & ...| 57| 2008|

| Istoriya pro Rich...| 56| 1997|

| The Chronicles of...| 56| 2010|

+---------------------+-------------+--------------+

Chapter 4 Spark SQL (FoundationS)

120

In the previous example, notice the title of the last two movies are at the same length,

but their years are ordered in the correct ascending order.

limit(n)

This transformation returns a new DataFrame by taking the first n rows. This

transformation is commonly used after the sorting is done to figure out the top n or

bottom n rows based on the sorting order. Listing 4-29 shows an example of using the

limit transformation to figure out the top ten actors with the longest names.

Listing 4-29. Using the limit Transformation to Figure Out the Top Ten Actors

with the Longest Names

// first create a DataFrame with their name and associated length

val actorNameDF = movies.select("actor_name").distinct.selectExpr

("*", "length(actor_name) as length")

// order names by length and retrieve the top 10

actorNameDF.orderBy('length.desc).limit(10).show

+-----------------------------+-------+

| actor_name| length|

+-----------------------------+-------+

| Driscoll, Timothy 'TJ' James| 28|

| Badalamenti II, Peter Donald| 28|

| Shepard, Maridean Mansfield| 27|

| Martino, Nicholas Alexander| 27|

| Marshall-Fricker, Charlotte| 27|

| Phillips, Christopher (III)| 27|

| Pahlavi, Shah Mohammad Reza| 27|

| Juan, The Bishop Don Magic| 26|

| Van de Kamp Buchanan, Ryan| 26|

| Lough Haggquist, Catherine| 26|

+-----------------------------+-------+

Chapter 4 Spark SQL (FoundationS)

121

union(otherDataFrame)

You learned earlier that DataFrames are immutable. So if there is a need to add more

rows to an existing DataFrame, then the union transformation is useful for that purpose

as well as for combining rows from two DataFrames. This transformation requires

both DataFrames to have the same schema, meaning both column names and their

order must exactly match. Let say one of the movies in the DataFrame is missing an

actor and you want to fix that issue. See Listing 4-30 for how to do that using the union

transformation.

Listing 4-30. Adding a Missing Actor to the movies DataFrame

// we want to add a missing actor to movie with title as "12"

val shortNameMovieDF = movies.where('movie_title === "12")

shortNameMovieDF.show

+---------------------+------------+---------------+

| actor_name| movie_title| produced_year |

+---------------------+------------+---------------+

| Efremov, Mikhail| 12| 2007|

| Stoyanov, Yuriy| 12| 2007|

| Gazarov, Sergey| 12| 2007|

| Verzhbitskiy, Viktor| 12| 2007|

+---------------------+------------+---------------+

// create a DataFrame with one row

import org.apache.spark.sql.Row

val forgottenActor = Seq(Row("Brychta, Edita", "12", 2007L))

val forgottenActorRDD = spark.sparkContext.parallelize(forgottenActor)

val forgottenActorDF = spark.createDataFrame(forgottenActorRDD,

shortNameMovieDF.schema)

Chapter 4 Spark SQL (FoundationS)

122

// now adding the missing action

val completeShortNameMovieDF = shortNameMovieDF.union(forgottenActorDF)

completeShortNameMovieDF.union(forgottenActorDF).show

+---------------------+------------+--------------+

| actor_name| movie_title| produced_year|

+---------------------+------------+--------------+

| Efremov, Mikhail| 12| 2007|

| Stoyanov, Yuriy| 12| 2007|

| Gazarov, Sergey| 12| 2007|

| Verzhbitskiy, Viktor| 12| 2007|

| Brychta, Edita| 12| 2007|

+---------------------+------------+--------------+

withColumn(colName, column)

This transformation is used to add a new column to a DataFrame. It requires two input

parameters: a column name and a value in the form of a column expression. You

can accomplish pretty much the same goal by using the selectExpr transformation.

However, if the given column name matches one of the existing ones, then that column

is replaced with the given column expression. Listing 4-31 provides examples of adding a

new column as well as replacing an existing one.

Listing 4-31. Adding a Column As Well As Replacing a Column Using the

withColumn Transformation

// adding a new column based on a certain column expression

movies.withColumn("decade", ('produced_year - 'produced_year % 10)).show(5)

+------------------+-------------------+--------------+-------+

| actor_name| movie_title| produced_year| decade|

+------------------+-------------------+--------------+-------+

| McClure, Marc (I)| Coach Carter| 2005| 2000|

| McClure, Marc (I)| Superman II| 1980| 1980|

| McClure, Marc (I)| Apollo 13| 1995| 1990|

| McClure, Marc (I)| Superman| 1978| 1970|

| McClure, Marc (I)| Back to the Future| 1985| 1980|

+------------------+-------------------+--------------+-------+

Chapter 4 Spark SQL (FoundationS)

123

// now replace the produced_year with new values

movies.withColumn("produced_year", ('produced_year - 'produced_year % 10)).

show(5)

+------------------+-------------------+--------------+

| actor_name| movie_title| produced_year|

+------------------+-------------------+--------------+

| McClure, Marc (I)| Coach Carter| 2000|

| McClure, Marc (I)| Superman II| 1980|

| McClure, Marc (I)| Apollo 13| 1990|

| McClure, Marc (I)| Superman| 1970|

| McClure, Marc (I)| Back to the Future| 1980|

+------------------+-------------------+--------------+

withColumnRenamed(existingColName, newColName)

This transformation is strictly about renaming an existing column name in a DataFrame.

It is fair to ask why in the world Spark provides this transformation. As it is turns out, this

transformation is useful in the following situations:

• To rename a cryptic column name to a more human-friendly name.

The cryptic column name can come from an existing schema that

you don’t have control of, such as when the column you need in a

Parquet file was produced by your company’s partner.

• Before joining two DataFrames that happen to have one or more

same column name. This transformation can be used to rename one

or more columns in one of the two DataFrames so you can refer to

them easily after the join.

Notice that if the provided existingColName doesn’t exist in the schema, Spark

doesn’t throw an error, and it will silently do nothing. Listing 4-32 renames some of the

column names in the movies DataFrame to short names. By the way, this is something

that can be accomplished by using the select or selectExpr transformation. I will leave

that as an exercise for you.

Chapter 4 Spark SQL (FoundationS)

124

Listing 4-32. Using the withColumnRenamed Transformation to Rename Some

of the Column Names

movies.withColumnRenamed("actor_name", "actor")

 .withColumnRenamed("movie_title", "title")

 .withColumnRenamed("produced_year", "year").show(5)

+------------------+-------------------+-----+

| actor| title| year|

+------------------+-------------------+-----+

| McClure, Marc (I)| Coach Carter| 2005|

| McClure, Marc (I)| Superman II| 1980|

| McClure, Marc (I)| Apollo 13| 1995|

| McClure, Marc (I)| Superman| 1978|

| McClure, Marc (I)| Back to the Future| 1985|

+------------------+-------------------+-----+

drop(columnName1, columnName2)

This transformation simply drops the specified columns from the DataFrame. You can

specify one or more column names to drop, but only the ones that exist in the schema

will be dropped and the ones that don’t will be silently ignored. You can use the select

transformation to drop columns by projecting only the columns that you want to keep.

In the case that a DataFrame has 100 columns and you want to drop a few, then this

transformation is more convenient to use than the select transformation. Listing 4-33

provides examples of dropping columns.

Listing 4-33. Dropping Two Columns: One Exists and the Other One Doesn’t

movies.drop("actor_name", "me").printSchema

 |-- movie_title: string (nullable = true)

 |-- produced_year: long (nullable = true)

As you can see from the previous example, the second column, me, doesn’t exist in

the schema, so the drop transformation simply ignores it.

Chapter 4 Spark SQL (FoundationS)

125

sample(fraction), sample(fraction, seed), sample(fraction, seed,
withReplacement)

This transformation returns a randomly selected set of rows from the DataFrame. The

number of the returned rows will be approximately equal to the specified fraction, which

represents a percentage, and the value has to be between 0 and 1. The seed is used to

seed the random number generator, which is used to generate a row number to include

in the result. If a seed is not specified, then a randomly generated value is used. The

withReplacement option is used to determine whether a randomly selected row will be

placed back into the selection pool. In other words, when withReplacement is true, a

particular selected row has the potential to be selected more than once. So, when would

you need to use this transformation? It is useful in the case where the original dataset is

large and there is a need to reduce it to a smaller size so you can quickly iterate on the

data analysis logic. Listing 4-34 provides examples using the sample transformation.

Listing 4-34. Different Ways of Using the sample Transformation

// sample with no replacement and a fraction

movies.sample(false, 0.0003).show(3)

+---------------------+----------------------+--------------+

| actor_name| movie_title| produced_year|

+---------------------+----------------------+--------------+

| Lewis, Clea (I)| Ice Age: The Melt...| 2006|

| Lohan, Lindsay| Herbie Fully Loaded| 2005|

| Tagawa, Cary-Hiro...| Licence to Kill| 1989|

+---------------------+----------------------+--------------+

// sample with replacement, a fraction and a seed

movies.sample(true, 0.0003, 123456).show(3)

+---------------------+---------------+--------------+

| actor_name| movie_title| produced_year|

+---------------------+---------------+--------------+

| Panzarella, Russ (V)| Public Enemies| 2009|

| Reed, Tanoai| Daredevil| 2003|

| Moyo, Masasa| Spider-Man 3| 2007|

+---------------------+---------------+--------------+

Chapter 4 Spark SQL (FoundationS)

126

As you can see, the returned movies are pretty random.

randomSplit(weights)

This transformation is commonly used during the process of preparing the data to train

machine learning models. Unlike the previous transformations, this one returns one

or more DataFrames. The number of DataFrames it returns is based on the number of

weights you specify. If the provided set of weights don’t add up to 1, then they will be

normalized accordingly to add up to 1. Listing 4-35 provides an example of splitting the

movies DataFrames into three smaller ones.

Listing 4-35. Using randomSplit to split the movies DataFrames into Three Parts

// the weights need to be an Array

val smallerMovieDFs = movies.randomSplit(Array(0.6, 0.3, 0.1))

// let's see if the counts are added up to the count of movies DataFrame

movies.count

Long = 31393

smallerMovieDFs(0).count

Long = 18881

smallerMovieDFs(0).count + smallerMovieDFs(1).count + smallerMovieDFs(2).

count

Long = 31393

 Working with Missing or Bad Data

In reality, the data you often work with is not as clean as you would like. Maybe it’s

because the data evolves over time, and therefore some columns have values and

some don’t. It is important to deal with this kind of issue at the beginning of your data

manipulation logic to prevent any unpleasant surprises that will cause your long-

running data processing job to stop working.

Chapter 4 Spark SQL (FoundationS)

127

The Spark community recognizes that the need to deal with missing data is a fact of

life; therefore, Spark provides a dedicated class called DataFrameNaFunctions to help in

dealing with this inconvenient issue. An instance of DataFrameNaFunctions is available

as the an member variable inside the DataFrame class. There are three common ways

of dealing with missing or bad data. The first way is to drop the rows that have missing

values in a one or more columns. The second way is to fill those missing values with

user-provided values. The third way is to replace the bad data with something that you

know how to deal with.

Let’s start with dropping rows with missing data. You can tell Spark to drop rows

where any column or only the specific columns have missing values. Listing 4-36 shows

a few different ways of dropping rows with missing data.

Listing 4-36. Dropping Rows with Missing Data

// first create a DataFrame with missing values in one or more columns

import org.apache.spark.sql.Row

val badMovies = Seq(Row(null, null, null),

 Row(null, null, 2018L),

 Row("John Doe", "Awesome Movie", null),

 Row(null, "Awesome Movie", 2018L),

 Row("Mary Jane", null, 2018L))

val badMoviesRDD = spark.sparkContext.parallelize(badMovies)

val badMoviesDF = spark.createDataFrame(badMoviesRDD, movies.schema)

badMoviesDF.show

+----------+--------------+--------------+

|actor_name| movie_title| produced_year|

+----------+--------------+--------------+

| null| null| null|

| null| null| 2018|

| John Doe| Awesome Movie| null|

| null| Awesome Movie| 2018|

| Mary Jane| null| 2018|

+----------+--------------+--------------+

Chapter 4 Spark SQL (FoundationS)

128

// dropping rows that have missing data in any column

// both of the lines below will achieve the same purpose

badMoviesDF.na.drop().show

badMoviesDF.na.drop("any").show

+----------+------------+--------------+

|actor_name| movie_title| produced_year|

+----------+------------+--------------+

+----------+------------+--------------+

// drop rows that have missing data in every single column

badMoviesDF.na.drop("all").show

+----------+--------------+--------------+

|actor_name| movie_title| produced_year|

+----------+--------------+--------------+

| null| null| 2018|

| John Doe| Awesome Movie| null|

| null| Awesome Movie| 2018|

| Mary Jane| null| 2018|

+----------+--------------+--------------+

// drops rows when column actor_name has missing data

badMoviesDF.na.drop(Array("actor_name")).show

+----------+--------------+--------------+

|actor_name| movie_title| produced_year|

+----------+--------------+--------------+

| John Doe| Awesome Movie| null|

| Mary Jane| null| 2018|

+----------+--------------+--------------+

Chapter 4 Spark SQL (FoundationS)

129

describe(columnNames)

Sometimes it is useful to have a general sense of the basic statistics of the data you

are working with. The basic statistics this transformation can compute for string and

numeric columns are count, mean, standard deviation, minimum, and maximum.

You can pick and choose which string or numeric columns to compute the statistics for.

See Listing 4-37 for an example.

Listing 4-37. Use the describe Transformation to Show Statistics for the

produced_year Column

movies.describe("produced_year").show

+-------+-------------------+

|summary| produced_year|

+-------+-------------------+

| count| 31392|

| mean| 2002.7964449541284|

| stddev| 6.377236851493877|

| min| 1961|

| max| 2012|

+-------+-------------------+

 Working with Structured Actions

This section covers the structured actions. They have the same eager evaluated

semantics as the RDD actions, so they trigger the computation of all the transformations

that lead up to a particular action. Table 4-9 describes the structured actions.

Chapter 4 Spark SQL (FoundationS)

130

Table 4-9. Commonly Used Structured Actions

Operation Description

show()

show(numRows)

show(truncate)

show(numRows, truncate)

displays a number of rows in a tabular format. if numRows

is not specified, it will show the top 20 rows. the truncate

option controls whether to truncate the string column if it is

longer than 20 characters.

head()

first()

head(n)

take(n)

returns the first row. if n is specified, then it will return the

first n rows. first is an alias for head. take(n) is an alias

for first(n).

takeAsList(n) returns the first n rows as a Java list. Be careful not to take too

many rows; otherwise, it may cause an out-of-memory error on

the application’s driver process.

collect

collectAsList

returns all the rows as an array or Java list. apply the same

caution as the one described in the takeAsList action.

count returns the number of rows in a dataFrame.

Most of these are self-explanatory. The show action was used in many examples

earlier in the chapter. One interesting action is called describe, which is described next.

 Introduction to Datasets
At one point in the history of Spark, there was a lot of confusion about the differences

between the DataFrame and Dataset APIs. Given these options, it is fair to ask what

are the differences between them, what are the advantages and disadvantages of each

option, and when to use which one. Recognizing this huge confusion in the Spark user

community, Spark designers decided to unify the DataFrame APIs with the Dataset APIs

in Spark 2.0 to have one fewer abstraction for users to learn and remember. Starting with

the Spark 2.0 release, there is only one high-level abstraction called a Dataset, which

has two flavors: a strongly typed API and an untyped API. The term DataFrame didn’t

go away; instead, it has been redefined as an alias for a collection of generic objects in a

Dataset. From the code perspective, what I am saying is a DataFrame is essentially a type

alias for Dataset[Row], where a Row is a generic untyped JVM object. A Dataset is defined

Chapter 4 Spark SQL (FoundationS)

131

as a collection of strongly typed JVM objects, represented by either a case class in Scala

or a class in Java. Table 4-10 describes the Dataset API flavors that are available in each of

the programming languages that Spark supports.

The Python and R languages have no compile-time type safety; therefore, only the

untyped Dataset APIs (aka DataFrame) are supported.

Consider the Dataset as a younger brother of the DataFrame; however, it is more about

type safety and is object-oriented. A Dataset is a strongly typed, immutable collection

of data. Similar to a DataFrame, the data in a Dataset is mapped to a defined schema.

However, there are a few important differences between a DataFrame and a Dataset.

• Each row in a Dataset is represented by a user-defined object so that

you can refer to an individual column as a member variable of that

object. This provides you with compile-type safety.

• A Dataset has helpers called encoders, which are smart and efficient

encoding utilities that convert data inside each user-defined object

into a compact binary format. This translates into a reduction of

memory usage if and when a Dataset is cached in memory as well as

a reduction in the number of bytes that Spark needs to transfer over a

network during the shuffling process.

In terms of limitations, the Dataset APIs are available in only strongly typed

languages such as Scala and Java. At this point, a question should pop into your mind

regarding when to use the DataFrame APIs and the Dataset APIs. The Dataset APIs

are good for production jobs that need to run on a regular basis and are written and

maintained by data engineers. For most interactive and explorative analysis use cases,

using the DataFrame APIs would be sufficient.

Table 4-10. Dataset Flavors

Language Flavor

Scala dataset[t] and dataFrame

Java dataset[t]

python dataFrame

r dataFrame

Chapter 4 Spark SQL (FoundationS)

132

Note a case class in the Scala language is like a JavaBean class in the Java
language; however, it has a few built-in interesting properties. an instance of a
case class is immutable, and therefore it is commonly used to model domain-
specific objects. in addition, it is easy to reason about the internal states of the
instances of a case class because they are immutable. the toString and
equals methods are automatically generated to make it easier to print out the
content of the case class and to compare different case class instances. Scala
case classes work well with the pattern matching feature in Scala language.

 Creating Datasets
There are a few ways to create a Dataset, but the first thing you need to do is to define a

domain-specific object to represent each row. The first way is to transform a DataFrame

to a Dataset using the as(Symbol) function of the DataFrame class. The second way is

to use the SparkSession.createDataset() function to create a Dataset from a local

collection objects. The third way is to use the toDS implicit conversion utility. Listing 4-38

provides examples of creating Datasets using the different ways described earlier.

Listing 4-38. Different Ways of Creating Datasets

// define Movie case class

case class Movie(actor_name:String, movie_title:String, produced_year:Long)

// convert DataFrame to strongly typed Dataset

val moviesDS = movies.as[Movie]

// create a Dataset using SparkSession.createDataset() and the toDS

implicit function

val localMovies = Seq(Movie("John Doe", "Awesome Movie", 2018L),

 Movie("Mary Jane", "Awesome Movie", 2018L))

val localMoviesDS1 = spark.createDataset(localMovies)

val localMoviesDS2 = localMovies.toDS()

localMoviesDS1.show

Chapter 4 Spark SQL (FoundationS)

133

+----------+--------------+--------------+

|actor_name| movie_title| produced_year|

+----------+--------------+--------------+

| John Doe| Awesome Movie| 2018|

| Mary Jane| Awesome Movie| 2018|

+----------+--------------+--------------+

Out of the three ways of creating Datasets, the first way is the most popular one.

During the process of transforming a DataFrame to a Dataset using a Scala case class,

Spark will perform a validation to ensure the member variable names in the Scala case

class matches up with the column names in the schema of the DataFrame. If there is a

mismatch, Spark will let you know.

 Working with Datasets
Now that you have a Dataset, you can manipulate it using the transformations and

actions described earlier. Previously you referred to the columns in the DataFrame

using one of the options described earlier. With a Dataset, each row is represented by

a strongly typed object; therefore, you can just refer to the columns using the member

variable names, which will give you type safety as well as compile-time validation.

If there is a misspelling in the name, the compiler will flag them immediately during the

development phase. See Listing 4-39 for examples of manipulating a Dataset.

Listing 4-39. Manipulating a Dataset in a Type-Safe Manner

// filter movies that were produced in 2010 using

moviesDS.filter(movie => movie.produced_year == 2010).show(5)

+-------------------+---------------------+--------------+

| actor_name| movie_title| produced_year|

+-------------------+---------------------+--------------+

| Cooper, Chris (I)| The Town| 2010|

| Jolie, Angelina| Salt| 2010|

| Jolie, Angelina| The Tourist| 2010|

| Danner, Blythe| Little Fockers| 2010|

| Byrne, Michael (I)| Harry Potter and ...| 2010|

+-------------------+---------------------+--------------+

Chapter 4 Spark SQL (FoundationS)

134

// displaying the title of the first movie in the moviesDS

moviesDS.first.movie_title

String = Coach Carter

// try with misspelling the movie_title and get compilation error

moviesDS.first.movie_tile

error: value movie_tile is not a member of Movie

// perform projection using map transformation

val titleYearDS = moviesDS.map(m => (m.movie_title, m.produced_year))

titleYearDS.printSchema

 |-- _1: string (nullable = true)

 |-- _2: long (nullable = false)

// demonstrating a type-safe transformation that fails at compile time,

performing subtraction on a column with string type

// a problem is not detected for DataFrame until runtime

movies.select('movie_title - 'movie_title)

// a problem is detected at compile time

moviesDS.map(m => m.movie_title - m.movie_title)

error: value - is not a member of String

// take action returns rows as Movie objects to the driver

moviesDS.take(5)

Array[Movie] = Array(Movie(McClure, Marc (I),Coach Carter,2005),

Movie(McClure, Marc (I),Superman II,1980), Movie(McClure, Marc (I),Apollo

13,1995))

For those who use the Scala programming language on a regular basis, working

with the strongly typed Dataset APIs will feel natural and give you impression that those

objects in the Dataset reside locally.

When you use the strongly typed Dataset APIs, Spark implicitly converts each Row

instance to the domain-specific object that you provide. This conversion has some cost

in terms of performance; however, it provides more flexibility.

One general guideline to help with deciding when to use a DataSet over a DataFrame

is the desire to have a higher degree of type safety at compile time.

Chapter 4 Spark SQL (FoundationS)

135

 Using SQL in Spark SQL
In the big data era, SQL has been described as the lingua franca for big data analysis.

One of the coolest features Spark provides is the ability to use SQL to perform distributed

data manipulation or analysis at scale. Data analysts who are proficient at SQL can now

be productive at using Spark to perform data analysis on large datasets. One important

note to remember is SQL in Spark is designed to be used for online analytic processing

(OLAP) use cases and not online transaction processing (OLTP) use cases. In other

words, it is not applicable for low-latency use cases.

SQL has evolved and improved over time. Spark implements a subset of the ANSI

SQL:2003 revision, which most popular RDBMS servers support. Being compliant with

this particular revision means the Spark SQL data processing engine can be evaluated

by an existing and widely used industry-standard decision support benchmark called

TPC- DS.

As a testament of the power of the Spark SQL engine, in late 2016, Facebook started

migrating some of its largest Apache Hive workloads to Spark to take advantage of the

power of the Spark SQL engine. See this post for more details: https://code.facebook.

com/posts/1671373793181703/apache-spark-scale-a-60-tb-production-use-case/.

Note Structured Query Language (SQL) is a domain-specific language, and
it is widely used to perform data analysis and manipulation of structured data
organized in a table format. the concepts in SQL are based on relational algebra;
however, it is an easy language to learn. one key difference between SQL and
other programming languages such as Scala or python is that SQL is a declarative
programming language, which means you express what want to do with the data
and let the SQL execution engine figure out the necessary optimizations to speed
up execution time. if you are new to SQL, there is a free course at https://www.
datacamp.com/courses/intro-to-sql-for-data-science.

Chapter 4 Spark SQL (FoundationS)

https://code.facebook.com/posts/1671373793181703/apache-spark-scale-a-60-tb-production-use-case/
https://code.facebook.com/posts/1671373793181703/apache-spark-scale-a-60-tb-production-use-case/
https://www.datacamp.com/courses/intro-to-sql-for-data-science
https://www.datacamp.com/courses/intro-to-sql-for-data-science

136

 Running SQL in Spark
Spark provides a few different ways to run SQL in Spark.

• Spark SQL CLI (./bin/spark-sql)

• JDBC/ODBC server

• Programmatically in Spark applications

This first two options provide an integration with Apache Hive to leverage the Hive

metastore, which is a repository that contains the metadata and schema information

about the various system and user-defined tables. This section will cover only the last

option.

DataFrames and Datasets are essentially like tables in a database. Before you can

issue SQL queries to manipulate them, you need to register them as temporary views.

Each view has a name, and that is what is used as the table name in the select clause.

Spark provides two levels of scoping for the temporary views. One is at the Spark session

level. When a DataFrame is registered at this level, only the queries that are issued in the

same session can refer to that DataFrame. The session-scoped level will disappear when

a Spark session is closed. The second scoping level is at the global level, which means

these views are available to SQL statements in all Spark sessions. All the registered

views are maintained in the Spark metadata catalog that can be accessed through

SparkSession. See Listing 4-40 for example of registering views and using the Spark

catalog to inspect the metadata of those views.

Listing 4-40. Registering the movies DataFrame as a Temporary View and

Inspecting the Spark Metadata Catalog

// display tables in the catalog, expecting an empty list

spark.catalog.listTables.show

+-----+---------+------------+----------+------------+

| name| database| description| tableType| isTemporary|

+-----+---------+------------+----------+------------+

// now register movies DataFrame as a temporary view

movies.createOrReplaceTempView("movies")

Chapter 4 Spark SQL (FoundationS)

137

// should see the movies view in the catalog

spark.catalog.listTables.show

+-------+---------+------------+----------+------------+

| name| database| description| tableType| isTemporary|

+-------+---------+------------+----------+------------+

| movies| null| null| TEMPORARY| true|

+-------+---------+------------+----------+------------+

// show the list of columns of movies view in catalog

spark.catalog.listColumns("movies").show

+--------------+------------+---------+---------+------------+---------+

| name| description| dataType| nullable| isPartition| isBucket|

+--------------+------------+---------+---------+------------+---------+

| actor_name| null| string| true| false| false|

| movie_title| null| string| true| false| false|

| produced_year| null| bigint| true| false| false|

+--------------+------------+---------+---------+------------+---------+

// register movies as global temporary view called movies_g

movies.createOrReplaceGlobalTempView("movies_g")

The previous example gives you a couple of views to select from. The programmatic

way of issuing SQL queries is to use the sql function of the SparkSession class. Inside the

SQL statement, you have access to all SQL expressions and built-in functions. Once the

SparkSession.sql function executes the given SQL query, it will return a DataFrame. The

ability to issue SQL statements and use DataFrame transformations and actions provides

you with a lot of flexibility in how you choose to perform distributed data processing in

Spark. Listing 4-41 provides examples of issuing simple and complex SQL statements.

Listing 4-41. Programmatically Executing SQL Statements in Spark

// simple example of executing a SQL statement without a registered view

val infoDF = spark.sql("select current_date() as today , 1 + 100 as value")

infoDF.show

+----------+------+

| today| value|

+----------+------+

|2017-12-27| 101|

+----------+------+

Chapter 4 Spark SQL (FoundationS)

138

// select from a view

spark.sql("select * from movies where actor_name like '%Jolie%' and

produced_year > 2009").show

+---------------+----------------+--------------+

| actor_name| movie_title| produced_year|

+---------------+----------------+--------------+

|Jolie, Angelina| Salt| 2010|

|Jolie, Angelina| Kung Fu Panda 2| 2011|

|Jolie, Angelina| The Tourist| 2010|

+---------------+----------------+--------------+

// mixing SQL statement and DataFrame transformation

spark.sql("select actor_name, count(*) as count from movies group by actor_name")

 .where('count > 30)

 .orderBy('count.desc)

 .show

+-------------------+------+

| actor_name| count|

+-------------------+------+

| Tatasciore, Fred| 38|

| Welker, Frank| 38|

| Jackson, Samuel L.| 32|

| Harnell, Jess| 31|

+-------------------+------+

// using a subquery to figure out the number movies were produced in each year.

// leverage """ to format multi-line SQL statement

spark.sql("""select produced_year, count(*) as count

 from (select distinct movie_title, produced_year from

movies)

 group by produced_year""")

 .orderBy('count.desc).show(5)

Chapter 4 Spark SQL (FoundationS)

139

+-------------+------+

|produced_year| count|

+-------------+------+

| 2006| 86|

| 2004| 86|

| 2011| 86|

| 2005| 85|

| 2008| 82|

+-------------+------+

// select from a global view requires prefixing the view name with key word

'global_temp'

spark.sql("select count(*) from global_temp.movies_g").show

+-----+

|count|

+-----+

|31393|

+-----+

Instead of reading the data file through DataFrameReader and then registering the

newly created DataFrame as a temporary view, it is possible to issue a SQL query directly

from a file. See Listing 4-42 for an example.

Listing 4-42. Issuing a SQL Query Directly from a File

spark.sql("SELECT * FROM parquet.`<path>/chapter4/data/movies/movies.

parquet`").show(5)

 Writing Data Out to Storage Systems
At this point, you know how to read data from various file formats or from a database

server using DataFrameReader, and you know how use SQL or transformations and

actions of structured APIs to manipulate the data. At some point, you will need to write

the data in a DataFrame out to an external storage system, i.e., a local file system, HDFS,

or Amazon S3. In a typical ETL data processing job, the results will most likely be written

out to some storage system.

Chapter 4 Spark SQL (FoundationS)

140

In Spark SQL, the DataFrameWriter class is responsible for the logic and complexity

of writing out the data in a DataFrame to an external storage system. An instance of the

DataFrameWriter class is available to you as the write variable in the DataFrame class.

The pattern for interacting with DataFrameWriter is somewhat similar to the interacting

pattern of DataFrameReader. From a Spark shell or in a Spark application, you refer to it

as in Listing 4-43.

Listing 4-43. Using the write Variable from the DataFrame Class

movies.write

Listing 4-44 describes the common pattern for interacting with DataFrameWriter.

Listing 4-44. Common Interacting Pattern with DataFrameWriter

movies.write.format(...).mode(...).option(...).partitionBy(...).bucketBy(...)

.sortBy(...).save(path)

Similar to DataFrameReader, the default format is Parquet; therefore, it is not

necessary to specify a format when writing the data out in Parquet format. The

partitionBy, bucketBy, and sortBy functions are used to control the directory structure

of the output files in the file-based data sources. By structuring the directory layout

based on the read patterns, it will dramatically reduce the amount of data that needs to

be read for analysis. You’ll learn more about this later in the chapter. The input to the

save function is a directory name, not a file name.

One of the important options in the DataFrameWriter class is the save mode, which

controls how Spark will handle the situation when the specified output folder already

exists. Table 4-11 lists the various supported save modes.

Chapter 4 Spark SQL (FoundationS)

141

Listing 4-45 shows a few examples of using various combinations of formats and

modes.

Listing 4-45. Using DataFrameWriter to Write Data to File-Based Sources

// write data out as CVS format, but using a '#' as delimiter

movies.write.format("csv").option("sep", "#").save("/tmp/output/csv")

// write data out using overwrite save mode

movies.write.format("csv").mode("overwrite").option("sep", "#").save

("/tmp/output/csv")

The number of files written out to the output directory corresponds to the number of

partitions a DataFrame has. Listing 4-46 shows how to find out the number of partitions

a DataFrame has.

Listing 4-46. Displaying the Number of Partitions a DataFrame Has

movies.rdd.getNumPartitions

Int = 1

In some cases, the content of a DataFrame is not large, and there is a need to write to

a single file. A small trick to achieve this goal is to reduce the number of partitions in your

DataFrame to one and then write it out. Listing 4-47 shows an example of how to do that.

Table 4-11. Save Modes

Mode Description

append this appends the dataFrame data to the list of files that already exist at

the specified destination location.

overwrite this completely overwrites any data files that already exist at the

specified destination location with the data in the dataFrame.

error

errorIfExists

default

this is the default mode. if the specified destination location exists, then

DataFrameWriter will throw an error.

ignore if the specified destination location exists, then simply do nothing. in other

words, silently don’t write out the data in the dataFrame.

Chapter 4 Spark SQL (FoundationS)

142

Listing 4-47. Reducing the Number of Partitions in a DataFrame to 1

val singlePartitionDF = movies.coalesce(1)

The idea of writing data out using partitioning and bucketing is borrowed from

the Apache Hive user community. As a general rule of thumb, the partition by column

should have low cardinality. In the movies DataFrame, the produced_year column is

a good candidate for the partition by column. Let’s say you are going to write out the

movies DataFrame with partitioning by the produced_year column. DataFrameWriter

will write out all the movies with the same produced_year into a single directory. The

number of directories in the output folder will correspond to the number of years in the

movies DataFrame. See Listing 4-48 for an example of using the partitionBy function.

Listing 4-48. Writing the movies DataFrame Using the Parquet Format and

Partition by the produced_year Column

movies.write.partitionBy("produced_year").save("/tmp/output/movies")

// the /tmp/output/movies directory will contain the following subdirectories

produced_year=1961 to produced_year=2012

The directory names generated by the partitionBy option seems strange because

each directory name consists of the partitioning column name and the associated value.

These two pieces of information are used at data reading time to choose which directory

to read based on the data access pattern, and therefore it ends up reading much less data

than otherwise.

 The Trio: DataFrames, Datasets, and SQL
Now you know there are three different ways of manipulating structured data in the

Spark SQL module. Table 4-12 shows where each option falls in the syntax and analysis

spectrum.

The main point here is the earlier you can catch the errors, the more productive you

will be and the more stable your data processing applications will be.

Chapter 4 Spark SQL (FoundationS)

143

 DataFrame Persistence
DataFrames can be persisted/cached in memory just like how it is done with RDDs. The

same familiar persistence APIs (persist and unpersist) are available in the DataFrame

class. However, there is one big difference when caching a DataFrame. Spark SQL knows

the schema of the data inside a DataFrame, so it organizes the data in a columnar format

as well as applies any applicable compressions to minimize space usage. The net result

is it will require much less space to store a DataFrame in memory than storing an RDD

when both are backed by the same data file. All the different storage options described in

Table 3-5 are applicable for persisting a DataFrame. Listing 4-49 demonstrates persisting

a DataFrame with a human-readable name so it is easy to identify in the Spark UI.

Listing 4-49. Persisting a DataFrame with a Human-Readable Name

val numDF = spark.range(1000).toDF("id")

// register as a view

numDF.createOrReplaceTempView("num_df")

// use Spark catalog to cache the numDF using name "num_df"

spark.catalog.cacheTable("num_df")

// force the persistence to happen by taking the count action

numDF.count

At this point, point your browser to the Spark UI (http://localhost:4040 when

running the Spark shell) and click the Storage tab. See Figure 4-2 for an example.

Table 4-12. Syntax and Analysis Errors Spectrum

SQL DataFrame Dataset

System errors runtime Compile time Compile time

analysis errors runtime runtime Compile time

Chapter 4 Spark SQL (FoundationS)

https://doi.org/10.1007/978-1-4842-3579-9_3#Tab5

144

 Summary
In this chapter, you learned the following:

• The Spark SQL module provides a new and powerful abstraction

for structured distributed data manipulation. Structured data has a

defined schema, which consists of column names and a column data

type.

• The main programming abstraction in Spark SQL is the Dataset,

and it has two flavors of APIs: a strongly typed API and an untyped

API. For strongly typed APIs, each row is represented by a domain-

specified object. For untyped APIs, each row is represented by a

Row object. A DataFrame is now just an alias of Dataset[Row]. The

strongly typed APIs give you static typing and compile-time checking;

therefore, they are available only in the strongly typed languages

(Scala and Java).

• Spark SQL supports a variety of popular data sources, and the

DataFrameReader class is responsible for creating DataFrames by

reading data from any of these data sources.

• Similar to RDD, a Dataset has two types of structured operations.

They are transformation and actions. The former is lazy evaluated,

and the latter is eagerly evaluated.

• Spark SQL supports the ability to use SQL for queries against large

sets. This opens up Spark to data analysts and nonprogrammers.

• Writing out data from either a Dataset or DataFrame is done via a

class called DataFrameWriter.

Figure 4-2. Storage tab

Chapter 4 Spark SQL (FoundationS)

145

SPARK SQL EXERCISES

the following questions are identical to the ones in Chapter 3. here you should use the Spark

SQL Structured apis or SQL to solve these problems.

 1. Compute the number of movies produced in each year. the output should have

two columns: year and count. the output should be ordered by the count in

descending order.

 2. Compute the number of movies each actor was in. the output should have

two columns: actor and count. the output should be ordered by the count in

descending order.

 3. Compute the highest-rated movie per year and include all the actors in that

movie. the output should have only one movie per year, and it should contain

four columns: year, movie title, rating, and a semicolon-separated list of

actor names. this question will require joining the movies.tsv and movie-

ratings.tsv files. there are two approaches to this problem. the first one

is to figure out the highest-rated movie per year first and then join with the list

of actors. the second one is to perform the join first and then figure out the

highest-rated movies per year along with a list of actors. the result of each

approach is different than the other one. Why do you think that is?

 4. determine which pair of actors worked together most. Working together

is defined as appearing in the same movie. the output should have three

columns: actor 1, actor 2, and count. the output should be sorted by the count

in descending order. the solution to this question will require a self-join.

Chapter 4 Spark SQL (FoundationS)

147
© Hien Luu 2018
H. Luu, Beginning Apache Spark 2, https://doi.org/10.1007/978-1-4842-3579-9_5

CHAPTER 5

Spark SQL (Advanced)
Chapter 4 introduced the foundational elements of the Spark SQL module including the

core abstraction, structured operations for manipulating structured data, and the support

for reading data from and writing data to a variety of data sources. Building on top of that

foundation, this chapter covers some of the advanced capabilities of the Spark SQL module

as well as takes a peek behind the curtain to explain the optimization and execution

efficiency that the Catalyst optimizer and Tungsten engine provide. To help you perform

complex analytics, Spark SQL provides a set of powerful and flexible aggregation capabilities,

the ability to join multiple datasets, a large set of built-in and high-performant functions, and

a set of advanced analytic functions. This chapter covers each of these topics in detail.

 Aggregations
Performing any interesting analytics on big data usually involves some kind of

aggregation to summarize the data in order to extract patterns or insights or to generate

summary reports. Aggregations usually require some form of grouping either on the

entire dataset or on one or more columns, and then they apply aggregation functions

such as summing, counting, or averaging to each group. Spark provides many commonly

used aggregation functions as well as the ability to aggregate the values into a collection,

which then can be further analyzed. The grouping of rows can be done at different levels,

and Spark supports the following levels:

• Treat a DataFrame as one group.

• Divide a DataFrame into multiple groups by using one or more columns

and perform one or more aggregations on each of those groups.

• Divide a DataFrame into multiple windows and perform moving

average, cumulative sum, or ranking. If a window is based on time,

the aggregations can be done with tumbling or sliding windows.

148

 Aggregation Functions
In Spark, all aggregations are done via functions. The aggregation functions are designed

to perform aggregation on a set of rows, whether that set of rows consists of all the

rows or a subgroup of rows in a DataFrame. The documentation of the complete list

of aggregation functions for Scala language is available at http://spark.apache.

org/docs/latest/api/scala/index.html#org.apache.spark.sql.functions$. For

the Spark Python APIs, sometimes there are gaps in terms of the availability of some

functions.

 Common Aggregation Functions

This section describes a set of commonly used aggregation functions and provides

examples of working with them. Table 5-1 describes the aggregation functions. For a

complete list, please see the URL mentioned earlier.

Table 5-1. Commonly Used Aggregation Functions

Operation Description

count(col) Returns the number of items per group.

countDistinct(col) Returns the unique number of items per group.

approx_count_

distinct(col)

Returns the approximate number of unique items per group.

min(col) Returns the minimum value of the given column per group.

max(col) Returns the maximum value of the given column per group.

sum(col) Returns the sum of the values in the given column per group.

sumDistinct(col) Returns the sum of the distinct values of the given column per group.

avg(col) Returns the average of the values of the given column per group.

skewness(col) Returns the skewness of the distribution of the values of the given column

per group.

kurtosis(col) Returns the kurtosis of the distribution of the values of the given column

per group.

(continued)

ChapteR 5 SpaRk SQL (advanCed)

http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.functions$
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.functions$

149

To demonstrate the usage of these functions, we are going to use the flight summary

dataset, which is derived from the data files available on the Kaggle site (https://www.

kaggle.com/usdot/flight-delays/data). This dataset contains the 2015 U.S. domestic

flight delays and cancellations. Listing 5-1 contains the code for creating a DataFrame

from reading this dataset.

Listing 5-1. Creating a DataFrame by Reading a Flight Summary Dataset

val flight_summary = spark.read.format("csv")

 .option("header", "true")

 .option("inferSchema","true")

 .load("<path>/chapter5/data/flights/

flight- summary.csv")

// use count action to find out number of rows in this data set

flight_summary.count()

Long = 4693

Remember that the count() function of the DataFrame is an action, so it

immediately returns a value. All the functions listed in Table 5-1 are lazily evaluated

functions.

The following is the schema of the flight_summary dataset:

 |-- origin_code: string (nullable = true)

 |-- origin_airport: string (nullable = true)

 |-- origin_city: string (nullable = true)

Operation Description

variance(col) Returns the unbiased variance of the values of the given column per group.

stddev(col) Returns the standard deviation of the values of the given column per group.

collect_list(col) Returns a collection of values of the given column per group. the returned

collection may contain duplicate values.

collect_set(col) Returns a collection of unique values per group.

Table 5-1. (continued)

ChapteR 5 SpaRk SQL (advanCed)

https://www.kaggle.com/usdot/flight-delays/data
https://www.kaggle.com/usdot/flight-delays/data

150

 |-- origin_state: string (nullable = true)

 |-- dest_code: string (nullable = true)

 |-- dest_airport: string (nullable = true)

 |-- dest_city: string (nullable = true)

 |-- dest_state: string (nullable = true)

 |-- count: integer (nullable = true)

Each row represents the flights from origin_airport to dest_airport. The count

column contains the number of flights.

All the following examples are performing aggregation at the entire DataFrame level.

Examples of performing aggregations at the subgroup level are given later in this chapter.

count(col)

Counting is a commonly used aggregation to find out the number of items in a group.

Listing 5-2 computes the count for both the origin_airport and dest_airport

columns, and as expected, the count is the same. To improve the readability of the result

column, you can use the as function to give it a friendlier column name. Notice that you

need to call the show action to see the result.

Listing 5-2. Computing the Count for Different Columns in the flight_summary

DataFrame

flight_summary.select(count("origin_airport"), count("dest_airport").

as("dest_count")).show

+----------------------+-----------+

| count(origin_airport)| dest_count|

+----------------------+-----------+

| 4693| 4693|

+----------------------+-----------+

When counting the number of items in a column, the count(col) function doesn’t

include the null value in the count. To include the null value, the column name should

be replaced with *. Listing 5-3 demonstrates this behavior by creating a small DataFrame

with a null value in a few columns.

ChapteR 5 SpaRk SQL (advanCed)

151

Listing 5-3. Counting Items with a Null Value

import org.apache.spark.sql.Row

case class Movie(actor_name:String, movie_title:String, produced_year:Long)

val badMoviesDF = Seq(Movie(null, null, 2018L),

 Movie("John Doe", "Awesome Movie", 2018L),

 Movie(null, "Awesome Movie", 2018L),

 Movie("Mary Jane", "Awesome Movie", 2018L)).toDF

badMoviesDF.show

+----------+--------------+--------------+

|actor_name| movie_title| produced_year|

+----------+--------------+--------------+

| null| null| 2018|

| John Doe| Awesome Movie| 2018|

| null| Awesome Movie| 2018|

| Mary Jane| Awesome Movie| 2018|

+----------+--------------+--------------+

// now performing the count aggregation on different columns

badMoviesDF.select(count("actor_name"), count("movie_title"),

count("produced_year"), count("*")).show

+------------------+-------------------+---------------------+---------+

| count(actor_name)| count(movie_title)| count(produced_year)| count(1)|

+------------------+-------------------+---------------------+---------+

| 2| 3| 4| 4|

+------------------+-------------------+---------------------+---------+

The above output table confirms that the count(col) function doesn’t include null

in the final count.

countDistinct(col)

This function does what it sounds like. It counts only the unique items per group. The

output in Listing 5-4 shows the difference in the count result between the countDistinct

function and the count function. As it turns out, there are 322 unique airports in the

flight_summary dataset.

ChapteR 5 SpaRk SQL (advanCed)

152

Listing 5-4. Counting Unique Items in a Group

flight_summary.select(countDistinct("origin_airport"), countDistinct("dest_

airport"), count("*")).show

+-------------------------------+-----------------------------+---------+

| count(DISTINCT origin_airport)| count(DISTINCT dest_airport)| count(1)|

+-------------------------------+-----------------------------+---------+

| 322| 322| 4693|

+-------------------------------+-----------------------------+---------+

approx_count_distinct (col, max_estimated_error=0.05)

Counting the exact number of unique items in each group in a large dataset is an

expensive and time-consuming operation. In some use cases, it is sufficient to have

an approximate unique count. One of those use cases is in the online advertising

business where there are hundreds of millions of ad impressions per hour and there is

a need to generate a report to show the number of unique visitors per certain type of

member segment. Approximating a count of distinct items is a well-known problem in

the computer science field, and it is also known as the cardinality estimation problem.

Luckily, there is already a well-known algorithm called HyperLogLog (https://

en.wikipedia.org/wiki/HyperLogLog) that you can use to solve this problem, and

Spark has implemented a version of this algorithm inside the approx_count_distinct

function. Since the unique count is an approximation, there will be a certain amount of

error. This function allows you to specify a value for an acceptable estimation error for

this use case. Listing 5-5 demonstrates the usage and behavior of the approx_count_

distinct function. As you dial down the estimation error, it will take longer and longer

for this function to complete and return the result.

Listing 5-5. Counting Unique Items in a Group

// let's do the counting on the "count" colum of flight_summary DataFrame.

// the default estimation error is 0.05 (5%)

flight_summary.select(count("count"),countDistinct("count"), approx_count_

distinct("count", 0.05)).show

ChapteR 5 SpaRk SQL (advanCed)

https://en.wikipedia.org/wiki/HyperLogLog
https://en.wikipedia.org/wiki/HyperLogLog

153

+--------------+----------------------+-----------------------------+

| count(count) | count(DISTINCT count)| approx_count_distinct(count)|

+--------------+----------------------+-----------------------------+

| 4693| 2033| 2252|

+--------------+----------------------+-----------------------------+

// to get a sense how much approx_count_distinct function is faster than

countDistinct function,

// trying calling them separately

flight_summary.select(countDistinct("count")).show

// specify 1% estimation error

flight_summary.select(approx_count_distinct("count", 0.01)).show

On my Mac laptop, the approx_count_distinct function took about 0.1 second, and

the countDistinct function took 0.6 second. The larger the approximation estimation

error, the less time the approx_count_distinct function takes to complete.

min(col), max(col)

The minimum value and maximum value of the items in a group are the two ends of a

spectrum. These two functions are fairly easy to understand and work with. Listing 5-6

extracts these two values from the count column.

Listing 5-6. Getting the Minimum and Maximum Values of the count Column

flight_summary.select(min("count"), max("count")).show

+-----------+-----------+

| min(count)| max(count)|

+-----------+-----------+

| 1| 13744|

+-----------+-----------+

// looks like there is one very busy airport with 13744 incoming flights

from another airport. It will be interesting to find which airport.

ChapteR 5 SpaRk SQL (advanCed)

154

sum(col)

This function computes the sum of the values in a numeric column. Listing 5-7 performs

the sum of all the flights in the flight_summary dataset.

Listing 5-7. Using the sum Function to Sum Up the count Values

flight_summary.select(sum("count")).show

+-----------+

| sum(count)|

+-----------+

| 5332914|

+-----------+

sumDistinct(col)

This function does what it sounds like. It sums up only the distinct values of a numeric

column. The sum of the distinct counts in the flight_summary DataFrame should be less

than the total sum displayed in Listing 5-7. See Listing 5-8 for computing the sum of the

distinct values.

Listing 5-8. Using the sumDistinct Function to Sum Up the Distinct count Values

flight_summary.select(sumDistinct("count")).show

+--------------------+

| sum(DISTINCT count)|

+--------------------+

| 3612257|

+--------------------+

avg(col)

This function calculates the average value of a numeric column. This convenient

function simply takes the total and divides it by the number of items. Let’s see whether

Listing 5-8 can validate the hypothesis.

ChapteR 5 SpaRk SQL (advanCed)

155

Listing 5-9. Computing the Average Value of the count Column Using Two

Different Ways

flight_summary.select(avg("count"), (sum("count") / count("count"))).show

+-------------------+----------------------------+

| avg(count)| (sum(count) / count(count))|

+-------------------+----------------------------+

| 1136.3549968037503| 1136.3549968037503|

+-------------------+----------------------------+

skewness(col), kurtosis(col)

In the field of statistics, the distribution of the values in a dataset tells a lot of stories

behind the dataset. Skewness is a measure of the symmetry of the value distribution in a

dataset. In a normal distribution or bell-shaped distribution, the skew value is 0. Positive

skew indicates the tail on the right side is longer or fatter than the left side. Negative skew

indicates the opposite, where the tail of the left side is longer or fatter than the right side.

The tail of both sides is even when the skew is 0.

Kurtosis is a measure of the shape of the distribution curve, whether the curve is

normal, flat, or pointy. Positive kurtosis indicates the curve is slender and pointy, and

negative kurtosis indicates the curve is fat and flat. Listing 5-10 calculates the skewness

and kurtosis for the count distribution in the flight_summary dataset.

Listing 5-10. Computing the Skewness and Kurtosis of the column Count

flight_summary.select(skewness("count"), kurtosis("count")).show

+------------------+------------------+

| skewness(count)| kurtosis(count)|

+------------------+------------------+

| 2.682183800064101| 10.51726963017102|

+------------------+------------------+

The result seems to suggest the distribution of the counts is not symmetric and

the right tail is longer or fatter than the left tail. The kurtosis value suggests that the

distribution curve is pointy.

ChapteR 5 SpaRk SQL (advanCed)

156

variance(col), stddev(col)

In statistics, variance and standard deviation are used to measure the dispersion, or

the spread, of the data. In other words, they are used to tell the average distance of the

values from the mean. When the variance value is low, it means the values are close to

the mean. Variance and standard deviation are related; the latter is the square root of the

former.

The variance and stddev functions are used to calculate the variance and standard

deviation, respectively. Spark provides two different implementations of these functions;

one uses sampling to speed up the calculation, and the other uses the entire population.

Listing 5-11 shows the variance and standard deviation of the count column in the

flight_summary DataFrame.

Listing 5-11. Computing the Variance and Standard Deviation Using the

variance and sttdev Functions

// use the two variations of variance and standard deviation

flight_summary.select(variance("count"), var_pop("count"), stddev("count"),

stddev_pop("count")).show

+-----------------+------------------+------------------+-----------------+

| var_samp(count)| var_pop(count)|stddev_samp(count)|stddev_pop(count)|

+-----------------+------------------+------------------+-----------------+

|1879037.7571558713|1878637.3655604832| 1370.779981308405| 1370.633928355957|

+-----------------+------------------+------------------+-----------------+

It looks like the count values are pretty spread out in the flight_summary

DataFrame.

 Aggregation with Grouping
This section covers aggregation with grouping of one or more columns. The aggregations

are usually performed on datasets that contain one or more categorical columns, which

have low cardinality. Examples of categorical values are gender, age, city name, or

country name. The aggregations will be done through the functions that are similar to

the ones mentioned earlier. However, instead of performing aggregation on the global

group in a DataFrame, they will perform the aggregation on each of the subgroups inside

a DataFrame.

ChapteR 5 SpaRk SQL (advanCed)

157

Performing aggregation with grouping is a two-step process. The first step is to

perform the grouping by using the groupBy(col1,col2,...) transformation, and that’s

where you specify which columns to group the rows by. Unlike other transformations

that return a DataFrame, the groupBy transformation returns an instance of the

RelationalGroupedDataset class, which you then can apply one or more aggregation

functions to. Listing 5-12 demonstrates a simple grouping of using one column and

one aggregation. Notice that the groupBy columns will automatically be included in the

output.

Listing 5-12. Grouping by origin_airport and Performing a count Aggregation

flight_summary.groupBy("origin_airport").count().show(5, false)

+--+------+

| origin_airport | count|

+--+------+

|Melbourne International Airport | 1|

|San Diego International Airport (Lindbergh Field) | 46|

|Eppley Airfield | 21|

|Kahului Airport | 18|

|Austin-Bergstrom International Airport | 41|

+--+------+

The previous result table tells you that the flights going out of the Melbourne

International Airport (Florida) are going to only one other airport. However, the flights

going out of the Kahului Airport can land at one of the 18 other airports.

To make things a bit more interesting, let’s trying grouping by two columns to

calculate the same metric at the city level. Listing 5-13 shows how to do that.

ChapteR 5 SpaRk SQL (advanCed)

158

Listing 5-13. Grouping by origin_state and origin_city and Performing a Count

Aggregation

flight_summary.groupBy('origin_state, 'origin_city).count

 .where('origin_state === "CA").orderBy('count.desc).show(5)

+-------------+-----------------+-------+

| origin_state| origin_city| count|

+-------------+-----------------+-------+

| CA| San Francisco| 80|

| CA| Los Angeles| 80|

| CA| San Diego| 47|

| CA| Oakland| 35|

| CA| Sacramento| 27|

+-------------+-----------------+-------+

In addition to grouping by two columns, the previous statement filters the rows

to only the ones with a CA state. The orderBy transformation is used to make it easier

to identify which city has the most number of options in terms of destination airport.

It makes sense that both San Francisco and Los Angeles in California have the largest

number of destination airports that one can fly to.

The class RelationalGroupedDataset provides a standard set of aggregation

functions that you can apply to each subgroup. They are avg(cols), count(),

mean(cols), min(cols), max(cols), and sum(cols). Except for the count() function, all

the remaining ones operate on numeric columns.

 Multiple Aggregations per Group

Sometimes there is a need to perform multiple aggregations per group at the same time.

For example, in addition to the count, you also would like to know the minimum and

maximum values. The RelationalGroupedDataset class provides a powerful function

called agg that takes one or more column expressions, which means you can use any of

the aggregation functions including the ones listed in Table 5-1. One cool thing is these

aggregation functions return an instance of the Column class so you can then apply any

of the column expressions using the provided functions. A common need is to rename

the column after the aggregation is done to make it shorter, more readable, and easier to

refer to. Listing 5-14 demonstrates how to do everything that was just described.

ChapteR 5 SpaRk SQL (advanCed)

159

Listing 5-14. Multiple Aggregations After Grouping by origin_airport

import org.apache.spark.sql.functions._

flight_summary.groupBy("origin_airport")

 .agg(

 count("count").as("count"),

 min("count"), max("count"),

 sum("count")

).show(5)

+--------------------+------+-----------+-----------+-----------+

| origin_airport| count| min(count)| max(count)| sum(count)|

+--------------------+------+-----------+-----------+-----------+

|Melbourne Interna...| 1| 1332| 1332| 1332|

|San Diego Interna...| 46| 4| 6942| 70207|

| Eppley Airfield| 21| 1| 2083| 16753|

| Kahului Airport| 18| 67| 8313| 20627|

|Austin-Bergstrom ...| 41| 8| 4674| 42067|

+--------------------+------+-----------+-----------+-----------+

By default the aggregation column name is the aggregation expression, which makes

the column name a bit long and not easy to refer to. A common pattern is to use the

Column.as function to rename the column to something more suitable.

The versatile agg function provides an additional way to express the column

expressions via a string-based key-value map. The key is the column name, and the value

is an aggregation function, which can be avg, max, min, sum, or count. Listing 5-15 shows

examples of this approach.

Listing 5-15. Specifying Multiple Aggregations Using a Key-Value Map

flight_summary.groupBy("origin_airport")

 .agg(

 "count" -> "count",

 "count" -> "min",

 "count" -> "max",

 "count" -> "sum")

 .show(5)

ChapteR 5 SpaRk SQL (advanCed)

160

The result is the same as in Listing 5-14. Notice there isn’t an easy way to rename the

aggregation result column name. One advantage this approach has over the first one is the

map can programmatically be generated. When writing production ETL jobs or performing

exploratory analysis, the first approach is used more often than the second one.

 Collection Group Values

The functions collect_list(col) and collect_set(col) are useful for collecting all the

values of a particular group after the grouping is applied. Once the values of each group

are collected into a collection, then there is freedom to operate on them in any way

you choose. There is one small difference between the returned collection of these two

functions, which is the uniqueness. The collection_list function returns a collection

that may contain duplicate values, and the collection_set function returns a collection

that contains only unique values. Listing 5-16 shows using the collection_list

function to collect the destination cities that have more 5,500 flights coming into them

from each of the origin states.

Listing 5-16. Using collection_list to Collect High-Traffic Destination Cities per

Origin State

val highCountDestCities = flight_summary.where('count > 5500)

 .groupBy("origin_state")

 .agg(collect_list("dest_city").

as("dest_cities"))

highCountDestCities.withColumn("dest_city_count", size('dest_cities)).

show(5, false)

+-------------+--------------------------------------+----------------+

| origin_state| dest_cities | dest_city_count|

+-------------+--------------------------------------+----------------+

| AZ| [Seattle, Denver, Los Angeles] | 3|

| LA| [Atlanta] | 1|

| MN| [Denver, Chicago] | 2|

| VA| [Chicago, Boston, Atlanta] | 3|

| NV| [Denver, Los Angeles, San Francisco] | 3|

+-------------+--------------------------------------+----------------+

ChapteR 5 SpaRk SQL (advanCed)

161

 Aggregation with Pivoting
Pivoting is a way to summarize the data by specifying one of the categorical columns

and then performing aggregations on another columns such that the categorical

values are transposed from rows into individual columns. Another way of thinking

about pivoting is that it is a way to translate rows into columns while applying one or

more aggregations. This technique is commonly used in data analysis or reporting.

The pivoting process starts with the grouping of one or more columns, then pivots on

a column, and finally ends with applying one or more aggregations on one or more

columns. Listing 5-17 shows a pivoting example on a small dataset of students where

each row contains the student name, gender, weight, and graduation year. You would

like to know the average weight of each gender for each graduation year.

Listing 5-17. Pivoting on a Small Dataset

import org.apache.spark.sql.Row

case class Student(name:String, gender:String, weight:Int, graduation_year:Int)

val studentsDF = Seq(Student("John", "M", 180, 2015),

 Student("Mary", "F", 110, 2015),

 Student("Derek", "M", 200, 2015),

 Student("Julie", "F", 109, 2015),

 Student("Allison", "F", 105, 2015),

 Student("kirby", "F", 115, 2016),

 Student("Jeff", "M", 195, 2016)).toDF

// calculating the average weight for each gender per graduation year

studentsDF.groupBy("graduation_year").pivot("gender").avg("weight").show()

+----------------+------+------+

| graduation_year| F| M|

+----------------+------+------+

| 2015| 108.0| 190.0|

| 2016| 115.0| 195.0|

+----------------+------+------+

ChapteR 5 SpaRk SQL (advanCed)

162

The previous example has one aggregation, and the gender categorical column has

only two possible unique values; therefore, the result table has only two columns. If the

gender column has three possible unique values, then there will be three columns in

the result table. You can leverage the agg function to perform multiple aggregations,

which will create more columns in the result table. See Listing 5-18 for an example of

performing multiple aggregations on the same DataFrame as in Listing 5-17.

Listing 5-18. Multiple Aggregations After Pivoting

studentsDF.groupBy("graduation_year").pivot("gender")

 .agg(

 min("weight").as("min"),

 max("weight").as("max"),

 avg("weight").as("avg")

).show()

+---------------+------+------+------+------+------+------+

|graduation_year| F_min| F_max| F_avg| M_min| M_max| M_avg|

+---------------+------+------+------+------+------+------+

| 2015| 105| 110| 108.0| 180| 200| 190.0|

| 2016| 115| 115| 115.0| 195| 195| 195.0|

+---------------+------+------+------+------+------+------+

The number of columns added after the group columns in the result table is

the product of the number of unique values of the pivot column and the number of

aggregations.

If the pivoting column has a lot of distinct values, you can selectively choose which

values to generate the aggregations for. Listing 5-19 shows how to specify values to the

pivoting function.

ChapteR 5 SpaRk SQL (advanCed)

163

Listing 5-19. Selecting Which Values of Pivoting Columns to Generate the

Aggregations For

studentsDF.groupBy("graduation_year").pivot("gender", Seq("M"))

 .agg(

 min("weight").as("min"),

 max("weight").as("max"),

 avg("weight").as("avg")

).show()

+----------------+------+------+------+

| graduation_year| M_min| M_max| M_avg|

+----------------+------+------+------+

| 2015| 180| 200| 190.0|

| 2016| 195| 195| 195.0|

+----------------+------+------+------+

Specifying a list of distinct values for the pivot column actually will speed up the

pivoting process. Otherwise, Spark will spend some effort in figuring out a list of distinct

values on its own.

 Joins
To perform any kind of complex and interesting data analysis or manipulations, you

often need to bring together the data from multiple datasets through the process of

joining. This is a well-known technique in SQL parlance. Performing a join will combine

the columns of two datasets (could be different or same), and the combined DataFrame

will contain columns from both sides. This will enable you to further analyze the

combined dataset in ways that you couldn’t with just each individual dataset. Let’s take

an example of the two datasets from an online e-commerce company. One represents

the transactional data that contains information about which products were purchased

by which customers (aka a fact table). The other one represents the details about

each individual customer (aka a dimension table). By joining these two datasets, you

can extract insights about which products are more popular with certain segments of

customers in terms of age or location.

ChapteR 5 SpaRk SQL (advanCed)

164

This section covers how to perform joining in Spark SQL using the join

transformation and the various types of join it supports. The last portion of this section

describes a few details about how Spark SQL internally performs the joining.

Note In the world of performing data analysis using SQL, a join is a technique
that is used quite often. If you are new to SQL, it is highly recommended that
you learn the fundamental concepts and the different kinds of join at https://
en.wikipedia.org/wiki/Join_(SQL). a few tutorials about joins are
provided at https://www.w3schools.com/sql/sql_join.asp.

 Join Expressions and Join Types
Performing a join of two datasets requires you to specify two pieces of information. The

first one is a join expression that specifies which columns from each dataset should be

used to determine which rows from both datasets will be included in the joined dataset.

The second one is the join type, which determines what should be included in the joined

dataset. Table 5-2 describes the supported join types in Spark SQL.

Table 5-2. Join Types

Type Description

Inner join

(aka equi- join)

Returns rows from both datasets when the join expression evaluates to true.

Left outer join Returns rows from the left dataset even when the join expression evaluates to false.

Right outer join Returns rows from the right dataset even when the join expression evaluates to false.

Outer join Returns rows from both datasets even when the join expression evaluates to false.

Left anti join Returns rows only from the left dataset when the join expression evaluates to false.

Left semi join Returns rows only from the left dataset when the join expression evaluates to true.

Cross

(aka Cartesian)

Returns rows by combining each row from the left dataset with each row in the

right dataset. the number of rows will be a product of the size of each dataset.

ChapteR 5 SpaRk SQL (advanCed)

https://en.wikipedia.org/wiki/Join_(SQL
https://en.wikipedia.org/wiki/Join_(SQL
https://www.w3schools.com/sql/sql_join.asp

165

To help visualize some of the join types, Figure 5-1 shows a set of Venn diagrams

for the common join types (source: https://en.wikipedia.org/wiki/Join_

(SQL)#Outer_join).

 Working with Joins
To demonstrate how to perform joining in Spark SQL, I’ll use two small DataFrames. The

first one represents a list of employees, and each row contains the employee name and

the department they belong to. The second one contains a list of departments, and each

row contains a department ID and department name. Listing 5-20 contains a snippet of

code to create these two DataFrames.

Listing 5-20. Creating Two Small DataFrames to Use in the Following Join Type

Examples

case class Employee(first_name:String, dept_no:Long)

val employeeDF = Seq(Employee("John", 31),

 Employee("Jeff", 33),

 Employee("Mary", 33),

 Employee("Mandy", 34),

 Employee("Julie", 34),

 Employee("Kurt", null.

asInstanceOf[Int])

).toDF

A B A B A B A B

Inner Join Left Outer Join Right Outer Join Full Outer Join

Figure 5-1. Venn diagrams for common join types

ChapteR 5 SpaRk SQL (advanCed)

https://en.wikipedia.org/wiki/Join_(SQL)#Outer_join
https://en.wikipedia.org/wiki/Join_(SQL)#Outer_join

166

case class Dept(id:Long, name:String)

val deptDF = Seq(Dept(31, "Sales"),

 Dept(33, "Engineering"),

 Dept(34, "Finance"),

 Dept(35, "Marketing")

).toDF

// register them as views so we can use SQL for perform joins

employeeDF.createOrReplaceTempView("employees")

deptDF.createOrReplaceTempView("departments")

 Inner Joins

This is the most commonly used join type with the join expression containing the

equality comparison of the columns from both datasets. The joined dataset will contain

the rows only when the join expression evaluates to true, in other words, when the join

column values are the same in both datasets. Rows that don’t have matching column

values will be excluded from the joined dataset. If the join expression is using the

equality comparison, then the number of rows in the joined table will only be as large

as the size of the smaller dataset. In Spark SQL, the inner join is the default join type, so

it is optional to specify it in the join transformation. Listing 5-21 provides examples of

performing an inner join.

Listing 5-21. Performing an Inner Join by the Department ID

// define the join expression of equality comparison

val deptJoinExpression = employeeDF.col("dept_no") === deptDF.col("id")

// perform the join

employeeDF.join(deptDF, joinExpression, "inner").show

// no need to specify the join type since "inner" is the default

employeeDF.join(deptDF, joinExpression).show

ChapteR 5 SpaRk SQL (advanCed)

167

+----------+--------+---+------------+

|first_name| dept_no| id| name|

+----------+--------+---+------------+

| John| 31| 31| Sales|

| Jeff| 33| 33| Engineering|

| Mary| 33| 33| Engineering|

| Mandy| 34| 34| Finance|

| Julie| 34| 34| Finance|

+----------+--------+---+------------+

// using SQL

spark.sql("select * from employees JOIN departments on dept_no == id").show

As expected, the joined dataset contains only the rows with matching department

IDs from both the employee and department datasets and the columns from both

datasets. The output tells you exactly which department each employee belongs to.

The join expression can be specified inside the join transformation or using the

where transformation. It is possible to refer to the columns in the join expression using

a short-handed version if the column names are unique. If not, then it is required to

specify which DataFrame a particular column comes from by using the col function.

Listing 5-22 shows different ways of expressing a join expression.

Listing 5-22. Different Ways of Expressing a Join Expression

// a shorter version of the join expression

employeeDF.join(deptDF, 'dept_no === 'id).show

// specify the join expression inside the join transformation

employeeDF.join(deptDF, employeeDF.col("dept_no") === deptDF.col("id")).show

// specify the join expression using the where transformation

employeeDF.join(deptDF).where('dept_no === 'id).show

A join expression is simply a Boolean predicate, and therefore it can be as simple as

comparing two columns or as complex as chaining multiple logical comparisons of pairs

of columns.

ChapteR 5 SpaRk SQL (advanCed)

168

 Left Outer Joins

The joined dataset of this join type includes all the rows from an inner join plus all

the rows from the left dataset that the join expression evaluates to false. For those

nonmatching rows, it will fill in a NULL value for the columns of the right dataset. See

Listing 5-23 for an example of doing a left outer join.

Listing 5-23. Performing a Left Outer Join

// the join type can be either "left_outer" or "leftouter"

employeeDF.join(deptDF, 'dept_no === 'id, "left_outer").show

// using SQL

spark.sql("select * from employees LEFT OUTER JOIN departments on dept_no

== id").show

+-----------+--------+-----+------------+

| first_name| dept_no| id| name|

+-----------+--------+-----+------------+

| John| 31| 31| Sales|

| Jeff| 33| 33| Engineering|

| Mary| 33| 33| Engineering|

| Mandy| 34| 34| Finance|

| Julie| 34| 34| Finance|

| Kurt| 0| null| null|

+-----------+--------+-----+------------+

As expected, the number of rows in the joined dataset is the same as the number

of rows in the employee DataFrame. Since there is no matching department with an

ID value of 0, it fills in a NULL value for that row. The result of this particular left outer

join enables you to tell which department an employee is assigned to as well as which

employees are not assigned to a department.

 Right Outer Joins

The behavior of this join type resembles the behavior of the left outer join type, except

the same treatment is applied to the right dataset. In other words, the joined dataset

includes all the rows from an inner join plus all the rows from the right dataset that

ChapteR 5 SpaRk SQL (advanCed)

169

the join expression evaluates to false. For those nonmatching rows, it will fill in a NULL

value for the columns of the left dataset. See Listing 5-24 for an example of doing a right

outer join.

Listing 5-24. Performing a Right Outer Join

employeeDF.join(deptDF, 'dept_no === 'id, "right_outer").show

// using SQL

spark.sql("select * from employees RIGHT OUTER JOIN departments on dept_no

== id").show

+-----------+--------+----+------------+

| first_name| dept_no| id| name|

+-----------+--------+----+------------+

| John| 31| 31| Sales|

| Mary| 33| 33| Engineering|

| Jeff| 33| 33| Engineering|

| Julie| 34| 34| Finance|

| Mandy| 34| 34| Finance|

| null| null| 35| Marketing|

+-----------+--------+----+------------+

As expected, the marketing department doesn’t have any matching rows from the

employee dataset. The joined dataset tells you the department an employee is assigned

to as well as which departments have no employees.

 Outer Joins (aka Full Outer Joins)

The behavior of this join type is effectively the same as combining the result of both

the left outer join and the right outer join. See Listing 5-25 for an example of doing an

outer join.

ChapteR 5 SpaRk SQL (advanCed)

170

Listing 5-25. Performing an Outer Join

employeeDF.join(deptDF, 'dept_no === 'id, "outer").show

// using SQL

spark.sql("select * from employees FULL OUTER JOIN departments on dept_no

== id").show

+-----------+--------+-----+------------+

| first_name| dept_no| id| name|

+-----------+--------+-----+------------+

| Kurt| 0| null| null|

| Mandy| 34| 34| Finance|

| Julie| 34| 34| Finance|

| John| 31| 31| Sales|

| Jeff| 33| 33| Engineering|

| Mary| 33| 33| Engineering|

| null| null| 35| Marketing|

+-----------+--------+-----+------------+

The result from the outer join allows you to see not only which department an

employee is assigned to and which departments have employees but also which

employees are not assigned to a department and which departments don’t have any

employees.

 Left Anti-Joins

This join type enables you to find out which rows from the left dataset don’t have any

matching rows on the right dataset, and the joined dataset will contain only the columns

from the left dataset. See Listing 5-26 for an example of doing a left anti-join and what

the joined dataset looks like.

Listing 5-26. Performing a Left Anti-Join

employeeDF.join(deptDF, 'dept_no === 'id, "left_anti").show

// using SQL

spark.sql("select * from employees LEFT ANTI JOIN departments on dept_no ==

id").show

ChapteR 5 SpaRk SQL (advanCed)

171

+----------+--------+

|first_name| dept_no|

+----------+--------+

| Kurt| 0|

+----------+--------+

The result from the left anti-join can easily tell you which employees are not assigned

to a department. Notice the right anti-join type doesn’t exist; however, you can easily

switch the datasets around to achieve the same goal.

 Left Semi-Joins

The behavior of this join type is similar to the inner join type, except the joined dataset

doesn’t include the columns from the right dataset. Another way of thinking about this

join type is its behavior is the opposite of the left anti-join, where the joined dataset

contains only the matching rows. See Listing 5-27 for an example of doing a left

semi- join and what the joined dataset looks like.

Listing 5-27. Performing a Left Semi-Join

employeeDF.join(deptDF, 'dept_no === 'id, "left_semi").show

// using SQL

spark.sql("select * from employees LEFT SEMI JOIN departments on dept_no ==

id").show

+-----------+--------+

| first_name| dept_no|

+-----------+--------+

| John| 31|

| Jeff| 33|

| Mary| 33|

| Mandy| 34|

| Julie| 34|

+-----------+--------+

ChapteR 5 SpaRk SQL (advanCed)

172

 Cross (aka Cartesian)

In terms of usage, this join type is the simplest to use because the join expression is not

needed. Its behavior can be a bit dangerous because it joins every single row in the left

dataset with every row in the right dataset. The size of the joined dataset is the product

of the size of the two datasets. For example, if the size of each dataset is 1,024, then the

size of the joined dataset is more than 1 million rows. For this reason, the way to use this

join type is by explicitly using a dedicated transformation in DataFrame, rather than

specifying this join type as a string. See Listing 5-28 for an example of doing a cross join

and what the joined dataset looks like.

Listing 5-28. Performing a Cross Join

// using crossJoin transformation and display the count

employeeDF.crossJoin(deptDF).count

Long = 24

// using SQL and to display up to 30 rows to see all rows in the joined

dataset

spark.sql("select * from employees CROSS JOIN departments").show(30)

+----------+--------+----+------------+

|first_name| dept_no| id| name|

+----------+--------+----+------------+

| John| 31| 31| Sales|

| John| 31| 33| Engineering|

| John| 31| 34| Finance|

| John| 31| 35| Marketing|

| Jeff| 33| 31| Sales|

| Jeff| 33| 33| Engineering|

| Jeff| 33| 34| Finance|

| Jeff| 33| 35| Marketing|

| Mary| 33| 31| Sales|

| Mary| 33| 33| Engineering|

| Mary| 33| 34| Finance|

| Mary| 33| 35| Marketing|

| Mandy| 34| 31| Sales|

ChapteR 5 SpaRk SQL (advanCed)

173

| Mandy| 34| 33| Engineering|

| Mandy| 34| 34| Finance|

| Mandy| 34| 35| Marketing|

| Julie| 34| 31| Sales|

| Julie| 34| 33| Engineering|

| Julie| 34| 34| Finance|

| Julie| 34| 35| Marketing|

| Kurt| 0| 31| Sales|

| Kurt| 0| 33| Engineering|

| Kurt| 0| 34| Finance|

| Kurt| 0| 35| Marketing|

+----------+--------+----+------------+

 Dealing with Duplicate Column Names
Sometimes there is an unexpected issue that comes up after joining two DataFrames

with one or more columns that have the same name. When this happens, the joined

DataFrame would have multiple columns with the same name. In this situation, it is not

easy to refer to one of those columns while performing some kind of transformation on

the joined DataFrame. Listing 5-29 simulates this.

Listing 5-29. Simulating a Joined DataFrame with Multiple Column Names That

Are the Same

// add a new column to deptDF with name dept_no

val deptDF2 = deptDF.withColumn("dept_no", 'id)

deptDF2.printSchema

 |-- id: long (nullable = false)

 |-- name: string (nullable = true)

 |-- dept_no: long (nullable = false)

// now employeeDF with deptDF2 using dept_no column

val dupNameDF = employeeDF.join(deptDF2, employeeDF.col("dept_no") ===

deptDF2.col("dept_no"))

ChapteR 5 SpaRk SQL (advanCed)

174

dupNameDF.printSchema

 |-- first_name: string (nullable = true)

 |-- dept_no: long (nullable = false)

 |-- id: long (nullable = false)

 |-- name: string (nullable = true)

 |-- dept_no: long (nullable = false)

Notice the dupNameDF DataFrame now has two columns with the same name, dept_

no. Spark will throw an error when you try to project the dupNameDF DataFrame using

dept_no in Listing 5-30.

Listing 5-30. Projecting the Column dept_no in the dupNameDF DataFrame

dupNameDF.select("dept_no")

org.apache.spark.sql.AnalysisException: Reference 'dept_no' is ambiguous,

could be: dept_no#30L, dept_no#1050L.;

As it turns out, there are several ways to deal with this issue.

 Use the Original DataFrame

The joined DataFrame remembers which columns come from which original DataFrame

during the joining process. To disambiguate which DataFrame a particular column

comes from, you can just tell Spark to prefix it with its original DataFrame name. See

Listing 5-31 for how to do this.

Listing 5-31. Using the Original DataFrame deptDF2 to Refer to the dept_no

Column in the Joined DataFrame

dupNameDF.select(deptDF2.col("dept_no"))

 Renaming Column Before Joining

To avoid the previous column name ambiguity issue, another approach is to rename a

column in one of the DataFrames using the withColumnRenamed transform. Since this is

simple, I will leave it as an exercise for you.

ChapteR 5 SpaRk SQL (advanCed)

175

 Using a Joined Column Name

In the case when the joined column name is the same in both DataFrames, you can

leverage a version of the join transformation that automatically removes the duplicate

column name from the joined DataFrame. However, if this were a self-join, meaning

joining a DataFrame to itself, then there is no way to refer to other duplicate column

names. In that case, you would need to use the first technique to rename the columns

of one of the DataFrames. Listing 5-32 shows an example of performing a join using a

joined column name.

Listing 5-32. Performing a Join Using a Joined Column Name

val noDupNameDF = employeeDF.join(deptDF2, "dept_no")

noDupNameDF.printSchema

 |-- dept_no: long (nullable = false)

 |-- first_name: string (nullable = true)

 |-- id: long (nullable = false)

 |-- name: string (nullable = true)

Notice there is only one dept_no column in the noDupNameDF DataFrame.

 Overview of a Join Implementation
Joining is one of the most expensive operations in Spark. At a high level, there are

two different strategies Spark uses to join two datasets. They are shuffle hash join and

broadcast join. The main criteria for selecting a particular strategy is based on the size

of the two datasets. When the size of both datasets is large, then the shuffle hash join

strategy is used. When the size of one of the datasets is small enough to fit into the

memory of the executors, then the broadcast join strategy is used. The following sections

give the details of how each joining strategy works.

 Shuffle Hash Join

Conceptually, joining is about combining the columns of the rows of two datasets that

meet the condition specified in the join expression. To do that, those rows with the

same column values need to be co-located on the same partition. The shuffle hash join

implementation consists of two steps. The first step is to compute the hash value of

ChapteR 5 SpaRk SQL (advanCed)

176

the columns in the join expression of each row in each dataset and then shuffle those

rows with the same hash value to the same partition. To determine which partition a

particular row will be moved to, Spark performs a simple arithmetic operation, which

computes the modulo of the hash value by the number of partitions. Once the first

step is completed, the second step combines the columns of those rows that have the

same column hash value. At a high level, these two steps are similar to the steps in the

MapReduce programming model.

Figure 5-2 shows the shuffling going on in the shuffle hash join. As mentioned, this

is an expensive operation because it requires moving a lot of data from across many

machines over a network. When moving data across a network, the data will usually will

go through a data serialization and deserialization process. Imagine performing a join

on two large datasets where the size of each one is 100GB. In this scenario, it will need

to move approximately 200GB of data around. It is not possible to completely avoid a

shuffle hash join when joining two large datasets, but it is important to be mindful about

reducing the frequency of joining them whenever possible.

 Broadcast Hash Join

This join strategy is applicable only when one of the datasets is small enough to fit into

memory. Knowing that the shuffle hash join is an expensive operation, the broadcast

hash join avoids shuffling both datasets and instead shuffles only the smaller one.

Similar to the shuffle hash join strategy, this one also consists of two steps. The first one

is to broadcast a copy of the entire smaller dataset to each of the partitions of the larger

Dataset #1 Dataset #2

Shuffle Shuffle

Partition #1 Partition #2 Partition #3 Partition #4

Figure 5-2. Shuffle hash join

ChapteR 5 SpaRk SQL (advanCed)

177

dataset. The second step is to iterate through each row in the larger dataset and look up

the corresponding rows in the smaller dataset with matching column values. Figure 5-3

shows the broadcasting of the smaller dataset.

It is fairly easy to understand that a broadcast hash join is preferred when possible.

Spark SQL for the most part can automatically figure out whether to use a broadcast

hash join or shuffle hash join based on some statistics it has about datasets while reading

them. However, it is feasible to provide a hint to Spark SQL to use a broadcast hash join

when using the join transformation. Listing 5-33 provides an example of doing that.

Listing 5-33. Providing a Hint to Use a Broadcast Hash Join to the broadcast

deptDF

import org.apache.spark.sql.functions.broadcast

// print out the execution plan to verify broadcast hash join strategy is used

employeeDF.join(broadcast(deptDF), employeeDF.col("dept_no") === deptDF.

col("id")).explain()

Small Dataset

Broadcast

Small Dataset

Large Dataset

Partition #1

Small Dataset

Partition #2

Small Dataset

Partition #3

Figure 5-3. Broadcast hash join

ChapteR 5 SpaRk SQL (advanCed)

178

// using SQL

spark.sql("select /*+ MAPJOIN(departments) */ * from employees JOIN

departments on dept_no == id").explain()

== Physical Plan ==

*BroadcastHashJoin [dept_no#30L], [id#41L], Inner, BuildRight

:- LocalTableScan [first_name#29, dept_no#30L]

+- BroadcastExchange HashedRelationBroadcastMode(List(input[0, bigint,

false]))

 +- LocalTableScan [id#41L, name#42]

 Functions
The DataFrame APIs are designed to operate or transform individual rows in a data set,

such as filtering or grouping. If we would like to transform the value of a column of each

row in a data set, such as converting a string from upper case to camel case, then we would

use a function to do that. Functions are basically methods that are applied to columns.

Spark SQL provides a larget set of commonly needed functions as well as an easy way for

us to create new ones.

 Working with Built-in Functions
To be effective at using Spark SQL to perform distributed data manipulations, you

must be proficient working with Spark SQL built-in functions. These built-in functions

are designed to generate optimized code for execution at runtime, so it is best to take

advantage of them before trying to come up with your own functions. One commonality

among these functions is they are designed to take one or more columns of the same

row as the input, and they return only a single column as the output. Spark SQL provides

more than 200 built-in functions, and they are grouped into different categories. These

functions can be used inside DataFrame operations, such as select, filter, groupBy,

and so on. For a complete list of built-in functions, please refer to the Spark API Scala

documentation at https://spark.apache.org/docs/latest/api/scala/index.

html#org.apache.spark.sql.functions$. Table 5-3 classifies them into different

categories.

ChapteR 5 SpaRk SQL (advanCed)

https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.functions$
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.functions$

179

Table 5-3. A Subset of Built-in Functions for Each Category

Category Description

date time unix_timestamp, from_unixtime, to_date, current_date, current_

timesatmp, date_add, date_sub, add_months, datediff, months_

between, dayofmonth, dayofyear, weekofyear, second, minute, hour,

month

String concat, length, levenshtein, locate, lower, upper, ltrim, rtrim, trim,

lpad, rpad, repeat, reverse, split, substring, base64

Math cos, acos, sin, asin, tan, atan, ceil, floor, exp, factorial, log, pow,

radian, degree, sqrt, hex, unhex

Cryptography cr32, hash, md5, sha1, sha2

aggregation approx._count_distinct, countDistinct, sumDistinct, avg, corr,

count, first, last, max, min, skewness, sum

Collection array_contain, explode, from_json, size, sort_array, to_json, size

Window dense_rank, lag, lead, ntile, rank, row_number

Miscellaneous coalesce, isNan, isnull, isNotNull, monotonically_increasing_id,

lit, when

Most of these functions are easy to understand and straightforward to use. The

following sections will provide working examples of some of the interesting functions.

 Working with Date-Time Functions

The more you use Spark to perform data analysis, the higher chance you have

encountering datasets that contain one more date- or time-related columns. The Spark

built- in date-time functions broadly fall into the following three categories: converting

the date or timestamp from one format to another, performing date-time calculations,

and extracting specific values from a date or timestamp.

The date and time conversion functions help with converting a string into either a

date, a timestamp, or a Unix time stamp, and vice versa. Internally it uses the Java date

format pattern syntax, which is documented at http://docs.oracle.com/javase/

tutorial/i18n/format/simpleDateFormat.html. The default date format these

ChapteR 5 SpaRk SQL (advanCed)

http://docs.oracle.com/javase/tutorial/i18n/format/simpleDateFormat.html
http://docs.oracle.com/javase/tutorial/i18n/format/simpleDateFormat.html

180

functions use is yyyy-MM-dd HH:mm:ss. Therefore, if the date format of a date or

timestamp column is different, then you need to provide that pattern to these conversion

functions. Listing 5-34 shows an example of converting a date and timestamp in string

type to the Spark date and timestamp type.

Listing 5-34. Converting a date and timestamp in string type to Spark Date and

Timestamp type.

// the last two columns don't follow the default date format

val testDateTSDF = Seq((1, "2018-01-01", "2018-01-01 15:04:58:865", "01-01-

2018", "12-05-2017 45:50"))

 . toDF("id", "date", "timestamp",

"date_str", "ts_str")

// convert these strings into date, timestamp and unix timestamp

// and specify a custom date and timestamp format

val testDateResultDF = testDateTSDF.select(to_date('date).as("date1"),

 to_timestamp('timestamp).

as("ts1"),

 to_date('date_str,

"MM-dd-yyyy").as("date2"),

 to_timestamp('ts_str,

"MM-dd-yyyy mm:ss").as("ts2"),

 unix_timestamp('timestamp).

as("unix_ts")).show(false)

// date1 and ts1 are of type date and timestamp respectively

testDateResultDF.printSchema

 |-- date1: date (nullable = true)

 |-- ts1: timestamp (nullable = true)

 |-- date2: date (nullable = true)

 |-- ts2: timestamp (nullable = true)

 |-- unix_ts: long (nullable = true)

testDateResultDF.show

ChapteR 5 SpaRk SQL (advanCed)

181

+---------+-------------------+----------+--------------------+-----------+

| date1| ts1| date2| ts2| unix_ts|

+---------+-------------------+----------+--------------------+-----------+

|2018-01-01| 2018-01-01 15:04:58| 2018-01-01| 2017-12-05 00:45:50| 1514847898|

+---------+-------------------+----------+--------------------+-----------+

It is just as easy to convert a date or timestamp to a time string by using the

date_format function with a custom date format or using the from_unixtime function

to convert a Unix timestamp (in seconds) to a string. See Listing 5-35 for examples of the

conversions.

Listing 5-35. Converting a Date, Timestamp, and Unix Timestamp to a String

testDateResultDF.select(date_format('date1, "dd-MM-YYYY").as("date_str"),

 date_format('ts1, "dd-MM-YYYY

HH:mm:ss").as("ts_str"),

 from_unixtime('unix_ts,"dd-MM-YYYY

HH:mm:ss").as("unix_ts_str")).show

+-----------+--------------------+--------------------+

| date_str| ts_str| unix_ts_str|

+-----------+--------------------+--------------------+

| 01-01-2018| 01-01-2018 15:04:58| 01-01-2018 15:04:58|

+-----------+--------------------+--------------------+

The date-time calculation functions are useful for figuring out the difference

between two dates or timestamps as well as for performing date or time arithmetic.

Listing 5-36 has working examples of a date-time calculation.

Listing 5-36. Date-Time Calculation Examples

val employeeData = Seq(("John", "2016-01-01", "2017-10-15"),

 ("May", "2017-02-06", "2017-12-25"))

 .toDF("name", "join_date", "leave_date")

ChapteR 5 SpaRk SQL (advanCed)

182

employeeData.show

+-----+-----------+-----------+

| name| join_date| leave_date|

+-----+-----------+-----------+

| John| 2016-01-01| 2017-10-15|

| May| 2017-02-06| 2017-12-25|

+-----+-----------+-----------+

// perform date and month calcuations

employeeData.select('name, datediff('leave_date, 'join_date).as("days"),

 months_between('leave_date, 'join_date).as("months"),

 last_day('leave_date).as("last_day_of_mon"))

 .show

+-----+-----+-----------+----------------+

| name| days| months| last_day_of_mon|

+-----+-----+-----------+----------------+

| John| 653| 21.4516129| 2017-10-31|

| May| 322|10.61290323| 2017-12-31|

+-----+-----+-----------+----------------+

// perform date addition and substration

val oneDate = Seq(("2018-01-01")).toDF("new_year")

oneDate.select(date_add('new_year, 14).as("mid_month"),

 date_sub('new_year, 1).as("new_year_eve"),

 next_day('new_year, "Mon").as("next_mon")).show

+-----------+-------------+-----------+

| mid_month| new_year_eve| next_mon|

+-----------+-------------+-----------+

| 2018-01-15| 2017-12-31| 2018-01-08|

+-----------+-------------+-----------+

The ability to extract specific fields of a date or timestamp value such as year, month,

hour, minutes, and second is convenient when working with time-series data. For

example, when there is a need to group all the stock transactions by quarter or month or

week, then you can just extract that information from the transaction date and group by

those values. Listing 5-37 shows how easy it is to extract fields from a date or timestamp.

ChapteR 5 SpaRk SQL (advanCed)

183

Listing 5-37. Extracting Specific Fields from a Date Value

val valentimeDateDF = Seq(("2018-02-14 05:35:55")).toDF("date")

valentimeDateDF.select(year('date).as("year"),

 quarter('date).as("quarter"),

 month('date).as("month"),

 weekofyear('date).as("woy"),

 dayofmonth('date).as("dom"),

 dayofyear('date).as("doy"),

 hour('date).as("hour"),

 minute('date).as("minute"),

 second('date).as("second"))

 .show

+-----+--------+------+----+----+----+-----+-------+-------+

| year| quarter| month| woy| dom| doy| hour| minute| second|

+-----+--------+------+----+----+----+-----+-------+-------+

| 2018| 1| 2| 7| 14| 45| 5| 35| 55|

+-----+--------+------+----+----+----+-----+-------+-------+

 Working with String Functions

Undoubtedly most columns in the majority of datasets are of string type. The Spark SQL

built-in string functions provide versatile and powerful ways of manipulating this type

of column. Broadly speaking, these functions fall into two buckets. The first one is about

transforming a string, and the second one is about applying regular expressions either to

replace some part of a string or to extract certain parts of a string based on a pattern.

There are many ways to transform a string. The most common ones are trimming,

padding, uppercasing, lowercasing, and concatenating. Listing 5-38 demonstrates the

various ways of transforming a string using the various built-in string functions.

Listing 5-38. Different Ways of Transforming a String with Built-in String

Functions

val sparkDF = Seq((" Spark ")).toDF("name")

// trimming

sparkDF.select(trim('name).as("trim"),

 ltrim('name).as("ltrim"),

ChapteR 5 SpaRk SQL (advanCed)

184

 rtrim('name).as("rtrim"))

 .show

+-----+------+------+

| trim| ltrim| rtrim|

+-----+------+------+

|Spark| Spark| Spark|

+-----+------+------+

// padding a string to a specified length with given pad string

// first trim spaces around string "Spark" and then pad it so the final

length is 8 characters long

sparkDF.select(trim('name).as("trim"))

 .select(lpad('trim, 8, "-").as("lpad"),

 rpad('trim, 8, "=").as("rpad"))

 .show

+--------+--------+

| lpad| rpad|

+--------+--------+

|---Spark|Spark===|

+--------+--------+

// transform a string with concatenation, uppercase, lowercase and reverse

val sparkAwesomeDF = Seq(("Spark", "is", "awesome")).toDF("subject",

"verb", "adj")

sparkAwesomeDF.select(concat_ws(" ",'subject, 'verb, 'adj).as("sentence"))

 .select(lower('sentence).as("lower"),

 upper('sentence).as("upper"),

 initcap('sentence).as("initcap"),

 reverse('sentence).as("reverse"))

 .show

+-----------------+-----------------+-----------------+-----------------+

| lower| upper| initcap| reverse|

+-----------------+-----------------+-----------------+-----------------+

| spark is awesome| SPARK IS AWESOME| Spark Is Awesome| emosewa si krapS|

+-----------------+-----------------+-----------------+-----------------+

ChapteR 5 SpaRk SQL (advanCed)

185

// translate from one character to another

sparkAwesomeDF.select('subject, translate('subject, "ar", "oc").

as("translate")).show

+--------+----------+

| subject| translate|

+--------+----------+

| Spark| Spock|

+--------+----------+

Regular expressions are a powerful and flexible way to replace some portion of a

string or extract substrings from a string. The regexp_extract and regexp_replace

functions are designed specifically for those purposes. Spark leverages the Java regular

expressions library for the underlying implementation of these two string functions.

The input parameters to the regexp_extract function are a string column, a pattern

to match, and a group index. There could be multiple matches of the pattern in a string;

therefore, the group index (starts with 0) is needed to identify which one. If there are no

matches for the specified pattern, this function returns an empty string. See Listing 5-39

for an example of working with the regexp_extract function.

Listing 5-39. Using the regexp_extract String Function to Extract “fox” Using a

Pattern

val rhymeDF = Seq(("A fox saw a crow sitting on a tree singing \"Caw! Caw!

Caw!\"")).toDF("rhyme")

// using a pattern

rhymeDF.select(regexp_extract('rhyme, "[a-z]*o[xw]",0).as("substring")).show

+------------+

| substring|

+------------+

| fox|

+------------+

ChapteR 5 SpaRk SQL (advanCed)

186

The input parameters to the regexp_replace string function are the string column,

a pattern to match, and a value to replace with. See Listing 5-40 for an example of the

regexp_replace function.

Listing 5-40. Using the regexp_replace String Function to Replace “fox” and

“crow” with “animal”

val rhymeDF = Seq(("A fox saw a crow sitting on a tree singing \"Caw! Caw!

Caw!\"")).toDF("rhyme")

// both lines below produce the same output

rhymeDF.select(regexp_replace('rhyme, "fox|crow", "animal")

.as("new_rhyme")).show(false)

rhymeDF.select(regexp_replace('rhyme, "[a-z]*o[xw]", "animal")

.as("new_rhyme")).show(false)

+---+

| new_rhyme |

+---+

|A animal saw a animal sitting on a tree singing "Caw! Caw! Caw!" |

+---+

 Working with Math Functions

The second most common column type is the numerical type. This is especially true

in customer transaction or IoT sensor–related datasets. Most of the math functions

are fairly self-explanatory and easy to use. This section covers one very useful and

commonly used function called round, which performs the half-up rounding of a

numeric value based on a given scale. The scale determines the number of decimal

points to round up to. There are two variations of this function. The first one takes a

column with a floating-point value and a scale, and the second one takes only a column

with a floating-point value. The second variation essentially calls the first one with a

value of 0 for the scale. Listing 5-41 demonstrates the behavior of the round function.

ChapteR 5 SpaRk SQL (advanCed)

187

Listing 5-41. Demonstrates the Behavior of round with Various Scales

numberDF.select(round('pie).as("pie0"),

 round('pie, 1).as("pie1"),

 round('pie, 2).as("pie2"),

 round('gpa).as("gpa"),

 round('year).as("year"))

 .show

// because it is a half-up rounding, the gpa value is rounded up to 4.0

+-----+------+-----+----+-----+

| pie0| pie1| pie2| gpa| year|

+-----+------+-----+----+-----+

| 3.0| 3.1| 3.14| 4.0| 2018|

+-----+------+-----+----+-----+

 Working with Collection Functions

The collection functions are designed to work with complex data types such as arrays,

maps, and structs. This section covers the two specific types of collection functions. The

first is about working with the array datatype, and the second one is about working with

the JSON data format.

Instead of a single scalar value, sometimes a particular column in a dataset contains

a list of values. One way to model that is by using an array data type. For example, let

say there is a dataset about tasks that need to be done per day. In this dataset, each row

represents a list of tasks per day, so it has a date column, and the other column contains

a list of tasks. You can use the array related collection functions to easily get the array

size, check for the existence of a value, or sort the array. Listing 5-42 contains examples

of working with the various array related functions.

Listing 5-42. Using Array Collection Functions to Manipulate a List of Tasks

// create an tasks DataFrame

val tasksDF = Seq(("Monday", Array("Pick Up John", "Buy Milk", "Pay

Bill"))).toDF("day", "tasks")

// schema of tasksDF

tasksDF.printSchema

ChapteR 5 SpaRk SQL (advanCed)

188

 |-- day: string (nullable = true)

 |-- tasks: array (nullable = true)

 | |-- element: string (containsNull = true)

// get the size of the array, sort it, and check to see if a particular

value exists in the array

tasksDF.select('day, size('tasks).as("size"),

 sort_array('tasks).as("sorted_tasks"),

 array_contains('tasks, "Pay Bill").

as("shouldPayBill"))

 .show(false)

+------+-----+------------------------------------+--------------+

| day | size| sorted_tasks | shouldPayBill|

+------+-----+------------------------------------+--------------+

|Monday| 3| [Buy Milk, Pay Bill, Pick Up John] | true |

+------+-----+------------------------------------+--------------+

// the explode function will create a new row for each element in the array

tasksDF.select('day, explode('tasks)).show

+-------+-------------+

| day| col|

+-------+-------------+

| Monday| Pick Up John|

| Monday| Buy Milk|

| Monday| Pay Bill|

+-------+-------------+

A lot of unstructured datasets are in the form of JSON, which is a self-describing

data format that is used quite often in the industry. One popular example is to encode

a Kafka message payload in JSON format. Since this format is widely supported in

most popular programming languages, a Kafka consumer written in one of these

programming languages can easily decode those Kafka messages. The JSON-related

collection functions are useful for converting a JSON string to and from a struct data

type. The main functions are from_json, get_json_object, and to_json. Once a JSON

string is converted to a Spark struct data type, then you can easily extract those values.

See Listing 5-43 for examples of working with the from_json and to_json functions.

ChapteR 5 SpaRk SQL (advanCed)

189

Listing 5-43. Examples of Using the from_json and to_json Functions

import org.apache.spark.sql.types._

// create a string that contains JSON string

val todos = """{"day": "Monday","tasks": ["Pick Up John","Buy Milk","Pay

Bill"]}"""

val todoStrDF = Seq((todos)).toDF("todos_str")

// at this point, todoStrDF is DataFrame with one column of string type

todoStrDF.printSchema

 |-- todos_str: string (nullable = true)

// in order to convert a JSON string into a Spark struct data type, we need

to describe its structure to Spark

val todoSchema = new StructType().add("day", StringType).

add("tasks", ArrayType(StringType))

// use from_json to convert JSON string

val todosDF = todoStrDF.select(from_json('todos_str, todoSchema).

as("todos"))

// todos is a struct data type that contains two fields: day and tasks

todosDF.printSchema

|-- todos: struct (nullable = true)

| |-- day: string (nullable = true)

| |-- tasks: array (nullable = true)

| | |-- element: string (containsNull = true)

// retrieving value out of struct data type using the getItem function of

Column class

todosDF.select('todos.getItem("day"),

 'todos.getItem("tasks"),

 'todos.getItem("tasks").getItem(0).as("first_task")

).show(false)

ChapteR 5 SpaRk SQL (advanCed)

190

+---------+---+-------------+

|todos.day| todos.tasks | first_task |

+---------+---+-------------+

| Monday| [Pick Up John, Buy Milk, Pay Bill]| Pick Up John|

+---------+---+-------------+

// to convert a Spark struct data type to JSON string, we can use to_json

function

todosDF.select(to_json('todos)).show(false)

+---+

| structstojson(todos) |

+---+

| {"day":"Monday","tasks":["Pick Up John","Buy Milk","Pay Bill"]} |

+---+

 Working with Miscellaneous Functions

A few functions in the miscellaneous category are interesting and useful in certain

situations. This section covers the following functions: monotonically_increasing_id,

when, coalesce, and lit.

Sometimes there is a need to generate monotonically increasing unique, but not

necessarily consecutive, IDs for each row in the dataset. It is quite an interesting problem

if you spend some time thinking about it. For example, if a dataset has 200 million rows

and they are spread across many partitions (machines), how do you ensure the values

are unique and increasing at the same time? This is the job of the monotonically_

increasing_id function, which generates IDs as 64-bit integers. The key part in its

algorithm is that it places the partition ID in the upper 31 bits. Listing 5-44 shows an

example of using the monotonically_increasing_id function.

Listing 5-44. monotonically_increasing_id in Action

// first generate a DataFrame with values from 1 to 10 and spread them

across 5 partitions

val numDF = spark.range(1,11,1,5)

ChapteR 5 SpaRk SQL (advanCed)

191

// verify that there are 5 partitions

numDF.rdd.getNumPartitions

Int = 5

// now generate the monotonically increasing numbers and see which ones are

in which partition

numDF.select('id, monotonically_increasing_id().as("m_ii"),

 spark_partition_id().as("partition")).show

+---+------------+----------+

| id| m_ii| partition|

+---+------------+----------+

| 1| 0| 0|

| 2| 1| 0|

| 3| 8589934592| 1|

| 4| 8589934593| 1|

| 5| 17179869184| 2|

| 6| 17179869185| 2|

| 7| 25769803776| 3|

| 8| 25769803777| 3|

| 9| 34359738368| 4|

| 10| 34359738369| 4|

+---+------------+----------+

// the above table shows the values in m_ii columns have a different range

in each partition.

If there is a need to evaluate a value against a list of conditions and return a value,

then a typical solution is to use a switch statement, which is available in most high-level

programming languages. When there is a need to do this with the value of a column in a

DataFrame, then you can use the when function for this use case. See Listing 5-45 for an

example of using the when function.

ChapteR 5 SpaRk SQL (advanCed)

192

Listing 5-45. Using the when Function to Convert a Numeric Value to a String

// create a DataFrame with values from 1 to 7 to represent each day of the week

val dayOfWeekDF = spark.range(1,8,1)

// convert each numerical value to a string

dayOfWeekDF.select('id, when('id === 1, "Mon")

 .when('id === 2, "Tue")

 .when('id === 3, "Wed")

 .when('id === 4, "Thu")

 .when('id === 5, "Fri")

 .when('id === 6, "Sat")

 .when('id === 7, "Sun").as("dow")

).show

+---+----+

| id| dow|

+---+----+

| 1| Mon|

| 2| Tue|

| 3| Wed|

| 4| Thu|

| 5| Fri|

| 6| Sat|

| 7| Sun|

+---+----+

// to handle the default case when we can use the otherwise function of the

column class

dayOfWeekDF.select('id, when('id === 6, "Weekend")

 .when('id === 7, "Weekend")

 .otherwise("Weekday").as("day_type")

).show

ChapteR 5 SpaRk SQL (advanCed)

193

+--+--------+

|id|day_type|

+--+--------+

| 1| Weekday|

| 2| Weekday|

| 3| Weekday|

| 4| Weekday|

| 5| Weekday|

| 6| Weekend|

| 7| Weekend|

+--+--------+

When working with data, it is important to handle null values properly. One of

the ways to do that is to convert them to some other values that represent null in your

data processing logic. Borrowing from the SQL world, Spark provides a function called

coalesce that takes one or more column values and returns the first one that is not null.

Each argument in the coalesce function must be of type Column, so if you want to fill in

a literal value, then you can leverage the lit function. The way this function works is it

takes a literal value as an input and returns an instance of the Column class that wraps

the input. See Listing 5-46 for an example of using both the coalesce and lit functions

together.

Listing 5-46. Using coalesce to Handle a Null Value in a Column

// create a movie with null title

case class Movie(actor_name:String, movie_title:String, produced_year:Long)

val badMoviesDF = Seq(Movie(null, null, 2018L),

 Movie("John Doe", "Awesome Movie", 2018L)).toDF

// use coalese to handle null value in title column

badMoviesDF.select(coalesce('actor_name, lit("no_name")).as("new_title")).

show

+----------+

| new_title|

+----------+

| no_name|

| John Doe|

+----------+

ChapteR 5 SpaRk SQL (advanCed)

194

 Working with User-Defined Functions
Even though Spark SQL provides a large set of built-in functions for most common

use cases, there will always be cases where none of those functions can provide the

functionality your use cases need. However, don’t despair. Spark SQL provides a fairly

simple facility to write user-defined functions (UDFs) and use them in your Spark data

processing logic or applications in a similar manner as using built-in functions. UDFs

are effectively one of the ways you can extend Spark’s functionality to meet your specific

needs. Another thing that I really like about Spark is that UDFs can be written in either

Python, Java, or Scala, and they can leverage and integrate with any necessary libraries.

Since you are able to use a programming language that you are most comfortable with to

write UDFs, it is extremely easy and fast to develop and test UDFs.

Conceptually, UDFs are just regular functions that take some inputs and provide

an output. Although UDFs can be written in either Scala, Java, or Python, you must be

aware of the performance differences when UDFs are written in Python. UDFs must be

registered with Spark before they are used so Spark knows to ship them to executors to

be used and executed. Given that executors are JVM processes that are written in Scala,

they can execute Scala or Java UDFs natively inside the same process. If a UDF is written

in Python, then an executor can’t execute it natively, and therefore it has to spawn a

separate Python process to execute the Python UDF. In addition to the cost of spawning

a Python process, there is a large cost in terms of serializing data back and forth for every

single row in the dataset.

There are three steps involved in working with UDFs. The first one is to write a

function and test it. The second step is to register that function with Spark by passing in

the function name and its signature to Spark’s udf function. The last step is to use UDF

in either the DataFrame code or when issuing SQL queries. The registration process is

slightly different when using a UDF within SQL queries. Listing 5-47 demonstrates the

three steps mentioned earlier with a simple UDF.

ChapteR 5 SpaRk SQL (advanCed)

195

Listing 5-47. A Simple UDF in Scala to Convert Numeric Grades to Letter Grades

// create student grades DataFrame

case class Student(name:String, score:Int)

val studentDF = Seq(Student("Joe", 85),

 Student("Jane", 90),

 Student("Mary", 55)).toDF()

// register as a view

studentDF.createOrReplaceTempView("students")

// create a function to convert grade to letter grade

def letterGrade(score:Int) : String = {

 score match {

 case score if score > 100 => "Cheating"

 case score if score >= 90 => "A"

 case score if score >= 80 => "B"

 case score if score >= 70 => "C"

 case _ => "F"

 }

}

// register as a UDF

val letterGradeUDF = udf(letterGrade(_:Int):String)

// use the UDF to convert scores to letter grades

studentDF.select($"name",$"score",

 letterGradeUDF($"score").as("grade")).show

+-----+------+------+

| name| score| grade|

+-----+------+------+

| Joe| 85| B|

| Jane| 90| A|

| Mary| 55| F|

+-----+------+------+

ChapteR 5 SpaRk SQL (advanCed)

196

// register as UDF to use in SQL

spark.sqlContext.udf.register("letterGrade", letterGrade(_: Int): String)

spark.sql("select name, score, letterGrade(score) as grade from students").show

+-----+------+------+

| name| score| grade|

+-----+------+------+

| Joe| 85| B|

| Jane| 90| A|

| Mary| 55| F|

+-----+------+------+

 Advanced Analytics Functions
The previous sections covered the built-in functions Spark SQL provides for basic

analytic needs such as aggregation, joining, pivoting, and grouping. All those functions

take one or more values from a single row and produce an output value, or they take a

group of rows and return an output.

This section will cover the advanced analytics capabilities Spark SQL offers. The

first one is about multidimensional aggregations, which is useful for use cases that

involve hierarchical data analysis, where calculating subtotals and totals across a set

of grouping columns is commonly needed. The second capability is about performing

aggregations based on time windows, which is useful when working with time-series

data such as transactions or sensor values from IoT devices. The third one is the ability to

perform aggregations within a logical grouping of rows, which is referred to as a window.

This capability enables you to easily perform calculations such as a moving average, a

cumulative sum, or the rank of each row.

 Aggregation with Rollups and Cubes
Rollups and cube are basically more advanced versions of grouping on multiple

columns, and they are generally used to generate subtotals and grand totals across the

combinations and permutations of those columns. The order of the provided set of

columns is treated as a hierarchy for grouping.

ChapteR 5 SpaRk SQL (advanCed)

197

 Rollups

When working with hierarchical data such as the revenue data that spans different

departments and divisions, rollups can easily calculate the subtotals and a grand total

across them. Rollups respect the given hierarchy of the given set of rollup columns and

always start the rolling up process with the first column in the hierarchy. The grand total

is listed in the output where all the column values are null. Listing 5-48 demonstrates

how a rollup works.

Listing 5-48. Performing Rollups with Flight Summary Data

// read in the flight summary data

val flight_summary = spark.read.format("csv")

 .option("header", "true")

 .option("inferSchema","true")

 .load(<path>/chapter5/data/

flights/flight-summary.csv)

// filter data down to smaller size to make it easier to see the rollups result

val twoStatesSummary = flight_summary.select('origin_state, 'origin_city, 'count)

 .where('origin_state === "CA"

|| 'origin_state === "NY")

 .where('count > 1 && 'count < 20)

 .where('origin_city =!= "White

Plains")

 .where('origin_city =!=

"Newburgh")

 .where('origin_city =!=

"Mammoth Lakes")

 .where('origin_city =!=

"Ontario")

ChapteR 5 SpaRk SQL (advanCed)

198

// let's see what the data looks like
twoStatesSummary.show
+-------------+--------------+------+
| origin_state| origin_city| count|
+-------------+--------------+------+
CA	San Diego	18
CA	San Francisco	5
CA	San Francisco	14
CA	San Diego	4
CA	San Francisco	2
NY	New York	4
NY	New York	2
NY	Elmira	15
NY	Albany	5
NY	Albany	3
NY	New York	4
NY	Albany	9
NY	New York	10
+-------------+--------------+------+

// perform the rollup by state, city, then calculate the sum of the count,
and finally order by null last
twoStateSummary.rollup('origin_state, 'origin_city)
 .agg(sum("count") as "total")
 .orderBy('origin_state.asc_nulls_last,

'origin_city.asc_nulls_last).show

+-------------+--------------+------+
| origin_state| origin_city| total|
+-------------+--------------+------+
CA	San Diego	22
CA	San Francisco	21
CA	null	43
NY	Albany	17
NY	Elmira	15
NY	New York	20
NY	null	52
null	null	95
+-------------+--------------+------+

ChapteR 5 SpaRk SQL (advanCed)

199

This output shows the subtotals per state on the third and seventh lines, and the

grand total is shown on the last line with a null value in both the original_state and

origin_city columns. The trick is to sort with the asc_nulls_last option, so Spark SQL

will order null values last.

 Cube

A cube is basically a more advanced version of a rollup. It performs the aggregations

across all the combinations of the grouping columns. Therefore, the result includes what

a rollup provides as well as other combinations. In our example of cubing by the origin_

state and origin_city, the result will include the aggregation for each of the original

cities. The way to use the cube function is similar to how you use the rollup function.

See Listing 5-49 for an example.

Listing 5-49. Performing a Cube Across the origin_state and origin_city Columns

// perform the cube across origin_state and origin_city

twoStateSummary.cube('origin_state, 'origin_city)

 .agg(sum("count") as "total")

 .orderBy('origin_state.asc_nulls_last,

'origin_city.asc_nulls_last).show

// see result below

+-------------+--------------+------+

| origin_state| origin_city| total|

+-------------+--------------+------+

| CA| San Diego| 22|

| CA| San Francisco| 21|

| CA| null| 43|

| NY| Albany| 17|

| NY| Elmira| 15|

| NY| New York| 20|

| NY| null| 52|

| null| Albany| 17|

| null| Elmira| 15|

ChapteR 5 SpaRk SQL (advanCed)

200

| null| New York| 20|

| null| San Diego| 22|

| null| San Francisco| 21|

| null| null| 95|

+-------------+--------------+------+

In the result table, the lines that have a null value in the origin_state column

represent the aggregation of all the cities in a state. Therefore, the result of a cube will

always have more rows than the result of a rollup.

 Aggregation with Time Windows
Aggregation with time windows was introduced in Spark 2.0 to make it easy to work

with time-series data, which consists of a series of data points in time order. This kind of

dataset is common in industries such as finance or telecommunications. For example,

the stock market transaction dataset has the transaction date, opening price, close

price, volume, and other pieces of information for each stock symbol. Time window

aggregations can help with answering questions such as what is the weekly average

closing price of Apple stock or the monthly moving average closing price of Apple stock

across each week.

Window functions come in a few versions, but they all require a timestamp type

column and a window length, which can be specified in seconds, minutes, hours, days,

or weeks. The window length represents a time window that has a start time and end

time, and it is used to determine which bucket a particular piece of time-series data

should belong to. Another version takes additional input for the sliding window size,

which tells how much a time window should slide by when calculating the next bucket.

These versions of the window function are the implementations of the tumbling window

and sliding window concepts in world event processing, and they will be described in

more detail in Chapter 6.

The following examples will use the Apple stock transactions, which can be found

on the Yahoo Finance web site at https://in.finance.yahoo.com/q/hp?s=AAPL.

Listing 5-50 calculates the weekly average price of Apple stock based on one year of data.

ChapteR 5 SpaRk SQL (advanCed)

https://in.finance.yahoo.com/q/hp?s=AAPL

201

Listing 5-50. Using the Time Window Function to Calculate the Average Closing

Price of Apple Stock

val appleOneYearDF = spark.read.format("csv")

 .option("header", "true")

 .option("inferSchema","true")

 .load("<path>/chapter5/data/

stocks/aapl-2017.csv")

// display the schema, the first column is the transaction date

appleOneYearDF.printSchema

 |-- Date: timestamp (nullable = true)

 |-- Open: double (nullable = true)

 |-- High: double (nullable = true)

 |-- Low: double (nullable = true)

 |-- Close: double (nullable = true)

 |-- Adj Close: double (nullable = true)

 |-- Volume: integer (nullable = true)

// calculate the weekly average price using window function inside the

groupBy transformation

// this is an example of the tumbling window, aka fixed window

val appleWeeklyAvgDF = appleOneYearDF.groupBy(window('Date, "1 week"))

 .agg(avg("Close").

as("weekly_avg"))

// the result schema has the window start and end time

appleWeeklyAvgDF.printSchema

 |-- window: struct (nullable = true)

 | |-- start: timestamp (nullable = true)

 | |-- end: timestamp (nullable = true)

 |-- weekly_avg: double (nullable = true)

ChapteR 5 SpaRk SQL (advanCed)

202

// display the result with ordering by start time and round up to 2 decimal

points

appleWeeklyAvgDF.orderBy("window.start")

 .selectExpr("window.start", "window.end",

 "round(weekly_avg, 2) as

weekly_avg")

 .show(5)

// notice the start time is inclusive and end time is exclusive

+--------------------+--------------------+---------------+

| start| end| weekly_avg|

+--------------------+--------------------+---------------+

| 2016-12-28 16:00:00| 2017-01-04 16:00:00| 116.08|

| 2017-01-04 16:00:00| 2017-01-11 16:00:00| 118.47|

| 2017-01-11 16:00:00| 2017-01-18 16:00:00| 119.57|

| 2017-01-18 16:00:00| 2017-01-25 16:00:00| 120.34|

| 2017-01-25 16:00:00| 2017-02-01 16:00:00| 123.12|

+--------------------+--------------------+---------------+

The previous example uses a one-week tumbling window, where there is no overlap.

Therefore, each transaction is used only once to calculate the moving average. The

example in Listing 5-51 uses the sliding window. This means some transactions will be

used more than once in calculating the average monthly moving average. The window

size is four weeks, and it slides by one week at a time in each window.

Listing 5-51. Use the Time Window Function to Calculate the Monthly Average

Closing Price of Apple Stock

// 4 weeks window length and slide by one week each time

val appleMonthlyAvgDF = appleOneYearDF.groupBy(window('Date, "4 week", "1

week"))

 .agg(avg("Close").

as("monthly_avg"))

// display the results with order by start time

appleMonthlyAvgDF.orderBy("window.start")

 .selectExpr("window.start", "window.end",

"round(monthly_avg, 2) as monthly_avg")

 .show(5)

ChapteR 5 SpaRk SQL (advanCed)

203

+--------------------+--------------------+------------+

| start| end| monthly_avg|

+--------------------+--------------------+------------+

| 2016-12-07 16:00:00| 2017-01-04 16:00:00| 116.08|

| 2016-12-14 16:00:00| 2017-01-11 16:00:00| 117.79|

| 2016-12-21 16:00:00| 2017-01-18 16:00:00| 118.44|

| 2016-12-28 16:00:00| 2017-01-25 16:00:00| 119.03|

| 2017-01-04 16:00:00| 2017-02-01 16:00:00| 120.42|

+--------------------+--------------------+------------+

Since the sliding window interval is one week, the previous result table shows that

the start time difference between two consecutive rows is one week apart. Between two

consecutive rows, there are about three weeks of overlapping transactions, which means

a transaction is used more than one time to calculate the moving average.

 Window Functions
Up to this point, you know how to use functions such as concat or round to compute

an output from one or more column values of a single row and leverage aggregation

functions such as max or sum to compute an output for each group of rows. Sometimes

there is a need to operate on a group of rows and return a value for every input row.

Window functions provide this unique capability to make it easy to perform calculations

such as a moving average, a cumulative sum, or the rank of each row.

There are two main steps for working with window functions. The first one is to

define a window specification that defines a logical grouping of rows called a frame,

which is the context in which each row is evaluated. The second step is to apply a

window function that is appropriate for the problem that you are trying to solve. You can

find more details about the available window functions in the following sections.

The window specification defines three important components the window

functions will use. The first component is called partition by, and this is where you

specify one or more columns to group the rows by. The second component is called

order by, and it defines how the rows should be ordered based on one or more columns

and whether the ordering should be in ascending or descending order. Out of the three

components, the last one is more complicated and will require a detailed explanation.

The last component is called frame, and it defines the boundary of the window with

respect to the current row. In other words, the “frame” restricts which rows to be

ChapteR 5 SpaRk SQL (advanCed)

204

included when calculating a value for the current row. A range of rows to include in a

window frame can be specified using the row index or the actual value of the order by

expression. The last component is applicable for some of the window functions, and

therefore it may not be necessary for some scenarios. A window specification is built

using the functions defined in the org.apache.spark.sql.expressions.Window class.

The rowsBetween and rangeBetweeen functions are used to define the range by row

index and actual value, respectively.

Window functions can be categorized into three different types: ranking functions,

analytic functions, and aggregate functions. The ranking functions and analytic

functions are described in Table 5-4 and Table 5-5, respectively. For aggregate functions,

you can use any of the previously mentioned aggregation functions as a window

function. You can find a complete list of the window functions at https://spark.

apache.org/docs/latest/api/java/org/apache/spark/sql/functions.html.

Table 5-4. Ranking Functions

Name Description

rank Returns the rank or order of rows within a frame based on some sorting order.

dense_rank Similar to rank, but leaves no gaps in the ranks when there are ties.

percent_rank Returns the relative rank of rows within a frame.

ntile(n) Returns the ntile group Id in an ordered window partition. For example, if n is 4,

the first quarter of the rows will get a value of 1, the second quarter of rows will

get a value of 2, and so on.

row_number Returns a sequential number starting with 1 with a frame.

Table 5-5. Analytic Functions

Name Description

cume_dist Returns the cumulative distribution of values with a frame. In other words,

the fraction of rows that are below the current row.

lag(col, offset) Returns the value of the column that is offset rows before the current row.

lead(col,

offset)

Returns the value of the column that is offset rows after the current row.

ChapteR 5 SpaRk SQL (advanCed)

https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/functions.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/functions.html

205

Let’s put the aforementioned steps together by working through a small sample

dataset to demonstrate window function capabilities. Table 5-6 contains the shopping

transaction data of two fictitious users, John and Mary.

With this shopping transaction data, let’s try using window functions to answer the

following questions:

• For each user, what are the two highest transaction amounts?

• What is the difference between the transaction amount of each user

and their highest transaction amount?

• What is the moving average transaction amount of each user?

• What is the cumulative sum of the transaction amount of each user?

To answer the first question, you apply the rank window function over a window

specification that partitions the data by user and sorts it by the amount in descending

order. The ranking window function assigns a rank to each row based on the sorting

order of each row in each frame. See Listing 5-52 for the actual code to solve the first

question.

Table 5-6. User Shopping Transactions

Name Date Amount

John 2017-07-02 13.35

John 2016-07-06 27.33

John 2016-07-04 21.72

Mary 2017-07-07 69.74

Mary 2017-07-01 59.44

Mary 2017-07-05 80.14

ChapteR 5 SpaRk SQL (advanCed)

206

Listing 5-52. Apply the Rank Window Function to Find out the Top Two

Transactions per User

// small shopping transaction data set for two users

val txDataDF= Seq(("John", "2017-07-02", 13.35),

 ("John", "2017-07-06", 27.33),

 ("John", "2017-07-04", 21.72),

 ("Mary", "2017-07-07", 69.74),

 ("Mary", "2017-07-01", 59.44),

 ("Mary", "2017-07-05", 80.14))

 .toDF("name", "tx_date", "amount")

// import the Window class

import org.apache.spark.sql.expressions.Window

// define window specification to partition by name and order by amount in

descending amount

val forRankingWindow = Window.partitionBy("name").orderBy(desc("amount"))

// add a new column to contain the rank of each row, apply the rank

function to rank each row

val txDataWithRankDF = txDataDF.withColumn("rank", rank().

over(forRankingWindow))

// filter the rows down based on the rank to find the top 2 and display the

result

txDataWithRankDF.where('rank < 3).show(10)

+------+-----------+-------+-----+

| name| tx_date| amount| rank|

+------+-----------+-------+-----+

| Mary| 2017-07-05| 80.14| 1|

| Mary| 2017-07-07| 69.74| 2|

| John| 2017-07-06| 27.33| 1|

| John| 2017-07-04| 21.72| 2|

+------+-----------+-------+-----+

The approach for solving the second question involves applying the max function

over the amount column across all the rows of each partition. In addition to partitioning

by the username, it also needs to define a frame boundary that includes all the rows

ChapteR 5 SpaRk SQL (advanCed)

207

in each partition. To do that, you use the Window.rangeBetween function with Window.

unboundedPreceding as the start value and Window.unboundedFollowing as the end

value. Listing 5-53 defines a window specification according to the logic defined earlier

and applies the max function over it.

Listing 5-53. Applying the max Window Function to Find the Difference of Each

Row and the Highest Amount

// use rangeBetween to define the frame boundary that includes all the rows

in each frame

val forEntireRangeWindow = Window.partitionBy("name")

 .orderBy(desc("amount"))

 .rangeBetween(Window.unboundedPreceding,

 Window.unboundedFollowing)

// apply the max function over the amount column and then compute the

difference

val amountDifference = max(txDataDF("amount")).over(forEntireRangeWindow) -

txDataDF("amount")

// add the amount_diff column using the logic defined above

val txDiffWithHighestDF = txDataDF.withColumn("amount_diff",

round(amountDifference, 3))

// display the result

txDiffWithHighestDF.show

+------+-----------+-------+-------------+

| name| tx_date| amount| amount_diff|

+------+-----------+-------+-------------+

| Mary| 2017-07-05| 80.14| 0.0|

| Mary| 2017-07-07| 69.74| 10.4|

| Mary| 2017-07-01| 59.44| 20.7|

| John| 2017-07-06| 27.33| 0.0|

| John| 2017-07-04| 21.72| 5.61|

| John| 2017-07-02| 13.35| 13.98|

+------+-----------+-------+-------------+

ChapteR 5 SpaRk SQL (advanCed)

208

To compute the transaction amount moving average of each user in the order of

transaction date, you will leverage the avg function to calculate the average amount for

each row based on a set of rows in a frame. For this particular example, you want each

frame to include three rows: the current row plus one row before it and one row after it.

Depending a particular use case, the frame might include more rows before and after the

current row. Similar to the previous examples, the window specification will partition the

data by user, but the rows in each frame will be sorted by transaction date. Listing 5-54

shows how to apply the avg function over the window specification described earlier.

Listing 5-54. Applying the Average Window Function to Compute the Moving

Average Transaction Amount

// define the window specification

// a good practice is to specify the offset relative to Window.currentRow

val forMovingAvgWindow = Window.partitionBy("name").orderBy("tx_date")

 .rowsBetween(Window.currentRow-1,Window.currentRow+1)

// apply the average function over the amount column over the window

specification

// also round the moving average amount to 2 decimals

val txMovingAvgDF = txDataDF.withColumn("moving_avg",

 round(avg("amount").

over(forMovingAvgWindow), 2))

// display the result

txMovingAvgDF.show

+------+-----------+-------+-----------+

| name| tx_date| amount| moving_avg|

+------+-----------+-------+-----------+

| Mary| 2017-07-01| 59.44| 69.79|

| Mary| 2017-07-05| 80.14| 69.77|

| Mary| 2017-07-07| 69.74| 74.94|

| John| 2017-07-02| 13.35| 17.54|

| John| 2017-07-04| 21.72| 20.8|

| John| 2017-07-06| 27.33| 24.53|

+-------+----------+-------+-----------+

ChapteR 5 SpaRk SQL (advanCed)

209

To compute the cumulative sum of the transaction amount for each user, you will

apply the sum function over a frame that consists of all the rows up to the current row.

The partition by and order by clauses are the same as the moving average example.

Listing 5-55 shows how to apply the sum function over the window specification

described earlier.

Listing 5-55. Applying the sum Window function to compute the cumulative

sum of transaction amount

// define the window specification with each frame includes all the

previous rows and the current row

val forCumulativeSumWindow = Window.partitionBy("name").orderBy("tx_date")

 . rowsBetween(Window.unbounded

Preceding,Window.currentRow)

// apply the sum function over the window specification

val txCumulativeSumDF = txDataDF.withColumn("culm_sum",

 round(sum("amount").over

(forCumulativeSumWindow),2))

// display the result

txCumulativeSumDF.show

+------+-----------+-------+---------+

| name| tx_date| amount| culm_sum|

+------+-----------+-------+---------+

| Mary| 2017-07-01| 59.44| 59.44|

| Mary| 2017-07-05| 80.14| 139.58|

| Mary| 2017-07-07| 69.74| 209.32|

| John| 2017-07-02| 13.35| 13.35|

| John| 2017-07-04| 21.72| 35.07|

| John| 2017-07-06| 27.33| 62.4|

+------+-----------+-------+---------+

The default frame of a window specification includes all the preceding rows and up

to the current row. For the previous example, it is not necessary to specify the frame, so

you should get the same result.

ChapteR 5 SpaRk SQL (advanCed)

210

The previous window function examples were written using the DataFrame APIs. It

is possible to achieve the same goals using SQL with the PARTITION BY, ORDER BY, ROWS

BETWEEN, and RANGE BETWEEN key words. The frame boundary can be specified using

the following key words: UNBOUNDED PRECEDING, UNBOUNDED FOLLOWING, CURRENT ROW,

<value> PRECEDING, and <value> FOLLOWING. Listing 5-56 shows examples of using the

window functions with SQL.

Listing 5-56. Example of a Window Function in SQL

// register the txDataDF as a temporary view called tx_data

txDataDF.createOrReplaceTempView("tx_data")

// use RANK window function to find top two highest transaction amount

spark.sql("select name, tx_date, amount, rank from

 (

 select name, tx_date, amount,

 RANK() OVER (PARTITION BY name ORDER BY amount

DESC) as rank from tx_data

) where rank < 3").show

// difference between maximum transaction amount

spark.sql("select name, tx_date, amount, round((max_amount - amount),2) as

amount_diff from

 (

 select name, tx_date, amount, MAX(amount) OVER

 (PARTITION BY name ORDER BY amount DESC

 RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED

FOLLOWING

) as max_amount from tx_data)"

).show

ChapteR 5 SpaRk SQL (advanCed)

211

// moving average

spark.sql("select name, tx_date, amount, round(moving_avg,2) as moving_avg from

 (

 select name, tx_date, amount, AVG(amount) OVER

 (PARTITION BY name ORDER BY tx_date

 ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING

) as moving_avg from tx_data)"

).show

// cumulative sum

spark.sql("select name, tx_date, amount, round(culm_sum,2) as moving_avg from

 (

 select name, tx_date, amount, SUM(amount) OVER

 (PARTITION BY name ORDER BY tx_date

 ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW

) as culm_sum from tx_data)"

).show

When using the window functions in SQL, the partition by, order by, and frame

window must be specified in a single statement.

 Catalyst Optimizer
The easiest way to write efficient data processing applications is to not worry about it

and get your data processing applications automatically optimized. That is the promise

of the Spark Catalyst, which is a query optimizer and is the second major component

in the Spark SQL module. It plays a major role in ensuring the data processing logic

written in either DataFrame APIs or SQL runs efficiently and quickly. It was designed to

minimize end-to-end query response times as well as to be extensible such that Spark

users can inject user code into the optimizer to perform custom optimization. At a high

level, the Spark Catalyst translates the user-written data processing logic into a logical

plan, then optimizes it using heuristics, and finally converts the logical plan to a physical

plan. The final step is to generate code based on the physical plan. Figure 5-4 provides a

visual representation of the steps.

ChapteR 5 SpaRk SQL (advanCed)

212

The idea of taking user expressions of what needs to be done and then figuring out

the most efficient means of executing those steps is an idea that has been around a

long time in the RDBMS world. However, the novelties introduced in the Spark Catalyst

are the extensibility and the way it was developed using the functional programming

constructs in Scala. These two novelties enable the Spark Catalyst to mature quickly

through the Spark user community contributions.

The following sections will provide some brief details of each step in the Catalyst

optimization process as well as show a few examples of the generated query plan.

 Logical Plan
The first step in the Catalyst optimization process is to create a logical plan from either

a DataFrame object or the abstract syntax tree of the parsed SQL query. The logical

plan is an internal representation of the user data processing logic in the form of a

tree of operators and expression. Next, the Catalyst analyzes the logical plan to resolve

references to ensure they are valid. Then it applies a set of rule-based and cost-based

optimizations to the logical plan. Both of these types of optimization follow the principle

of pruning unnecessary data as early as possible and minimizing per-operator cost.

The rule-based optimizations include constant folding, project pruning, predicate

pushdown, and others. For example, during this optimization phase, the Catalyst may

decide to move the filter condition before performing a join. For curious minds, the

list of rule-based optimizations is defined in the org.apache.spark.sql.catalyst.

optimizer.Optimizer class.

The cost-based optimizations were introduced in Spark 2.2 to enable Catalyst to be

more intelligent in selecting the right kind of join based on the statistics of the data being

processed. The cost-based optimization relies on the detailed statistics of the columns

participating in the filter or join conditions, and that’s why the statistics collection

framework was introduced. Examples of the statistics include the cardinality, the

number of distinct values, max/min, average/max length, and so on.

SQL

Data
Frames

Logical Plan Physical Plan RDD

Figure 5-4. Catalyst optimizer

ChapteR 5 SpaRk SQL (advanCed)

213

 Physical Plan
Once the logical plan is optimized, the Catalyst will generate one or more physical plans

using the physical operators that match the Spark execution engine. In addition to the

optimizations performed in the logical plan phase, the physical plan phase performs

its own ruled-based optimizations, including combining projections and filtering

into a single operation as well as pushing the projections or filtering predicates all

the way down to the data sources that support this feature, i.e., Parquet. Again, these

optimizations follow the data pruning principle described earlier. The final step the

Catalyst performs is to generate the Java bytecode of the cheapest physical plan.

 Catalyst in Action
This section shows how to use the explain function of the DataFrame class to display

the logical and physical plans.

To see both the logical plan and the physical plan, you can call the explain function

with the extended argument as a Boolean true value. Otherwise, this function displays

only the physical plan.

The small and somewhat silly example first reads the movie data in Parquet format,

then performs filtering based on produced_year, then adds a column called produced_

decade and projects the movie_title and produced_decade columns, and finally filters

rows based on produced_decade. The goal here is to prove that the Catalyst performs the

predicate pushdown and filtering condition optimizations. See Listing 5-57 for how to

generate the logical and physical plans.

Listing 5-57. Using the explain Function to Generate the Logical and Physical

Plans

// read movies data in Parquet format

val moviesDF = spark.read.load("<path>/book/chapter4/data/movies/movies.

parquet")

// perform two filtering conditions

val newMoviesDF = moviesDF.filter('produced_year > 1970)

 .withColumn("produced_decade",

'produced_year + 'produced_

year % 10)

ChapteR 5 SpaRk SQL (advanCed)

214

 .select('movie_title,

'produced_decade).where

('produced_decade > 2010)

// display the logical and physical plans

newMoviesDF.explain(true)

== Parsed Logical Plan ==

'Filter ('produced_decade > 2010)

+- Project [movie_title#408, produced_decade#415L]

 +- Project [actor_name#407, movie_title#408, produced_year#409L,

(produced_year#409L + (produced_year#409L % cast(10 as bigint)))

AS produced_decade#415L]

 +- Filter (produced_year#409L > cast(1970 as bigint))

 +- Relation[actor_name#407,movie_title#408,produced_year#409L]

parquet

== Analyzed Logical Plan ==

movie_title: string, produced_decade: bigint

Filter (produced_decade#415L > cast(2010 as bigint))

+- Project [movie_title#408, produced_decade#415L]

 +- Project [actor_name#407, movie_title#408, produced_year#409L,

(produced_year#409L + (produced_year#409L % cast(10 as bigint)))

AS produced_decade#415L]

 +- Filter (produced_year#409L > cast(1970 as bigint))

 +- Relation[actor_name#407,movie_title#408,produced_year#409L]

parquet

== Optimized Logical Plan ==

Project [movie_title#408, (produced_year#409L + (produced_year#409L % 10))

AS produced_decade#415L]

+- Filter ((isnotnull(produced_year#409L) && (produced_year#409L > 1970))

&& ((produced_year#409L + (produced_year#409L % 10)) > 2010))

 +- Relation[actor_name#407,movie_title#408,produced_year#409L] parquet

== Physical Plan ==

*Project [movie_title#408, (produced_year#409L + (produced_year#409L % 10))

AS produced_decade#415L]

ChapteR 5 SpaRk SQL (advanCed)

215

+- *Filter ((isnotnull(produced_year#409L) && (produced_year#409L > 1970))

&& ((produced_year#409L + (produced_year#409L % 10)) > 2010))

 +- *FileScan parquet [movie_title#408,produced_year#409L] Batched:

true, Format: Parquet, Location: InMemoryFileIndex[file:<path>/

book/chapter4/data/movies/movies.pa..., PartitionFilters: [],

PushedFilters: [IsNotNull(produced_year), GreaterThan(produced_year,

1970)], ReadSchema: struct<movie_title:string,produced_year:bigint>

If you carefully analyze the optimized logical plan, you will see that it combines

both filtering conditions into a single filter. The physical plan shows that Catalyst both

pushes down the filtering of produced_year and performs the projection pruning to the

FileScan step.

 Project Tungsten
Starting in 2015, the Spark designers observed that the Spark workloads were

increasingly bottlenecked by CPU and memory rather than I/O and network

communication. It is a bit counterintuitive but not too surprising, given the

advancements on the hardware side like 10Gbps network links and high-speed

SSD. Project Tungsten was created to improve the efficiency of using memory and

CPU in Spark applications and to push the performance closer to the limits of modern

hardware. There are three initiatives in the Tungsten project.

• Manage memory explicitly by using off-heap management

techniques to eliminate the overhead of the JVM object model and

minimize garbage collection.

• Use intelligent cache-aware algorithms and data structures to exploit

memory hierarchy.

• Use whole-stage code generation to minimize virtual function calls

by combining multiple operators into a single Java function.

The hard and interesting work that went into the Tungsten project has dramatically

improved the Spark execution engine since Spark 2.0. Much of the work in the Tungsten

project happens behind the scenes in the execution engine. The following example

demonstrates a small glimpse into the whole-stage code generation initiative by

examining the physical plan. In the following output, whenever an asterisk (*) appears

ChapteR 5 SpaRk SQL (advanCed)

216

before an operator, it means the whole-stage code generation is enabled. Listing 5-58

displays the physical plan of filtering and summing integers in a DataFrame.

Listing 5-58. Demonstrating the Whole-Stage Code Generation by Looking at

the Physical Plan

spark.range(1000).filter("id > 100").selectExpr("sum(id)").explain()

== Physical Plan ==

*HashAggregate(keys=[], functions=[sum(id#13L)], output=[sum(id)#23L])

+- Exchange SinglePartition

 +- *HashAggregate(keys=[], functions=[partial_sum(id#13L)],

output=[sum#25L])

 +- *Filter (id#13L > 100)

 +- *Range (0, 1000, step=1, splits=8)

The whole-stage code generation combines the logic of filtering and summing

integers into a single Java function.

 Summary
This chapter covered a lot of useful and powerful features available in the Spark SQL

module.

• Aggregation is one of the mostly commonly used features in

the world of big data analytics. Spark SQL provides many of the

commonly needed aggregation functions such as sum, count,

avg, and so on. Aggregation with pivoting provides a nice way of

summarizing the data as well as transposing columns into rows.

• Doing any useful and meaningful data processing often requires

joining two or more datasets. Spark SQL supports many of the

standard join types that exist in the SQL world.

• Spark SQL comes with a rich set of built-in functions, which should

cover most of the common needs for working with strings, math,

dates and times, and so on. If none of them meets a particular needs

of a use case, then it is fairly easy to write a user-defined function that

can be used with both the DataFrame APIs and SQL queries.

ChapteR 5 SpaRk SQL (advanCed)

217

• Window functions are powerful and advanced analytics functions

because they can compute a value for each row in the input

group. They are particular useful for computing moving average, a

cumulative sum, or the rank of each row.

• The Catalyst optimizer enables you to write efficient data processing

applications without having to reason about them too much.

The cost-based optimizer was introduced in Spark 2.2 to enable

Catalyst to be more intelligent about selecting the right kind of join

implementation based on the collected statistics of the data being

processed.

• Project Tungsten is the workhorse behind the scenes that speeds

up the execution of data process applications by employing a few

advanced techniques to improve the efficiency of using memory

and CPU.

ChapteR 5 SpaRk SQL (advanCed)

219
© Hien Luu 2018
H. Luu, Beginning Apache Spark 2, https://doi.org/10.1007/978-1-4842-3579-9_6

CHAPTER 6

Spark Streaming
In addition to batch data processing, streaming data processing has become a

must-have capability for any business that wants to harness the value of real-time data

to either increase their competitive advantage or to improve their user experience. With

the advent of the Internet of Things, the volume and velocity of real-time data have

increased even more than before. For Internet companies such as Facebook, LinkedIn,

and Twitter, millions of social activities happening every second on their platforms are

represented as streaming data.

At a high level, streaming processing is about the continuous processing of

unbounded streams of data. Doing this at scale, in a fault-tolerant and consistent

manner, is quite a challenging task. Luckily, the stream processing engines such as

Spark, Flink, Samza, Heron, and Kafka have been steadily and dramatically maturing

over the last few years to enable businesses to build and operate complex stream

processing applications.

More and more interesting use cases of real-time data processing have emerged

as the community understands how best to apply the increasingly mature streaming

engines to their business needs. For example, Uber leverages streaming processing

capabilities to understand the number of riders and drivers on its platform at near

real-time, and these near real-time insights influence business decisions such as

moving excess drivers from low-demand areas to higher-demand areas in a city. Most

Internet companies leverage some kind of A/B experimentation system to perform

A/B testing when releasing new features or trying a new design. Streaming processing

enables a faster reaction to the experiments by reducing the time it takes to understand

an experiment’s effectiveness from days to hours. Fraud detection is an area that has

embraced stream processing because of the benefits it gains from instant insights of

fraud activities so that they can be either stopped or monitored. For large companies

that have hundreds of online services, a common need is to monitor their health by

220

processing the large volume of generated logs at near real-time via streaming data

processing. There are many more interesting real-time data processing use cases, and

some of them will be shared in this chapter.

This chapter starts with describing a few useful stream processing concepts and

then provides a short introduction to the stream processing engine landscape. Then the

remaining sections of this chapter will describe the Spark streaming processing engine

in detail and the APIs it provides.

 Stream Processing
In the world of big data, batch data processing became widely known with the

introduction of Hadoop. The popular MapReduce framework is one of the components

in the Hadoop ecosystem, and it became the king of batch data processing because of

its capabilities and robustness. After a period of innovation in the batch data processing

area, most challenges in this space are now well understood. Since then, the big data

open source community has shifted its focus and innovations to the streaming data

processing space.

Batch data processing is about running the computational logic through a fixed

input dataset and producing a result at the end. This means the processing will stop

when it gets to the end of the dataset. By contrast, stream processing is about running

the computational logic through an unbounded dataset, and therefore the processing

is continuous and long running. Although the difference between batch data and

streaming data is mainly about the finiteness, streaming data processing is much more

complex and challenging than batch data processing because of the unbounded data

nature, the incoming order of the real-time data, the different rates that the data will

arrive, and the expectation of correctness and low latency in the face of machine failure.

In the world of batch data processing, it is not uncommon to hear that it takes hours

to finish a complex batching data processing job because of the size of the input datasets.

In the world of streaming data processing, there is an expectation that streaming

processing engines will provide low latency and high throughput by delivering incoming

streams of data as quickly and efficiently as possible so they can react or extract insight

Chapter 6 Spark Streaming

221

quickly. Performing any interesting and meaningful streaming data processing usually

involves maintaining some kind of state in a fault-tolerant manner. For example, a stock

trading streaming application would like to maintain and display the top 10 or 20 most

actively traded stocks through the day. To accomplish this goal, the running count of

each stock must be maintained either by the streaming processing engine on behalf of

the application or by the application itself. Usually the state is maintained in memory

and backed by some resilient storage such as disk, so the state is resilient to machine

failures.

Streaming data processing doesn’t work in a silo. Sometimes there is a need to work

together with batch data processing to enrich the incoming streaming data. A good

example of this is when a page view streaming application needs to compute the page

view statistics of its users based on user location; then it needs to join user clicks and

streaming data with member data. A good streaming processing engine should provide

an easy way to join batch data with streaming data without much effort.

One of the common use cases of streaming data processing is to perform some

aggregations of incoming data and then write that summarized data out to an external

data sink to be consumed by either a web application or a data analytics engine. The

desire here is to have an end-to-end, exactly once guarantee of the data in the face of

failure, whether that is because of machine failures or some bugs in the data processing

application. The key here is how the streaming processing engine deals with failure such

that the incoming data is not lost as well as not double counted.

As streaming processing engines mature, they provide not only the desired

distributed system properties such as fast, scalable, and fault tolerant, but they also

provide easy and developer-friendly ways of performing data streaming computation

by up-leveling the abstraction from low-level APIs to high-level declarative languages

such as SQL. With this advancement, it is much easier to build a self-service streaming

platform to enable product teams to quickly make meaningful business decisions by

tapping into the data or events that are generated by various products in the company.

Remember, one of the goals in data streaming processing is to extract business insights

in a timely manner so businesses can either react quickly or make business actions.

Chapter 6 Spark Streaming

222

In summary, streaming data processing has its own set of unique challenges, which

are a result of processing data that is continuous and unbounded. It is important to be

mindful about these challenges as you set out to build long-running streaming data

processing applications or when evaluating a particular streaming processing engine.

The challenges are as follows:

• Maintaining a potentially large state in a reliable manner for data

streaming applications

• Efficiently and quickly delivering messages for applications to

process

• Dealing with streaming data that arrives out of order

• Joining with batch data to enrich the incoming streaming data

• End-to-end, exactly once guarantee delivery of data even where there

is failure

• Dealing with an uneven data arrival rate

 Concepts
To be effective at performing streaming data processing, it is imperative to understand

the following core and universal concepts. These important concepts are very much

applicable to developing streaming applications on any streaming processing engine.

Knowing these concepts will be useful when evaluating streaming processing engines;

they also enable you to ask the right questions to find out how much support a particular

streaming processing engine provides in each of these areas:

• Data delivery semantics

• Notion of time

• Windowing

Chapter 6 Spark Streaming

223

 Data Delivery Semantics

When a piece of data enters a streaming processing engine, it has the responsibility

of delivering it to the streaming application for processing. There are three types of

guarantees that a streaming processing engine can provide even under failure scenarios.

• At most once: This implies that a streaming processing engine

guarantees that a piece of data will be delivered to an application

no more than one time, but it could be zero times. In other words,

there is a chance that a piece of data will be lost, and therefore an

application will not see it at all. For some use cases, this is acceptable,

but it is not for some other use cases. One of those use cases is a

financial transaction processing application. Losing data can result in

not charging customers and therefore a reduction in revenue.

• At least once: This implies that a streaming processing engine guarantees

that a piece of data will be delivered to an application one or more

times. There is no data lost in this case; however, there is a potential

for double or triple counting. In the example of financial transaction

processing applications, it means that a transaction is applied multiple

times, which results in complaints from customers. This guarantee is

stronger than at most once because no data will be lost.

• Exactly once: This implies that a streaming processing engine

guarantees that a piece of data will be delivered to an application

exactly one time only, no more and no less. In this case, there is

no data loss and no double counting. Most modern and popular

streaming processing engines provide this kind of guarantee. Of the

three guarantees, this one is the most desirable for building critical

business streaming applications.

Chapter 6 Spark Streaming

224

One way of looking at these delivery semantics is they fall into a spectrum, where at

most once is the weakest guarantee and exactly once is the strongest guarantee, which is

depicted in Figure 6-1.

When evaluating a streaming processing engine, it is important to not only

understand the level of guarantee it provides but also understand the implementation

behind this guarantee. Most modern streaming processing engines employ a

combination of check-pointing and write-ahead log techniques to provide an exactly

once guarantee.

 Notion of Time

In the world of streaming data processing, the notion of time is important because it

enables you to understand what’s going on in terms of time. For example, in the case of

a real-time anomaly detection application, the notion of time gives you insights into the

number of suspicious transactions occurring in the last five minutes or at a certain part

of the day.

There are two important types of time: event time and processing time. As depicted

in Figure 6-2, event time represents the time when the piece of data was created,

and typically this information is encoded in the data. For example, in the case of IoT

devices that take an ocean temperature in a certain part of the world, the event time is

when the temperature was taken. The encoding of the temperature data may consist

of the temperature itself and a timestamp. The processing time represents the time

when the stream processing engine processes a piece of data. In the example of the

Figure 6-1. Delivery semantics spectrum

Chapter 6 Spark Streaming

225

ocean temperature IoT devices, the processing time is the clock time of the streaming

processing engine at the time it starts to perform transformations or aggregations on the

temperature data.

To truly understand what’s going behind the incoming stream of data, it is imperative

to be able to process the incoming data in terms of event time because the event time

represents the point in time that the data was created. In an ideal state, the data will

arrive and be processed shortly after it was created, and therefore the gap between

the event time and processing time is small. In reality, that is often not the case, and

therefore the lag varies over time according to the conditions that prevent the data from

arriving immediately after it was created. The greater the lag, the greater the need to be

able to process data using the event time and not using the processing time. Figure 6-3

illustrates the relationship between event time and processing time; it also shows an

example of what the lag looks like in reality. The notion of time is very much related to

the windowing concept, which is described next. To deal with an unbounded incoming

stream of data, one common practice in the streaming data processing world is to divide

the incoming data into chunks by using the start and end times as the boundary. It is

fairly obvious that it makes more sense to use the event time as the temporal boundaries.

Figure 6-2. Event time and processing

Chapter 6 Spark Streaming

226

 Windowing

Given the unbounded nature of streaming data, it is not feasible to have a global view of

the incoming streaming data. Hence, to extract any meaningful value from the incoming

data, you need to process it in chunks. For example, given a traffic count sensor that

emits a count of the number of cars every 20 seconds, it is not feasible to compute a

final sum. Instead, it is more logical to ask how many cars pass that sensor every minute

or every five minutes. In this case, you need to partition the traffic-counting data into

chunks of one minute or five minutes, respectively. Each chunk is called a window.

Windowing is a common streaming data processing pattern where the unbounded

incoming stream of data is divided into chunks based on temporal boundaries,

which can either be event time or processing time, although the former is used more

commonly to reflect the actual reality of the data. However, given that the data may not

arrive in the order it was created or it may be delayed because of network congestion, it

is not possible to always have all the data that was created in that time window.

There are three commonly used windowing patterns, and most modern streaming

processing engines support them. Figure 6-4 shows the three patterns.

Figure 6-3. The lag between event time and processing time

Chapter 6 Spark Streaming

227

A fixed/tumbling window basically divides the incoming stream of data into fixed-

size segments, where each one has a window length, a start time, and an end time. Each

incoming piece of data will be slotted into one and only one fixed/tumbling window.

With this small batch of data in each window, it is easy to reason about when performing

aggregations such as sum, max, or average.

A sliding window is another way of dividing the incoming stream of data into fixed-

size segments, where each one has a window length and a sliding interval. If the sliding

interval is the same size as the window length, then it is the same as the fixed/tumbling

window. The example in Figure 6-4 shows that the sliding interval is smaller than the

window length. This implies that one or more pieces of data will be included in more

than one sliding window. Because of the overlapping of the windows, the aggregation

will produce a smoother result than in the fixed/tumbling window.

The session window type is commonly used to analyze user behavior on a web site.

Unlike the fixed/tumbling and sliding window, it has no predetermined window length.

Rather, it is determined usually by a gap of inactivity that is greater than some threshold.

For example, the length of a session window on Facebook is determined by the duration of

activities that a user does, such as browsing the user feeds, sending messages, and so on.

 Stream Processing Engine Landscape
There is no shortage of innovations from the open source community in coming up

with solutions for streaming data processing. In fact, at the moment, there are multiple

streaming processing engines. Some of the earlier streaming processing engines were

Figure 6-4. Three commonly used windowing patterns

Chapter 6 Spark Streaming

228

born out of necessity, some of the later ones were born out of research projects, and

some evolved from batching processing engines. This section presents a few of the

popular streaming processing engines: Apache Storm, Apache Samza, Apache Flink,

Apache Kafka Streams, Apache Apex, and Apache Beam.

Apache Storm is one of the pioneers in the area of streaming data processing, and

its popularity is mainly associated with the large-scale streaming processing that Twitter

does. Apache Storm’s initial release was in 2011, and it became an Apache top-level

project in 2014. In 2015, Twitter abandoned Apache Storm and switched over to Heron,

which is the next generation of Apache Storm. Heron is more resource efficient and

provides much better throughput than Apache Storm.

Apache Samza was created at LinkedIn to help solve its streaming processing needs,

and it was open sourced in 2013. It was designed to work closely with Kafka and to run

on top of Hadoop YARN for process isolation, security, and fault tolerance. Apache

Samza was designed to process streams, which are composed of ordered, partitioned,

replayable, and fault-tolerant sets of immutable messages.

Apache Flink started out as a fork of the research project called Stratosphere:

Information Management on the Cloud. It became an Apache top-level project in 2015,

and ever since then it has been steadily gaining popularity as a high-throughput and

low-latency streaming engine. One key difference between Apache Flink and Apache

Storm and Apache Samza is that Apache Flink supports both batch and streaming

processing in the same engine.

Apache Kafka has evolved from a distributed publish-subscribe messaging system

to a distributed streaming platform. It was created at LinkedIn and became a top-level

Apache project in 2012. Unlike other streaming processing engines, Kafka’s stream

processing capabilities are packaged as a light-weight library, which makes it easy to

write real-time streaming applications.

Apache Apex is a relatively newcomer to this space. It was developed at a company

called DataTorrent, which decided to open source it in 2016. Apache Apex is considered

a Hadoop YARN native platform that unifies stream and batch processing.

Apache Beam is quite an interesting project that came out of Google in 2016. The

main idea behind this project was to provide a powerful and easy-to-use model for both

streaming and batch processing that is portable across a variety of runtime platforms,

such as Apache Flink, Apache Spark, and Google Cloud DataFlow. In other words, think

of Apache Beam as an uber-API for big data.

Chapter 6 Spark Streaming

229

There are two standard stream processing models, and each of the previous

streaming processing engines (except Apache Beam) is subscribed to one of them.

The two models are called record-at-a-time and micro-batching, as shown in Figure 6-5.

Both models have inherent advantages and disadvantages. The record-at-a-time

model does what it sounds like; it immediately processes each piece of input data as it

arrives. As a result, this model provides the lowest possible latency. The micro-batching

model waits and accumulates a small batch of input data based on a configurable

batching interval and then processes each batch in parallel. It is fairly obvious that the

micro-batching model can’t provide the same level of latency as the other model. In

terms of throughput, though, the micro-batch has a much higher rate because a batch of

data is processed in an optimized manner, and therefore the cost per each piece of data

is low compared to the other model. One interesting side note is that it is fairly easy to

build a micro-batching model on top of a record-of-a-time model.

Of all the streaming processing engines listed, only Apache Spark employs the

micro-batching model; however, there is already some work underway to support the

record-at-a-time model.

Figure 6-5. Two different models of streaming processing

Chapter 6 Spark Streaming

230

 Spark Streaming Overview
One of the contributing factors to the popularity of Apache Spark’s unified data

processing platform is the ability to perform streaming data processing as well as batch

data processing.

With the high-level description of the intricacies and challenges of stream processing

as well as a few core concepts out of the way, the remainder of this chapter will focus

on the Spark streaming topic. First, it will provide a short and high-level understanding

of some of the capabilities of Spark’s first-generation streaming processing engine

called DStream. Then the bulk of the chapter will provide details about Spark’s second

streaming processing engine called Structured Streaming. New Spark streaming

applications should be developed on top of Structured Streaming to take advantage of

some of the unique and advanced features it provides.

 Spark DStream
The first generation of the Spark streaming processing engine was introduced in 2012,

and the main programming abstraction in this engine is called a discretized stream,

or DStream. The way it works is by employing the micro-batching model to divide the

incoming stream of data into batches, which are then processed by the Spark batch

processing engine. This makes a lot of sense when an RDD is the main programming

abstraction model. Each batch is internally represented by an RDD. The number of

pieces of data in a batch is a function of the incoming data rate and the batch interval.

Figure 6-6 shows the way DStream works at a high level.

A DStream can be created from an input data stream from sources such as Kafka,

AWS Kinesis, a file, or a socket. One of the key pieces of information that is needed when

creating a DStream is the batch interval, which can be in seconds or in milliseconds.

With a DStream, you can apply a high-level data processing function such as map, filter,

Figure 6-6. Spark DStream

Chapter 6 Spark Streaming

231

reduce, or reduceByKey on the incoming stream of data. Additionally, you can perform

windowing operations such as reducing and counting over either a fixed/tumbling or a

sliding window by providing a window length and a slide interval. One important note

is that the window length and slide interval must be multiples of a batch interval. For

example, if the batch interval is three seconds and the fixed/tumbling interval is used,

then the window length and slide interval can be six seconds. Maintaining arbitrary state

while performing computations across batches of data is supported in DStream, but it

is a manual process and a bit cumbersome. One of the cool things you can do with a

DStream is to join it with either another DStream or an RDD that represents static data.

After all the processing logic is complete, you can use a DStream to write the data out to

external systems such as a database, a file system, or HDFS.

Any new Spark streaming applications should be developed on the second

generation Spark streaming processing engine called Structured Streaming, which will

be covered in the next section. For the remainder of this section, you will look at a small

word count Spark DStream application; the goal is to give you a sense of what a typical

Spark DStream application looks like. Listing 6-1 contains the code for the word count

application, which is an example from Apache Spark (see https://bit.ly/2G8N30G).

Listing 6-1. Apache Spark DStream Word Count Application

object NetworkWordCount {

 def main(args: Array[String]) {

 // Create the context with a 1 second batch size

 val sparkConf = new SparkConf().setAppName("NetworkWordCount")

 val ssc = new StreamingContext(sparkConf, Seconds(1))

 val host = "localhost"

 val port = 9999

 val lines = ssc.socketTextStream(host, port, StorageLevel.MEMORY_AND_

DISK_SER)

 val words = lines.flatMap(_.split(" "))

 val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _)

 wordCounts.print()

Chapter 6 Spark Streaming

https://bit.ly/2G8N30G

232

 ssc.start()

 ssc.awaitTermination()

 }

}

There are a few important steps when putting together a DStream application. The

entry point to a DStream application is StreamingContext, and one of the required

inputs is a batch interval, which defines a time duration that Spark uses to batch

incoming data into an RDD for processing. It also represents a trigger point for when

Spark should execute the streaming application computation logic. For example,

if the batch interval is three seconds, then Spark batches all the data that arrives

within that three-second interval; after that interval elapses, it will turn that batch of

data into an RDD and process it according to the processing logic you provide. Once

a StreamingContext is created, the next step is to create an instance DStream by

defining an input source. The previous example defines the input source as a socket

that reads lines of text. After this point, then you provide the processing logic for the

newly created DStream. The processing logic in the previous example is not complex.

Once an RDD for a collection of lines is available after one second, then Spark executes

the logic of splitting each line into words, converting each word into a tuple of the

word and a count of 1, and finally summing up the count of the same word. Finally,

the counts are printed out on the console. Remember that a streaming application is

a long-running application; therefore, it requires a signal to start the task of receiving

and processing the incoming stream of data. That signal is given by calling the

start() function of StreamingContext, and this is usually done at the end of the file.

The awaitTermination() function is used to wait for the execution of the streaming

application to stop as well as a mechanism to prevent the driver from exiting while your

streaming application is running. In a typically program, once the last line of code is

executed, it will exit. However, a long-running streaming application needs to keep going

once it is started and will end only when you explicitly stop it.

 Spark Structured Streaming
Structured Streaming is Spark’s second-generation streaming engine. It was designed to

be much faster, more scalable, and more fault tolerant and to address the shortcomings

in the first-generation streaming engine. It was designed for developers to build

Chapter 6 Spark Streaming

233

end-to-end streaming applications that can react to data in real-time using a simple

programming model that it is built on top of the optimized and solid foundation of the

Spark SQL engine. One distinguishing aspect of Structured Streaming is that it provides a

unique and easy way for engineers to build streaming applications.

Building production-grade streaming applications requires overcoming many

challenges, and with that in mind, the Structured Streaming engine was designed to help

deal with these challenges:

• Handling end-to-end reliability and guaranteeing correctness

• Performing complex transformations on a variety of incoming data

• Processing data based on the event time and dealing with out-of-

order data easily

• Integrating with a variety of data sources and data sinks

The following sections will cover various aspects of the Structured Streaming engine

and the support it provides to deal with these challenges.

 Overview
There are two key ideas in Structured Streaming. The first one is treating streaming

computation just like the way batch computation is treated, meaning treating the

incoming data stream as an input table, and as a new set of data arrives, treating that as a

new set of rows being appended to the input table, just like in Figure 6-7.

Figure 6-7. Treating streaming data as a table being continuously updated

Chapter 6 Spark Streaming

234

Another way to think of a stream of incoming data is as nothing more than a table

being continuously appended. This simple yet radical idea has many implications. One

of them is the ability to leverage the existing Structured APIs for DataFrame and Dataset

in Scala, Java, or Python to perform streaming computations and have the Structured

Streaming engine take care of running them incrementally and continuously as the new

streaming data arrives. Figure 6-8 provides a visual comparison between performing

batch and stream processing in Spark. The other implication is that the same Catalyst

engine discussed in the previous chapter is used to optimize the streaming computation

expressed via the Structured APIs. The knowledge you gain from working with the

Structured APIs is directly transferrable to building streaming applications running on

the Spark Structured Streaming engine. The only remaining parts to be learned are the

ones that are specific to the streaming processing domain, such as event-time processing

and maintaining state.

The second key idea is the transactional integration with the storage systems to

provide an end-to-end, exactly once guarantee. The goal here is to ensure that the

serving applications that read data from the storage systems see a consistent snapshot

of the data that has been processed by the streaming applications. Traditionally, it

is a developer’s responsibility to ensure there is no duplicate data or data loss when

Figure 6-8. Comparing batch processing and streaming processing in Spark

Chapter 6 Spark Streaming

235

sending data from a streaming application to an external storage system. This is one

of the pain points that was raised by streaming application developers. Internally, the

Structure Streaming engine already provides an exactly once guarantee, and now that

same guarantee is extended to external storage systems, provided those systems support

transactions.

Starting with Apache Spark 2.3, the Structured Streaming engine’s processing

model has been expanded to support a new model called continuous processing. The

previous processing model was the micro-batching model, which is the default one.

Given the nature of the micro-batching processing model, it is suitable for use cases that

can tolerate end-to-end latency in the range of 100 milliseconds. For other use cases

that need end-to-end latency as low as 1 millisecond, they should use the continuous

processing model; however, it has an experimental status as of Apache Spark 2.3, and it

has a few restrictions in terms of what streaming computations are allowed.

 Core Concepts
This section covers a set of core concepts you need to understand before building a

streaming application. The main parts of a streaming application consist of specifying

one or more streaming data sources, providing the logic for manipulating the incoming

data streams in the form of DataFrame transformations, defining the output mode and

the trigger, and finally specifying a data sink to write the result to. Since both the output

mode and the trigger have default values, they are optional if their default values meet

your use case. Figure 6-9 outlines the steps mentioned earlier. The optional ones are

marked with an asterisk.

Each of these concepts will be described in detail in the following sections.

Figure 6-9. The core pieces of a Structured Streaming application

Chapter 6 Spark Streaming

236

 Data Sources

Let’s start with data sources. With batching processing, the data source is a static dataset

that resides on some storage system like a local file system, HDFS, or S3. The data

sources in Structured Streaming are quite different. The data they produce is continuous

and may never end, and the producing rate can vary over time. Structured Streaming

provides the following out-of-the-box sources:

• Kafka source: require Apache Kafka with version 0.10 or higher.

This is the most popular data source in a production environment.

Working with this data source will require a fundamental of

understanding of how Kafka works. Connecting to and reading data

from a Kafka topic requires a specific set of settings that must be

provided. Please refer to the Kafka Integration Guide on the Spark

website for more details.

• File source: Files are located on either the local file system, HDFS,

or S3. As new files are dropped into a directory, this data source

will pick them up for processing. Commonly used file formats are

supported, such as text, CSV, JSON, ORC, and Parquet. See the

DataStreamReader interface for an up-to-date list of supported file

formats. A good practice when working with this data source is to

completely write the input files and then move them into the path of

this data source.

• Socket source: This is for testing purposes only. It reads UTF-8 data

from a socket listening on a certain host and port.

• Rate source: This is for testing and benchmark purposes only. This

source can be configured to generate a number of events per second,

where each event consists of a timestamp and a monotonically

increased value. This is the easiest source to work with while learning

Structured Streaming.

One important property a data source needs to provide for Structured Streaming

to deliver an end-to-end, exactly once guarantee is a way to track a read position in the

stream. For example, a Kafka data source provides a Kafka offset to track the read position

of a partition of a topic. This property determines whether a particular data source is fault

tolerant. Table 6-1 describes some of the options for each out-of-the box data source.

Chapter 6 Spark Streaming

237

Apache Spark 2.3 introduced the DataSource V2 APIs, which is an official supported

set of interfaces for Spark developers to develop custom data sources that can easily

integrate with Structured Streaming. With this well-defined set of APIs, the number of

custom Structured Streaming sources will dramatically increase in the near future.

 Output Modes

Output modes are a way to tell Structure Streaming how the output data should be

written to a sink. This concept is unique to streaming processing in Spark. There are

three options.

• Append mode: This is the default mode if output mode is not

specified. In this mode, only new rows that were appended to the

result table will be sent to the specified output sink.

Table 6-1. Out-of-the-Box Data Sources

Name Fault Tolerant Configurations

File Yes path: path to the input directory

maxFilesPerTrigger: maximum number of new files to

read per trigger

latestFirst: Whether to process the latest files (in terms of

modification time)

Socket no the following are required:

host: host to connect to

port: port to connect to

rate Yes rowsPerSecond: number of rows to generate per second

rampUpTime: ramp-up time in seconds before reaching

rowsPerSecond

numPartitions: number of partitions

kafka Yes kafka.bootstrap.servers: a comma-separated list of host:port

of kafka brokers

subscribe: a comma-separated list of topics

please refer to the kafka integration guide on the Spark website for more

details (https://spark.apache.org/docs/latest/

structured-streaming-kafka-integration.html).

Chapter 6 Spark Streaming

https://spark.apache.org/docs/latest/structured-streaming-kafka-integration.html
https://spark.apache.org/docs/latest/structured-streaming-kafka-integration.html

238

• Complete mode: The entire result table will be written to the output sink.

• Update mode: Only the rows that were updated in the result table will

be written to the output sink. For the rows that were not changed,

they will not be written out.

Output mode is an concept that will take some time getting used to because there are

a few dimensions to it. Given the three options, it is only natural to wonder under what

circumstances one would use one output mode versus the other ones. It will make more

sense when you will go through a few examples.

 Trigger Types

Trigger is another important concept to understand. The Structured Streaming engine uses

the trigger information to determine when to run the provided streaming computation

logic in your streaming application. Table 6-2 describes the different trigger types.

Table 6-2. Trigger Types

Type Description

not specified

(default)

For this default type, Spark will use the micro-batch mode and process the next

batch of data as soon as the previous batch of data has completed processing.

Fixed interval For this type, Spark will use the micro-batch mode and process the batch of data

based on the user-provided interval. if for whatever reason the processing of the

previous batch of data takes longer than the interval, then the next batch of data

is processed immediately after the previous one is completed. in other words,

Spark will not wait until the next interval boundary.

One-time this trigger type is meant to be used for one-time processing of the available

batch of data, and Spark will immediately stop the streaming application once

the processing is completed. this trigger type is useful when the data volume

is extremely low, and therefore it is more cost effective to spin up a cluster and

process the data only a few times a day.

Continuous this trigger type invokes the new continuous processing mode that is designed

for a certain streaming applications that require very low latency. this is new and

experimental processing mode in Spark 2.3.

Chapter 6 Spark Streaming

239

 Data Sinks

Data sinks are at the opposite end of the data sources. They are meant for storing the

output of streaming applications. It is important to recognize which sinks can support

which output mode and whether they are fault tolerant. A short description of each sink

is provided here, and the various options for each sink are outlined in Table 6-3.

• Kafka sink: require Apache Kafka with version 0.10 or higher. There

is a specific set of settings to connect to a Kafka cluster. Please refer to

the Kafka Integration Guide on the Spark website for more details.

• File sink: This is a destination on a file system, HDFS, or S3.

Commonly used file formats are supported, such as text, CSV, JSON,

ORC, and Parquet. See the DataStreamReader interface for an up-to-

date list of supported file formats.

• Foreach sink: This is meant for running arbitrary computations on the

rows in the output.

• Console sink: This is for testing and debugging purposes only and

when working with low-volume data. The output is printed to the

console on every trigger.

• Memory sink: This is for testing and debugging purposes only when

working with low-volume data. It uses the memory of the driver to

store the output.

Chapter 6 Spark Streaming

240

One important property a data sink must support for Structured Streaming to deliver

an end-to-end, exactly once guarantee is to be idempotent for handling reprocessing. In

other words, it must be able to handle multiple writes (that occur at different times) with

the same data such that the outcome is the same as if there was only a single write. The

multiple writes is a result of reprocessing data during a failure scenario.

To help solidify an understanding of the core concepts mentioned earlier, the

next section will provide examples of how the various pieces fit together when putting

together a Structured Streaming application in Spark.

Table 6-3. Out-of-the-Box Data Sinks

Name Supported
Output Modes

Fault
Tolerant

Configurations

File append Yes path: this is the path to the input directory.

all the popular file formats are supported. See

DataFrameWriter for more details.

Foreach append,

Update,

Complete

Depends this is a very flexible sink, and it is implementation

specific.

See the following details.

Console append,

Update,

Complete

no numRows: this is the number of rows to print every

trigger. the default is 20 rows.

truncate: this specifies whether to truncate if each

row is too long. the default is true.

memory append,

Complete

no N/A

kafka append,

Update,

Complete

Yes kafka.bootstrap.servers: this is a comma-

separated list of host:port of kafka brokers.

topic: this is a kafka topic to write data to.

please refer to the kafka integration guide on the Spark

website for more details (https://spark.apache.

org/docs/latest/structured-streaming-

kafka-integration.html).

Chapter 6 Spark Streaming

https://spark.apache.org/docs/latest/structured-streaming-kafka-integration.html
https://spark.apache.org/docs/latest/structured-streaming-kafka-integration.html
https://spark.apache.org/docs/latest/structured-streaming-kafka-integration.html

241

 Watermarking
Watermarking is a commonly used technique in streaming processing engines to deal
with data that arrives at a much later time than other data that was created at about the
same time. Late data presents challenges to streaming processing engines when the
streaming computation logic requires it to maintain some kind of state. Examples of this
scenario are when there are aggregations or joining going on. Streaming application
developers can specify a threshold to let the Structured Streaming engine know how
late the data is expected to be in terms of the event time. With this information, the
Structured Streaming engine can decide whether a piece of late data will be processed
or discarded. More important, Structured Streaming uses the specified threshold to
determine when old state can be discarded. Without this information, Structured
Streaming will need to maintain all the state indefinitely, and this will cause out-of-
memory issues for streaming applications. Any production Structured Streaming
applications that perform some kind of aggregations or joining will need to specify
a watermark. This is an important concept, and more details about this topic will be

discussed and illustrated in later sections.

Note apache kafka has become one of the most popular open source
technologies in the big data landscape. it plays a critical role in the architecture
of a big data platform by acting as the glue between the various data producers
and consumers. at a high level, kafka is a distributed and fault-tolerant pub-sub
messaging system for ingesting real-time data streams. the unit of data with
kafka is called a message. messages are organized into topics, which are split into
partitions to enable the ability to consume the messages in parallel. the messages
of each partition are stored in a file with the structure that is similar to a commit
log. each partition data file contains an ordered, immutable sequence of messages.
a sequential iD is assigned to each message and is commonly referred to as the
offset. as new messages arrive to a partition, they are simply appended to the
end of the partition file. this key design point is what enables kafka to handle
a high ingestion rate. each partition can be replicated to multiple replicas. the
append-only style of writing messages to a partition and the partition replication
are the key contributors to how kafka provides redundancy and scalability. each
topic has a configuration for a retention period based on either size or age, after
which messages are marked for deletion. For more details about kafka, please visit
https://kafka.apache.org/documentation/.

Chapter 6 Spark Streaming

https://kafka.apache.org/documentation/

242

 Structured Streaming Application
This section will go through a Spark Structured Streaming example application to see

how the aforementioned concepts are mapped to code. The following example is about

processing a small set of mobile action events from a file data source. Each event consists

of three fields:

• id: Represents the unique ID of a phone. In the provided sample data

set, the phone ID will be something like phone1, phone2, phone3, and

so on.

• action: Represents an action taken by a user. Possible values of the

action are open and close.

• ts: Represents the timestamp when the action was taken by user. This

is the event time.

The mobile event data is split into three JSON files, and they are available in the

chapter6/data/mobile directory. To simulate the data streaming behavior, the JSON

files will be copied into the input folder in a certain order, and then the output is

examined to validate your understanding.

Let’s explore the mobile event data by using DataFrames to read the data. See

Listing 6-2.

Listing 6-2. Reading in Mobile Data and Printing Out Its Schema

val mobileDataDF = spark.read.json("<path>/chapter6/data/mobile")

mobileDataDF.printSchema

 |-- action: string (nullable = true)

 |-- id: string (nullable = true)

 |-- ts: string (nullable = true)

file1.json

{"id":"phone1","action":"open","ts":"2018-03-02T10:02:33"}

{"id":"phone2","action":"open","ts":"2018-03-02T10:03:35"}

{"id":"phone3","action":"open","ts":"2018-03-02T10:03:50"}

{"id":"phone1","action":"close","ts":"2018-03-02T10:04:35"}

Chapter 6 Spark Streaming

243

file2.json

{"id":"phone3","action":"close","ts":"2018-03-02T10:07:35"}

{"id":"phone4","action":"open","ts":"2018-03-02T10:07:50"}

file3.json

{"id":"phone2","action":"close","ts":"2018-03-02T10:04:50"}

{"id":"phone5","action":"open","ts":"2018-03-02T10:10:50"}

By default, Structured Streaming requires a schema when reading data from a file-

based data source. This makes sense because initially the directory might be empty, so

therefore Structured Streaming wouldn’t be able to infer the schema. However, if you

really want it to infer the schema, you can set the configuration spark.sql.streaming.

schemaInference to true. In this example, you will explicitly create a schema. Listing 6-3

contains a snippet of code for creating the schema for the mobile event data.

Listing 6-3. Creating a Schema for Mobile Event Data

import org.apache.spark.sql.types._

import org.apache.spark.sql.functions._

val mobileDataSchema = new StructType().add("id", StringType, false)

 .add("action", StringType, false)

 .add("ts", TimestampType, false)

Let’s start with a simple use case for processing the mobile event data. The goal is

to generate a count per action type using a fixed window with a ten-second window

length. The three lines of code in Listing 6-4 will help achieve this goal. The first line of

code demonstrates the usage of a file-based data source by using the DataStreamReader

to read data from a directory. The expected data format is in JSON, and the schema

is defined in Listing 6-3. The returned object is a DataFrame, which you are familiar

with from Chapter 4. However, this DataFrame is a streaming DataFrame, so when the

isStreaming function is invoked, the returned value should be true. The streaming

computation logic in this simple application is expressed in the second line of code,

which performs the group by transformation using the action column and a fixed

window based on the ts column. A keen reader probably already recognizes this,

but just to emphasize the point about event time, the fixed window in the group by

transformation is based on the timestamp embedded inside the mobile event data. The

third line of code is an important one because it defines the output mode and data sink,

Chapter 6 Spark Streaming

244

and most importantly it tells the Structured Streaming engine to start incrementally

running our streaming computation logic expressed in the second line. To go into more

detail, the third line of code uses the DataFrameWriter instance of the actionCountDF

DataFrame to specify the console as the data sink, meaning the output will be printed

to a console for you to examine. It then defines the output mode as “complete” so you

can see all the records in the result table. Finally, it invokes the start() function of the

DataStreamWriter to start the execution, which means the file-based data source will

start processing files that are dropped into the /<path>/chapter6/data/input directory.

Another important thing to note is that the start function will return an instance

of a StreamingQuery class, which represents a handle to a query that is executing

continuously in the background as new data arrives. You can use the mobileConsoleSQ

streaming query to examine the status and progress of the computation in the streaming

application.

Before you type in the three lines of code in Listing 6-4, make sure the input folder is

empty.

Listing 6-4. Generating a Count per Action Type in a Ten-Second Sliding Window

val mobileSSDF = spark.readStream.schema(mobileDataSchema).json("/<path>/

chapter6/data/input")

mobileSSDF.isStreaming

val actionCountDF = mobileSSDF.groupBy(window($"ts", "10 minutes"),

$"action").count

val mobileConsoleSQ = actionCountDF.writeStream

 . format("console").option("truncate",

"false")

 .outputMode("complete")

 .start()

To start seeing the output in the console like in Listing 6-5, copy file1.json from the

chapter6/data/mobile directory to the chapter6/data/input directory. The following

output should show up in the console. The output tells you there is only one window

from 10:00 to 10:10, and within this window there is one close action and three open

Chapter 6 Spark Streaming

245

actions, which should match the four lines of events in files1.json. Now repeat the

same process with file file2.json, and the output should match Listing 6-6. The data

file file2.json contains one event with an open action and another with a close action,

and both fall into the same window as earlier. Therefore, the counts are updated to two

close actions and four open actions, respectively, for the action type.

Listing 6-5. Output from Processing file1.json
--

Batch: 0

--

+---+-------+------+

| window| action| count|

+---+-------+------+

| [2018-03-02 10:00:00, 2018-03-02 10:10:00]| close| 1|

| [2018-03-02 10:00:00, 2018-03-02 10:10:00]| open| 3|

+---+-------+------+

Listing 6-6. Output from Processing file2.json

Batch: 1

+--+-------+------+

| window| action| count|

+--+-------+------+

|[2018-03-02 10:00:00, 2018-03-02 10:10:00]| close| 2|

|[2018-03-02 10:00:00, 2018-03-02 10:10:00]| open| 4|

+--+-------+------+

At this point, let’s invoke a few functions of the query stream mobileConsoleSQ (an

instance of the StreamingQuery class) to examine the status and progress. The status()

function will tell you what’s going at the current status of the query stream, which can

be either in wait mode or in the middle of processing the current batch of events. The

lastProgress() function provides some metrics about the processing of the last batch

of events including processing rates, latencies, and so on. Listing 6-7 contains the sample

output from both of these functions.

Chapter 6 Spark Streaming

246

Listing 6-7. Output from Calling the status() and lastProgress() Functions

scala> mobileConsoleSQ.status

res14: org.apache.spark.sql.streaming.StreamingQueryStatus =

{

 "message" : "Waiting for data to arrive",

 "isDataAvailable" : false,

 "isTriggerActive" : false

}

scala> mobileConsoleSQ.lastProgress

res17: org.apache.spark.sql.streaming.StreamingQueryProgress =

{

 "id" : "2200bc3f-077c-4f6f-af54-8043f50f719c",

 "runId" : "0ed4894c-1c76-4072-8252-264fe98cb856",

 "name" : null,

 "timestamp" : "2018-03-18T18:18:12.877Z",

 "batchId" : 2,

 "numInputRows" : 0,

 "inputRowsPerSecond" : 0.0,

 "processedRowsPerSecond" : 0.0,

 "durationMs" : {

 "getOffset" : 1,

 "triggerExecution" : 1

 },

 "stateOperators" : [{

 "numRowsTotal" : 2,

 "numRowsUpdated" : 0,

 "memoryUsedBytes" : 17927

 }],

 "sources" : [{

 "description" : "FileStreamSource[file:<path>/chapter6/data/input]",

 "startOffset" : {

 "logOffset" : 1

 },

Chapter 6 Spark Streaming

247

 "endOffset" : {

 "logOffset" : 1

 },

 "numInputRows" : 0,

 "inputRowsPerSecond" : 0.0,...

Let’s finish processing the last file of the mobile event data. It’s the same as file2.json.

Copy file3.json to the input directory, and the output should look something like

Listing 6-8. File file3.json contains one close action that belongs to the first window

and an open action that falls into a new window from 10:10 to 10:20. In total, there

are eight actions. Seven of them fall into the first window, and one action falls into the

second window.

Listing 6-8. Output from Processing file3.json

Batch: 2

+--+-------+------+

| window| action| count|

+--+-------+------+

|[2018-03-02 10:00:00, 2018-03-02 10:10:00]| close| 3|

|[2018-03-02 10:00:00, 2018-03-02 10:10:00]| open| 4|

|[2018-03-02 10:10:00, 2018-03-02 10:20:00]| open| 1|

+--+-------+------+

For a production and long-running streaming application, it is necessary to call the

StreamingQuery.awaitTermination() function, which is a blocking call to prevent the

driver process from exiting, and to let the streaming query continuously run and process

new data as it arrives into the data source.

While learning and playing around with Structured Streaming, sometimes you

want to stop a streaming query to change either the output mode, the trigger, or other

configurations. You can use the StreamingQuery.stop() function to stop the data source

from receiving new data and stop the continuous execution of logic in the streaming

query. See Listing 6-9 for examples of managing streaming queries.

Chapter 6 Spark Streaming

248

Listing 6-9. Managing a Streaming Query

// this is blocking call

mobileSQ.awaitTermination()

// stop a streaming query

mobileSQ.stop

// another way of stopping all streaming queries in a Spark application

for(qs <- spark.streams.active) {

 println(s"Stop streaming query: ${qs.name} - active: ${qs.isActive}")

 if (qs.isActive) {

 qs.stop

 }

}

 Streaming DataFrame Operations
The previous example shows that once a data source is configured and defined, the

DataStreamReader will return an instance of a DataFrame, which is the same DataFrame

class you are familiar with from Chapter 4 and Chapter 5. This means you can use most

of the familiar operations and Spark SQL functions to express your application streaming

computation logic. However, it is important to note that not all operations in the

DataFrame are supported for a streaming DataFrame. This is because some of them are

not applicable in the context of streaming data processing. Examples of such operations

include limit, distinct, and sort.

 Selection, Project, and Aggregation Operations

One of the selling points of Structured Streaming is a set of unified APIs for batch

processing and stream processing in Spark. With a streaming DataFrame, it is feasible

to apply any of the select and filter transformations to it, as well as any of the Spark

SQL functions that operate on individual columns. In addition, basic aggregations and

the advanced analytics functions covered in Chapter 5 are available to a streaming

DataFrame as well. To complete the similarity comparison of the two DataFrame types

(static and streaming), a streaming DataFrame can be registered as a temporary view

and then apply SQL queries on it. Listing 6-10 provides an example of using filtering and

applying Spark SQL functions on top of the mobileSSDF DataFrame in Listing 6-4.

Chapter 6 Spark Streaming

249

Listing 6-10. Applying Filtering and Spark SQL Functions on a Streaming

DataFrame

import org.apache.spark.sql.functions._

val cleanMobileSSDF = mobileSSDF.filter($"action" === "open" || $"action"

=== "close")

 .select($"id", upper($"action"), $"ts")

// create a view to apply SQL queries on

cleanMobileSSDF.createOrReplaceTempView("clean_mobile")

spark.sql("select count(*) from clean_mobile")

It is important to note the following DataFrame transformations are not supported

yet in a streaming DataFrame either because they are too complex to maintain state or

because of the unbounded nature of streaming data.

• Multiple aggregations or a chain of aggregations on a streaming

DataFrame.

• Limit and take N rows.

• Distinct transformation. However, there is a way to deduplicate data

using a unique identifier.

• Sorting on a streaming DataFrame without any aggregation.

However, sorting is supported after some form of aggregation.

Any attempt to use one of the unsupported operations will result in an

AnalysisException exception and a message like “operation XYZ is not supported with

streaming DataFrames/Datasets.”

 Join Operations

One of the coolest things you can do with a streaming DataFrame is to join it with either

a static DataFrame or another streaming DataFrame. However, joining is a complex

operation, and the tricky part is not all of the data for a streaming DataFrame is available

at the time of joining. Therefore, the result of a join is generated incrementally at each

trigger point, similar to how the result of an aggregation is generated.

Chapter 6 Spark Streaming

250

Starting with Spark 2.3, Structured Streaming supports joining two streaming

DataFrames. Given the unbounded nature of a streaming DataFrame, Structured

Streaming must maintain the past data of both streaming DataFrames to match with

any future, yet-to-be-received data. To avoid the explosion of the streaming state that

Structured Streaming must maintain, a watermark can be optionally provided for both

streaming DataFrames, and a constraint on event time must be defined in the join

condition. Let’s go through an IoT use case of joining two data sensor–related data

streams of a data center. The first one contains the temperature reading of the various

locations in a data center, and the second one contains the load information of each

computer in the same data center. The join condition of these two streams is based on

the location. Listing 6-11 contains code about providing watermarks and a constraint on

the event time in the join condition.

Listing 6-11. Joining Two Streaming DataFrames

import org.apache.spark.sql.functions.expr

// the specific streaming data source information is not important in this

example

val tempDataDF = spark.readStream. ...

val loadDataDF = spark.readStream. ...

val tempDataWatermarkDF = tempDataDF.withWaterMark("temp_taken_time",

"1 hour")

val loadDataWatermarkDF = loadDataDF.withWaterMark("load_taken_time",

"2 hours")

// join on the location id as well as the event time constraint

tempWithLoadDataDF = tempDataWatermarkDF.join(loadDataWatermarkDF,

 expr(""" temp_location_id = load_location_id AND

 load_taken_time >= temp_taken_time AND

 load_taken_time <= temp_taken_time + interval 1 hour

 """)

)

There are more restrictions on the outer joins when joining a static DataFrame and a

streaming DataFrame and when joining two streaming DataFrames. Table 6-4 provides

some details about this.

Chapter 6 Spark Streaming

251

 Working with Data Sources
The previous section described each of the built-in sources that Structured Streaming

provides. This section will go into more detail and will provide sample code for working

with them.

Both the Socket and Rate data sources are designed for testing and learning purposes

only, and they shouldn’t be used in production.

 Working with the Socket Data Source

The Socket data source is fairly easy to work with, and It only requires information about

about the host and port to connect. Before starting a streaming query for the Socket data

source, it is important to start a socket server first using a network command-line utility

like nc on Mac or netcat on Windows. In this example, the nc network utility is used.

You need two terminals. The first one is for starting up a socket server with port number

9999; the command is nc -lk 9999. The second terminal runs the Spark shell with the

code in Listing 6-12.

Table 6-4. Some Details About Joining Streaming DataFrames

Left Side+Right Side Join Type Note

Static+Streaming inner Supported.

Static+Streaming Left outer not supported.

Static+Streaming right outer Supported.

Static+Streaming Full outer not supported.

Streaming+Streaming inner Supported.

Streaming+Streaming Left outer Conditionally supported. You must specify the watermark

on the right side and the time constraint.

Streaming+Streaming right outer Conditionally supported. You must specify the watermark

on the left and the time constraint.

Streaming+Streaming Full outer not supported.

Chapter 6 Spark Streaming

252

Listing 6-12. Reading Streaming Data from the Socket Data Source

val socketDF = spark.readStream.format("socket")

 .option("host", "localhost")

 .option("port", "9999").load()

val words = socketDF.as[String].flatMap(_.split(" "))

val wordCounts = words.groupBy("value").count()

val query = wordCounts.writeStream.format("console")

 .outputMode("complete")

 .start()

Now go back to the first window, type Spark is great, and hit the Enter key. Then

type Spark is awesome and hit the Enter key. Hitting the Enter key tells the Netscat

server to send whatever was typed to the socket listener. If everything went well, there

should two output batches in the Spark shell console, as in Listing 6-13, and each one

contains the count of each word. Since Structured Streaming maintains state across

batches, it was able to update the count of the Spark and is words to 2.

Listing 6-13. Output of the Socket Data Source in the Spark Shell Console

Batch: 0

+------+------+

| value| count|

+------+------+

| great| 1|

| is| 1|

| Spark| 1|

+------+------+

Chapter 6 Spark Streaming

253

Batch: 1

+-------+------+

| value| count|

+-------+------+

| great| 1|

| is| 2|

|awesome| 1|

| Spark| 2|

+-------+------+

When you are done with testing the Socket data source, you can stop the streaming

query by calling on the stop function, as shown in Listing 6-14. As expected, after

the streaming query is stopped, typing anything in the first terminal will not result in

anything being displayed in the Spark shell.

Listing 6-14. Stopping a Streaming Query of the Socket Data Source

query.stop

 Working with the Rate Data Source

Similar to the Socket data source, the Rate data source was designed for testing and

learning purposes only. It supports a few options, and one of them is the number of rows

to generate per second. If that number is high, then another optional configuration can

be provided for the ramp-up time to get to the number of rows per second. Each piece

of data the Rate source produces contains only two columns: the timestamp and the

auto-increment value. Listing 6-15 contains the code for printing out the data from the

Rate data source and what the first batch looks like in the console.

Listing 6-15. Working with the Rate Data Source

// configure it to generate 10 rows per second

val rateSourceDF = spark.readStream.format("rate")

 .option("rowsPerSecond","10")

 .load()

Chapter 6 Spark Streaming

254

val rateQuery = rateSourceDF.writeStream

 .outputMode("update")

 .format("console")

 .option("truncate", "false")

 .start()

Batch: 1

+-----------------------+------+

| timestamp| value|

+-----------------------+------+

|2018-03-19 10:30:21.952| 0|

|2018-03-19 10:30:22.052| 1|

|2018-03-19 10:30:22.152| 2|

|2018-03-19 10:30:22.252| 3|

|2018-03-19 10:30:22.352| 4|

|2018-03-19 10:30:22.452| 5|

|2018-03-19 10:30:22.552| 6|

|2018-03-19 10:30:22.652| 7|

|2018-03-19 10:30:22.752| 8|

|2018-03-19 10:30:22.852| 9|

+-----------------------+------+

One interesting thing to note is the number in the value column is guaranteed to be

consecutive across all the partitions. Listing 6-16 illustrates what the output looks like

with three partitions.

Listing 6-16. The Output of the Rate Data Source with the Partition ID

import org.apache.spark.sql.functions._

// with 3 partitions

val rateSourceDF2 = spark.readStream.format("rate")

 .option("rowsPerSecond","10")

 .option("numPartitions",3).load()

Chapter 6 Spark Streaming

255

// add partition id column to examine

val rateWithPartitionDF = rateSourceDF2.withColumn("partition_id",

spark_partition_id())

val rateWithPartitionQuery = rateWithPartitionDF.writeStream

 .outputMode("update")

 .format("console")

 .option("truncate", "false")

 .start()

// output of batch one

--

Batch: 1

--

+-----------------------+------+-------------+

| timestamp| value| partition_id|

+-----------------------+------+-------------+

|2018-03-24 08:46:43.412| 0| 0|

|2018-03-24 08:46:43.512| 1| 0|

|2018-03-24 08:46:43.612| 2| 0|

|2018-03-24 08:46:43.712| 3| 1|

|2018-03-24 08:46:43.812| 4| 1|

|2018-03-24 08:46:43.912| 5| 1|

|2018-03-24 08:46:44.012| 6| 2|

|2018-03-24 08:46:44.112| 7| 2|

|2018-03-24 08:46:44.212| 8| 2|

|2018-03-24 08:46:44.312| 9| 2|

+-----------------------+------+-------------+

The previous output shows that the ten rows are spread across three partitions, and

the values are consecutive as if they were generated for a single partition. If you are

curious about the implementation of this data source, then check out https://github.

com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/

execution/streaming/RateSourceProvider.scala.

Chapter 6 Spark Streaming

https://github.com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/execution/streaming/RateSourceProvider.scala
https://github.com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/execution/streaming/RateSourceProvider.scala
https://github.com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/execution/streaming/RateSourceProvider.scala

256

 Working with the File Data Source

The File data source is the simplest to understand and work with. Let’s say there is a

need to process new files that are periodically copied into a directory. This is the perfect

data source for this use case. Out of the box, it supports all the commonly used file

formats including text, CSV, JSON, ORC, and Parquet. For a complete list of supported

file formats, please consult the DataStreamReader interface. Among the four options that

the File data source supports, only the input directory to read files from is required.

As new files are copied into a specified directory, the File data source will pick up

all of them for processing. It is possible to configure the File data source to selectively

pick up only a fixed number of new files for processing. The option to use to specify the

number of files is the maxFilesPerTrigger option. Listing 6-17 provides an example of

reading JSON mobile data events from a directory and using the same schema defined

in Listing 6-3. Another interesting optional option that the File data source supports

is whether to process the latest files before the older files. The last timestamp of a file

is used to determine which file is newer than another file. The default behavior is to

process files from oldest to latest. This particular option is useful when there is a large

backlog of files to process and you want to process the new files first.

Listing 6-17. Working with the File Data Source

val mobileSSDF = spark.readStream.schema(mobileDataSchema).json("<directory

name>")

// if we want to specify maxFilesPerTrigger

val mobileSSDF = spark.readStream.schema(mobileDataSchema).

 option("maxFilesPerTrigger",

5).json("<directory name>")

// if we want to process new files first

val mobileSSDF = spark.readStream.schema(mobileDataSchema).

 option("latestFirst", "true").

json("<directory name>")

Chapter 6 Spark Streaming

257

Table 6-5. Required Options for the Kafka Data Source

Option Value Description

kafka.bootstrap.

servers

host1:port1,

host2:port2

this is a comma-separated list of kafka broker

servers. Consult your kafka administrators for the

host name and port number to use.

subscribe topic1, topic2 this is a comma-separated list of topic names for

this data source to read data from.

subscribePattern topic.* this is a regex pattern to express which topics to

read data from. this is a little bit more flexible than

the subscribe option.

assign { topic1:

[1,2], topic2:

[3,4] }

With this option, you can specify the specific list

of partitions of the topics to read data from. this

information must be provided in JSOn format.

 Working with the Kafka Data Source

A Kafka data source is probably the most commonly used one in production streaming

applications. To be effective at working with this data source, you need a certain amount

of basic knowledge of working with Kafka. At a high level, this data source acts as a Kafka

consumer; therefore, the information it needs is similar to the kind a Kafka consumer

needs. There are two required pieces of information and a handful of optional ones.

The two required pieces of information are a list of Kafka servers to connect to and

information about one or more topics to read the data from. To support the various ways

of choosing which topics and partitions of topics to read data from, it supports three

different ways of specifying this information. You just need to pick the one that best suits

your use case. Table 6-5 contains details about the two required options.

Chapter 6 Spark Streaming

258

After these required options are specified, then you can optionally specify the

options in Table 6-6, which contains only a few of the commonly used ones. For

a complete list of optional options, please consult Structured Streaming and the

Kafka Integration Guide at https://spark.apache.org/docs/latest/structured-

streaming-kafka-integration.html. The reason these options are optional is because

they have default values.

The startingOffsets and endingOffsets options are a way for you to have fine-

grained control of processing data in Kafka from a specific point in a particular partition

of a particular topic. This kind of flexibility is extremely useful in scenarios when

reprocessing is needed because of either failure or some bugs were introduced in a

new version of the software or when retraining a machine learning model. The ability

to reprocess data in Kafka is one of the reasons that Kafka is popular in the world of

big data processing. It may be obvious, but startingOffsets is used by the Kafka data

source to figure out where to start reading the data from in Kafka, and therefore, once

the processing is going, this option is no longer used. The endingOffsets option is used

by the Kafka data source to figure out when to stop reading the data from Kafka. For

example, if you want your streaming application to read the latest data from Kafka and

continue with processing new incoming data, then the value of both startingOffsets

and endingOffsets would be the latest.

Chapter 6 Spark Streaming

https://spark.apache.org/docs/latest/structured-streaming-kafka-integration.html
https://spark.apache.org/docs/latest/structured-streaming-kafka-integration.html

259

Table 6-6. Optional Options for the Kafka Data Source

Option Default
Value

Value Description

starting

Offsets

latest earliest, latest

JSOn string of starting offset for each topic, i.e.,

{ "topic1": { "0":45, "1": -1},

"topic2": { "0":-2}

}

earliest means the

beginning of a topic.

latest means whatever the

latest data is in a topic.

When using the JSOn string

format, -2 represents the

earliest offset in a specific

partition, and -1 represents

the latest offset in a specific

partition.

ending

Offsets

latest latest

JSOn string, i.e.,

{ "topic1": { "0":45, "1": -1},

"topic2": { "0":-2}

}

latest means the latest

data in a topic.

When using the JSOn string

format, -1 represents the

latest offset in a specific

partition. naturally -2 is not

applicable for this option.

maxOffsets

PerTrigger

none Long, i.e., 500 this option is a rate limit

mechanism to control the

number of records to process

per trigger interval. if a value

is specified, it represents

the total number of records

across all the partitions, not

per partition.

Chapter 6 Spark Streaming

260

By default, the Kafka data source is not included in the Apache Spark binary

available at https://spark.apache.org/downloads.html. If you are going to use the

Kafka data source from the Spark shell, then it is important to start the Spark shell with

an extra option to ask it to download and include the right JAR file. The deployment

section of Structured Streaming and the Kafka integration documentation (https://

spark.apache.org/docs/latest/structured-streaming-kafka-integration.html)

provides the information about the extra option. It looks something like Listing 6-18.

Listing 6-18. Start Spark Shell with the Kafka Data Source JAR File

./bin/spark-shell --packages org.apache.spark:spark-sql-

kafka-0-10_2.11:2.3.0

// if the above package is not provided, the following problem will be encountered

java.lang.ClassNotFoundException: Failed to find data source: kafka. Please

find packages at http://spark.apache.org/third-party-projects.html

 at org.apache.spark.sql.execution.datasources.DataSource$.lookupDataSource

(DataSource.scala:635)

 at org.apache.spark.sql.streaming.DataStreamReader.load(DataStreamReader.

scala:159)

Let’s start with a simple example of processing the data from the beginning of a

Kafka topic called pageviews and continue processing new data as it arrives in Kafka. See

Listing 6-19 for the code.

Listing 6-19. Kafka Data Source Example

import org.apache.spark.sql.functions._

val pvDF = spark.readStream.format("kafka")

 . option("kafka.bootstrap.

servers","localhost:9092")

 .option("subscribe", "pageviews")

 .option("startingOffsets", "earliest")

 .load()

Chapter 6 Spark Streaming

https://spark.apache.org/downloads.html
https://spark.apache.org/docs/latest/structured-streaming-kafka-integration.html
https://spark.apache.org/docs/latest/structured-streaming-kafka-integration.html

261

pvDF.printSchema

 |-- key: binary (nullable = true)

 |-- value: binary (nullable = true)

 |-- topic: string (nullable = true)

 |-- partition: integer (nullable = true)

 |-- offset: long (nullable = true)

 |-- timestamp: timestamp (nullable = true)

 |-- timestampType: integer (nullable = true)

One thing that is unique about the Kafka data source is that the streaming

DataFrame it returns has a fixed schema, which looks something like Listing 6-19. The

value column contains the actual content of each message in Kafka, and the column

type is binary. Kafka doesn’t really care about the content of each message, and therefore

it treats it as a binary blob. The rest of columns in the schema contains the metadata of

each message. If the content of the messages was serialized in some binary format at

the time of sending to Kafka, then you would need a way to deserialize it using either

Spark SQL functions or an UDF before those messages can be processed in Spark. In the

following example, the content is a string, so you simply need to cast it to a String type.

For demonstration purposes, Listing 6-20 performs the casting of the value column as

well as selecting a few metadata-related columns to display.

Listing 6-20. Casting Message Content to String Type

val pvValueDF = pvDF.selectExpr("partition","offset","CAST(key AS STRING)",

"CAST(value AS STRING)")

 .as[(String, Long, String, String)]

The examples in Listing 6-21 contain a few variations of specifying the Kafka topic,

partition, and offset to read messages from Kafka.

Listing 6-21. Various Examples of Specifying Kafka Topic, Partition, and Offset

// reading from multiple topics with default startingOffsets and endingOffsets

val kafkaDF = spark.readStream.format("kafka")

 .option("kafka.bootstrap.server

s","server1:9092,server2:9092")

 .option("subscribe", "topic1,topic2")

 .load()

Chapter 6 Spark Streaming

262

// reading from multiple topics using subscribePattern

val kafkaDF = spark.readStream.format("kafka")

 .option("kafka.bootstrap.servers","server1:90

92,server2:9092")

 .option("subscribePattern", "topic*").load()

// reading from a particular offset of a partition using JSON format

// the triple quotes format in Scala is used to escape double quote in JSON

string

Val kafkaDF = spark.readStream.format("kafka")

 .option("kafka.bootstrap.

servers","localhost:9092")

 .option("subscribe", "topic1,topic2")

 .option("startingOffsets", """

{"topic1": {"0":51} } """)

 .load()

 Working with the Custom Data Source

Prior to Spark 2.3, the Data Source APIs have limitations and are not very extensible.

Therefore, it is quite challenging for Spark developers to build custom data sources.

Starting with Spark 2.3, the Data Source V2 APIs were introduced to address the issues

in V1 as well as to provide a set of new APIs that are clean, extensible, and easy to work

with. The Data Source V2 APIs are available in Scala only.

This section is meant to provide a quick overview of the interfaces and main APIs

that are involved in building a custom data source using the Data Source V2 APIs.

A few good references to examine are the implementations of the built-in data sources

such as classes RateSourceProvider.scala, RateSourceProviderV2.scala, and

KafkaSourceProvider.scala.

All custom data sources must implement a marker interface called DataSourceV2,

and then it can select whether to implement interface ContinuousReadSupport

or MicroBatchReadSupport or both. For example, KafkaSourceProvider.scala

implements both interfaces because it allows users to choose which processing mode to

use based on a use case. Each of the two interfaces acts has a factory method for creating

an instance of ContinuousReader or MicroBatchReader, respectively. The bulk of the

custom data source implementation will be in implementing the APIs defined in these

two interfaces.

Chapter 6 Spark Streaming

263

I’ve implemented a fun and non-fault-tolerant data source that reads wiki edits from

the Wikipedia IRC server. It is fairly easy to use Spark Structured Streaming to analyze the

wiki edits of various Wikipedia sites. See README.md in the GitHub repository (https://

github.com/beginning-spark/book/tree/master/chapter6/custom-data-source)

for more details. To use this custom data source in the Spark shell, the first step is to

download the streaming_sources-assembly-0.0.1.jar JAR file from the previous

GitHub repository. Listing 6-22 describes the remaining steps.

Listing 6-22. Analyzing Wiki Edits with a Custom Data Source

// start up spark-shell with streaming_sources-assembly-0.0.1.jar

bin/spark-shell --jars <path>/streaming_sources-assembly-0.0.1.jar

// once spark-shell is successfully started

// define the data source provider name

val provideClassName = "org.structured_streaming_sources.wikedit.

WikiEditSourceV2"

// use custom data and subscribe to English Wikipedia edit channel

val wikiEditDF = spark.readStream.format(provideClassName).

option("channel", "#en.wikipedia").load()

// examine the schema of wikiEditDF streaming DataFrame

wikiEditDF.printSchema

 |-- timestamp: timestamp (nullable = true)

 |-- channel: string (nullable = true)

 |-- title: string (nullable = true)

 |-- diffUrl: string (nullable = true)

 |-- user: string (nullable = true)

 |-- byteDiff: integer (nullable = true)

 |-- summary: string (nullable = true)

Chapter 6 Spark Streaming

https://github.com/beginning-spark/book/tree/master/chapter6/custom-data-source
https://github.com/beginning-spark/book/tree/master/chapter6/custom-data-source

264

// select only a few columns for analysis

val wikiEditSmallDF = wikiEditDF.select("timestamp", "user", "channel", "title")

// start streaming query and write out the wiki edits to console

val wikiEditQS = wikiEditSmallDF.writeStream.format("console").option

("truncate", "false").start()

// wait for a few seconds for data to come in and the result might look like below

+-----------------------+------------+--------------+-------------------------+

| timestamp| user| channel| title|

+-----------------------+------------+--------------+-------------------------+

| 2018-03-24 15:36:39.409| 6.62.103.211| #en.wikipedia| Thomas J.R. Hughes|

| 2018-03-24 15:36:39.412| .92.206.108| #en.wikipedia|List of international schools|

+-----------------------+------------+--------------+-------------------------+

// to stop the query stream

wikiEditQS.stop

Notice the custom data source name is a fully qualified class name of the data source

provider. It is not short like the built-in data sources because those already registered

their short names in a file called org.apache.spark.sql.sources.DataSourceRegister.

 Working with Data Sinks
The last step in a streaming application usually involves writing out the computation

result to some external system or storage system. Structure Streaming provides five built-

in sinks. Three of them are for production usage, and the remaining two are for testing

purposes. The following sections will go into detail on each one and will provide sample

code for working with them.

 Working with the File Data Sink

The File data sink is a pretty straightforward data sink to understand and to work with.

The only required option you need to provide is the output directory. Since the File data

sink is fault-tolerant, Structured Streaming will require a checkpoint location to write

the progress information and other metadata to help with the recovery when there is a

failure.

Chapter 6 Spark Streaming

265

The example in Listing 6-23 configures the Rate data source to generate ten rows per

second, send the generated rows to two partitions and write the data out in JSON format

to the specified directory.

Listing 6-23. Writing Data from the Rate Data Source to the File Sink

val rateSourceDF = spark.readStream.format("rate")

 .option("rowsPerSecond","10")

 .option("numPartitions","2")

 .load()

val rateSQ = rateSourceDF.writeStream.outputMode("append")

 .format("json")

 .option("path", "/tmp/output")

 .option("checkpointLocation", "/tmp/

ss/cp")

 .start()

// use the line below to stop the writing the data

rateSQ.stop

Since the number of partitions was configured as two, two files are written out to the

output folder each time Structured Streaming writes out the data at each trigger point.

So, if you examine the output folder, you will see files with names that start with either

part-00000 or part-00001. The Rate data source was configured with ten rows per

second, and there are two partitions; therefore, each output contains five rows, as shown

in Listing 6-24.

Listing 6-24. The Content of Each Output File

{"timestamp":"2018-03-24T17:42:08.182-07:00","value":205}

{"timestamp":"2018-03-24T17:42:08.282-07:00","value":206}

{"timestamp":"2018-03-24T17:42:08.382-07:00","value":207}

{"timestamp":"2018-03-24T17:42:08.482-07:00","value":208}

{"timestamp":"2018-03-24T17:42:08.582-07:00","value":209}

Chapter 6 Spark Streaming

266

 Working with the Kafka Data Sink

In Structured Streaming, writing the data of a streaming DataFrame to a Kafka data sink

is a little simpler than reading data from a Kafka data source. The Kafka data sink can be

configured with the four options listed in Table 6-7. Three of the options are required.

The important options to understand are the key and value, which are related to the

structure of a Kafka message. As mentioned earlier, the unit of data in Kafka is a message,

which essentially is a key-value pair. The role of the value is fairly obvious, which is to

hold the actual content of a message, and it has no meaning to Kafka. As far as Kafka

is concerned, the value is just a bunch of bytes. The key, however, is considered by

Kafka as a piece of metadata, and it is saved along with the value in the Kafka message.

When a message is sent to the Kafka and a key is provided, Kafka utilizes it as a routing

mechanism to determine which partition a particular Kafka message should be sent to

by hashing the key and performs a modulo on the number of partitions a topic has. This

implies that all messages with the same key will be routed to the same partition. If a key

is not provided in the message, then Kafka can’t guarantee which partition that message

is sent to, and Kafka employs a round-robin algorithm to balance the messages between

partitions.

Table 6-7. Options for the Kafka Data Sink

Option Value Description

kafka.bootstrap.

servers

host1:port1,

host2:port2

this is a comma-separated list of kafka broker servers.

Consult your kafka administrators for the host name and

port number to use.

topic topic1 this is a single topic name.

key a string or

binary

this key is used to determine which partition a kafka

message should be sent to. all kafka messages with the

same key will go to the same partition. this is an optional

option.

value a string or

binary

this is the content of a message. to kafka, it is simply

just an array of bytes, and it has no meaning to kafka.

Chapter 6 Spark Streaming

267

There are two ways to provide a topic name. The first way is to provide the topic

name in the configuration when setting up a Kafka data sink, and the second way is by

defining a column in the streaming DataFrame called topic; the value of that column

will be used as the topic name.

If the column called key exists in the streaming DataFrame, then the value of that

column will be used as the message key. Since the key is an optional piece of metadata, it

is not absolutely required to have this column in the streaming DataFrame. On the other

hand, the value must be provided, and the Kafka data sink expects a column named

value in the streaming DataFrame.

Listing 6-25 provides an example of setting a Rate data source and then writes the

data to a Kafka topic called rates. If you are planning to use the Spark shell to try the

following code, make sure to start the Spark shell with an appropriate argument as

described earlier to include the org.apache.spark:spark-sql-kafka-0-10_2.11:2.3.0

JAR file and its dependencies.

Note the simplest way to get started with kafka is to download the Confluent
platform package and then follow the getting Started guide. more information is
available at https://docs.confluent.io/current/getting-started.
html. Once the download is complete, uncompress the compressed tar file into
a directory. to start up the servers (Zookeeper, kafka Broker, Schema registry),
use the command line ./bin/confluent start. each of those server
listens on a specific port. all the command-line tools are available in the bin
directory, and almost all of them require the host and port for either Zookeeper
or kafka Broker. Before running the code in Listing 6-25, make sure to create
a topic called rates. here is the command to do that: bin/kafka-topics
--create --zookeeper localhost:2181 --replication-factor 1
--partitions 2 --topic rates. To list out a list of active
topics, use this command: ./bin/kafka-topics --zookeeper
localhost:2181 --list.

Chapter 6 Spark Streaming

https://docs.confluent.io/current/getting-started.html
https://docs.confluent.io/current/getting-started.html

268

Listing 6-25. Writing Data from the Rate Data Source to a File Sink

import org.apache.spark.sql.functions._

// setting up the rate data source with 10 rows per second and use two

partitions

val ratesSinkDF = spark.readStream.format("rate")

 .option("rowsPerSecond","10")

 .option("numPartitions","2").load()

// transform the ratesSinkDF to create a column called "key" and "value" column

// the value column contains a JSON string that contains two fields:

timestamp and value

val ratesSinkForKafkaDF = ratesSinkDF.select($"value".cast("string") as "key",

 to_json(struct("timestamp",

"value")) as "value")

// setup a streaming query to write data to Kafka using topic "rates"

val rateSinkSQ = ratesSinkForKafkaDF.writeStream

 .outputMode("append")

 .format("kafka")

 .option("kafka.bootstrap.servers",

"localhost:9092")

 .option("topic","rates")

 .option("checkpointLocation",

"/Users/hluu/tmp/ss/cp")

 .start()

// it doesn't take long to write a lot of messages to Kafka, so after a few

second, feel free to stop the

// rateSinkSQL

rateSinkSQ.stop

To read data back from the rates topic in Kafka, use the sample code listed in Listing 6-21

and substitute an appropriate value for options such as kafka.bootstrap.servers and the

topic name. The data that comes back from the rates topic in Kafka will looking something

like Listing 6-26.

Chapter 6 Spark Streaming

269

Listing 6-26. Sample of Data from Kafka

+---------+-------+-------+---+

|partition| offset| key| value|

+---------+-------+-------+---+

| 1| 9350| 583249| {"timestamp":"2018-03-25T09:53:52.582-07:00","value":583249}|

| 1| 9351| 583250| {"timestamp":"2018-03-25T09:53:52.682-07:00","value":583250}|

| 1| 9352| 583251| {"timestamp":"2018-03-25T09:53:52.782-07:00","value":583251}|

| 1| 9353| 583256| {"timestamp":"2018-03-25T09:53:53.282-07:00","value":583256}|

| 1| 9354| 583261| {"timestamp":"2018-03-25T09:53:53.782-07:00","value":583261}|

| 1| 9355| 583266| {"timestamp":"2018-03-25T09:53:54.282-07:00","value":583266}|

| 1| 9356| 583267| {"timestamp":"2018-03-25T09:53:54.382-07:00","value":583267}|

| 1| 9357| 583274| {"timestamp":"2018-03-25T09:53:55.082-07:00","value":583274}|

| 1| 9358| 583275| {"timestamp":"2018-03-25T09:53:55.182-07:00","value":583275}|

| 1| 9359| 583276| {"timestamp":"2018-03-25T09:53:55.282-07:00","value":583276}|

+--------+-------+------+--+

 Working with the Foreach Data Sink

Compared to the other built-in data sinks that Structure Streaming provides, the Foreach

data sink is an interesting one because it provides complete flexibility in terms of how

data should be written, when to write out the data, and where to write the data to. In

fact, it was designed to be an extensible as well as pluggable data sink. This flexibility

and extensibility comes with a responsibility because you are responsible for the logic of

writing out the data when using this data sink. The contract this data sink places on you

is the ForeachWriter abstract class (https://spark.apache.org/docs/latest/api/

scala/index.html#org.apache.spark.sql.ForeachWriter). Since this abstract class is

in Scala, it means that at the moment this data sink is available only in Scala and Java. In

a nutshell, you need to provide an implementation of the ForeachWriter, which consists

of three methods: open, process, and close. They will get called whenever there is a list

of rows generated as the output after a trigger. Working with this data sink requires some

Chapter 6 Spark Streaming

https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.ForeachWriter
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.ForeachWriter

270

intimate details about how Spark works as well the interactions between the two parties

and the responsibilities of each side.

• An instance of the ForeachWriter abstract class implementation

will be created on the driver side, and it will be sent to the executors

in your Spark cluster for execution. This has two implications. First,

the implementation of the ForeachWriter must be serializable;

otherwise, an instance of it can’t be shipped across the network to the

executors. Second, if there are any initializations during the creation

of the implementation, they will happen on the driver side. So if you

want to open a database connection or socket connect, that should

not happen during the class initialization but rather somewhere else.

• The number of partitions in a streaming DataFrame determines

how many instances of the ForeachWriter implementation

will be created. This is similar to the behavior of the Dataset.

foreachPartition method.

• The three methods defined in the ForeachWriter abstract class will

be invoked on the executors.

• The best place to perform initializations such as opening a database

connection or socket connect is in the open method. However, the

open method is called each time there is data to be written out;

therefore, that logic must be intelligent and efficient.

• The open method signature has two input parameters: the partition

ID and version. The return type is Boolean. The combination of these

two parameters uniquely represent a set of rows that needs to be

written out. The value of the version is a monotonically increasing ID

that increases with every trigger. Based on the value of the partition

ID and version parameters, the open method needs to decide

whether it needs to write out the sequence of rows and return the

appropriate Boolean value to the Structure Streaming engine.

• If the open method returns true, then the process method is called for

each row of the output of a trigger.

Chapter 6 Spark Streaming

271

• Whenever the open method is called and regardless of the value it

returns, the close method will also be called. If there was an error

during the call to the process method, that error will be passed into

the close method. The intention for calling the close method is to

give you a chance to clean up any necessary state that was created

during the open or process method invocation. The only time the

close method is not called is when the JVM of the executor crashes

or the open method throws a Throwable exception.

In short, this data sink provides you with the ultimate flexibility in writing out the

data of a streaming DataFrame. The sample code in Listing 6-27 contains a simple

implementation of the ForeachWriter abstract class by writing the data from the Rate

data source out to the console.

Listing 6-27. Sample Code for Working with the Foreach Data Sink

// define an implementation of the ForeachWriter abstract class

import org.apache.spark.sql.{ForeachWriter,Row}

class ConsoleWriter(private var pId:Long = 0, private var ver:Long = 0)

extends ForeachWriter[Row] {

 def open(partitionId: Long, version: Long): Boolean = {

 pId = partitionId

 ver = version

 println(s"open => ($partitionId, $version)")

 true

 }

 def process(row: Row) = {

 println(s"writing => $row")

 }

 def close(errorOrNull: Throwable): Unit = {

 println(s"close => ($pId, $ver)")

 }

}

Chapter 6 Spark Streaming

272

// setup the Rate data source

val ratesSourceDF = spark.readStream.format("rate")

 .option("rowsPerSecond","10")

 .option("numPartitions","2")

 .load()

// setup the Foreach data sink

val rateSQ = ratesSourceDF.writeStream.foreach(new ConsoleWriter).start()

// sample output from the console

open => (1, 1)

writing => [2018-03-25 13:03:41.867,5]

writing => [2018-03-25 13:03:41.367,0]

writing => [2018-03-25 13:03:41.967,6]

writing => [2018-03-25 13:03:41.467,1]

writing => [2018-03-25 13:03:42.067,7]

writing => [2018-03-25 13:03:41.567,2]

writing => [2018-03-25 13:03:42.167,8]

writing => [2018-03-25 13:03:41.667,3]

writing => [2018-03-25 13:03:42.267,9]

close => (1, 1)

// to close the rateSQ streaming query

rateSQ.stop

 Working with the Console Data Sink

This data sink is extremely easy to work with, and it does exactly what it sounds like.

It is not a fault-tolerant data sink, and it is designed to be used for debugging purposes

or while learning Structured Streaming. It has only two options: the number of rows to

display and whether to truncate the output if too long. Each one of these options has a

default value, as shown in Table 6-8. The underlying implementation of this data sink

uses the same logic as in the DataFrame.show method to display the data in a streaming

DataFrame.

Chapter 6 Spark Streaming

273

The example in Listing 6-28 shows the Console data sink in action and not using the

default value for the previous options.

Listing 6-28. Sample Code for Working with the Console Data Sink

// setting up a data source

val ratesDF = spark.readStream.format("rate")

 .option("rowsPerSecond","10")

 .option("numPartitions","2")

 .load()

Val ratesSQ = ratesDF.writeStream.outputMode("append")

 .format("console")

 .option("truncate",false)

 .option("numRows",50)

 .start()

 Working with the Memory Data Sink

Similar to the Console data sink, this data sink is easy to understand and work with.

In fact, it is so easy because it has no options that you need to configure. It is not a

fault-tolerant data sink, and it is designed to be used for debugging purposes or while

learning Structured Streaming. The data it collects is sent to the driver and stored in

the driver as an in-memory table. In other words, the amount of data you can send

to the Memory data sink is bound by the amount of memory the driver JVM has. You

may be wondering whether the data is in memory and how you query it and see it.

While setting up this data sink, you can specify a query name as an argument to the

DataStreamWriter.queryName function, and then you can issue SQL queries against the

in-memory table. Unlike the Console data sink, once the data is sent to the in-memory

table, you can further analyze or process the data using pretty much all the features

Table 6-8. Options for the Console Data Sink

Option Default Value Description

numRows 20 the number of rows to print to console

truncate true Whether to truncate with the content of each column is longer than

20 characters

Chapter 6 Spark Streaming

274

available in the Spark SQL component. If the amount of data is large and wouldn’t fit

into memory, the next best option is to use the File data sink to write the data out in the

Parquet format.

The sample code in Listing 6-29 writes the data from the Rate data source into an in-

memory table and you issue queries about it.

Listing 6-29. Sample Code for Working with the Memory Data Sink

val ratesDF = spark.readStream.format("rate")

 .option("rowsPerSecond","10")

 .option("numPartitions","2")

 .load()

// write data out to Memory data sink with in-memory table name as "rates"

val ratesSQ = ratesDF.writeStream.outputMode("append")

 .format("memory")

 .queryName("rates").start()

// we issue SQL queries against the "rates" in-memory table

spark.sql("select * from rates").show(10,false)

+------------------------+------+

| timestamp| value|

+------------------------+------+

| 2018-03-25 14:02:59.461| 0|

| 2018-03-25 14:02:59.561| 1|

| 2018-03-25 14:02:59.661| 2|

| 2018-03-25 14:02:59.761| 3|

| 2018-03-25 14:02:59.861| 4|

| 2018-03-25 14:02:59.961| 5|

| 2018-03-25 14:03:00.061| 6|

| 2018-03-25 14:03:00.161| 7|

| 2018-03-25 14:03:00.261| 8|

| 2018-03-25 14:03:00.361| 9|

+------------------------+------+

Chapter 6 Spark Streaming

275

// count the number of rows in the "rates" in-memory table

spark.sql("select count(*) from rates").show

+---------+

| count(1)|

+---------+

| 100|

+---------+

// to stop the ratesSQ query stream

ratesSQ.stop

One thing to note is that the in-memory rates will still be around even after the

streaming query ratesSQ has stopped. However, once a new streaming query is started

with the same name, then the data from in-memory is truncated.

Before you leave this section, it is important to understand which outputs are

supported by each type of data sink. Table 6-9 provides a quick summary table for

reference. The details about output modes will be covered in the next section.

 Deep Dive on Output Modes
The earlier “Output Modes” section provided a basic description of each of the output

modes. This section will provide more details about them as well as ways to understand

which output mode is applicable for which streaming query type.

Broadly speaking, there are two types of streaming query. The first type is called the

stateless type, and it performs only basic transformations on the incoming streaming

data and then writes out the data to a data sink. The second type is called the stateful

Table 6-9. Data Sinks and Their Support Output Modes

Sink Supported Output Modes Notes

File append Supports writing out new rows only and no updates

kafka append, Update, Complete

Foreach append, Update, Complete Depending on the ForeachWriter implementation

Console append, Update, Complete

memory append, Complete Doesn’t support in-place updates

Chapter 6 Spark Streaming

276

type, which needs to maintain some amount of state, whether that is done implicitly

or explicitly. The stateful type usually performs some kind of aggregations or uses the

Structured Streaming APIs like mapGroupsWithState or flatMapGroupsWithState to

maintain some arbitrary state needed for a particular use case, for example, maintaining

user session data.

Let’s start with the simple, stateless streaming query type. A typical use case for this

kind of streaming query is the real-time streaming ETL where it continuously reads real-

time streaming data such as page view events that are continuously produced by online

services to capture which pages are being viewed by which users. In this kind of use case,

it usually performs the following:

• Filtering, transforming, and cleaning

• Real-world data is messy and dirty, and the structure may be not

well suited for repeated analysis.

• Converting to a more efficient storage format

• Text file formats such as CVS and JSON are human readable but

inefficient for repeated analysis, especially if the data volume is

large such as hundreds of terabytes. More efficient binary formats

like ORC, Parquet, or Avro are commonly used to reduce file size

and improve analysis speed.

• Partitioning data by certain columns

• While writing the data out to a data sink, it is possible to partition

the data based on the value of commonly used columns to speed

up the repeated analysis by various teams in an organization.

As you can see, the previous tasks don’t require a streaming query to maintain

any kind of state before writing the data out to a data sink. As new data comes in, it is

cleaned, transformed, and possibly restructured and immediately written out. Therefore,

the only applicable output mode for this stateless streaming type is Append. The

Complete output mode is not applicable because that will require Structured Streaming

to maintain all the previous data, which may be too large to maintain. The Update output

mode is not applicable because only new data is being written out. However, when this

output mode is used for a stateless streaming query, Structured Streaming recognizes

this and treats it the same as the Append output mode. The cool thing is when an

Chapter 6 Spark Streaming

277

inappropriate output mode is used for a streaming query, the Structured Streaming

engine will let you know. Listing 6-30 shows what happens when an inappropriate

output mode is used.

Listing 6-30. Using the Complete Output Mode with a Stateless Streaming Query

val ratesDF = spark.readStream.format("rate")

 .option("rowsPerSecond","10")

 .option("numPartitions","2")

 .load()

// simple transformation

val ratesOddEvenDF = ratesDF.withColumn("even_odd", $"value" % 2 === 0)

// write out to Console data sink using complete output mode

val ratesSQ = ratesOddEvenDF.writeStream.outputMode("complete")

 .format("console")

 .option("truncate",false)

 .option("numRows",50)

 .start()

// An exception from Structured Streaming during the analysis phase

org.apache.spark.sql.AnalysisException: Complete output mode not supported

when there are no streaming aggregations on streaming DataFrames/Datasets;

Now let’s move on to the stateful streaming query type. When a stateful steaming

query performs an aggregation via a groupBy transformation, the state of that aggregation

is maintained implicitly by the Structured Streaming engine. As more data comes in,

the result of the aggregation on new data is updated into the result table. At each trigger

point, either the updated data or all the data in the result table is written out to a data

sink, depending on the output mode. This implies that using the Append output mode is

inappropriate because that violates the semantics of that output mode, which specifies that

only new rows that were appended to the result table will be sent to the specified output

sink. In other words, only the Complete and Update output modes are appropriate for

the stateful query type with the aggregation state implicitly maintained by the Structured

Streaming engine. The output of a streaming query using the Complete output mode

is always equal or more than the output of the same streaming query using the Update

output mode. Listing 6-31 contains the code to illustrate the difference in the output.

Chapter 6 Spark Streaming

278

Listing 6-31. The Output Differences Between the Update and Complete Modes

// import statements

import org.apache.spark.sql.types._

import org.apache.spark.sql.functions._

val mobileDataSchema = new StructType().add("id", StringType, false)

 .add("action", StringType, false)

 .add("ts", TimestampType, false)

val mobileDF = spark.readStream.schema(mobileDataSchema)

 .json("<path>/chapter6/data/input")

val actionCountDF = mobileDF.groupBy($"action").count

val completeModeSQ = actionCountDF.writeStream.format("console")

 .option("truncate", "false")

 .outputMode("complete").

start()

val updateModeSQ = actionCountDF.writeStream.format("console")

 .option("truncate", "false")

 .outputMode("complete").start()

// at this point copy file1.json, file2.json, file3.json and newaction.jso

from

// mobile directory to the input directory

// the output of the streaming query with complete mode is below

Batch: 3

+-------+------+

| action| count|

+-------+------+

| close| 3|

| swipe| 1|

| crash| 1|

| open| 5|

+-------+------+

Chapter 6 Spark Streaming

279

// the output of the streaming query with update mode is below

Batch: 3

+-------+------+

| action| count|

+-------+------+

| swipe| 1|

| crash| 1|

+-------+------+

The previous output of the streaming query with the Complete output mode

contains all the action types in the result table. The previous output of the streaming

query with the Update output mode contains only the actions in file newaction.json

that the result table hasn’t seen before.

Again, if an inappropriate output mode is used for the stateful query type, the

Structured Streaming engine will let you know, as shown in Listing 6-32.

Listing 6-32. Using an Inappropriate Append Output Mode with a Stateful

Streaming Query

// use an inappropriate output for stateful streaming query, see exception below

val actionCountSQ = actionCountDF.writeStream.format("console").

outputMode("append").start()

org.apache.spark.sql.AnalysisException: Append output mode not supported

when there are streaming aggregations on streaming DataFrames/DataSets

without watermark;

There is an exception to the previous logic. If a watermark is provided to the stateful

streaming query with aggregation, then all the output modes are applicable. The reason

the semantics of the Append output is not violated anymore is because the Structured

Streaming engine will drop the old aggregation state data that is older than the specified

watermark, which means new rows can be added to the result table once the watermark

is crossed.

Chapter 6 Spark Streaming

280

Undoubtedly, the output mode is one of the most complicated concepts in

Structured Streaming to understand because there are multiple dimensions that come

together to determine which output modes are appropriate to use. The Structured

Streaming programming guide provides a compatibility matrix, which can be found

at https://spark.apache.org/docs/latest/structured-streaming-programming-

guide.html#output-modes.

 Deep Dive on Triggers
The trigger setting determines when the Structured Streaming engine will run the

streaming computation logic expressed in a streaming query, which includes all the

transformations as well as writing out the data to the data sink. Another way of thinking

about it is that the trigger setting controls when the data will be written out to a data sink

as well as which processing mode to use. Starting in Spark 2.3, a new processing mode

called Continuous was introduced.

The “Trigger Types” section described the types that are supported in Structured

Streaming. This section will go into more detail and provide sample code for specifying

the different trigger types.

Up until now, all the stream query examples have used the default trigger type

because a trigger type was not specified. This default trigger type chooses the micro-

batch mode as the processing mode, and the logic in the streaming query is executed not

based on time but as soon as the previous batch of data has completed processing. This

implies there is less predictability in terms of how often the data is written out.

If a little more predictability is desired, then the Fixed interval trigger can be

specified to cause the logic in the streaming query to be executed at a certain interval

based on the user-provided interval, for example, every 30 seconds. In terms of

processing mode, this trigger type uses the micro-batch mode. The interval can be

specified in a string format or as a Scala Duration or Java TimeUnit. Listing 6-33 contains

examples for using the Fixed interval trigger.

Chapter 6 Spark Streaming

https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#output-modes
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#output-modes

281

Listing 6-33. Examples of Using the Fixed Interval Trigger Type

import org.apache.spark.sql.streaming.Trigger

// setting up with 3 rows per second

val ratesDF = spark.readStream.format("rate")

 .option("rowsPerSecond","3")

 .option("numPartitions","2")

 .load()

// trigger the streaming query execution every 3 seconds and write out to

console

val ratesSQ = ratesDF.writeStream.outputMode("append")

 .format("console")

 .option("numRows",50)

 .option("truncate",false)

 .trigger(Trigger.ProcessingTime("3 seconds"))

 .start()

// we should expect to see about 9 rows in every 3 seconds

+-----------------------+---------+

| timestamp| value|

+-----------------------+---------+

|2018-03-26 07:14:11.176| 0|

|2018-03-26 07:14:11.509| 1|

|2018-03-26 07:14:11.843| 2|

|2018-03-26 07:14:12.176| 3|

|2018-03-26 07:14:12.509| 4|

|2018-03-26 07:14:12.843| 5|

|2018-03-26 07:14:13.176| 6|

|2018-03-26 07:14:13.509| 7|

|2018-03-26 07:14:13.843| 8|

+-----------------------+---------+

Chapter 6 Spark Streaming

282

// specifying the interval using Scala Duration type

import scala.concurrent.duration._

val ratesSQ = ratesDF.writeStream.outputMode("append")

 .format("console")

 .option("numRows",50)

 .option("truncate",false)

 .trigger(Trigger.ProcessingTime(3.seconds))

 .start()

The Fixed interval trigger doesn’t always guarantee that the execution of a streaming

query will happen at exactly each user-specified interval. There are two reasons for

this. The first one is fairly obvious; if there is no data arriving for processing, then there

is nothing to process, and therefore nothing is written out to the data sink. The second

reason is when the processing time of the previous batch exceeds the interval, the next

execution of a streaming query will start as soon as the processing completes. In other

words, it will not wait for the next interval boundary.

The one-time trigger does what it sounds like. It executes the logic in a streaming

query in micro-batch mode and writes out the data to a data sink one time, and then the

processing stops. It may sound a bit silly for this trigger type to exist; however, it is useful

in both development and production environments. While in the development phase,

usually the streaming computation logic is developed in an iterative manner, and in each

iteration you would like to test the logic. This trigger type simplifies the develop-test

iteration a bit. For a production environment, this trigger type is suitable for use cases

where the volume of incoming streaming data is low, and therefore it is only necessary

to run the data processing logic a few times a day. Instead of launching a Spark cluster

and leaving it running all the time, the frequency of launching Spark and executing the

streaming processing logic one time is based on the desired processing frequency of that

particular use case. It is quite simple to specify this one-time trigger type, and Listing 6-34

shows how to do that.

Chapter 6 Spark Streaming

283

Listing 6-34. Example of Using a One-Time Trigger Type

import org.apache.spark.sql.streaming.Trigger

val mobileSQ = mobileDF.writeStream.outputMode("append")

 .format("console")

 .trigger(Trigger.Once())

 .start()

The last trigger type is called a Continuous trigger type. This new, exciting, and

experimental processing mode was introduced in Spark 2.3 to address the use cases

that need end-to-end millisecond latency. In this new processing mode, Structured

Streaming launches long-running tasks to continuously read, process, and write data to

a data sink. This implies the incoming data will be processed and written out to data sink

as soon as it arrives in the data source, and the end-to-end latency is a few milliseconds.

In addition, an asynchronous checkpoint mechanism, which is used for recording the

progress of the streaming query, was introduced to not interrupt the long-running tasks

from providing consistent millisecond-level latencies. A good use case to leverage this

Continuous trigger type is credit card fraudulent transaction detection. At a high level,

the Structure Streaming engine figures out which processing mode to use based on the

trigger type, which is depicted in Figure 6-10.

As of Spark 2.3, only the projection and selection operations are allowed in the

Continuous processing mode, such as select, where, map, flatmap, and filter. In this

processing mode, all Spark SQL functions are supported except aggregation functions.

Figure 6-10. Structured Streaming supports two different processing modes

Chapter 6 Spark Streaming

284

To use the Continuous processing mode for a streaming query, all you need to do is

specify a Continuous trigger with a desired checkpoint interval like in Listing 6-35.

Listing 6-35. Examples of Specifying a Continuous Trigger Type

import org.apache.spark.sql.streaming.Trigger

// setting a Rate data source with two partitions

val ratesDF = spark.readStream.format("rate")

 .option("numPartitions","2").load()

// write out the data to console and using continuous trigger with 2 second

interval for writing out progress

val rateSQ = ratesDF.writeStream.format("console")

 .trigger(Trigger.Continuous("2 second"))

 .start()

// sample output from console

+--------------------+------+

| timestamp| value|

+--------------------+------+

|2018-03-26 21:43:...| 0|

|2018-03-26 21:43:...| 2|

|2018-03-26 21:43:...| 4|

|2018-03-26 21:43:...| 6|

|2018-03-26 21:43:...| 1|

|2018-03-26 21:43:...| 3|

|2018-03-26 21:43:...| 5|

|2018-03-26 21:43:...| 7|

+--------------------+------+

The ratesDF streaming DataFrame was set up to have two partitions; therefore,

Structured Streaming launched two running tasks in the Continuous processing mode,

and that is why the output shows all the even numbers appearing together and all the

odd numbers appearing together.

Chapter 6 Spark Streaming

285

 Summary
Structured Streaming is the second-generation streaming processing engine of Apache

Spark. It provides an easy way to build and reason about fault-tolerant and scalable

streaming applications. This chapter covered a lot of ground, including core concepts in

the streaming processing domain and the core parts of Structured Streaming.

• Streaming processing is an exciting domain that can help solve many

new and interesting use cases in the era of big data.

• Building production streaming data applications is much more

challenging than building batch data processing applications

because of the nature of the unbounded data and the unpredictability

of the data arrival rate and out-of-order data.

• To be effective at building streaming data applications, you must be

comfortable with the three core concepts in the streaming processing

domain. They are data delivery semantics, notion of time, and

windowing.

• Stream processing engines have drastically and dramatically matured

in the last few years, and now there are many options to pick from.

The popular ones are Apache Flink, Apache Samza, Apache Kafka,

and Apache Spark.

• Spark DStream is the first-generation streaming processing engine

of Apache Spark, and it was built on top of the RDD programming

model.

• The Structured Streaming processing engine was designed for

developers to build end-to-end streaming applications that can react

to data in real-time using a simple programming model built on top

of the optimized and solid foundation of the Spark SQL engine.

• The unique idea in Structured Streaming is to treat streaming data as

an unbounded input table and, as a new set of data arrives, treat that

as a new set of new rows being appended to the input table.

Chapter 6 Spark Streaming

286

• The core components in a streaming query are the data source,

streaming operations, output mode, trigger, and data sink.

• Structured Streaming provides a set of built-in data sources as well as

data sinks. The built-in data sources are File, Kafka, Socket, and Rate.

The built-in data sinks are File, Kafka, Console, and Memory.

• The output mode determines how the data is output to a data sink,

and there are three options: Append, Update, and Complete.

• A trigger is a mechanism for the Structure Streaming engine to

determine when to run the streaming computation. There are several

options to choose from: micro-batch, fixed interval micro-batch,

one-time micro-batch, and continuous. The last one is for use cases

that demand millisecond latency, and it is in an experimental state as

of Spark 2.3.

Chapter 6 Spark Streaming

287
© Hien Luu 2018
H. Luu, Beginning Apache Spark 2, https://doi.org/10.1007/978-1-4842-3579-9_7

CHAPTER 7

Spark Streaming
(Advanced)
The previous chapter introduced the core concepts of streaming processing, the features

that the Spark Structured Streaming processing engine provides, and the basic steps of

putting together a streaming application. Real-world streaming applications usually

need to extract insights or patterns from the incoming real-time data at scale and feed

that information into downstream applications to make business decisions or to save

that information in some storage system for further analysis or visualization purposes.

Another aspect of real-world streaming applications is that they are continuously

running to process real-time data as it comes in. Therefore, they must be resilient

against failures. The first half of this chapter covers event-time processing and stateful

processing features in Structured Streaming and how they can help with extracting

insights or patterns from incoming real-time data. The second half of this chapter

explains the support Structured Streaming provides to help streaming applications to

be fault tolerant against failures and to monitor the status and progress of streaming

applications.

 Event Time
The ability to process incoming real-time data based on the data creation time is a must-

have feature for any serious streaming processing engine. This is important because to

truly understand and accurately extract insights or patterns from streaming data, you

need to be able to process them based on when that data or those events happened,

not when they were processed. Oftentimes, the event-time processing is in the context

of some sort of aggregation, which includes the event time and zero or more pieces of

additional information about the event.

288

Let’s take the example of the mobile action events described in Chapter 6. Instead

of applying the aggregations over the action type, you can apply the aggregations over

a time window, which could be a fixed window or sliding window type (described in

Chapter 6). In addition, you can easily add the action type to the grouping key to further

group the mobile action events by time bucket and action type.

The following example will process the mobile data event; Listing 7-1 shows its

schema. The ts column represents the time when an event was created, in other words,

when a user opens or closes an application. The mobile event data is located in the

<path>/chapter6/data/mobile directory, which contains file1.json, file2.json,

file3.json, and newaction.json. Listing 7-2 displays the rows in each of the files.

Listing 7-1. Mobile Data Event Schema

mobileDataDF.printSchema

 |-- action: string (nullable = true)

 |-- id: string (nullable = true)

 |-- ts: timestamp (nullable = true)

Listing 7-2. Mobile Event Data in file1.json, file2.json, file3.json, newaction.json

// file1.json

{"id":"phone1","action":"open","ts":"2018-03-02T10:02:33"}

{"id":"phone2","action":"open","ts":"2018-03-02T10:03:35"}

{"id":"phone3","action":"open","ts":"2018-03-02T10:03:50"}

{"id":"phone1","action":"close","ts":"2018-03-02T10:04:35"}

// file2.json

{"id":"phone3","action":"close","ts":"2018-03-02T10:07:35"}

{"id":"phone4","action":"open","ts":"2018-03-02T10:07:50"}

// file3.json

{"id":"phone2","action":"close","ts":"2018-03-02T10:04:50"}

{"id":"phone5","action":"open","ts":"2018-03-02T10:10:50"}

// newaction.json

{"id":"phone2","action":"crash","ts":"2018-03-02T11:09:13"}

{"id":"phone5","action":"swipe","ts":"2018-03-02T11:17:29"}

Chapter 7 Spark Streaming (advanCed)

289

 Fixed Window Aggregation Over an Event Time
A fixed window (aka a tumbling window) operation essentially discretizes a stream of

incoming data into nonoverlapping buckets based on a fixed window length. For each

piece of incoming data, it will be placed into one of the buckets based on its event time.

Performing aggregations is just a matter of going through each bucket and applying the

aggregation logic, whether that is doing a count or sum. Figure 7-1 illustrates the fixed

window aggregation logic.

Figure 7-1. Fixed window operation

An example of fixed window aggregation is to perform a counting aggregation of

the number of mobile events per each fixed window of ten minutes long. The window

length is usually determined by the needs of a particular use case as well as the data

volume. The result of this aggregation gives you high-level insights into the rate of the

mobile event that was generated per window. If you are interested in mobile usage

throughout the day and by the hour, then maybe the window length of 60 minutes is

more appropriate. Listing 7-3 contains the code for performing the counting aggregation

and the aggregation result. As expected, there are only a total ten mobile data events in

all four files listed, and the total count in the output matches that number.

Listing 7-3. Processing Mobile Event Data with a Ten-Minute Window

import org.apache.spark.sql.types._

import org.apache.spark.sql.functions._

val mobileDataSchema = new StructType() .add("id", StringType, false)

 .add("action", StringType, false)

 .add("ts", TimestampType, false)

Chapter 7 Spark Streaming (advanCed)

290

val mobileSSDF = spark.readStream.schema(mobileDataSchema)

 .json("<path>/chapter6/data/input")

val windowCountDF = mobileSSDF.groupBy(window($"ts", "10 minutes")).count

val mobileConsoleSQ = windowCountDF.writeStream.format("console")

 .option("truncate", "false")

 .outputMode("complete")

 .start()

// stop the streaming query

mobileConsoleSQ.stop

// output

+---+------+

| window| count|

+---+------+

| [2018-03-02 10:00:00, 2018-03-02 10:10:00]| 7|

| [2018-03-02 10:10:00, 2018-03-02 10:20:00]| 1|

| [2018-03-02 11:00:00, 2018-03-02 11:10:00]| 1|

| [2018-03-02 11:10:00, 2018-03-02 11:20:00]| 1|

+---+------+

windowCountDF.printSchema

 |-- window: struct (nullable = false)

 | |-- start: timestamp (nullable = true)

 | |-- end: timestamp (nullable = true)

 |-- count: long (nullable = false)

When performing an aggregation with a window, the output window is actually a

struct type, which contains the start and end times.

In addition to specifying a window in the groupBy transformation, you can specify

additional columns from the event itself. The following example will perform the

aggregation with a window and the action. This gives you additional insights into the

count of each by window and action type. It requires only a small change to the previous

example to accomplish this. Listing 7-4 contains only the lines that needed changes.

Chapter 7 Spark Streaming (advanCed)

291

Listing 7-4. Processing the Mobile Event Data with a Ten-Minute Window and

Action Type

val windowActionCountDF= mobileSSDF.groupBy(window($"ts", "10 minutes"),

$"action").count

val windowActionCountSQ = windowActionCountDF.writeStream.format("console")

 .option("truncate", "false")

 .outputMode("complete")

 .start()

// result

+---+-------+------+

| window| action| count|

+---+-------+------+

| [2018-03-02 10:00:00, 2018-03-02 10:10:00]| close | 3|

| [2018-03-02 11:00:00, 2018-03-02 11:10:00]| crash | 1|

| [2018-03-02 11:10:00, 2018-03-02 11:20:00]| swipe | 1|

| [2018-03-02 10:00:00, 2018-03-02 10:10:00]| open | 4|

| [2018-03-02 10:10:00, 2018-03-02 10:20:00]| open | 1|

+---+-------+------+

// stop the query stream

windowActionCountSQ.stop()

Each line in the previous result table contains insight about the count of each action

in each ten-minute window. If there was a lot of crash actions around a certain window,

that insight can help figure out whether there was a release around that time frame.

 Sliding Window Aggregation Over an Event Time
In addition to the fixed window type, there is another windowing type called sliding

window. Defining a sliding window requires two pieces of information, the window

length and a sliding interval, which is usually smaller than the window length. Given

the aggregation computation is sliding over the incoming stream of data, the result is

usually smoother than the result of the fixed window type. Therefore, this windowing

type is often used to compute moving averages. An important thing to note about a

sliding window is that a piece of data can fall into more than one window because of the

overlapping, as illustrated in Figure 7-2.

Chapter 7 Spark Streaming (advanCed)

292

To illustrate the sliding window aggregation over the incoming data, you will use a

small synthetic data about the temperature of computer racks in a data center. Imagine

each computer rack emits its temperature at a certain interval, and you want to generate

a report of the average temperature among all computer racks as well as per rack over

a window length of ten minutes and a sliding interval of five minutes. This dataset is

located in the <path>/chapter7/data/iot directory, which contains file1.json and

file2.json. Listing 7-5 shows the temperature data.

Listing 7-5. Temperature Data of Two Racks

// file1.json

{"rack":"rack1","temperature":99.5,"ts":"2017-06-02T08:01:01"}

{"rack":"rack1","temperature":100.5,"ts":"2017-06-02T08:06:02"}

{"rack":"rack1","temperature":101.0,"ts":"2017-06-02T08:11:03"}

{"rack":"rack1","temperature":102.0,"ts":"2017-06-02T08:16:04"}

// file2.json

{"rack":"rack2","temperature":99.5,"ts":"2017-06-02T08:01:02"}

{"rack":"rack2","temperature":105.5,"ts":"2017-06-02T08:06:04"}

{"rack":"rack2","temperature":104.0,"ts":"2017-06-02T08:11:06"}

{"rack":"rack2","temperature":108.0,"ts":"2017-06-02T08:16:08"}

The code in Listing 7-6 first reads the temperature data and then performs a groupBy

transformation on a sliding window over the ts column. For each sliding window, the

Figure 7-2. Fixed window operation

Chapter 7 Spark Streaming (advanCed)

293

avg() function is applied on the temperature column. To make it easy to inspect the

output, it will write the data out to a memory data sink with a query name of iot. Then

you can issue SQL queries against this temporary table.

Listing 7-6. Average Temperature of All the Computer Racks over a Sliding Window

import org.apache.spark.sql.types._

import org.apache.spark.sql.functions._

// define schema

val iotDataSchema = new StructType().add("rack", StringType, false)

 .add("temperature", DoubleType, false)

 .add("ts", TimestampType, false)

val iotSSDF = spark.readStream.schema(iotDataSchema).json("<path>/chapter7/

data/iot")

// group by a sliding window and perform average on the temperature column

val iotAvgDF = iotSSDF.groupBy(window($"ts", "10 minutes", "5 minutes"))

 .agg(avg("temperature") as "avg_temp")

// write the data out to memory sink with query name as iot

val iotMemorySQ = iotAvgDF.writeStream.format("memory")

 .queryName("iot")

 .outputMode("complete")

 .start()

// display the data in the order of start time

spark.sql("select * from iot").orderBy($"window.start").show(false)

// output

+---+---------+

| window| avg_temp|

+---+---------+

| [2017-06-02 07:55:00, 2017-06-02 08:05:00]| 99.5 |

| [2017-06-02 08:00:00, 2017-06-02 08:10:00]| 101.25 |

| [2017-06-02 08:05:00, 2017-06-02 08:15:00]| 102.75 |

| [2017-06-02 08:10:00, 2017-06-02 08:20:00]| 103.75 |

| [2017-06-02 08:15:00, 2017-06-02 08:25:00]| 105.0 |

+---+---------+

Chapter 7 Spark Streaming (advanCed)

294

// stop the streaming query

iotMemorySQ.stop

The previous output shows there are five windows in the synthetic data set. Notice

the start time of each window is five minutes apart, which is because of the length of the

sliding interval specified earlier in the groupBy transformation. The temperature column

indicates the average temperature is increasing, which is alarming. At this point, it is

unclear whether the temperature of all the computer racks are increasing or only certain

ones. To help with identifying which computer racks, Listing 7-7 will add the rack

column to the groupBy transformation, and it will show only the lines that are different

than Listing 7-6.

Listing 7-7. Average Temperature of Each Rack Over a Sliding Window

// group by a sliding window and rack column

val iotAvgByRackDF = iotSSDF.groupBy(window($"ts", "10 minutes", "5

minutes"), $"rack")

 .agg(avg("temperature") as "avg_temp")

// write out to memory data sink with iot_rack query name

val iotByRackConsoleSQ = iotAvgByRackDF.writeStream

 .format("memory")

 .queryName("iot_rack")

 .outputMode("complete")

 .start()

spark.sql("select * from iot_rack").orderBy($"rack", $"window.start").

show(false)

+---+------+---------+

| window| rack | avg_temp|

+---+------+---------+

| [2017-06-02 07:55:00, 2017-06-02 08:05:00]| rack1| 99.5 |

| [2017-06-02 08:00:00, 2017-06-02 08:10:00]| rack1| 100.0 |

| [2017-06-02 08:05:00, 2017-06-02 08:15:00]| rack1| 100.75 |

| [2017-06-02 08:10:00, 2017-06-02 08:20:00]| rack1| 101.5 |

| [2017-06-02 08:15:00, 2017-06-02 08:25:00]| rack1| 102.0 |

Chapter 7 Spark Streaming (advanCed)

295

| [2017-06-02 07:55:00, 2017-06-02 08:05:00]| rack2| 99.5 |

| [2017-06-02 08:00:00, 2017-06-02 08:10:00]| rack2| 102.5 |

| [2017-06-02 08:05:00, 2017-06-02 08:15:00]| rack2| 104.75 |

| [2017-06-02 08:10:00, 2017-06-02 08:20:00]| rack2| 106.0 |

| [2017-06-02 08:15:00, 2017-06-02 08:25:00]| rack2| 108.0 |

+---+------+---------+

// stop query stream

iotByRackConsoleSQ.stop()

The output table clearly shows the average temperature of rack 1 is below 103, and it

is rack 2 that you should be concerned about.

 Aggregation State
The previous examples of performing aggregations of over a fixed window or a sliding

window with an event time and additional information show how easy it is to perform

commonly used and complex streaming processing operations in Spark Structured

Streaming. While it seems easy from the outside, internally both the Structured

Streaming engine and the Spark SQL engine work cooperatively together to maintain the

intermediate aggregation result in a fault-tolerant manner while executing the streaming

aggregation. In fact, anytime an aggregation is performed on a streaming query, the

intermediate aggregation state must be maintained. This state is maintained in a key- value

pairs structure, similar to a hash map, where the key is the group name and the value is

the intermediate aggregation value. In the previous example of aggregation by a sliding

window and rack ID, the key would be the combined value of the start and end times of

the window, and the rack name and the value would be the average temperature.

The intermediate state is stored in an in-memory, versioned, key-value “state store” on

the Spark executors, and it is written out to a write-ahead log, which should be configured

to reside in a stable storage system like HDFS. At every trigger point, the state is read and

updated in the in-memory state store and then written out to the write- ahead log. In the

case of a failure and when a Spark Structured Streaming application is restarted, the state

is restored from the write-ahead log and resumes from that point. This fault-tolerant state

management obviously incurs some resource and processing overhead in the Structured

Streaming engine. The amount of overhead is proportional to the amount of state it needs

to maintain Therefore, it is important keep the amount of state in an acceptable size; in

other words, the size of the state should not grow indefinitely.

Chapter 7 Spark Streaming (advanCed)

296

Given the nature of sliding windows, the number of windows will grow indefinitely.

This implies that performing sliding window aggregation will require the intermediate

state to grow indefinitely unless there is a way to drop the old state that is no longer

updated. This is accomplished using a technique called watermarking.

 Watermarking: Limit State and Handle Late Data
Watermarking is a commonly used technique in streaming processing engines to deal

with late data as well as to limit the amount of state needed to maintain it. Streaming

data in the real world often arrives out of order as well as arrives late because of network

congestion, network disruption, or the data generator like the mobile device is not

online. As a developer of real-time streaming applications, it is important to know what

you want to do with the data that arrives later than a certain threshold. In other words,

what is an acceptable amount of time you expect most of the data will arrive by in

relative to the others? Most likely the answer to the previous question is it depends on

the use case. Late data will be dropped on the floor and will not be processed.

From the perspective of Structured Streaming, a watermark is a moving threshold

in the event time that trails behind the maximum event time seen so far. As new data

arrives with a newer event time, the maximum event time is updated, which will cause

the watermark to move as well. Figure 7-3 illustrates an example where the watermark

is defined as ten minutes. The watermark line is represented by the solid line, and it

is trailing behind the maximum event time line, which is represented by the dotted

line. Each rectangular box represents a piece of data, and its event time is immediately

below the box. The piece of data with event-time 10:07 arrives a bit late, around 10:12;

however, that still falls within the threshold between 10:03 and 10:13. Therefore, it will

be processed as usual. The piece of data with event-time 10:15 falls in the same category.

However, the piece of data with event-time 10:04 arrives really late, around 10:22, which

falls below the watermark line, and therefore it will be ignored and not processed.

Chapter 7 Spark Streaming (advanCed)

297

One of the biggest benefits of specifying the watermark is to enable the Structured

Streaming engine to safely remove the aggregation state of the windows that are older

than the watermark. Production streaming applications that perform any kind of

aggregation should specify a watermark to avoid out-of-memory issues. Without a doubt,

watermarking is an essential tool to deal with the messy part of real-time streaming data.

Structured Streaming makes it easy to specify a watermark as part of the streaming

DataFrame. You just need to provide two pieces of data to the Watermark API, the

event time column and the threshold, which can be in seconds, minutes, or hours.

To demonstrate the watermark in action, you can work through a simple example

of processing two JSON files in the <path>/chapter7/data/mobile directory, and a

watermark is specified as ten minutes. Listing 7-8 shows the data in those two files. The

data is set up in such a way that each row in the file1.json file falls into its own ten-

minute window. The first row in the file2.json file falls into the 10:20:00 to 10:30:00

window, and even though it arrives late, its timestamp still falls within an acceptable

threshold, and therefore it will be processed. The last row of file2.json is a simulation

of late data where its timestamp is in the 10:10:00 to 10:20:00 window, and since that falls

outside the watermark threshold, it will be ignored and not processed.

Figure 7-3. Handling late data with a watermark

Chapter 7 Spark Streaming (advanCed)

298

Listing 7-8. Mobile Event Data in Two JSON Files

// file1.json

{"id":"phone1","action":"open","ts":"2018-03-02T10:15:33"}

{"id":"phone2","action":"open","ts":"2018-03-02T10:22:35"}

{"id":"phone3","action":"open","ts":"2018-03-02T10:33:50"}

// file2.json

{"id":"phone4","action":"open","ts":"2018-03-02T10:29:35"}

{"id":"phone5","action":"open","ts":"2018-03-02T10:11:35"}

To simulate the processing, first create a directory called input under the directory

<path>/chapter7/data. Then run the code in Listing 7-9. The next step is to copy the

file1.json file to the input directory and examine the output. The final step is to copy

the file2.json file to the input directory and examine the output.

Listing 7-9. Code for Processing Mobile Data Events with Late Arrival

import org.apache.spark.sql.types._

import org.apache.spark.sql.functions._

val mobileDataSchema = new StructType().add("id", StringType, false)

 .add("action", StringType, false)

 .add("ts", TimestampType, false)

val mobileSSDF = spark.readStream.schema(mobileDataSchema).json("<path>/

book/chapter7/data/input")

//setup a streaming DataFrame with a watermark and group by ts and action column.

val windowCountDF = mobileSSDF.withWatermark("ts", "10 minutes")

 .groupBy(window($"ts", "10 minutes"), $"action")

 .count

val mobileMemorySQ = windowCountDF.writeStream

 .format("console")

 .option("truncate", "false")

 .outputMode("update")

 .start()

Chapter 7 Spark Streaming (advanCed)

299

// the output from processing filel1.json

// as expected each row falls into its own window

+---+-------+------+

| window| action| count|

+---+-------+------+

| [2018-03-02 10:20:00, 2018-03-02 10:30:00]| open | 1 |

| [2018-03-02 10:30:00, 2018-03-02 10:40:00]| open | 1 |

| [2018-03-02 10:10:00, 2018-03-02 10:20:00]| open | 1 |

+---+-------+------+

// the output from processing file2.json

// notice the count for window 10:20 to 10:30 is now updated to 2

// and there was no change to the window 10:10:00 and 10:20:00

+---+-------+------+

| window| action| count|

+---+-------+------+

| [2018-03-02 10:20:00, 2018-03-02 10:30:00]| open | 2 |

+---+-------+------+

As stated earlier, since the timestamp of the last line in the file2.json file falls

outside the ten-minute watermark threshold, it was not processed at all. If the call to the

Watermark API is removed, then the output would look something like Listing 7-10. The

count to the window 10:10 and 10:20 is updated to 2.

Listing 7-10. Output of Removing the Call to the Watermark API

+---+-------+------+

| window| action| count|

+---+-------+------+

| [2018-03-02 10:20:00, 2018-03-02 10:30:00]| open | 2 |

| [2018-03-02 10:10:00, 2018-03-02 10:20:00]| open | 2 |

+---+-------+------+

A watermark is a useful feature, so it is important to understand the conditions under

which the aggregation state is properly cleaned up.

Chapter 7 Spark Streaming (advanCed)

300

• The output mode can’t be the complete mode and must

be in either update or append mode. The reason is that the

semantics of the complete mode dictate all aggregate data

must be maintained, and to not violate those semantics, the

watermark can’t drop any intermediate state.

• The aggregation via the groupBy transformation must be

directly on the event-time column or a window on the event-

time column.

• The event-time column specified in the Watermark API and the

groupBy transformation must be the same one.

• When setting up a streaming DataFrame, the Watermark API

must be called before the groupBy transformation is called;

otherwise, it will be ignored.

 Arbitrary Stateful Processing
As mentioned, the intermediate state of aggregations by key or event window is

automatically maintained by Structured Streaming. However, not all event-time

processing can be satisfied by simply aggregating on one or more columns and with or

without windowing. For example, you want to send out an alert or email or a pager when

three consecutive temperature readings with a value greater than 100 degrees are seen

in the IoT temperature dataset. Another example is about maintaining user sessions,

where the length of each session is not determined by a fixed amount of time but rather

by a user’s activities and lack thereof. To solve these two examples and similar use cases,

you need the ability to apply arbitrary processing logic on each group of data, to control

the window length for each group of data, and to maintain arbitrary state across trigger

points. This is where Structured Streaming arbitrary state processing comes in.

 Arbitrary Stateful Processing with Structured Streaming
Structured Streaming provides a callback mechanism for streaming applications to

perform arbitrary stateful processing, and it will take care of ensuring the intermediate

state is maintained and stored in a fault-tolerant manner. This style of processing

essentially boils down to the ability to perform one of the following tasks, which are

illustrated in Figure 7-4:

Chapter 7 Spark Streaming (advanCed)

301

• Map over groups of data, apply arbitrary processing on each group of

data, and then output only a single row per group.

• Map over groups of data, apply arbitrary processing on each group of

data, and then output any number of rows per group, including none.

For each of these tasks, Structured Streaming provides a specific API to handle it.

For the first one, the API is called mapGroupsWithState, and for the second one, the API

is called flatMapGroupsWithState. These APIs are available starting with Spark 2.2 and

only in Scala and Java.

When working with any kind of callback mechanism, it is important to have a clear

understanding of the contract between the framework and callback function regarding

when and how often it gets called as well as the details of the input arguments. In this

particular case, the sequence goes something like this:

• To perform arbitrary stateful processing on a streaming DataFrame,

you must first specify the grouping by calling the groupByKey

transformation and provide a column to group by; it then returns an

instance of the KeyValueGroupedDataset class.

• From an instance of the KeyValueGroupedDataset class, you can

call either the mapGroupsWithState or flatMapGroupsWithState

function. Each one of two APIs requires a different set of input

parameters.

Figure 7-4. Visual description of the two arbitrary stateful processing tasks

Chapter 7 Spark Streaming (advanCed)

302

• When calling the mapGroupsWithState function, you need to provide

the timeout type and a user-defined callback function. The timeout

part will be explained in a moment.

• When calling the flatMapGroupsWithState function, you need

to provide an output mode, the timeout type, and a user-defined

callback function. Both the output mode and timeout parts will be

explained in a moment.

The following is the contract between Structured Streaming and the

user-defined callback function mentioned earlier:

• The user-defined callback function will be invoked repeatedly for

each group in each trigger. For each invocation, it is meant for each

group that has data in the trigger. If a particular group doesn’t have

any data in a trigger, then there will be no invocation for that group.

Therefore, you shouldn’t assume this function is invoked in every

trigger for every group.

• Each time the user-defined callback function is called, the following

information will be passed in:

• The value of the group key.

• All the data of a group. There is no guarantee they are in any

particular order.

• A previous state of a group, which was returned by a previous

invocation of the same group. A group state is managed by a

state holder class called GroupState. When there is a need to

update the state of a group, you must call the update function

of this class with the new state. The information in the state for

each group is defined by a user-defined class. When calling the

update function, the provided user-defined state can’t be null.

As you learned from the previous chapter, whenever there is a need to maintain

an intermediate state, then only certain output modes are allowed. As of Spark 2.3,

only the update output mode is supported when calling the mapGroupsWithState

API; however, both append and update modes are supported when calling the

flatMapGroupsWithState API.

Chapter 7 Spark Streaming (advanCed)

303

 Handling State Timeouts
In the case of event-time aggregations with a watermark, the timeout of the intermediate

state is internally managed by Structured Streaming, and there isn’t any way to influence

it. On the other hand, Structured Streaming arbitrary stateful processing provides the

flexibility of controlling the intermediate state timeout. Since you have the ability to

maintain an arbitrary state, it makes sense to have control over the intermediate state

timeout for this specific use case.

Structured Streaming stateful processing provides three different timeout types.

The first one is based on the processing time, and the other one is based on the event

time. The timeout type is configured at the global level, meaning it is for all the groups

within a particular streaming DataFrame. The timeout amount can be configured for

each individual group and can be changed at will. If the intermediate state is configured

with a timeout, it is important to check whether it has timed out or not before processing

the given list of values in the callback function. In some use cases, a timeout is not

needed, and the third timeout type is designed for this scenario. The timeout type

is defined inside class GroupStateTimeout, and you specify the type when calling

either the mapGroupsWithState or flatMapGroupsWithState function. The timeout

duration is specified using either the GroupState.setTimeoutDuration or GroupState.

setTimeoutTimeStamp function for processing timeouts and event timeouts, respectively.

Keen readers may be wondering what happens when an intermediate state of a

specific group has timed out. The contract Structured Streaming provides regarding this

situation is that it will call the user-defined callback function with an empty list of values

as well as set the flag GroupState.hasTimedOut to true.

Of the three different timeout types, the event-time timeout is the most complicated

one and will be covered first. An event-time timeout implies that it is based on the

time in the event, and therefore setting a watermark in the streaming DataFrame via

DataFrame.withWatermark is required for this timeout type. To control the timeout per

group, you need to provide a timestamp value to the GroupState.setTimeoutTimestamp

function during the processing of a particular group. The intermediate state of a group

is timed out when the watermark advances beyond the provided timestamp. In the user

sessionization use case, as a user interacts with the website, the user session is extended

by simply updating the timeout timestamp based on the user’s latest interaction time

plus some threshold. This is to ensure that as long as a user interacts with the website,

the user session remains active, and the intermediate date will not be timed out.

Chapter 7 Spark Streaming (advanCed)

304

The processing timeout type works in a similar fashion as the event-time timeout

type; however, the difference is that it is based on the wall clock of the server, which is

constantly advancing forward. To control the timeout per group, you provide a time

duration to the GroupState.setTimeoutDuration function during the processing of a

particular group. The time duration can be something like 1 minute, 1 hour, or 2 days.

The intermediate state of a group is timed out when the clock has advanced past the

provided duration. Since this timeout type depends on the system clock, it is important

to consider the case when the time zone changes or when there is clock skew.

This may be obvious to keen readers, but it is important to recognize that if there

is no data in the stream for a while, there won’t be any triggers, and therefore the user-

defined callback function will not be called. In addition, the watermark will not advance,

and the timeout function call will not happen.

At this point, you should have a good understanding of how arbitrary state

processing in Structured Streaming works and which APIs are involved. The following

section will work through a couple of examples to demonstrate how to implement

arbitrary state processing.

 Arbitrary State Processing in Action
This section will demonstrate the arbitrary state processing in Structured Streaming by

working through two use cases.

• The first one is about extracting patterns from the data center

computer rack temperature data and maintaining a status of

each rack in the intermediate state. Whenever three consecutive

temperatures with 100 degrees or above are encountered, the rack

status will be upgraded to the warning level. This example will use

the mapGroupsWithState API.

• The second example is about user sessionization, which will keep

track of the user state based on interactions with a website. This

example will use the flatMapGroupsWithState API.

Regardless of which API will be used to perform arbitrary state processing for your

use cases, a common set of steps is needed, which includes the following:

• Define a few classes to represent the input data, the intermediate

state, and the output.

Chapter 7 Spark Streaming (advanCed)

305

• Define two functions. The first one is the callback function for

Structured Streaming to call. The second function contains arbitrary

state processing logic on the data of each group as well as the logic to

maintain state.

• Decide on a timeout type and an appropriate value for it.

 Extracting Patterns with mapGroupsWithState

The goal of this use case is to identify a particular pattern in the data center computer

rack temperature data. The pattern of interest is three consecutive temperature readings

with 100 degrees or above from the same rack, and the time difference between two

consecutive high temperature readings must be within 60 seconds. When such a pattern

is detected, the status of that particular rack is upgraded to warning status. If the next

incoming temperature reading falls below the 100-degree threshold, then the rack status

is downgraded to normal.

The data for this example is located in the directory <path>/chapter7/data/

iot_pattern in three files; their content is shown in Listing 7-11. The content of file1.

json shows the temperature of rack1 is alternating between just below and above 100

degrees. File file2.json shows the temperature of rack2 is heating up. In file file3.

json, rack3 is heating up as well, but the temperature readings are more than one

minute apart.

Listing 7-11. Temperature Data in file1.json, file2.json, and file3.json

// file1.json

{"rack":"rack1","temperature":99.5,"ts":"2017-06-02T08:01:01"}

{"rack":"rack1","temperature":100.5,"ts":"2017-06-02T08:02:02"}

{"rack":"rack1","temperature":98.3,"ts":"2017-06-02T08:02:29"}

{"rack":"rack1","temperature":102.0,"ts":"2017-06-02T08:02:44"}

// file2.json

{"rack":"rack1","temperature":97.5,"ts":"2017-06-02T08:02:59"}

{"rack":"rack2","temperature":99.5,"ts":"2017-06-02T08:03:02"}

{"rack":"rack2","temperature":105.5,"ts":"2017-06-02T08:03:44"}

{"rack":"rack2","temperature":104.0,"ts":"2017-06-02T08:04:06"}

{"rack":"rack2","temperature":108.0,"ts":"2017-06-02T08:04:49"}

Chapter 7 Spark Streaming (advanCed)

306

// file3.json

{"rack":"rack2","temperature":108.0,"ts":"2017-06-02T08:06:40"}

{"rack":"rack3","temperature":100.5,"ts":"2017-06-02T08:06:20"}

{"rack":"rack3","temperature":103.7,"ts":"2017-06-02T08:07:35"}

{"rack":"rack3","temperature":105.3,"ts":"2017-06-02T08:08:53"}

Next you are going to prepare a few classes and two functions to apply pattern

detection logic to the previous data. For this use case, the rack temperature input

data is represented by class RackInfo, and both the intermediate state and output are

represented by the same class called RackState. Listing 7-12 shows the code.

Listing 7-12. Scala Case Classes for the Input and Intermediate State

case class RackInfo(rack:String, temperature:Double, ts:java.sql.Timestamp)

// notice the constructor arguments are defined to be modifiable so we can

update them

// the lastTS variable is used to compare the time between previous and

current temperature reading

case class RackState(var rackId:String, var highTempCount:Int,

 var status:String, var lastTS:java.sql.Timestamp)

Next you define two functions. The first one is called updateRackState, which

contains the core logic of the pattern detection of three consecutive high temperature

readings that happen within 60 seconds of each other. The second function is called

updateAcrossAllRackStatus, which is the callback function that will be passed into the

mapGroupsWithState API. This function makes sure the rack temperature readings are

processed according to the order of their event time. See Listing 7-13 for the code.

Listing 7-13. The Functions for Performing Pattern Detection

import org.apache.spark.sql.streaming.GroupState

// contains the main logic to detect the temperature pattern described above

def updateRackState(rackState:RackState, rackInfo:RackInfo) : RackState = {

 // setup the conditions to decide whether to update the rack state

 val lastTS = Option(rackState.lastTS).getOrElse(rackInfo.ts)

 val withinTimeThreshold = (rackInfo.ts.getTime - lastTS.getTime) <= 60000

Chapter 7 Spark Streaming (advanCed)

307

 val meetCondition = if (rackState.highTempCount < 1) true else

withinTimeThreshold

 val greaterThanEqualTo100 = rackInfo.temperature >= 100.0

 (greaterThanEqualTo100, meetCondition) match {

 case (true, true) => {

 rackState.highTempCount = rackState.highTempCount + 1

 rackState.status = if (rackState.highTempCount >= 3) "Warning" else

"Normal"

 }

 case _ => {

 rackState.highTempCount = 0

 rackState.status = "Normal"

 }

 }

 rackState.lastTS = rackInfo.ts

 rackState

}

// call-back funcion to provide mapGroupsWithState API

def updateAcrossAllRackStatus(rackId:String, inputs:Iterator[RackInfo],

 oldState: GroupState[RackState]) : RackState = {

 // initialize rackState with previous state if exists, otherwise create

a new state

 var rackState = if (oldState.exists) oldState.get else RackState

(rackId, 5, "", null)

 // sort the inputs by time stamp in ascending order

 inputs.toList.sortBy(_.ts.getTime).foreach(input => {

 rackState = updateRackState(rackState, input)

 // very important to update the rackState in the state holder class

GroupState

 oldState.update(rackState)

 })

 rackState

}

Chapter 7 Spark Streaming (advanCed)

308

The setup step is now complete, so now you will wire the callback function into

mapGroupsWithState in the Structured Streaming application in Listing 7-14. The steps to

simulate the streaming data are similar to one of the previous examples, as shown here:

• Create a directory called input under the directory

<path>/chapter7/data. Remove all files in this directory

if it already exists.

• Run the code in Listing 7-14.

• Copy file1.json to the input directory and then observe the output.

Repeat this same step with file2.json and file3.json.

Listing 7-14. Using Arbitrary State Processing to Detect Patterns in a Streaming

Application

import org.apache.spark.sql.streaming.{GroupStateTimeout, OutputMode}

import org.apache.spark.sql.types._

import org.apache.spark.sql.functions._

// schema for the IoT data

val iotDataSchema = new StructType().add("rack", StringType, false)

 .add("temperature", DoubleType, false)

 .add("ts", TimestampType, false)

val iotSSDF = spark.readStream.schema(iotDataSchema).json("<path>/chapter7/

data/input")

val iotPatternDF = iotSSDF.as[RackInfo]

 .groupByKey(_.rack)

 .mapGroupsWithState[RackState,RackState]

 (GroupStateTimeout.NoTimeout)

(updateAcrossAllRackStatus)

// setup the output and start the streaming query

val iotPatternSQ = iotPatternDF.writeStream

 .format("console")

 .outputMode("update")

 .start()

Chapter 7 Spark Streaming (advanCed)

309

// after file3.json is copied over to "input" directory, run the line below

stop the streaming query

iotPatternSQ.stop

// the output after processing file1.json

+-------+--------------+-------+--------------------+

| rackId| highTempCount| status| lastTS|

+-------+--------------+-------+--------------------+

| rack1| 1| Normal| 2017-06-02 08:02:44|

+-------+--------------+-------+--------------------+

// the output after processing file2.json

+-------+--------------+--------+--------------------+

| rackId| highTempCount| status| lastTS|

+-------+--------------+--------+--------------------+

| rack1| 0| Normal| 2017-06-02 08:02:59|

| rack2| 3| Warning| 2017-06-02 08:04:49|

+-------+--------------+--------+--------------------+

// the output after processing file3.json

+-------+--------------+-------+--------------------+

| rackId| highTempCount| status| lastTS|

+-------+--------------+-------+--------------------+

| rack3| 1| Normal| 2017-06-02 08:08:53|

| rack2| 0| Normal| 2017-06-02 08:06:40|

+-------+--------------+-------+--------------------+

rack1 has a few temperature readings over 100 degrees; however, they are not

consecutive, and therefore the output status is at the normal level. In file file2.json,

rack2 has three consecutive temperature readings over 100 degrees, and the time gap

between each one and the one before is less than 60 seconds; therefore, the status of

rack2 is at the warning level. rack3 has three consecutive temperature readings over 100

degrees; however, the time gap between each one and the one before is more than 60

seconds. Therefore, its status is at the normal level.

Chapter 7 Spark Streaming (advanCed)

310

 User Sessionization with flatMapGroupsWithState

This use case performs user sessionization using the flatMapGroupsWithState API,

which supports the ability to output more than one row per group. In this example,

the sessionization processing logic is based on the user activities. A session is created

when the login action is taken, and a session is ended when the logout action is taken.

A session will be automatically ended when there are no user activities for a duration

of 30 minutes. You will leverage the timeout feature described earlier to perform this

detection. In terms of the output, whenever a session starts or ends, that information will

be sent to the output. The output information consists of user ID, session start and end

times, and the number of visited pages.

The data for this use case is located in the directory <path>/chapter7/data/

sessionization, which consists of three files. Their content is shown in Listing 7-15.

File file1.json contains the activities of user1, and it includes a login action, but there

is no logout action. File file2.json contains all the activities of user2 including both

login and logout actions. File file3.json contains only the login action for user3.

The timestamp of the user activities in three files is set up in such a way that the session

of user1 will be timed out when file3.json is processed. This is because by then the

amount of time user1 has been idled is more than 30 minutes.

Listing 7-15. User Activity Data

// file1.json

{"user":"user1","action":"login","page":"page1", "ts":"2017-09- 06T08:08:53"}

{"user":"user1","action":"click","page":"page2", "ts":"2017-09- 06T08:10:11"}

{"user":"user1","action":"send","page":"page3", "ts":"2017-09-06T08:11:10"}

// file2.json

{"user":"user2","action":"login", "page":"page1", "ts":"2017-09- 06T08:44:12"}

{"user":"user2","action":"view", "page":"page7", "ts":"2017-09- 06T08:45:33"}

{"user":"user2","action":"view", "page":"page8", "ts":"2017-09- 06T08:55:58"}

{"user":"user2","action":"view", "page":"page6", "ts":"2017-09- 06T09:10:58"}

{"user":"user2","action":"logout","page":"page9", "ts":"2017-09- 06T09:16:19"}

// file3.json

{"user":"user3","action":"login", "page":"page4", "ts":"2017-09- 06T09:17:11"}

Chapter 7 Spark Streaming (advanCed)

311

Next you are going to prepare a few classes and two functions to apply the user

sessionization logic to the previous data. For this use case, the user activity input data

is represented by class UserActivity. The intermediate state of the user session data is

represented by the class UserSessionState, and the user session output is represented

by the class UserSessionInfo. Listing 7-16 shows the code for all these three classes.

Listing 7-16. Scala Case Classes for Input, Intermediate State, and Output

case class UserActivity(user:String, action:String, page:String, ts:java.

sql.Timestamp)

// the lastTS field is for storing the largest user activity timestamp and

this information is used

// when setting the timeout value for each user session

case class UserSessionState(var user:String, var status:String, var

startTS:java.sql.Timestamp,

 var endTS:java.sql.Timestamp, var lastTS:java.

sql.Timestamp,

 var numPage:Int)

// the end time stamp is filled when the session has ended.

case class UserSessionInfo(userId:String, start:java.sql.Timestamp,

end:java.sql.Timestamp, numPage:Int)

Next you define two functions. The first one is called updateUserActivity, which

is responsible for updating the user session state based on a single-user activity. It

appropriately updates either the session start or the end time based on the action

the user has taken. In addition, it updates the latest activity timestamp. The second

function is called updateAcrossAllUserActivities, and it is the callback function

that will be passed into the flatMapGroupsWithState function. This function has two

main responsibilities. The first one is to handle the timeout of the intermediate session

state, and it updates the user session end time when such a condition arises. The other

responsibility is to determine when and what to send to the output. The desired output

is one row when a user session is started and another one when a user session is ended.

See Listing 7-17 for the logic of these two functions.

Chapter 7 Spark Streaming (advanCed)

312

Listing 7-17. The Functions for Performing User Sessionization

import org.apache.spark.sql.streaming.GroupState

import scala.collection.mutable.ListBuffer

def updateUserActivity(userSessionState:UserSessionState,

userActivity:UserActivity) : UserSessionState = {

 userActivity.action match {

 case "login" => {

 userSessionState.startTS = userActivity.ts

 userSessionState.status = "Online"

 }

 case "logout" => {

 userSessionState.endTS = userActivity.ts

 userSessionState.status = "Offline"

 }

 case _ => {

 userSessionState.numPage += 1

 userSessionState.status = "Active"

 }

 }

 userSessionState.lastTS = userActivity.ts

 userSessionState

}

def updateAcrossAllUserActivities(user:String,

inputs:Iterator[UserActivity],

 oldState: GroupState[UserSessionState]) :

Iterator[UserSessionInfo] = {

 var userSessionState = if (oldState.exists) oldState.get else

UserSessionState(user, "",

 new java.sql.Timestamp(System.currentTimeMillis), null, null, 0)

 var output = ListBuffer[UserSessionInfo]()

Chapter 7 Spark Streaming (advanCed)

313

 inputs.toList.sortBy(_.ts.getTime).foreach(userActivity => {

 userSessionState = updateUserActivity(userSessionState, userActivity)

 oldState.update(userSessionState)

 if (userActivity.action == "login") {

 output += UserSessionInfo(user, userSessionState.startTS,

 userSessionState.endTS, 0)

 }

 })

 val sessionTimedOut = oldState.hasTimedOut

 val sessionEnded = !Option(userSessionState.endTS).isEmpty

 val shouldOutput = sessionTimedOut || sessionEnded

 shouldOutput match {

 case true => {

 if (sessionTimedOut) {

 userSessionState.endTS = new java.sql.Timestamp(oldState.

getCurrentWatermarkMs)

 }

 oldState.remove()

 output += UserSessionInfo(user, userSessionState.startTS,

 userSessionState.endTS, userSessionState.

numPage)

 }

 case _ => {

 // extend sesion

 oldState.update(userSessionState)

 oldState.setTimeoutTimestamp(userSessionState.lastTS.getTime,

"30 minutes")

 }

 }

 output.iterator

}

Chapter 7 Spark Streaming (advanCed)

314

The setup step is now complete, so you will wire the callback function into the

flatMapGroupsWithState function in the Structured Streaming application in Listing 7-18.

In this example, it will leverage the timeout feature, and therefore setting up a watermark

and event-time timeout type is required. The steps to simulate the streaming data are

similar to one of the previous examples, as shown here:

 1. Create a directory called input under the directory <path>/chapter7/

data. Remove all the files in this directory if it already exists.

 2. Run the code in Listing 7-18.

 3. Copy file1.json to the input directory and then observe the

output. Repeat this same step with file2.json and file3.json.

Listing 7-18. Using Arbitrary State Processing to Perform User Sessionization in

a Streaming Application

import org.apache.spark.sql.streaming.{GroupStateTimeout, OutputMode}

import org.apache.spark.sql.types._

import org.apache.spark.sql.functions._

val userActivitySchema = new StructType().add("user", StringType, false)

 .add("action", StringType, false)

 .add("page", StringType, false)

 .add("ts", TimestampType, false)

val userActivityDF = spark.readStream.schema(userActivitySchema).

json("<path>/chapter7/data/input")

// convert to DataSet of type UserActivity

val userActivityDS = userActivityDF.withWatermark("ts", "30 minutes").

as[UserActivity]

// specify the event-time timeout type and wire in the call-back function

val userSessionDS = userActivityDS.groupByKey(_.user)

 . flatMapGroupsWithState[User

SessionState,UserSessionInfo]

 (OutputMode.Append,Group

StateTimeout.EventTimeTimeout)

 (updateAcrossAllUser

Activities)

Chapter 7 Spark Streaming (advanCed)

315

// setup the output and start the streaming query

val userSessionSQ = userSessionDS.writeStream

 .format("console")

 .option("truncate",false)

 .outputMode("append")

 .start()

// only run this line of code below after done copyng over file3.json

userSessionSQ.stop

// the output after processing file1.json

+-------+--------------------+-----+--------+

| userId| start| end | numPage|

+-------+--------------------+-----+--------+

| user1 | 2017-09-06 08:08:53| null| 0 |

+-------+--------------------+-----+--------+

// the output after processing file2.json

+-------+--------------------+--------------------+--------+

| userId| start| end| numPage|

+-------+--------------------+--------------------+--------+

| user2 | 2017-09-06 08:44:12| null| 0|

| user2 | 2017-09-06 08:44:12| 2017-09-06 09:16:19| 3|

+-------+--------------------+--------------------+--------+

// the output after processing file3.json

+-------+--------------------+--------------------+--------+

| userId| start| end| numPage|

+-------+--------------------+--------------------+--------+

| user1 | 2017-09-06 08:08:53| 2017-09-06 08:46:19| 2|

| user3 | 2017-09-06 09:17:11| null| 0|

+-------+--------------------+--------------------+--------+

Chapter 7 Spark Streaming (advanCed)

316

After processing the user activities in file1.json, you see there is one row in the

output. This is expected because whenever function updateAcrossAllUserActivities

sees a login action in the user activities, it will add an instance of the UserSessionInfo

class to the output ListBuffer. There are two rows in the output after processing file2.

json. One is for the login action, and the other one is for the logout action. Now file3.

json contains only one user activity for user3 with the action login, but the output

contains two rows. The row for user1 is the result of detecting that the user1 session has

timed out, which means the watermark has passed the timeout value of that particular

session because of the lack of activity from user1.

As demonstrated in the previous two use cases, the arbitrary stateful processing

feature in Structured Streaming provides flexible and powerful ways to apply user- defined

processing logic on each group with total control of what to send to the output and when.

 Handling Duplicate Data
Deduplicating data is a common need in the world of data processing, and it is not

too difficult to do that in batch processing. In stream processing, though, it is more

challenging because of the unbounded nature of streaming data. Data duplication in

real-time streaming data happens when data producers send the same piece of data

multiple times, and this may happen because they operate in an unreliable network

connection and they want to err on the side of making sure a particular piece of data is

sent and processed.

Luckily, Structured Streaming makes it easy for streaming applications to perform

data duplication, and therefore these applications can guarantee exactly once processing

by dropping duplicate data as it arrives. The data duplication feature that Structured

Streaming provides can work in conjunction with a watermark or without it. One key

thing to note, though, when performing data duplication without specifying a watermark

is that the state that Structured Streaming needs to maintain will grow infinitely over the

lifetime of your streaming application, and this may lead to out-of-memory issues. With

watermarking, late data older than the watermark will be automatically dropped to avoid

any possibility of duplicates.

The API to tell Structured Streaming to perform data deduplication is simple, and it

has only one input, which is a list of column names to use to uniquely identify each row.

The value of these columns will be used to perform duplicate detection, and Structured

Streaming will store them as intermediate state. The sample data that will be used to

Chapter 7 Spark Streaming (advanCed)

317

demonstrate the data deduplication feature has the same schema as the mobile event

data. The count aggregation will be based on the grouping of the id column. Both the

id and ts columns are used as the user-defined keys for the deduplication purpose.

The data for this example is located in <path>/chapter7/data/deduplication, which

contains two files: file1.json and file2.json. The content of these files is displayed in

Listing 7-19.

Listing 7-19. Sample Data for the Data deduplication Example

// file1.json - each line is unique in term of id and ts columns

{"id":"phone1","action":"open","ts":"2018-03-02T10:15:33"}

{"id":"phone2","action":"open","ts":"2018-03-02T10:22:35"}

{"id":"phone3","action":"open","ts":"2018-03-02T10:23:50"}

// file2.json - the first two lines are duplicate of the first two lines in

file1.json above

// the third line is unique

// the fourth line is unique, but it arrives late, therefore it will not be

processed

{"id":"phone1","action":"open","ts":"2018-03-02T10:15:33"}

{"id":"phone2","action":"open","ts":"2018-03-02T10:22:35"}

{"id":"phone4","action":"open","ts":"2018-03-02T10:29:35"}

{"id":"phone5","action":"open","ts":"2018-03-02T10:01:35"}

To simulate the data deduplication, first create a directory called input under the

directory <path>/chapter7/data. Then run the code in Listing 7-20. The next step is to

copy the file1.json file to the input directory and examine the output. The final step is

to copy the file2.json file to the input directory to examine the output.

Listing 7-20. Deduplicating Data Using the dropDuplicates API

import org.apache.spark.sql.types._

import org.apache.spark.sql.functions._

val mobileDataSchema = new StructType().add("id", StringType, false)

 .add("action", StringType, false)

Chapter 7 Spark Streaming (advanCed)

318

 .add("ts", TimestampType, false)

// mobileDataSchema is defined in previous example

val mobileDupSSDF = spark.readStream.schema(mobileDataSchema)

 . json("<path>/chapter7/data/

deduplication")

val windowCountDupDF = mobileDupSSDF.withWatermark("ts", "10 minutes")

 .dropDuplicates("id", "ts")

 .groupBy("id").count

val mobileMemoryDupSQ = windowCountDupDF.writeStream

 .format("console")

 .option("truncate", "false")

 .outputMode("update")

 .start()

// output after copying file1.json to input directory

+-------+------+

| id| count|

+-------+------+

| phone3| 1|

| phone1| 1|

| phone2| 1|

+-------+------+

// output after coping file2.json to input directory

+-------+------+

| id| count|

+-------+------+

| phone4| 1|

+-------+------+

As expected, after file2.json is copied to the input directory, only one line is

displayed in the console. The reason is the first two lines are duplicates of the first two

lines in file1.json, and therefore they were filtered out. The last line has a timestamp

of 10:10, which is considered late data since that timestamp is older than the ten-minute

watermark threshold. Therefore, the last line was not processed and dropped.

Chapter 7 Spark Streaming (advanCed)

319

 Fault Tolerance
One of the most important considerations when developing important streaming

applications and deploying them to production is failure recovery. According to

Murphy’s law, anything that can go wrong will go wrong. Machines will fail, and software

will have bugs. Luckily, Structured Streaming provides a way to restart or recover your

streaming application when there is a failure, and it will continue where it left off. To

take advantage of this recovery mechanism, you need to configure your streaming

applications to use checkpointing and write-ahead logs by specifying a checkpoint

location when setting up streaming queries. Ideally the checkpoint location should be

a path on a reliable and fault-tolerant file system like HDFS or S3. Structured Streaming

will periodically save all the progress information such as the offset details of the data

being processed and the intermediate state values to the checkpoint location. Adding

a checkpoint location to a streaming query is straightforward. You just need to add an

option to your streaming query with checkpointLocation as the name and the path as

the value. See Listing 7-21 for an example.

Listing 7-21. Adding the checkpointLocation Option to a Streaming Query

val userSessionSQ = userSessionDS.writeStream.format("console")

 .option("truncate",false)

 . option("checkpointLocation",

"/reliable/location")

 .outputMode("append")

 .start()

If you take a peek into the specified checkpoint location, you should see the

following subdirectories: commits, metadata, offsets, sources, and stats. The

information in these directories is specific to a particular streaming query; hence, each

one must use a different checkpoint location.

Just like most software applications, streaming applications will evolve over time

because of the need to improve the processing logic or performance or to fix bugs. It is

important to keep in mind how this might affect the information saved in the checkpoint

location and to know what changes are considered safe to make. Broadly speaking, there

are two categories of changes. One is the change to streaming application code, and the

other is the change to the Spark runtime.

Chapter 7 Spark Streaming (advanCed)

320

 Streaming Application Code Change
The information in the checkpoint location is designed to be somewhat resilient

to the changes of streaming applications. There are a few kind of changes that will

be considered incompatible changes. The first one is about changing the way the

aggregation is done by either changing the key column, adding more key columns,

or removing one of the existing key columns. The second one is changing the class

structure that was used for storing the intermediate state, for example, when a field is

removed or the type of a field is changed from string to integer. When incompatible

changes are detected during a restart, Structured Streaming will let you know via an

exception. In this case, you must either use a new checkpoint location or remove the

content in the previous checkpoint location.

 Spark Runtime Change
The checkpoint format is designed to be forward compatible such that streaming

applications should be able to restart from an old checkpoint across patch versions or

minor version updates of Spark (i.e., upgrading from Spark 2.2.0 to 2.2.1 or from Spark

2.2.x to 2.3.x). The only exception to the rule is when there are critical bug fixes. It is

good to know that when incompatible changes are introduced by Spark, it will be clearly

documented in the release notes.

If it is not possible to start a streaming application with an existing checkpoint

location because of incompatibility issues, then you will need to use a new checkpoint

location, and perhaps you will also need to seed your applications with some

information about the offset to read data from.

 Streaming Query Metrics and Monitoring
Similar to other long-running applications such as online services, it is important to

have some insights into your streaming applications regarding the progress it is making,

the incoming data rate, or the amount of memory being consumed by the intermediate

state. Structured Streaming provides a few APIs to extract the information about recent

execution progress and an asynchronous way of monitoring all streaming queries in a

streaming application.

Chapter 7 Spark Streaming (advanCed)

321

 Streaming Query Metrics
The most basic useful information about a streaming query at any moment in time is

its current status. You can retrieve and display this information in a human-readable

format by calling the StreamingQuery.status function. The returned object is of type

StreamingQueryStatus, and it can easily convert the status information into JSON

format. Listing 7-22 shows an example of what the status information looks like.

Listing 7-22. Query Status Information in JSON Format

// use a streaming query from the example above

userSessionSQ.status

// output

res11: org.apache.spark.sql.streaming.StreamingQueryStatus =

{

 "message" : "Waiting for data to arrive",

 "isDataAvailable" : false,

 "isTriggerActive" : false

}

Clearly the previous status provides basic information about what’s going on in a

streaming query at the moment the status function is called. To get additional details

from recent progress such as the incoming data rate, the processing rate, the watermark,

the offsets of the data source, and some information about the intermediate state, you

can call the StreamingQuery.recentProgress function. This function returns an array of

instances of the StreamingQueryProgress class, which can convert the details into JSON

format. By default, each streaming query is configured to retain 100 progress updates,

and this number can be changed by updating the Spark configuration called spark.

sql.streaming.numRecentProgressUpdates. To see the most recent streaming query

progress, you can call the function StreamingQuery.lastProgress. Listing 7-23 shows a

sample of a streaming query progress.

Chapter 7 Spark Streaming (advanCed)

322

Listing 7-23. Streaming Query Progress Details

{

 "id" : "9ba6691d-7612-4906-b64d-9153544d81e9",

 "runId" : "c6d79bee-a691-4d2f-9be2-c93f3a88eb0c",

 "name" : null,

 "timestamp" : "2018-04-23T17:20:12.023Z",

 "batchId" : 0,

 "numInputRows" : 3,

 "inputRowsPerSecond" : 250.0,

 "processedRowsPerSecond" : 1.728110599078341,

 "durationMs" : {

 "addBatch" : 1548,

 "getBatch" : 8,

 "getOffset" : 36,

 "queryPlanning" : 110,

 "triggerExecution" : 1736,

 "walCommit" : 26

 },

 "eventTime" : {

 "avg" : "2017-09-06T15:10:04.666Z",

 "max" : "2017-09-06T15:11:10.000Z",

 "min" : "2017-09-06T15:08:53.000Z",

 "watermark" : "1970-01-01T00:00:00.000Z"

 },

 "stateOperators" : [{

 "numRowsTotal" : 1,

 "numRowsUpdated" : 1,

 "memoryUsedBytes" : 16127

 }],

 "sources" : [{

 "description" : "FileStreamSource[file:<path>/chapter7/data/input]",

 "startOffset" : null,

 "endOffset" : {

 "logOffset" : 0

 },

Chapter 7 Spark Streaming (advanCed)

323

 "numInputRows" : 3,

 "inputRowsPerSecond" : 250.0,

 "processedRowsPerSecond" : 1.728110599078341

 }],

 "sink" : {

 "description" : "org.apache.spark.sql.execution.streaming.

ConsoleSinkProvider@37dc4031"

 }

}

Looking at the details in the sample streaming progress shown previously, there are

a few important key metrics to pay attention to. The input rate represents the amount of

incoming data flowing into a streaming application from an input source. The process

rate tells you how fast a streaming application can process the incoming data. In an

ideal state, the processing rate should be higher than the input rate, and if that is not

the case, then you need to consider scaling up the number of nodes in a Spark cluster.

If a streaming application is maintaining state either implicitly through the groupBy

transformation or explicitly through the arbitrary state processing APIs, then it is

important to pay attention to the metrics in the stateOperators section.

The Spark UI provides a rich set of metrics at the job, stage, and task levels. Each

trigger in a streaming application is mapped to a job in Spark UI, where the query plan

and task durations can be easily inspected.

Note the streaming query status and progress details are available through
an instance of a streaming query. While your streaming application is running in
production, you don’t have the luxury of having access to those streaming queries.
What if you would like to see that information from a remote host? One option is
to embed a small http server inside your streaming application and expose a few
simple UrLs to retrieve that information.

Chapter 7 Spark Streaming (advanCed)

324

 Monitoring Streaming Queries
Structured Streaming provides a callback mechanism to asynchronously receive events

and the progress of the streaming queries in a streaming application. This is done via

the StreamingQueryListener interface, which tells when a streaming query is started,

when it has made some progress, and when it is terminated. An implementation of

this interface can control what to do with the provided information. One obvious

implementation would be to send this information to a Kafka topic or some other

publish-subscribe system for offline analysis or for another streaming application to

process. Listing 7-24 contains a simple implementation of the StreamingQueryListener

interface; it prints out the information to the console.

Listing 7-24. A Simple Implementation of the StreamingQueryListener Interface

import org.apache.spark.sql.streaming.StreamingQueryListener

import org.apache.spark.sql.streaming.StreamingQueryListener.

{QueryStartedEvent, QueryProgressEvent, QueryTerminatedEvent}

class ConsoleStreamingQueryListener extends StreamingQueryListener {

 override def onQueryStarted(event: QueryStartedEvent): Unit = {

 println(s"streaming query started: ${event.id} - ${event.name} -

${event.runId}")

 }

 override def onQueryProgress(event: QueryProgressEvent): Unit = {

 println(s"streaming query progess: ${event.progress}")

 }

 override def onQueryTerminated(event: QueryTerminatedEvent): Unit = {

 println(s"streaming query terminated: ${event.id} - ${event.runId}")

 }

}

Once you have an implementation of StreamingQueryListener, the next step is to

register it with StreamQueryManager, which can handle multiple listeners. See Listing 7- 25

for how to register and unregister a listener.

Chapter 7 Spark Streaming (advanCed)

325

Listing 7-25. Registering and Unregistering an Instance of

StreamingQueryListener with StreamQueryManager

Val listener = new ConsoleStreamingQueryListener

// to register

spark.streams.addListener(listener)

// to unregister

spark.streams.removeListener(listener)

One thing to remember is each listener receives the streaming query events from

all the streaming queries in a streaming application. If there is a need to apply specific

event processing logic to a certain streaming query, then it can leverage the streaming

query name.

 Summary
The Spark Structured Streaming engine provides many advanced features and the

flexibility to build complex and sophisticated streaming applications.

• Any serious streaming processing engine must support the ability

to process incoming data by the event time. Structured Streaming

not only supports the ability to do this but also supports window

aggregation based on fixed and sliding windows. In addition, it will

automatically maintain the intermediate state in a fault-tolerant

manner.

• Maintaining the intermediate state introduces the risk of running out

of memory as streaming applications process more and more data.

A watermark was introduced to make it easier to reason about late

data as well as to remove no longer needed intermediate state.

• Arbitrary stateful processing enables a user-defined way of

processing the values of each group and maintaining its intermediate

state. Structured Streaming provides an easy way of doing this via a

callback API, and there is a flexibility in generating one or more rows

per group to the output.

Chapter 7 Spark Streaming (advanCed)

326

• Structured Streaming provides an end-to-end, exactly-once

guarantee. This is achieved by using the checkpointing and write-

ahead log mechanisms. Both of them can be turned on easily by

providing a checkpoint location that resides on a fault-tolerant file

system. Streaming applications can be easily restarted and pick up

from where they left off before the failure by reading the information

saved in the checkpoint location.

• Production streaming applications require the ability to get insights

into the status and metrics of streaming queries. Structured

Streaming provides a short summary of the streaming query status

as well as the detailed metrics about incoming data rate, processing

rate, and some details about the intermediate state memory

consumption. To monitor the lifecycle of all streaming queries and

their detailed progresses, you can register one or more instances of

the StreamingQueryListener interface.

Chapter 7 Spark Streaming (advanCed)

327
© Hien Luu 2018
H. Luu, Beginning Apache Spark 2, https://doi.org/10.1007/978-1-4842-3579-9_8

CHAPTER 8

Machine Learning
with Spark
There has been a lot of excitement around artificial intelligence (AI), machine learning

(ML), and deep learning (DL) in recent years. AI experts and researchers have predicted

AI will radically transform the way humans live, work, and do business in the future. For

businesses around the world, AI is considered to be one of the next steps in their journey

of digital transformation, and some are more far along than others in incorporating AI

into their business strategies. Businesses expect AI to help solve their business problems

efficiently and quickly as well as to create business value and improve their competitive

advantages. Internet giants such as Google, Amazon, Microsoft, Apple, and Facebook are

leading the pack in investing in, adopting, and incorporating AI into their product portfolios.

In 2017, more than $15 billion of venture capital (VC) money went into investing in AI-

related startup companies around the world, and this trend is expected to continue in 2018.

AI is a broad area of computer science that tries to make machines seem like they

have intelligence. It is an audacious goal to help advance humankind. One of the

subfields within AI is machine learning, which focuses on teaching computers to learn

without being explicitly programmed. The learning process involves analyzing a large

number of datasets using algorithms and building a model to explain the world. These

algorithms can be categorized into different groups based on the task they are designed

for. One of the things these algorithms have in common is they learn through an iterative

process of refining their internal parameters to achieve an optimal outcome.

Deep learning (DL) is one of the machine learning methods that is inspired by the

way the human brain works, and it has proven to be really good at learning complex

patterns from data by representing them as a nested hierarchy of concepts. With the

combination of the availability of large and curated datasets and the advancement in

graphical processing units (GPUs), DL has proven to be effective at solving problems in

areas such as object recognition, image recognition, speech recognition, and machine

328

translation. In fact, it has proven itself at one of the image classification challenges called

ImageNet, where a computer system trained using a DL method was able to beat a human

at classifying images. The implication of this achievement and similar ones is that now

computer systems can see, recognize objects, and hear at the same level as their creators.

Figure 8-1 illustrates the relationship between AI, ML, and DL as well their timelines.

One of the motivations behind the creation of Spark was to help applications run

iterative algorithms efficiently at scale. Over the last few versions of Spark, the MLlib

library has steadily increased its offerings to make ML scalable and easy to use by

providing a set of commonly used ML algorithms and a set of tools to facilitate the

process of building and evaluating ML models.

To appreciate the features that the MLlib library provides, it is necessary to have a

fundamental understanding of the process of building ML applications. This chapter

starts by providing that information and proceeds to introducing the features and

APIs that are available in the MLlib library so that you can apply them to building your

intelligent applications using machine learning.

Figure 8-1. Relationship between AI, ML, and DL and their timelines

Chapter 8 MaChine Learning with Spark

329

 Machine Learning Overview
The goal of this section to provide a brief overview about machine learning and the

typical process used to develop ML applications. It is not meant to be exhaustive; feel

free to skip it if you are already familiar with ML.

ML is a vast and fascinating field of study, which combines parts of other fields of

studies such as mathematics, statistics, and computer science. It is a method of teaching

computers to learn patterns and derive insights from historical data, often for the

purpose of making decisions or predictions. Unlike traditional, hard-coded software,

ML gives you only probabilistic outputs based on the imperfect data you provide. The

more data you can provide to ML algorithms, the more accurate the output will be. ML

can solve much more interesting and difficult problems than traditional software can,

and these problems are not specific to any industry or business domain. Examples of

these relevant areas are image recognition, speech recognition, language translation,

fraud detection, product recommendations, robotics, autonomous driving cars,

speeding up the drug discovery process, medical diagnosis, customer churn prediction,

recommendations, and many more.

Given that the goal of AI is to make machines seem like they have intelligence, one

of the best ways to measure that is by comparing machine intelligence against human

intelligence. There are a few well-known and publicized demonstrations of such

comparisons in recent decades. The first one was a computer system called Deep Blue

that defeated the world chess champion in 1997 under strict tournament regulations.

This example demonstrates that computer machines can think faster and better than a

human in a game that has a vast but limited set of possible moves. The second one was

a computer system called Watson that competed on the Jeopardy game show against

two legendary champions in 2011 and won the first price of $1 million. The example

demonstrates computer machines can understand human language in a specific

question-and-answer structure and then tap into their vast knowledge base to come up

with probabilistic answers. The third one is about a computer program called AlphaGo

that defeated a world champion in the game of Go in a historic match in 2016. This

example demonstrates a great leap in the advancement of the AI field because Go is

considered to be a complex board game that requires intuition and creative and strategic

thinking, and it is not feasible to perform an exhaustive move search because of the

number of possible moves it has is greater than the number of atoms in the universe.

Chapter 8 MaChine Learning with Spark

330

 Machine Learning Terminologies
Before going deeper into ML, it is important to learn a few basic terms in the ML

language. This will be helpful in future sections when this terminology is mentioned. To

ideally make it easier to understand these terms, the explanations are provided in the

context of the canonical ML example called the spam email classification example.

• Observation

• This term comes from the statistics field. An observation is an

instance of the entity that is used for learning. For example,

emails are considered observations.

• Label

• A value used to label an observation. For example, “spam” or

“not spam” are two possible values used to label emails.

• Features

• These are important attributes about observations that most

likely have the strongest influence in the output of the prediction.

Examples are the email sender IP address, the number words, the

number of capital words, and so on.

• Training data

• This is a portion of the observations used to train a chosen ML

algorithm to produce a model. A general practice in the industry

is to split the collected data into three portions: training data,

validation data, and test data. The test data portion is roughly

about 70 percent or 80 percent of the original data set.

• Validation data

• This is a portion of the observations used to evaluate the

performance of the ML model during the model tuning process.

• Test data

• This is a portion of the observations used to evaluate the

performance of the ML model after the tuning process is

finalized.

Chapter 8 MaChine Learning with Spark

331

• ML algorithm

• This is a collection of steps that run in an iterative manner to

extract insights or patterns from given test data. The main goal

of an ML algorithm is to learn a mapping from inputs to outputs.

There is already a well-known set of ML algorithms to choose

from. The challenge is in selecting the right algorithm to use to

solve a particular ML problem. For the email spam detection

problem, one might pick the naive Bayes algorithm.

• Model

• After an ML algorithm learns from the given input data, it

produces a model, which is used to perform predictions or

make decisions on the new data. A model is represented by a

mathematical formula. The goal is to produce a generalized model

and perform well against any new data it has not seen before.

The relationship between ML algorithm, data, and model is best illustrated in Figure 8-2.

One important point to remember when applying machine learning is to never

train an ML algorithm with test data because that will defeat the purpose of producing

a generalized ML model. Another important point to note is that ML is a vast field, and

as you dig deeper into this field, undoubtedly you will discover many more terms and

concepts. Ideally this basic set of terminologies will help you get started on this journey

of learning ML.

 Machine Learning Types
As mentioned earlier, ML is about teaching machines to learn patterns from previous

data for the purpose of making decisions or predictions. These tasks are widely

applicable to many different types of problem, and each problem type requires a

different way of learning. Broadly speaking, there are three types of learning, as shown in

Figure 8-3.

Figure 8-2. Relationship between ML algorithm, data, and model

Chapter 8 MaChine Learning with Spark

332

 Supervised Learning

Among the different learning types, this one is widely used and more popular because it

can help solve a large class of problems in the area of classification and regression.

Classification is about classifying the observations into one of the discrete or

categorical classes of labels. Examples of classification problems include predicting

whether an email is a spam email; whether a product review is positive or negative;

whether an image contains a dog, cat, dolphin, or bird; whether the topic of a news

article is about sports, medicine, politics, or religion; whether a particular handwritten

digit is a 1 or 2; and whether the revenue for Q4 will meet expectations. When the result

of the classification has only two discrete values, that is called binary classification, and

when it has more than two discrete values, that is called multiclass classification.

Regression is about predicting real values from observations. Unlike classification,

the predicted value is not discrete, but rather it is continuous. Examples of regression

problems include predicting the house price based on their location and size, predicting

the stock price of a company, predicting the income of a person based the background

and education of a set of people, and so on.

One key distinguishing factor between this type of learning from the others is

each observation in the training data must contain a label, whether that is discrete or

continuous. In other words, the correct answers are provided to the algorithm so it can

learn by iterating and incrementally improving its predictions on the training data, and it

will stop once an acceptable error margin is achieved.

A simple mental model to use to distinguish classification from regression is that

classification is about separating the data into various buckets and regression is about

fitting the best line to the data. See Figure 8-4 for the visual representation of this mental

model.

Figure 8-3. Different machine learning types

Chapter 8 MaChine Learning with Spark

333

There is a large collection of algorithms that are designed to solve the classification

and regression machine learning problems. This chapter will focus on only the ones that

are supported in the Spark MLlib component, as listed in Table 8-1.

Figure 8-4. Mental model of classification and regression

Table 8-1. Supervised Learning Algorithms in MLlib

Tasks Algorithms

Classification Logistic regression

Decision tree

random forest

gradient-boosted tree

Linear support vector machine

naive Bayes

regression Linear regression

generalized linear regression

Decision tree regression

random forest regression

gradient-boosted regression

Chapter 8 MaChine Learning with Spark

334

 Unsupervised Learning

The name of this learning method implies there is no supervision; in other words, the

data used to train the ML algorithm wouldn’t contain the labels, and it is up to the

learning algorithm to come up with its own findings. This learning type is designed to

solve a different class of problem, that is, to discover the hidden structure or patterns

inside the data, and it is up to us, the humans, to interpret the meaning behind those

insights. As it turns out, a certain type of hidden structure called clustering, which is

an exploratory analysis technique in data analytics, is a good method for structuring

information to derive meaningful relationships or find similarities of the observations

within the clusters. Figure 8-5 depicts examples of clusters.

Surprisingly, there are many practical problems that can be solved by this type of

learning method. Let’s say there is a large collection documents, and there is no prior

knowledge of which topic a particular document belongs to; you can use unsupervised

learning to discover the clusters of related documents, and from there you can

assign a topic to each of the clusters. Another interesting and common problem that

the unsupervised learning method can help solve is in the area of credit card fraud

detection, which is a type of anomaly detection. After the grouping of user credit card

transactions into clusters, it is not too difficult to spot the outliers, which might represent

the abnormal credit card transactions after it was stolen by a thief.

Table 8-2 lists the supported algorithms for the unsupervised learning method.

Figure 8-5. Visualization of clustering

Chapter 8 MaChine Learning with Spark

335

 Reinforcement Learning

Unlike the first two types of learning, this one doesn’t learn from data. Instead, it learns

from interacting with an environment through a series of actions, and the feedback loop

provides the information it uses to make adjustments with the goal of maximizing some

reward. In other words, it learns from its own experience.

Until recently, this type of learning hasn’t gotten as much attention as the first two

because it has not yet had significant practical success beyond computer games. In 2016,

Google DeepMind was able to successfully apply this learning type to play an Atari game

and then went on to incorporate it into its AlphaGo program, which defeated a world

champion in the game of Go.

At this point, Spark MLlib doesn’t include any reinforcement learning algorithms.

The following sections will focus on the first two types of learnings.

Note the term supervised metaphorically refers to a teacher (human) who
“supervises” the learner, which is the ML algorithm, by specifically providing the
answers (labels) along with a set of examples (training data).

 Machine Learning Process
To be effective at applying machine learning to the development of intelligent

applications, you should consider studying and adopting a set of best practices that most

ML practitioners follow. It has been said that applying machine learning effectively is a

craft, half-science and half-art. Fortunately, there is a well-known and structured process

that consists of a series of steps to help with providing reasonable repeatability and

consistency, which is depicted in Figure 8-6.

Table 8-2. Unsupervised Learning Algorithms in MLlib

Tasks Algorithms

Clustering k-means

Latent Dirichlet allocation

Bisecting k-means

gaussian

Chapter 8 MaChine Learning with Spark

336

It may be obvious, but the first step in this process is to clearly understand the

business objective or challenge that you think ML can help you with. It is beneficial to

evaluate alternative solutions to ML to understand the cost and trade-offs. Sometimes it

is faster to go with a simple rule-based solution to start with. If a strong confidence has

established that ML is a better choice in terms of delivering valuable business insights

efficiently, quickly, and broadly across many scenarios without humans in the loop,

then proceed to the next step. After the problem is clearly understood, the next part is to

establish a set of success metrics that all stakeholders can agree on.

The next step is to identify and collect the necessary types of and an appropriate

amount of data to support the problem at hand. The quality and quantity of the collected

data will have a direct impact on the performance of the trained ML model. One

important point to keep in mind is to make sure the collected data is as much as possible

representative of the problem you are trying to solve. The phrase “garbage in, garbage out”

is still very much applicable in characterizing a key limitation in ML.

Feature engineering is one of the most important and time-consuming steps in

this process. This step is mainly about data cleaning and using domain knowledge

to identify key attributes or features about observations that will be useful to the ML

Figure 8-6. Machine learning application development process

Chapter 8 MaChine Learning with Spark

337

algorithms to learn the direct relationship between the training data and provided labels.

The data cleaning task is usually done using the exploratory data analysis framework

to gain a better understand of the data in terms of data distribution, correlations,

outliers, and so on. Feature engineering is a fairly expensive step because of the need of

involving humans in the loop and using their domain knowledge of the problem that is

being solved. DL has shown to be a superior learning method over ML because it can

automatically extract features with human intervention.

The next step after feature engineering is selecting an appropriate ML model or

algorithm and training it. Given that there are many available algorithms to solve similar

ML tasks, the question is, what is the best model or models to use? Like most things,

deciding on the best one requires a combination of having a good understanding of the

problem at hand, having good working knowledge of the various characteristics of each

algorithm, and having the experience to apply them to similar problems in the past. In

other words, it is half-science and half-art when it comes to selecting the best algorithm.

It may require some experimentation to arrive at the best algorithm. Once an algorithm

is selected, then let it learn from the data produced in the feature engineering step. The

expected output is a model, and you then proceed to perform model evaluation to see

how well it performs. The goal of all the previous steps is to produce a model that is

generalized, meaning that it performs well on data it has never seen before.

Another important step in the ML development process is the model evaluation

task. It is both necessary and challenging. The goal of this step is to not only answer the

question of how well a model performs but also to know when to stop tuning the model

because its performance has reached the established success metrics in the first step. The

evaluation process can be done offline and online. The former case refers to evaluating

the model using the training data, and the latter case refers to evaluating the model

using live or new data. There is a set of commonly used metrics to understand the model

performance, for example, precision, recalls, F1 score, AUC, and so on. The art part of

this step is to understand which metrics are applicable for certain ML tasks. The result of

the model performance determines whether to proceed to the production deployment

step or to go back to the step of collecting more data or a different type of data.

This information is meant to provide an overview of the ML development process

and not meant to be comprehensive. It can easily take a whole chapter to adequately

cover the inner details of each step and the best practices.

Chapter 8 MaChine Learning with Spark

338

 Spark Machine Learning Library
The remaining sections of this chapter will cover the main features inside the Spark

MLlib component and provide examples of applying ML algorithms in Spark to each of

the following ML tasks: classification, regression, clustering, and recommendations.

Note in the python world, scikit-learn is one of the most popular open source
machine learning libraries. it is built on top of the numpy, Scipy, and matplotlib
libraries, and it provides a set of supervised and unsupervised learning algorithms.
it is designed to be simple and efficient tool; therefore, it is a perfect tool to learn
and practice machine learning on a single machine. the moment the size of the
data exceeds the storage capacity of a single machine, that’s when it is time to
switch to Spark MLlib.

There are many ML libraries to choose from. In the era of big data, there are two

reasons to pick Spark MLlib over the other options. The first one is the ease of use.

Spark SQL provides a user-friendly way of performing data exploratory analysis, and the

MLlib library provides a means to build, manage, and persist complex ML pipelines.

The second reason is performing ML at scale. The combination of the Spark unified data

analytic engine and the MLlib library can support training machine learning models

with billions of observations and thousands of features.

 Machine Learning Pipelines
As you can see from the previous section, the ML process is essentially a pipeline that consists

of a series of steps that run in a sequential manner and that usually need to be repeated

several times to arrive at an optimal model. Aligning with the goal of making practical

machine learning easy, Spark MLlib provides a set of abstractions to help simplify the steps

of data cleaning, featuring engineering, model training, model tuning, and evaluation as well

as organizing them into a pipeline to make it easy to understand, maintain, and repeat. The

pipeline concept is actually inspired from the scikit-learn library mentioned earlier.

There are four main abstractions to form an end-to-end ML pipeline: transformers,

estimators, evaluators, and pipelines. They provide a set of standard interfaces to make

it easy to understand someone else’s pipeline. Figure 8-7 depicts the similarity between

the core steps in the ML process and the main abstractions MLlib provides.

Chapter 8 MaChine Learning with Spark

339

The one thing in common across these abstractions is that their inputs and output

are mostly DataFrames, which means it is necessary to convert the input data into a

DataFrame to work with these abstractions.

Note Like other components within the Spark unified data analytics engine,
MLlib is switching to DataFrame-based apis to provide more user-friendly apis
and to take advantage of the optimizations the Spark SQL engine provides. the
new apis are available in the package org.apache.spark.ml. the first MLlib
version was developed on rDD-based apis, and it is still supported, but it is in
maintenance mode only. the old apis are available in the package org.apache.
spark.mllib. Once the feature parity is reached, then the rDD-based apis will
be deprecated.

 Transformers

Transformers are designed to transform data in the DataFrame by manipulating one

or more columns during the feature engineering step and the model evaluation step.

The transforming process is in the context of building features that will be consumed by

the ML algorithm to learn. This process usually involves adding or removing columns

(features), converting the column values from text to numerical value, or normalizing

the values of a particular column.

There is a strict requirement about working with ML algorithms in MLlib; they

require all features to be in the Double data type, including the label.

Figure 8-7. Similarity between ML main steps and MLlib pipeline main concepts

Chapter 8 MaChine Learning with Spark

340

From a technical perspective, a transformer has a function called transform that

performs transformations on the input column, and the result is stored in the output

column. The input column and output column names can be specified during the

construction of a transformer. If they are not specified, the default column names

("inputCol", "outputCol") are used. Figure 8-8 depicts what a transformer looks like;

the shaded column in DF1 represents the input column, and the darker shaded column in

DF2 represents the output column.

There are many types of data transformations for each data type; therefore, it is not

surprising there are roughly about 30 transformers available in MLlib. Table 8-3 shows

the various transformers for each type of data transformation.

Figure 8-8. Transformer input and output

Table 8-3. Transformers for Different Transformation Types

Type Transformers

general SQLTransformer

VectorAssembler

numeric data Bucketizer

QuantileDiscretizer

StandardScaler

MixMaxScaler

MaxAbsScaler

Normalizer

text data IndexToString

OneHotEncoder

Tokenizer, RegexTokenizer

StopWordsRemover

NGram

HashingTF

Chapter 8 MaChine Learning with Spark

341

The following section will cover a few commonly used transformers.

The Binarizer transformer simply transforms the values of an input column

into two groups. The first group contains the values that are less than or equal to the

specified threshold, and the value in the output column will be zero. The value in the

output column will 1 for the other values. The input column must be of type double or

VectorUDT. Listing 8-1 transforms the temperature column values into two buckets.

Listing 8-1. Using the Binarizer Transformer to Convert the Temperature into

Two Buckets

import org.apache.spark.ml.feature.Binarizer

val arrival_data = spark.createDataFrame(Seq(("SFO", "B737", 18, 95.1, "late"),

 ("SEA", "A319", 5, 65.7, "ontime"),

 ("LAX", "B747", 15, 31.5, "late"),

 ("ATL", "A319", 14, 40.5, "late")))

 .toDF("origin", "model", "hour",

"temperature", "arrival")

val binarizer = new Binarizer().setInputCol("temperature")

 .setOutputCol("freezing")

 .setThreshold(35.6)

binarizer.transform(arrival_data).show

// show the current values of the parameters in binarizer transformer

binarizer.explainParams

inputCol: input column name (current: temperature)

outputCol: output column name (default: binarizer_60430bb4e97f__output,

current: freezing)

threshold: threshold used to binarize continuous features (default: 0.0,

current: 35.6)

// show the transformation result

binarizer.transform(arrival_data).select("temperature", "freezing").show

+------------+---------+

| temperature| freezing|

+------------+---------+

| 95.1| 1.0|

Chapter 8 MaChine Learning with Spark

342

| 65.7| 1.0|

| 31.5| 0.0|

| 40.5| 1.0|

+------------+---------+

The Bucketizer transformer is a general version of the Binarizer where it can

transform the column values into buckets of your choice. The way to control the number

of buckets as well as the range of values for each bucket is by specifying a list of bucket

borders in the form of an array of double values. This transformer is useful in the

scenario where the values of a column are continuous values, and you want to transform

them into an easier-to-understand representation. For example, you have a column that

contains the income amount of each person who lives in a particular state, and you want

to bucket their incomes into the following buckets: high income, middle income, low

income, and so on.

The value bucket border array must be of type double, and they must abide by the

following requirements:

• The smallest bucket border value must be less than the minimum

value in the input column in the DataFrame.

• The largest bucket border value must be greater than the maximum

value in the input column in the DataFrame.

• There must be at least three bucket borders in the input array, which

creates two buckets.

In the case of a person’s income, it is fairly easy to know the smallest income amount

is 0; then the smallest bucket border value can just be something less than 0. If it is not

possible to predict the minimum column value, then specify negative infinity. Similarly,

if it is not possible to predict the maximum column value, then specify positive infinity.

See Listing 8-2 for an example of using this transformer to bucket the temperature

column into three buckets, which means the bucket border array must contain at least

four values. The output is sorted by the temperature column to make it easier to see.

Listing 8-2. Using the Bucketizer Transformer to Convert the Temperature into

Three Buckets

import org.apache.spark.ml.feature.Bucketizer

val bucketBorders = Array(-1.0, 32.0, 70.0, 150.0)

Chapter 8 MaChine Learning with Spark

343

val bucketer = new Bucketizer().setSplits(bucketBorders)

 .setInputCol("temperature")

 .setOutputCol("intensity")

val output = bucketer.transform(arrival_data)

output.select("temperature", "intensity")

 .orderBy("temperature")

 .show

+------------+----------+

| temperature| intensity|

+------------+----------+

| 31.5| 0.0|

| 40.5| 1.0|

| 65.7| 1.0|

| 95.1| 2.0|

+------------+----------+

The OneHotEncoder transformer is commonly used when working with numeric

categorical values. If the categorical values are of string type, then first apply the

StringIndexer estimator to convert them to a numerical type. The OneHotEncoder

transformer essentially maps a numeric categorical value into a binary vector to

purposely remove the implicit ranking of the numeric categorical values. For example,

the following data represents student majors, and each major is assigned an ordinal

value, which seems to suggest a certain major is higher than the others. To remove such

unintended bias during the ML training step, this transformer is used to convert the

ordinal value into an vector. See Listing 8-3 for an example of using this transformer.

Listing 8-3. Using the OneHotEncoder Transformer to Convert the Ordinal

Value of the Categorical Values

import org.apache.spark.ml.feature.OneHotEncoder

val student_major_data = spark.createDataFrame(Seq(("John", "Math", 3),

 ("Mary", "Engineering", 2),

 ("Jeff", "Philosophy", 7),

 ("Jane", "Math", 3),

 ("Lyna", "Nursing", 4)))

Chapter 8 MaChine Learning with Spark

344

 .toDF("user", "major",

"majorIdx")

val oneHotEncoder = new OneHotEncoder().setInputCol("majorIdx")

 .setOutputCol("majorVect")

oneHotEncoder.transform(student_major_data).show()

+----+------------+---------+---------------+

|user| major| majorIdx| majorVect|

+----+------------+---------+---------------+

|John| Math| 3| (7,[3],[1.0])|

|Mary| Engineering| 2| (7,[2],[1.0])|

|Jeff| Philosophy| 7| (7,[],[])|

|Jane| Math| 3| (7,[3],[1.0])|

|Lyna| Nursing| 4| (7,[4],[1.0])|

+----+------------+---------+---------------+

Another common need when working with string categorical values is to convert

them into ordinal values, which can be done using the StringIndexer estimator. This

estimator will be described in the “Estimators” section.

There are many interesting machine learning use cases where the input is in free-

form text. It requires a few transformations to convert free-form text into a numerical

representation that ML algorithms can consume. Among them are tokenization and

counting word frequency.

Most likely you can guess what the Tokenizer transformer does. It performs the

tokenization on a string of words that are separated by spaces and returns an array of

words. If there is a need to perform tokenization with a different delimiter, then you can

use RegexTokenizer. See Listing 8-4 for an example of using the Tokenizer transformer.

Listing 8-4. Using the Tokenizer Transformer to Perform Tokenization

import org.apache.spark.ml.feature.Tokenizer

import org.apache.spark.sql.functions._

val text_data = spark.createDataFrame(Seq(

 (1, "Spark is a unified data analytics

engine"),

 (2, "It is fun to work with Spark"),

Chapter 8 MaChine Learning with Spark

345

 (3, "There is a lot of exciting

sessions at upcoming Spark summit"),

 (4, "mllib transformer estimator

evaluator and pipelines"))

).toDF("id", "line")

val tokenizer = new Tokenizer().setInputCol("line").setOutputCol("words")

val tokenized = tokenizer.transform(text_data)

tokenized.select("words").withColumn("tokens", size(col("words"))).

show(false)

+---+

| words | tokens|

+---+

|[spark, is, a, unified, data, analytics, engine] | 7|

|[spark, is cool, and, it, is, fun, to, work, with, | 11|

|[there, is, a, lot, of, exciting, sessions, at,

upcoming, spark, summit] | 11|

|[mllib, transformer, estimator, evaluator, and, pipelines] | 6|

+---+

Stop words are the commonly used words in a language. In the context of natural

language processing or machine learning, stop words tend to add unnecessary

noises rather than provide any meaningful contributions. Therefore, it is common

that the stop word removal step is done immediately after the tokenization step. The

StopWordsRemover transformer is designed to help with this step. As of Spark 2.3,

the stop words for the following languages are included in the Spark distribution for

you to use: Danish, Dutch, English, Finnish, French, German, Hungarian, Italian,

Norwegian, Portuguese, Russian, Spanish, Swedish, and Turkish. It is designed to be

flexible such that it can use a set of user-provided stop words by reading them from

a provided directory path. To use the stop words of a particular language, first call

StopWordsRemover.loadDefaultStopWords(<language in lower case>) to load

them and then provide them to an instance of StopWordsRemover. Additionally, you

can request this transformer to perform stop word filtering with case insensitivity if

necessary. See Listing 8-5 for an example of using the StopWordsRemover transformer to

remove English stop words.

Chapter 8 MaChine Learning with Spark

346

Listing 8-5. Using the StopWordsRemover Transformer to Remove English Stop

Words from the Words in the Tokenization Example

import org.apache.spark.ml.feature.StopWordsRemover

val enStopWords = StopWordsRemover.loadDefaultStopWords("english")

val remover = new StopWordsRemover().setStopWords(enStopWords)

 .setInputCol("words")

 .setOutputCol("filtered")

// use the tokenized from Listing 8-5 example

val cleanedTokens = remover.transform(tokenized)

cleanedTokens.select("words","filtered").show(false)

The HashingTF transformer is used to transform the words into a numeric

representation by computing the frequency of each word in each line. Each word is

mapped into an index by applying a hash function called MurmurHash3. This approach is

efficient, but it suffers from a potential hash collision, meaning multiple words may map

into the same index. One way to minimize the collision is by specifying a large number

of buckets that is a power of 2 to help with evenly distributing the words. The example

in Listing 8-6 will feed the filtered column from the example in Listing 8-6 into the

HashingTF transformer.

Listing 8-6. Using the HashingTF Transformer to Transform Words into a

Numerical Representation via Hashing and Counting

import org.apache.spark.ml.feature.HashingTF

val tf = new HashingTF().setInputCol("filtered")

 .setOutputCol("TFOut")

 .setNumFeatures(4096)

val tfResult = tf.transform(cleanedTokens)

tfResult.select("filtered", "TFOut").show(false)

Chapter 8 MaChine Learning with Spark

347

The last transformer this section covers is VectorAssembler, which simply combines

a set of columns into a vector column. In machine learning terminology, that is the

equivalent of combining individual features into single-vector features for the ML

algorithm to learn. The type of the individual input column must be one of the following

types: numeric, boolean, or vector. The output vector column contains the values of all

the columns in the specified order. This transformer is used practically in every single

ML pipeline, and its output will be passed into an estimator. See Listing 8-7 for an

example of using the VectorAssembler transformer.

Listing 8-7. Using the VectorAssembler Transformer to Combine Features into a

Vector Feature

import org.apache.spark.ml.feature.VectorAssembler

val arrival_features = spark.createDataFrame(Seq(

 (18, 95.1, true),

 (5, 65.7, true), (15, 31.5,

false),

 (14, 40.5, false)))

 .toDF("hour", "temperature",

"on_time")

val assembler = new VectorAssembler().setInputCols(Array("hour",

"temperature", "on_time"))

 .setOutputCol("features")

val output = assembler.transform(arrival_features)

output.show

+-----+------------+--------+----------------+

| hour| temperature| on_time| features|

+-----+------------+--------+----------------+

| 18| 95.1| true| [18.0,95.1,1.0]|

| 5| 65.7| true| [5.0,65.7,1.0]|

Chapter 8 MaChine Learning with Spark

348

| 15| 31.5| false| [15.0,31.5,0.0]|

| 14| 40.5| false| [14.0,40.5,0.0]|

+-----+------------+--------+----------------+

Knowing how the transformers work and the available transformers in MLlib plays

an important role in the feature engineering step of the ML development process.

Generally, the output of a VectorAssembler transformer will be consumed by an

estimator, which will be covered in the next section.

 Estimators

The next concept is the estimators, which are an abstraction for either an ML learning

algorithm that trains on data or any other algorithm that operates on data. It is rather

confusing that an estimator can be one of two kinds of algorithm. An example of the first

type is the ML algorithm called LinearRegression, which is used for a regression task

such as predicting house prices. An example of the second algorithm is StringIndexer,

which encodes categorical values of a column into indices, such that the index value for

each categorical value is based on the frequency it appears in the entire input column

of a DataFrame. At a high level, this kind of estimator transforms the values of a column

into another column; however, it requires two passes over the entire DataFrame to

produce the expected output.

From a technical perspective, an estimator has a function called fit that applies an

algorithm on the input column, and the result is encapsulated in an object type called

Model, which is a Transformer type. The input column and output column names can be

specified during the construction of an estimator. Figure 8-9 depicts what an estimator

looks like and its input and output.

To give a sense of the two types of estimator, Table 8-4 provides a subset of the

available estimators in MLlib.

Figure 8-9. Estimator and its input and output

Chapter 8 MaChine Learning with Spark

349

The following section provides a few examples of commonly used estimators when

working with text and numeric data.

RFormula is an interesting and general-purpose estimator where the transformation

logic is expressed declaratively. It can handle both numeric and categorial values, and

the output it produces is a vector of features. MLlib borrows the idea of this estimator

from the R language, and currently it supports only a subset of the operators available in

R. The basic and supported operators are listed in Table 8-5. It will take a little bit of time

to understand the transformation language to take full advantage of the flexibility and

power of the RFormula estimator.

Table 8-4. Sample of Available Estimators in MLlib

Type Estimators

Machine learning algorithms Logisticregression

DecisiontreeClassifier

randomForestClassifier

Linearregression

randomForestregressor

kMeans

LDa

BisectingkMeans

Data transformation algorithms iDF

rFormula

Stringindexer

Onehotencoderestimator

StandardScaler

MixMaxScaler

MaxabsScaler

word2Vec

Chapter 8 MaChine Learning with Spark

350

The following example specifies the label is the arrival column and uses all the

remaining columns as features. In addition, it creates a new feature using the interaction

between the hour and temperature columns. Since these two columns are of numeric

type, their values will be multiplied. Listing 8-8 contains the code for the example

described earlier.

Listing 8-8. Using the RFomula Transformer to Create a Feature Vector

import org.apache.spark.ml.feature.RFormula

val arrival_data = spark.createDataFrame(Seq(("SFO", "B737", 18, 95.1, "late"),

 ("SEA", "A319", 5, 65.7, "ontime"),

 ("LAX", "B747", 15, 31.5, "late"),

 ("ATL", "A319", 14, 40.5, "late")))

 .toDF("origin", "model", "hour",

"temperature", "arrival")

val formula = new RFormula().setFormula("arrival ~ . + hour:temperature")

 .setFeaturesCol("features")

 .setLabelCol("label")

// call fit function first, which returns a model (type of transformer),

then call transform

val output = formula.fit(arrival_data).transform(arrival_data)

output.select("*").show(false)

Table 8-5. Supported Operators in the RFormula Transformer

Operator Description

~ Delimiter between the target and the terms.

+ Concatenate terms.

- remove a term.

: interaction between other terms to create new feature. Multiplication will be used for

numeric value and binarized for categorical values.

. all columns except the target.

Chapter 8 MaChine Learning with Spark

351

One of the commonly used estimators for working with text is the IDF estimator.

Its name is an acronym for inverse document frequency. This estimator is often used

right after the text is tokenized and term frequency is computed. The idea behind this

estimator is to compute the importance or weight of each word by counting the number

of documents it appears in. The intuition behind this idea is that a word with high

occurrence and wide prevalence would be less important, for example, the word the.

Inversely, a word with high occurrence and appearing in only a few documents would

indicate a higher importance, for example, the world classification. In the context of a

DataFrame, a document refers to a row. A keen reader would figure out that it requires

going through every single row in order to compute the importance of each word, and

therefore IDF is an estimator, not a transformer. The example in Listing 8-9 will chain

the Tokenizer and HashingTF transformers together with the IDF estimator. The fit

function of an estimator is an eager evaluation function that will trigger job.

Listing 8-9. Using the IDF Estimator to Compute the Weight of Each Word

import org.apache.spark.ml.feature.Tokenizer

import org.apache.spark.ml.feature.HashingTF

import org.apache.spark.ml.feature.IDF

val text_data = spark.createDataFrame(Seq(

 (1, "Spark is a unified data analytics

engine"),

 (2, "Spark is cool and it is fun to

work with Spark"),

 (3, "There is a lot of exciting

sessions at upcoming Spark summit"),

 (4, "mllib transformer estimator

evaluator and pipelines"))

).toDF("id", "line")

Chapter 8 MaChine Learning with Spark

352

val tokenizer = new Tokenizer().setInputCol("line")

 .setOutputCol("words")

// the output column of the Tokenizer transformer is the input to HashingTF

val tf = new HashingTF().setInputCol("words")

 .setOutputCol("wordFreqVect")

 .setNumFeatures(4096)

val tfResult = tf.transform(tokenizer.transform(text_data))

// the output of the HashingTF transformer is the input to IDF estimator

val idf = new IDF().setInputCol("wordFreqVect")

 .setOutputCol("features")

// since IDF is an estimator, call the fit function

val idfModel = idf.fit(tfResult)

// the returned object is a Model, which is of type Transformer

val weightedWords = idfModel.transform(tfResult)

weightedWords.select("label", "features").show(false)

weightedWords.printSchema

 |-- id: integer (nullable = false)

 |-- line: string (nullable = true)

 |-- words: array (nullable = true)

 | |-- element: string (containsNull = true)

 |-- wordFreqVect: vector (nullable = true)

 |-- features: vector (nullable = true)

// the feature column contains a vector for the weight of each word, since

it is long, the output is not included //below

weightedWords.select("wordFreqVect", "features").show(false)

A good estimator to know when working with text data that contains categorical values

is the StringIndexer estimator. It encodes a categorical value into an index based on its

frequencies such that the most frequent categorical value gets an index value of 0 and so

on. For this estimator to come up with an index value for a categorical value, it first has to

count the frequency of each one of those and finally assign an index value; in other words,

it must see all the values of the input column in the DataFrame. If the input column is

Chapter 8 MaChine Learning with Spark

353

numeric, this estimator will cast it string type before computing its frequency. Listing 8-10

provides an example of using the StringIndexer estimator to encode the movie genre.

Listing 8-10. Using the StringIndex Estimator to Encode the Movie Genre

import org.apache.spark.ml.feature.StringIndexer

val movie_data = spark.createDataFrame(Seq(

 (1, "Comedy"),

 (2, "Action"),

 (3, "Comedy"),

 (4, "Horror"),

 (5, "Action"),

 (6, "Comedy"))

).toDF("id", "genre")

val movieIndexer = new StringIndexer().setInputCol("genre")

 .setOutputCol("genreIdx")

// first fit the data

val movieIndexModel = movieIndexer.fit(movie_data)

// use returned transformer to transform the data

val indexedMovie = movieIndexModel.transform(movie_data)

indexedMovie.orderBy("genreIdx").show()

+---+-------+---------+

| id| genre| genreIdx|

+---+-------+---------+

| 3| Comedy| 0.0|

| 6| Comedy| 0.0|

| 1| Comedy| 0.0|

| 5| Action| 1.0|

| 2| Action| 1.0|

| 4| Horror| 2.0|

+---+-------+---------+

As shown earlier, this estimator assigns the index based on the descending

order of the frequency. This default behavior can be easily changed to ascending

order of the frequency; in fact, it supports two other ordering types: descending

Chapter 8 MaChine Learning with Spark

354

alphabet and ascending alphabet. To change the default ordering type, simply call the

setStringOrderType("<ordering type>") function with one of the following values:

frequencyDesc, frequencyAsc, alphabetDesc, alphabetAsc.

Another useful estimator for working with categorical values is OneHotEncoderEstimator,

which encodes the index of a categorical value as a binary vector. The OneHotEncoder

transformer has been deprecated starting with Spark 2.3.0 because of its stateless nature,

which makes it not usable on new testing data where the number of categories may differ

from the training data. This estimator is often used in conjunction with the StringIndexer

estimator where the output of StringIndexer becomes the input of this estimator. Listing 8-11

demonstrates using StringIndexer and OneHotEncoderEstimator together.

Listing 8-11. OneHotEncoderEstimator Consumes the Output of the

StringIndexer Estimator

import org.apache.spark.ml.feature.OneHotEncoderEstimator

// the input column genreIdx is the output column of StringIndex in

listing 8-9

val oneHotEncoderEst = new OneHotEncoderEstimator().setInputCols

(Array("genreIdx"))

 .setOutputCols(Array("genreIdxVector"))

// fit the indexedMovie data produced in listing 8-10

val oneHotEncoderModel = oneHotEncoderEst.fit(indexedMovie)

val oneHotEncoderVect = oneHotEncoderModel.transform(indexedMovie)

oneHotEncoderVect .orderBy("genre").show()

+---+-------+---------+---------------+

| id| genre | genreIdx| genreIdxVector|

+---+-------+---------+---------------+

| 5| Action| 1.0| (2,[1],[1.0])|

| 2| Action| 1.0| (2,[1],[1.0])|

| 3| Comedy| 2.0| (2,[],[])|

| 6| Comedy| 2.0| (2,[],[])|

| 1| Comedy| 2.0| (2,[],[])|

| 4| Horror| 0.0| (2,[0],[1.0])|

+---+--------+--------+---------------+

Chapter 8 MaChine Learning with Spark

355

Another interesting estimator to know when working in free text is the Word2Vec

estimator, which stands for words to vector. This estimator utilizes a well-known

technique, called word embeddings, that converts word tokens into numeric vector

representations such that semantically similar words are mapped to nearby points. The

intuition behind this technique is that similar words tend to occur together and have

similar context. In other words, two different words that have similar neighboring words

are probably quite similar in meaning or are related. This technique has proven to be

quite effective in a number of natural language processing applications such as word

analogies, word similarities, entity recognition, and machine translation.

The Word2Vec estimator has a few important configurations, and appropriate values

need to be provided to control the output that is based on the input. Table 8-6 describes

the configurations.

The example in Listing 8-12 demonstrates how to use the Word2Vec estimator and

shows how to find similar words.

Listing 8-12. Using the Word2Vec Estimator to Compute Word Embeddings and

Find Similar Words

import org.apache.spark.ml.feature.Word2Vec

val documentDF = spark.createDataFrame(Seq(

 "Unified data analytics engine Spark".

split(" "),

 "People use Hive for data analytics".

split(" "),

Table 8-6. Word2Vec Configurations

Name Default Value Description

vectorSize 100 this is the size of the output vector.

windowSize 5 this is the number of words to be used as the context.

minCount 5 this is the minimum number of times a token must appear

to be included in the output.

maxSentenceLength 1000 this specifies interaction between other terms to create a

new feature. Multiplication will be used for numeric values,

and binarized will be used for categorical values.

Chapter 8 MaChine Learning with Spark

356

 "MapReduce is not fading away".split(" ")

).map(Tuple1.apply)).toDF("word")

val word2Vec = new Word2Vec().setInputCol("word")

 .setOutputCol("feature") .setVectorSize(3)

.setMinCount(0)

val model = word2Vec.fit(documentDF)

val result = model.transform(documentDF)

result.show(false)

// find similar words to Spark, the result shows both Hive and MapReduce

are similar.

model.findSynonyms("Spark", 3).show

+----------+-------------------+

| word| similarity|

+----------+-------------------+

| engine| 0.9133241772651672|

| MapReduce| 0.7623026967048645|

| Hive| 0.7179173827171326|

+----------+-------------------+

// find similar words to Hive, the result shows Spark is similar

model.findSynonyms("Hive", 3).show

+-------+--------------------+

| word| similarity|

+-------+--------------------+

| Spark| 0.7179174423217773|

| fading| 0.5859972238540649|

| engine| 0.43200281262397766|

+-------+--------------------+

Chapter 8 MaChine Learning with Spark

357

The next estimators are about normalizing and standardizing numeric data. The

reason for using these estimators is to ensure that learning algorithms that use distance

as a measure don’t place more weight on a feature with large values than another feature

with smaller values.

Normalizing numeric data is the process of mapping its original range into a range

from zero to one. This is especially helpful when observations have more than one

attribute with different ranges. For example, say you have an employee’s salary and

their height. The value for salary is in the thousands, and the value for height is a single

digit. This is what the MinMaxScaler estimator is designed for. This estimator linearly

rescales each feature (column) individually to a common range of values of min and max

using the column summary statistics. If the min value is 0.0 and max value is 3.0, then

all the values will fall in that range. Listing 8- 13 provides an example of working with

MinMaxScaler using the employee_data dataset that has salary and height information.

The magnitude between the values of these two features is pretty big, but after running

through the MinMaxScaler, that is not the case anymore.

Listing 8-13. Using MinMaxScaler to Rescale Features

import org.apache.spark.ml.feature.MinMaxScaler

import org.apache.spark.ml.linalg.Vectors

val employee_data = spark.createDataFrame(Seq(

 (1, Vectors.dense(125400, 5.3)),

 (2, Vectors.dense(179100, 6.9)),

 (3, Vectors.dense(154770, 5.2)),

 (4, Vectors.dense(199650, 4.11))))

 .toDF("empId", "features")

val minMaxScaler = new MinMaxScaler().setMin(0.0)

 .setMax(5.0)

 .setInputCol("features")

 .setOutputCol("scaledFeatures")

val scalerModel = minMaxScaler.fit(employee_data)

val scaledData = scalerModel.transform(employee_data)

println(s"Features scaled to range: [${minMaxScaler.getMin},

${minMaxScaler.getMax}]")

Chapter 8 MaChine Learning with Spark

358

Features scaled to range: [0.0, 5.0]

scaledData.select("features", "scaledFeatures").show(false)

+----------------+--+

| features| scaledFeatures|

+----------------+--+

| [125400.0,5.3]| [0.0,2.1326164874551963]|

| [179100.0,6.9]| [3.616161616161616,5.0]|

| [154770.0,5.2]| [1.9777777777777779,1.9534050179211468]|

| [199650.0,4.11]| [5.0,0.0]|

+----------------+--+

Besides the numeric data normalizing, another operation that is often used for

working with numeric data is called standardization. This operation is especially

applicable when the numeric data has a distribution that is closed to a bell-shaped curve.

The standardization operation can help shift the data to a normalized form where data

will be in a range of -1 and 1, with a mean of 0. The reason for doing this is to help certain

ML algorithms work better when the data has a good distribution around the mean of 0.

The StandardScaler estimator is designed for the standardization operation. The

example in Listing 8-14 uses the same input data set as in Listing 8-13. The output shows

the values of the features are now centered around 0, with one unit of standard deviation.

Listing 8-14. Use StandardScaler to Standardize the Features Around the Mean

of Zero

import org.apache.spark.ml.feature.StandardScaler

import org.apache.spark.ml.linalg.Vectors

val employee_data = spark.createDataFrame(Seq(

 (1, Vectors.dense(125400, 5.3)),

 (2, Vectors.dense(179100, 6.9)),

 (3, Vectors.dense(154770, 5.2)),

 (4, Vectors.dense(199650, 4.11))))

 .toDF("empId", "features")

// set the unit standard deviation to true and center around the mean

val standardScaler = new StandardScaler().setWithStd(true)

 .setWithMean(true)

Chapter 8 MaChine Learning with Spark

359

 .setInputCol("features")

 .setOutputCol("scaledFeatures")

val standardMode = standardScaler.fit(employee_data)

val standardData = standardMode.transform(employee_data)

standardData.show(false)

+------+----------------+---+

| empId| features| scaledFeatures|

+------+----------------+---+

| 1| [125400.0,5.3]| [-1.2290717420781212,-0.06743742573177587]|

| 2| [179100.0,6.9]| [0.4490658767775897,1.3248191055048935]|

| 3| [154770.0,5.2]| [-0.3112523404805006,-0.15445345893406737]|

| 4| [199650.0,4.11]| [1.091258205781032,-1.102928220839048]|

+------+----------------+---+

There are many more estimators available in MLlib to perform numerous data

transformations and mappings, and they all follow a standard abstraction that fits the

input data and produces an instance of a model. The previous examples are meant to

illustrate how to work with these estimators. Examples of the second kind of estimators,

which are about ML algorithms, will be covered in the following sections.

 Pipeline

In machine learning, it is common to run a sequence of steps to clean and transform

data, then train one or more ML algorithms to learn from the data, and finally tune the

model to achieve the best possible performance. The pipeline abstraction in MLlib is

designed to make this workflow easier to develop and maintain. From the technical

perspective, MLlib has a class called Pipeline, which is designed to manage a series of

stages, and each one is represented by PipelineStage. A PipelineStage can be either a

transformer or an estimator. The abstraction Pipeline is a type of estimator.

The first step in setting up a pipeline is to create a series of stages and then create an

instance class Pipeline and configure it with an array of stages. The Pipeline will run

those stages in the specified order. If a stage is a transformer, the transform() function

is called. If a stage is an estimator, the fit() function is called to produce a transformer,

and its tranform() function is called. Let’s walk through a small workflow of processing

text using the transformer and estimators covered in the previous sections. The small

Chapter 8 MaChine Learning with Spark

360

pipeline depicted in Figure 8-10 consists of two transformers and one estimator. When

the Pipeline.fit() function is called, the input DataFrame that contains raw text

will be passed into the Tokenizer transformer, and its output will be passed into the

HashingTF transformer, which converts the words into features. The Pipeline recognizes

that LogisticRegression is an estimator, so it will invoke the fit function with the

computed features to produce a LogisticRegressionModel.

The code for the Pipeline depicted in Figure 8-10 is in Listing 8-15. Remember a

Pipeline abstraction is an estimator. So once an instance of Pipeline is created and

configured, the fit() function must be called with the training data as the input to

trigger the execution of the stages, and it will be an instance of PipelineModel, which is

a type of transformer. At this point, you can call the transform() function with the test

data to perform predictions.

MLlib provides a feature called ML persistence that makes it easy to persist a pipeline

or a model to disk and load it later for use. The cool thing is the persistence feature is

designed to save the information in a language-neutral format such that a pipeline or

model that is persisted in Scala can be read back in Java or Python, and vice versa.

Real-life production pipelines consist of many stages. When the number of stages

gets large, it is difficult to understand the flow as well as challenging to maintain. MLlib

pipeline abstraction can really help with these areas. Another key point to note is that

both the Pipeline and PipelineModel objects are designed to help ensure both the

training and test data flow through identical feature processing steps.

Listing 8-15. Using a Pipeline to Create a Small Workflow

import org.apache.spark.ml.{Pipeline, PipelineModel}

import org.apache.spark.ml.classification.LogisticRegression

import org.apache.spark.ml.feature.{HashingTF, Tokenizer}

Figure 8-10. Example of a small pipeline

Chapter 8 MaChine Learning with Spark

361

val text_data = spark.createDataFrame(Seq(

 (1, "Spark is a unified data analytics

engine", 0.0),

 (2, "Spark is cool and it is fun to work

with Spark", 0.0),

 (3, "There is a lot of exciting sessions

at upcoming Spark summit", 0.0),

 (4, "signup to win a million dollars",

0.0))

).toDF("id", "line", "label")

val tokenizer = new Tokenizer().setInputCol("line").setOutputCol("words")

val hashingTF = new HashingTF().setInputCol(tokenizer.getOutputCol)

 .setOutputCol("features")

 .setNumFeatures(4096)

val logisticReg = new LogisticRegression().setMaxIter(5)

 .setRegParam(0.01)

val pipeline = new Pipeline().setStages(Array(tokenizer, hashingTF,

logisticReg))

val logisticRegModel = pipeline.fit(text_data)

// persist model and pipeline

logisticRegModel.write.overwrite().save("/tmp/logistic-regression-model")

pipeline.write.overwrite().save("/tmp/logistic-regression-pipeline")

// load model and pipeline

val prevModel = PipelineModel.load("/tmp/spark-logistic-regression-model")

val prevPipeline = Pipeline.load("/tmp/logistic-regression-pipeline")

 Model Tuning

The goal of the model tuning step is to train a model with the right set of parameters

to achieve the best performance to meet the object defined in the first step of the ML

development process. This step is usually tedious, repetitive, and time-consuming

because it may involve trying different ML algorithms or a few sets of parameters.

The purpose of this section is to describe a few tools MLlib provides to help with the

Chapter 8 MaChine Learning with Spark

362

laborious part of the model tuning step. It is not the intention of this section to show how

to perform model tuning.

Before going into the details of the two tools that MLlib provides, let’s first have a

clear understanding of the following terminologies, where one of them is an input to the

model tuning process.

• Model hyperparameters are

• Configurations that are used to govern the machine learning

algorithm training process

• Configurations that are external to the model and can’t be

learned from the training data

• Configurations that are provided by the machine learning

practitioners before the training process starts

• Configurations that are tuned for a given machine learning task

through an iterative manner

• Model parameters are

• Properties that are not provided by the machine learning

practitioners

• Properties of the training data that are learned during the training

process

• Properties that will be optimized during the training process

• Properties of the model that are used to perform predictions

Examples of model hyperparameters include the number of clusters in the K-means

clustering algorithm or the amount of regularization to apply in the logistic regression

algorithm or the learning rate.

Examples of the model parameters include the coefficients in a linear regression

model or the branch locations in the decision tree model.

The two commonly used classes in MLlib to help with model tuning are

CrossValidator and TrainValidationSplit, and both them are of type Estimator.

These classes are also known as validators. They both require the following inputs for

them to work properly:

Chapter 8 MaChine Learning with Spark

363

• The first input is about specifying what needs to be tuned, which can

be either an ML algorithm or an instance of Pipeline. In other words,

it must be of type Estimator.

• The second input is a set parameters to be used to tune the provided

estimator. These parameters are also known as a parameter

grid to search to find the best model. A convenient utility called

ParagramGridBuilder is available to help with building the

parameter grid.

• The last input is an evaluator to evaluate the performance of a

model based on the held-out test data. For each different machine

learning task, MLlib provides a specific evaluator, which can

produce one or more evaluation metrics for you to understand the

model performance. Commonly used machine learning metrics are

supported, such as root mean square error, precision, recall, and

accuracy.

At a high level, the aforementioned validators will perform the following steps with

the given inputs:

 1. The input data that contains the features is split into training and

test based on the specified ratio.

 2. For each training and test pair, the following steps are applied to

each pair.

• For each combination in the “parameter grid,” the given estimator

is fitted with the training data and the parameter combination.

The output model is then evaluated by the specified evaluator

against the test data. The performance metric is recorded and

compared.

 3. The model producing the best performance is returned along with

the set of parameters that was used.

The previous steps are illustrated in Figure 8-11, which makes it easier to visualize

what’s going on inside the validator.

Chapter 8 MaChine Learning with Spark

364

The first validator I am going to discuss is TrainValidationSplit, which splits

the given input data into a training and validation dataset pair based on the specified

ratio and then trains and evaluates the dataset pair against each of the parameter

combinations. For example, if the given parameter set has six combinations, then the

given estimator is trained and evaluated six times, each time with a different parameter

combination. Listing 8-16 provides an example of using TrainValidationSplit to tune

a linear regression estimator with a parameter grid of six parameter combinations. Since

the focus of this example is about TrainValidationSplit, there is an assumption that

the feature engineering has already been done to the input data and it has a column

called features.

Listing 8-16. Example of TrainValidationSplit

import org.apache.spark.ml.{Pipeline, PipelineModel}

import org.apache.spark.ml.classification.LogisticRegression

import org.apache.spark.ml.feature.{HashingTF, Tokenizer}

import org.apache.spark.ml.tuning.{ParamGridBuilder, TrainValidationSplit}

import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator

val text_data = spark.createDataFrame(Seq(

 (1, "Spark is a unified data analytics

engine", 0.0),

 (2, "Spark is cool and it is fun to work

with Spark", 0.0),

 (3, "There is a lot of exciting sessions

at upcoming Spark summit", 0.0),

Figure 8-11. Inside a validator

Chapter 8 MaChine Learning with Spark

365

 (4, "signup to win a million dollars",

0.0))

).toDF("id", "line", "label")

val tokenizer = new Tokenizer().setInputCol("line").setOutputCol("words")

val hashingTF = new HashingTF().setInputCol(tokenizer.getOutputCol)

 .setOutputCol("features")

val logisticReg = new LogisticRegression().setMaxIter(5)

val pipeline = new Pipeline().setStages(Array(tokenizer, hashingTF,

logisticReg))

// the first parameter has 3 values and second parameter has 2 values,

// therefore the total parameter combinations is 6

val paramGrid = new ParamGridBuilder().addGrid(hashingTF.numFeatures,

Array(10, 100, 250))

 .addGrid(logisticReg.regParam,

Array(0.1, 0.05))

 .build()

// setting up the validator with required inputs - estimator, evaluator,

parameter grid and train ratio

val trainValidationSplit = new TrainValidationSplit().

setEstimator(pipeline)

 .setEvaluator(new

BinaryClassificationEvaluator)

 .setEstimatorParamMaps(paramGrid)

 .setTrainRatio(0.8)

// train the linear regression estimator

val model = trainValidationSplit.fit(training)

The next validator I will discuss is the CrossValidator, which is an implementation

of a widely used technique in the machine learning practitioner community to help

with the model tuning step. This technique maximizes the amount of data for training

and validation by randomly dividing the observations into k groups, or folds, of

approximately the same size. The first fold is used for validation purposes, and the

remaining folds are used for training purposes. This process is repeated k times, and

Chapter 8 MaChine Learning with Spark

366

each time the estimator is trained and evaluated against randomly divided training and

validation folds. Figure 8-12 illustrates this process. The k value is chosen such that each

training and validation group is statistically representative of the available observation,

and each fold has roughly the same amount of sample data.

One must be mindful about the expensiveness of using this validator with a

sizeable number of parameter combinations. This is because each experiment

described in Figure 8-12 is performed against each the parameter combinations.

For example, if k is 4 and the number of parameter combination is 6, then the total

number of times the estimator will be trained and evaluated is 24. Listing 8-17 replaces

TrainValidationSplit in 8-16 with an instance of CrossValidator that is configured

with a k value of 2. In practice, the value for k is usually is 10 or higher. The example in

Listing 8-17 ends up training and evaluating the estimator 12 times.

Listing 8-17. Example of CrossValidator

import org.apache.spark.ml.tuning.CrossValidator

val crossValidator = new CrossValidator().setEstimator(pipeline)

 . setEvaluator(new

BinaryClassificationEvaluator)

 .setEstimatorParamMaps(paramGrid)

 .setNumFolds(2)

val model = crossValidator.fit(text_data)

Figure 8-12. K-fold example with k=4

Chapter 8 MaChine Learning with Spark

367

 Machine Learning Tasks in Action
This section tries to bring all the concepts and tools that MLlib provides together and

apply them by working through the following machine learning tasks: classification,

regression, and recommendation. By working through the machine learning

development process with real datasets, ideally it will become more obvious as to how all

the pieces fit, and it is always good to see the working code.

This section is not meant to comprehensively cover the hyperparameters of each

machine learning algorithm, and the model tuning step is left as an exercise for you.

 Classification
Classification is one of the most widely studied and used machine learning tasks because

of its ability to help solve many real-life classification-related problems. For example, is

this a fraudulent credit card transaction? Is this email a spam email? Is this an image of a

cat or dog or bird?

There are three types of classification.

• Binary classification: This is where the label to predict has only two

possible classes (for example, fraud or not fraud, conference paper is

accepted or not, tumor is benign or malignant).

• Multiclass classification: This is where the label to predict has more

than two possible classes (for example, whether an image is a dog,

cat, or bird).

• Multilabel classification: This is where each observation can belong

to more than one class. Movie genres are a good example of this.

A movie can be classified as both action and comedy. MLlib doesn’t

natively support this type of classification.

MLlib provides a few machine learning algorithms for the classification tasks. They

are listed here:

• Logistic regression

• Decision tree

• Random forest

• Gradient-boosted tree

Chapter 8 MaChine Learning with Spark

368

• Linear support vector machine

• One versus rest

• Naïve Bayes

 Model Hyperparameters

The logistic regression algorithm will be used in the following example, and the

following is a subset of its model hyperparameters. Every single model hyperparameter

has a default value.

• family: The possible values are auto, binomial, and multinomial.

The default value is auto, which means the algorithm will

automatically select the family to be either binomial or multinomial

based on the values in the label column. binomial is for binary

classification. multinomial is for the multiclass classification.

• regParam: This is the regularization parameter that is used to control

the overfitting. The default value is 0.0.

 Example

The following example tries to predict which Titanic passengers survived the tragedy.

This is a binary classification machine learning problem, and as a starting point the

logistic regression algorithm is the chosen algorithm. This example is based on a

competition on kaggle.com, and the information and the data are available at https://

www.kaggle.com/c/titanic. The data is provided in CSV format, and there are two files:

train.csv and test.csv. The train.csv file contains the label column.

The provided data contains many interesting features; however, the code in

Listing 8-18 will use only age, gender, and ticket_class as features.

Listing 8-18. Using the Logistic Regression Algorithm to Predict the Survival of

Titanic Passengers

import org.apache.spark.ml.Pipeline

import org.apache.spark.ml.feature.StringIndexer

import org.apache.spark.ml.feature.VectorAssembler

import org.apache.spark.ml.classification.LogisticRegression

import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator

Chapter 8 MaChine Learning with Spark

https://www.kaggle.com/c/titanic
https://www.kaggle.com/c/titanic

369

val titanic_data = spark.read.format("csv").option("header", "true")

 .option("inferSchema","true")

 .load("/<folder>/train.csv")

// explore the schema

titanic_data.printSchema

 |-- PassengerId: integer (nullable = true)

 |-- Survived: integer (nullable = true)

 |-- Pclass: integer (nullable = true)

 |-- Name: string (nullable = true)

 |-- Sex: string (nullable = true)

 |-- Age: double (nullable = true)

 |-- SibSp: integer (nullable = true)

 |-- Parch: integer (nullable = true)

 |-- Ticket: string (nullable = true)

 |-- Fare: double (nullable = true)

 |-- Cabin: string (nullable = true)

 |-- Embarked: string (nullable = true)

// to start out with, we will use only three features

// filter out rows where age is null

val titanic_data1 = titanic_data.select('Survived.as("label"), 'Pclass.

as("ticket_class"),

 'Sex.as("gender"), 'Age.as("age"))

 .filter('age.isNotNull)

// split the data into training and test with 80% and 20% split

val Array(training, test) = titanic_data1.randomSplit(Array(0.8, 0.2))

println(s"training count: ${training.count}, test count: ${test.count}")

// estimator: to convert gender string to numbers

val genderIndxr = new StringIndexer().setInputCol("gender").

setOutputCol("genderIdx")

// transfomer: assemble the features into a vector

val assembler = new VectorAssembler().setInputCols(Array("ticket_class",

"genderIdx", "age"))

 .setOutputCol("features")

Chapter 8 MaChine Learning with Spark

370

// estimator: the algorithm

val logisticRegression = new LogisticRegression().setFamily("binomial")

// set up the pipeline with three stages

val pipeline = new Pipeline().setStages(Array(genderIndxr, assembler,

logisticRegression))

// train the algorithm with the training data

val model = pipeline.fit(traininng)

// perform the predictions

val predictions = model.transform(test)

// perform the evaluation of the model performance, the default metric is

the area under the ROC

val evaluator = new BinaryClassificationEvaluator()

evaluator.evaluate(predictions)

res10: Double = 0.8746657754010692

evaluator.getMetricName

res11: String = areaUnderROC

The metric produced by BinaryClassificationEvaluator has a value of 0.87,

which is decent performance for just using three features. The previous example doesn’t

explore the various hyperparameters and training parameters.

 Regression
Another popular machine task is called regression, which is designed to predict a real

number or continuous value. For example, you want to predict the sales revenue for next

quarter, the income amount of a population, and the amount of rain in a certain region

of the world.

MLlib provides a few machine learning algorithms for the regression tasks. They are

listed here:

• Linear regression

• Generalized linear regression

• Decision trees

Chapter 8 MaChine Learning with Spark

371

• Random forest

• Gradient-boosted trees

• Isotonic regression

 Model Hyperparameters

The LinearRegression algorithm will be used in the following example, and its subset of

model hyperparameters is shown here:

• regParam: This is the regularization parameter that is used to control

the overfitting. The default value is 0.0.

• fitIntercept: This parameter is used to determine whether to fit the

intercept. The default value is true.

 Example

The following example will try to predict the house price based on a set of information

about the house. The details and the data are available on kaggle.com at https://www.

kaggle.com/c/house-prices-advanced-regression-techniques/data. The data is

provided in CSV format, and there are two files, train.csv and test.csv. The label

column in the train.csv file is called SalePrice.

The provided data contains many interesting features; however, the code in

Listing 8-19 will use only a subset of them.

Listing 8-19. Using the Linear Regression Algorithm to Predict Home Prices

import org.apache.spark.sql.functions._

import org.apache.spark.ml.Pipeline

import org.apache.spark.ml.feature.StringIndexer

import org.apache.spark.ml.feature.VectorAssembler

import org.apache.spark.ml.regression.LinearRegression

import org.apache.spark.ml.feature.RFormula

import org.apache.spark.ml.evaluation.RegressionEvaluator

import org.apache.spark.mllib.evaluation.RegressionMetrics

val house_data = spark.read.format("csv").option("header", "true")

 .option("inferSchema","true")

 .load("<path>/train.csv")

Chapter 8 MaChine Learning with Spark

https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data
https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data

372

// select columns to use as features

val cols = Seq[String]("SalePrice", "LotArea", "RoofStyle",

 "Heating", "1stFlrSF", "2ndFlrSF", "BedroomAbvGr",

 "KitchenAbvGr", "GarageCars", "TotRmsAbvGrd",

"YearBuilt")

val colNames = cols.map(n => col(n))

// select only needed columns

val skinny_house_data = house_data.select(colNames:_*)

// create a new column called "TotalSF" by adding the value of "1stFlrSF"

and "2ndFlrSF" columns

// cast the "SalePrice" column to double

val skinny_house_data1 = skinny_house_data.withColumn("TotalSF", col("1stFlrSF") +

 col("2ndFlrSF"))

 .drop("1stFlrSF",

"2ndFlrSF")

 .withColumn("SalePrice", $"SalePrice".cast("double"))

// examine the statistics of the label column called "SalePrice"

skinny_house_data1.describe("SalePrice").show

+--------+-------------------+

| summary| SalePrice|

+--------+-------------------+

| count| 1460|

| mean| 180921.19589041095|

| stddev| 79442.50288288663|

| min| 34900.0|

| max| 755000.0|

+--------+-------------------+

// create estimators and transformers to setup a pipeline

// set the invalid categorical value handling policy to skip to avoid error

// at evaluation time

val roofStyleIndxr = new StringIndexer().setInputCol("RoofStyle")

 .setOutputCol("RoofStyleIdx")

 .setHandleInvalid("skip")

Chapter 8 MaChine Learning with Spark

373

val heatingIndxr = new StringIndexer().setInputCol("Heating")

 .setOutputCol("HeatingIdx")

 .setHandleInvalid("skip")

val linearRegression = new LinearRegression().setLabelCol("SalePrice")

// assembler to assemble the features into a feature vector

val assembler = new VectorAssembler().setInputCols(

 Array("LotArea", "RoofStyleIdx",

"HeatingIdx",

 "LotArea", "BedroomAbvGr",

"KitchenAbvGr", "GarageCars",

 "TotRmsAbvGrd", "YearBuilt",

"TotalSF"))

 .setOutputCol("features")

// setup the pipeline

val pipeline = new Pipeline().setStages(Array(roofStyleIndxr, heatingIndxr,

assembler, linearRegression))

// split the data into training and test pair

val Array(training, test) = skinny_house_data1.randomSplit(Array(0.8, 0.2))

// train the pipeline

val model = pipeline.fit(training)

// perform prediction

val predictions = model.transform(test)

val evaluator = new RegressionEvaluator().setLabelCol("SalePrice")

 .setPredictionCol("prediction")

 .setMetricName("rmse")

val rmse = evaluator.evaluate(predictions)

rmse: Double = 37579.253919082395

RMSE stands for the root-mean-square error. In this case, the RMSE value is around

$37,000, which indicates there is a lot of room for improvement.

Chapter 8 MaChine Learning with Spark

374

 Recommendation
The recommender system is one of the most intuitive and well-known machine learning

applications. Maybe that is the case because almost everyone has seen examples of

recommender systems in action on popular web sites such as Amazon and Netflix. In

fact, almost every single popular website on the Internet has one or more examples of

recommender systems. Popular examples of recommender systems are songs you may

like on Spotify, people you want to follow on Twitter, courses may you like on Coursera

or Udacity, and so on. The cool thing is recommender systems bring benefits to both

users and the company behind that website. Users will be delighted to find or discover

items that they like without expending too much effort. Companies will be happy

because of the increased user engagement and loyalty as well as their bottom line. If a

recommender system is designed and performs well, it is a win-win situation.

The common approaches to building recommender systems include content-based

filtering, collaborative filtering, and a hybrid of the two. The first approach requires

collecting information about the items being recommended and the profile of each

user. The second approach requires collecting only user activities or behavior via

explicit or implicit means. Examples of explicit behavior include rating a movie or an

item on Amazon. Examples of implicit behavior including viewing the movie trailer or

description. The intuition behind the second approach is the “wisdom of the crowd”

concept where the people who agreed in the past will tend to agree in the future.

This section will focus on the collaborative filter approach, and one of the popular

algorithms for this approach is called ALS, which stands for alternate-least-square. The only

input this algorithm needs is the user-item rating matrix, which is used to discover user

preferences and item properties through a process called matrix factorization. Once these

two pieces of information are found, then they are used to predict the user’s preference on

items not seen before. MLlib provides an implementation of the ALS algorithm.

 Model Hyperparameters

The ALS algorithm implementation in MLlib has a few important hyperparameters that

you need to be aware of. The following section contains just a subset. Please consult

the documentation at https://spark.apache.org/docs/latest/ml-collaborative-

filtering.html.

Chapter 8 MaChine Learning with Spark

https://spark.apache.org/docs/latest/ml-collaborative-filtering.html
https://spark.apache.org/docs/latest/ml-collaborative-filtering.html

375

• rank: This parameter specifies the number of latent factors or

properties about users and items that will be learned during the

training process. An optimal value for rank is usually determined by

experimentation as well as an intuition about the number of properties

needed to accurately describe an item. The default value is 10.

• regParam: This is the amount of regularization to deal with

overfitting. An optimal value for this parameter is usually determined

by experimentation. The default is 0.1.

• implicitPrefs: ALS algorithms support both explicit and implicit user

activities or behavior. This parameter is used to tell which one the

input data represents. The default is false, meaning the activities or

behavior are explicit.

 Example

The example you are going to work through is to build a movie recommender system

using the movie ratings data set from grouplens.com at https://grouplens.org/

datasets/movielens/. The specific dataset that will be used is the latest MovieLens 100k

dataset at http://files.grouplens.org/datasets/movielens/ml-latest-small.zip.

This dataset contains roughly about 100,000 ratings by 700 users across 9,000 movies.

There are four files included in the zip file: links.csv, movies.csv, ratings.csv, and

tags.csv. Each row in file ratings.csv represents one rating of one movie by one user,

and it has this format: userId, movieId, rating, timestamp. The rating is on a scale from

0 to 5 with half-star increments.

The code in Listing 8-20 trains the ALS algorithm with one set of parameters and

then evaluates the model performance based on the RMSE metric. In addition, it will call

a few interesting provided APIs in the ALSModel class to get recommendations for movies

and users.

Listing 8-20. Building a Recommender System Using the ALS Algorithm

Implementation in MLlib

import org.apache.spark.mllib.evaluation.RankingMetrics

import org.apache.spark.ml.evaluation.RegressionEvaluator

import org.apache.spark.ml.recommendation.ALS

import org.apache.spark.ml.tuning.{ParamGridBuilder, CrossValidator}

Chapter 8 MaChine Learning with Spark

https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
http://files.grouplens.org/datasets/movielens/ml-latest-small.zip

376

import org.apache.spark.sql.functions._

// we don't need the timestamp column, so drop it immediately

val ratingsDF = spark.read.option("header", "true")

 .option("inferSchema", "true")

 .csv("<path>/ratings.csv").drop("timestamp")

// quick check on the number of ratings

ratingsDF.count

res14: Long = 100004

// quick check who are the active movie raters

val ratingsByUserDF = ratingsDF.groupBy("userId").count()

ratingsByUserDF.orderBy($"count".desc).show(10)

+-------+------+

| userId| count|

+-------+------+

| 547| 2391|

| 564| 1868|

| 624| 1735|

| 15| 1700|

| 73| 1610|

| 452| 1340|

| 468| 1291|

| 380| 1063|

| 311| 1019|

| 30| 1011|

+-------+------+

println("# of rated movies: " +ratingsDF.select("movieId").distinct().count)

of rated movies: 9066

println("# of users: " + ratingsByUserDF.count)

of users: 671

// analyze the movies largest number of ratings

val ratingsByMovieDF = ratingsDF.groupBy("movieId").count()

Chapter 8 MaChine Learning with Spark

377

ratingsByMovieDF.orderBy($"count".desc).show(10)

+--------+------+

| movieId| count|

+--------+------+

| 356| 341|

| 296| 324|

| 318| 311|

| 593| 304|

| 260| 291|

| 480| 274|

| 2571| 259|

| 1| 247|

| 527| 244|

| 589| 237|

+--------+------+

// prepare data for training and testing

val Array(trainingData, testData) = ratingsByUserDF.randomSplit(Array(0.8, 0.2))

// setting up an instance of ALS

val als = new ALS().setRank(12)

 .setMaxIter(10)

 .setRegParam(0.03)

 .setUserCol("userId")

 .setItemCol("movieId")

 .setRatingCol("rating")

// train the model

val model = als.fit(trainingData)

// perform predictions

val predictions = model.transform(testData).na.drop

// setup an evaluator to calcuate the RMSE metric

val evaluator = new RegressionEvaluator().setMetricName("rmse")

 .setLabelCol("rating")

 .setPredictionCol("prediction")

Chapter 8 MaChine Learning with Spark

378

val rmse = evaluator.evaluate(predictions)

println(s"Root-mean-square error = $rmse")

Root-mean-square error = 1.06027809686058

The ALSModel class provides two sets of useful functions to perform

recommendations. The first set is for recommending the top n items to all users or a

specific set of users. The second set is for recommending the top n users to all items or a

specific set of items. Listing 8-21 provides an example of calling these functions.

Listing 8-21. Using ALSModel to Perform Recommendations

// recommend the top 5 movies for all users

model.recommendForAllUsers(5).show(false)

// active raters

val activeMovieRaters = Seq((547), (564), (624), (15), (73)).toDF("userId")

model.recommendForUserSubset(activeMovieRaters, 5).show(false)

+------+--+

|userId| recommendations |

+------+--+

| 15| [[363, 5.4706035], [422, 5.4109325], [1192, 5.3407555],

[1030, 5.329553], [2467, 5.214414]] |

| 547| [[1298, 5.752393], [1235, 5.4936843], [994, 5.426885],

[926, 5.28749], [3910, 5.2009006]] |

| 564| [[121231, 6.199452], [2454, 5.4714866], [3569, 5.4276495],

[1096, 5.4212027], [1292, 5.4203687]] |

| 624| [[1960, 5.4001703], [1411, 5.2505665], [3083, 5.1079946],

[3030, 5.0170803], [132333, 5.0165534]] |

| 73| [[2068, 5.0426316], [5244, 5.004793], [923, 4.992707],

[85342, 4.979018], [1411, 4.9703207]] |

+------+--+

// recommend top 3 users for each movie

val recMovies = model.recommendForAllItems(3)

// read in movies data set so you can see the movie title

val moviesDF = spark.read.option("header", "true")

Chapter 8 MaChine Learning with Spark

379

 .option("inferSchema", "true")

 .csv("<path>/movies.csv")

val recMoviesWithInfoDF = recMovies.join(moviesDF, "movieId")

recMoviesWithInfoDF.select("movieId", "title", "recommendations").show(5,

false)

+-------+---------------------------------+-------------------------------+

|movieId| title| recommendations|

+-------+---------------------------------+-------------------------------+

| 1580| Men in Black (a.k.a. MIB) (1997)| [[46, 5.6861496], [113,

5.6780157], [145, 5.3410296]]|

| 5300| 3:10 to Yuma (1957)| [[545, 5.475599], [354,

5.2230153], [257, 5.0623646]]|

| 6620| American Splendor (2003)| [[156, 5.9004226], [83,

5.699677], [112, 5.6194253]] |

| 7340| Just One of the Guys (1985)| [[621, 4.5778027], [451,

3.9995837], [565, 3.6733315]]|

| 32460| Knockin' on Heaven's Door (1997)| [[565, 5.5728054], [298,

5.00507], [476, 4.805148]] |

+-------+---------------------------------+-------------------------------+

// top rated movies

val topRatedMovies = Seq((356), (296), (318), (593)).toDF("movieId")

// recommend top 3 users per movie in topRatedMovies

val recUsers = model.recommendForItemSubset(topRatedMovies, 3)

recUsers.join(moviesDF, "movieId").select("movieId", "title",

"recommendations").show(false)

+-------+---------------------------------+-------------------------------+

|movieId| title| recommendations|

+-------+---------------------------------+-------------------------------+

| 296| Pulp Fiction (1994)| [[4, 5.8505774], [473,

5.81865], [631, 5.588397]] |

| 593| Silence of the Lambs, The (1991)| [[153, 5.839533], [586,

5.8279104], [473, 5.5933723]] |

| 318| Shawshank Redemption, The (1994)| [[112, 5.8578305], [656,

5.8488774], [473, 5.795221]] |

Chapter 8 MaChine Learning with Spark

380

| 356| Forrest Gump (1994)| [[464, 5.6555476], [58,

5.6497917], [656, 5.625555]]|

+-------+---------------------------------+-------------------------------+

In Listing 8-20, an instance of the ALS algorithm was trained with one set of

parameters, and the RSME you got is about 1.06. Let’s try retraining that instance of the

ALS algorithm with a set of parameter combinations using CrossValidator to see whether

you can lower the RSME value. The code in Listing 8-22 sets up grid search with a total of 4

parameter combinations for the two model hyperparameters (als.regParam and als.rank)

and a CrossValidator with three folds. This means the ALS algorithm will be trained and

evaluated 12 times, and therefore it will take a minute or two to finish on a laptop.

Listing 8-22. Using CrossValidator to Tune the ALS Model

val paramGrid = new ParamGridBuilder().addGrid(als.regParam,

Array(0.05, 0.15))

 .addGrid(als.rank, Array(12,20))

 .build

val crossValidator = new CrossValidator().setEstimator(als)

 .setEvaluator(evaluator)

 .setEstimatorParamMaps(paramGrid)

 .setNumFolds(3)

// print out the 4 hyperparameter combinations

crossValidator.getEstimatorParamMaps.foreach(println)

{

 als_d2ec698bdd1a-rank: 12,

 als_d2ec698bdd1a-regParam: 0.05

}

{

 als_d2ec698bdd1a-rank: 20,

 als_d2ec698bdd1a-regParam: 0.05

}

{

 als_d2ec698bdd1a-rank: 12,

 als_d2ec698bdd1a-regParam: 0.15

}

Chapter 8 MaChine Learning with Spark

381

{

 als_d2ec698bdd1a-rank: 20,

 als_d2ec698bdd1a-regParam: 0.15

}

// this will take a while to run through more than 10 experiments

val cvModel = crossValidator.fit(trainingData)

// perform the predictions and drop the

val predictions2 = cvModel.transform(testData).na.drop

val evaluator2 = new RegressionEvaluator().setMetricName("rmse")

 .setLabelCol("rating")

 .setPredictionCol("prediction")

val rmse2 = evaluator2.evaluate(predictions2)

rmse2: Double = 0.9881840432547675

You have successfully lowered the RMSE by leveraging CrossValidator to help with

tuning the model. It may take a while to train the best model, but MLlib makes it easy to

experiment with a set of parameter combinations.

 Deep Learning Pipeline
This chapter would be incomplete if there is no reference to the deep learning topic,

which is one of the hottest topics in the artificial intelligence and machine learning

landscapes. There are already lots of resources available in the form of books, blogs,

courses, and research papers to explain every aspect of deep learning. In terms of

technology, there are a lot of innovations from the open source community, universities,

and large companies such as Google, Facebook, Microsoft, and others that are coming

up with deep learning frameworks. Here is the current list of deep learning frameworks:

• TensorFlow is an open source framework created by Google.

• MXNet is a deep learning framework developed by a group of

universities and companies.

• Caffe is a deep learning framework developed by UC Berkeley.

• CNTK is an open source deep learning framework developed by

Microsoft.

Chapter 8 MaChine Learning with Spark

382

• Theano is an open deep learning framework developed by the

University of Montreal.

• PyTorch is an open source deep learning framework developed by

Facebook.

• BigDL is an open source deep learning framework developed by

Intel.

From the Apache Spark’s side, Databricks is driving the effort of developing a project

called Deep Learning Pipelines, which is not another deep learning framework, but

rather it is designed to work on top of the existing popular deep learning frameworks

listed earlier. In the spirit of Spark and MLlib, the Deep Learning Pipelines project

provides high-level and easy-to-use APIs for building scalable deep learning applications

in Python with Apache Spark. This project is currently being developed outside of the

Apache Spark open source project, and eventually it will be incorporated into the main

trunk. At the time of this writing, the Deep Learning Pipelines project provides the

following features:

• Common deep learning use cases implemented in just a few lines of

code

• Working with images in Spark

• Applying pretrained deep learning models for scalable predictions

• The ability to do transfer learning, which adapts a model trained for a

similar task to the current ask

• Distributed hyperparameter tuning

• Easily exposing deep learning models so others can use them as a

function in SQL- to make predictions

You can find more details about the exciting Deep Learning Pipelines project at

https://github.com/databricks/spark-deep-learning.

Chapter 8 MaChine Learning with Spark

https://github.com/databricks/spark-deep-learning

383

 Summary
The adoption of artificial intelligence and machine learning is steadily increasing, and

there will be many exciting breakthroughs in the coming years. Building on top of the

strong foundation of Spark, the MLlib component is designed to help with building

intelligent applications in an easy and scalable manner.

• Artificial intelligence is a broad field, and its goal is to make machines

seem like they have intelligence. Machine learning is one of the

subfields; it focuses on teaching machines to learn by training them

with data.

• The process of building machine learning applications is an iterative

one and involves a few steps that are usually followed in a certain

sequence.

• The Spark MLlib component consists of tools for feature engineering,

constructing, evaluating, and tuning machine learning pipelines

as well as a set of well-known machine learning algorithms such as

classification, regression, clustering, and collaborative filtering.

• The core concepts the MLlib component introduces to help with

building and maintaining complex pipelines are transformers,

estimators, and pipeline. A pipeline is the orchestrator that ensures

both training and test data flow through identical feature processing

steps.

• Model tuning is a critical step in the machine learning application

development process. It is tedious and time-consuming

because it involves training and evaluating one or models over

a set of parameter combinations. Combined with the pipeline

abstraction, MLlib provides two tools to help: CrossValidator and

TrainValidationSplit.

Chapter 8 MaChine Learning with Spark

385
© Hien Luu 2018
H. Luu, Beginning Apache Spark 2, https://doi.org/10.1007/978-1-4842-3579-9

Index

A
Aggregations

cubes, 199–200
flight summary dataset, 149
functions

approx_count_distinct (col),
152–153

avg(col), 154
count(col), 150–151
countDistinct(col), 151
description, 148
min(col), max(col), 153
Scala language, 148
skewness(col), kurtosis(col), 155
sum(col), 154
sumDistinct(col), 154
variance(col), stddev(col), 156

grouping
categorical values, 156
collection group values, 160
multiple aggregations, 158–159
origin_airport and Count

Aggregation, 157
origin_state and origin_city, Count

Aggregation, 158
RelationalGroupedDataset, 158

levels, 147
operations, 248
pivoting, 161–163
rollups, 197–199

state, 295–296
time windows, 200–202

AlphaGo, 329, 335
Alternate-least-square (ALS)

algorithm, 374–381
Analytic functions, 204
Arbitrary stateful processing

action, 304
flatMapGroupsWithState, 310
handling state timeouts, 303
mapGroupsWithState, 305
structured streaming, 300

Artificial intelligence (AI), 327–329

B
Batch data processing, 220
Binarizer transformer, 341
BinaryClassificationEvaluator, 370
Broadcast hash join, 176–177
Bucketizer transformer, 342
Built-in functions

categories, 178–179
collection, 187–189
date-time, 179–183
math, 186–187
miscellaneous, 190–193
Spark API Scala

documentation, 178
string, 183–186

Business analysts, 88

https://doi.org/10.1007/978-1-4842-3579-9

386

C
Catalyst optimizer

actions, 213–214
data processing applications, 211
logical plan, 212
physical plan, 213
user expressions, 212
visual representation, 211–212

Cluster form, 35–36
Clustering, 334
Collection functions, 187–189
Comma-separated values (CSV),

9, 98–101
Community edition (CE), 33
Console data sink, 272
Continuous processing mode, 238
Cross joins, 172
CrossValidator, 362, 365–366

D
Databricks, 30
DataFrames

CSV files, 98–101
data sources

DataFrameReader, 95–96
DataFrameWriter, 95
format, 96
Spark’s built-in, 97

definition, 88
DSL, 109
JDBC, 106–109
join operations, 249
JSON files, 101–104
missing data, 126–129
ORC files, 105–106
Parquet files, 104–105
persistence, 143

range function, 92–94
RDBMS, 88
RDDs, 89, 91–92
save modes, 141
selection, project and aggregation

operations, 248–249
Spark Scala types, 92
SparkSession.range function, 92–93
SQL and Datasets, 142
structured actions, 129–130
structured transformations

description, 109–110
distinct, dropDuplicates, 118
drop(columnName1,

columnName2), 124
filler(condition), where(condition),

116–117
limit(n), 120
randomSplit(weights), 126
sample transformation, 125
select(columns), 113–114
selectExpr(expressions), 115–116
sort(columns), orderBy(columns),

118–119
union(otherDataFrame), 121–122
withColumn(colName, column),

122
withColumnRenamed(existingCol

Name, newColName), 123–124
text files, 97
working with columns, 111–113

Datasets, 88, 104, 125
creating, 132–133
vs. DataFrame, 131
flavors, 130–131
limitations, 131
manipulation, 133–134
Python and R languages, 131

Index

387

Data shuffling, 8
Data sinks

console, 272
file, 264
foreach, 269
Kafka, 266
memory, 273

Date-time functions, 179–183
Deep Blue, 329
Deep dive

append output mode, 279
complete output mode, 277
output modes, 275
triggers (see Triggers)
update output mode, 277

Deep learning (DL)
AL and ML relationships,

327–328
BigDL, 382
Caffe, 381
CNTK, 381
Deep Learning Pipelines

project, 382
MXNet, 381
PyTorch, 382
resources, 381
TensorFlow, 381
Theano, 382

Discretized stream (DStream), 10
awaitTermination() function, 232
batch interval, 230
sources, 230
start() function, 232
StreamingContext, 232
word count application, 231

Domain-specific language
(DSL), 109

Duplicating data, 316

E
Estimators

IDF, 351–352
input and output, 348
LinearRegression, 348
MinMaxScaler, 357–358
OneHotEncoderEstimator, 354
RFormula, 349–350
StandardScaler, 358–359
StringIndexer, 352–353
types, 348–349
Word2Vec, 355–356

Event-time processing, 287
aggregation state, 295
fixed window, 289
mobile data event

schema, 288
sliding window aggregation, 291
watermarking, 296

F
File data sink, 264
File data source, 256
Fixed window operation

aggregation logic, 289
mobile data events, 289
window and action type, 291

flatMapGroupsWithState, 310
Foreach data sink, 269
Functions

advanced analytics (see Aggregations)
UDFs, 194–196
window (see Window functions)

G
Google DeepMind, 335

Index

388

H
HashingTF transformer, 346
HyperLogLog, 152

I
Inner joins, 166–167
Integrated development environments

(IDEs), 21
Inverse document frequency (IDF)

estimator, 351–352

J
JavaScript Object Notation (JSON), 9
JDBC data source, 107, 109
Joins

broadcast hash, 176–177
cross, 172
DataFrames, 165
description, 163
expressions, 164
inner, 166–167
joined column name, 175
joined DataFrame

dupNameDF DataFrame, 174
multiple column names, 173
original DataFrame, 174

left anti-joins, 170
left outer, 168
left semi-joins, 171
operations, 249
outer, 169
renaming column, 174
right outer, 168–169
shuffle hash, 175–176
types, 164–165

K
Kafka data sink, 266
Kafka data source, 236, 257
Kaggle, 149, 368, 371
Key/value pair RDD actions

collectAsMap(), 82
countByKey(), 81–82
lookup(key), 82–83

L
lastProgress() function, 245
Left anti-joins, 170
Left outer joins, 168
Left semi-joins, 171
LinearRegression algorithm, 348, 371–373
LinkedIn, 11
Logistic regression algorithm, 368–369

M, N
Machine learning (ML)

AL and DL relationships, 327–328
classification

binary, 367
MLlib, 367
multiclass, 367
multilabel, 367

definition, 329
development process, 335–337
LinearRegression algorithm, 371–373
logistic regression algorithm, 368, 370
recommendation

ALS algorithm, 374–381
Amazon and Netflix, 374
collaborative filtering, 374

reinforcement learning, 335

Index

389

Spark MLlib (see Spark machine
learning library (Spark MLlib))

supervised learning, 332–333
terminologies

features, 330
label, 330
ML algorithm, 331
model, 331
observation, 330
spam email classification, 330
test data, 330
training data, 330
validation data, 330

types, 331–332
unsupervised learning, 334–335

mapGroupsWithState, 305
Math functions, 186–187
Matrix factorization, 374
Memory data sink, 273
MinMaxScaler estimator, 357–358
Miscellaneous functions, 190–193
Monitoring streaming queries, 324

O
OneHotEncoderEstimator, 354
OneHotEncoder transformer, 343–344
One-time processing, 238
Online analytic processing (OLAP), 135
Online transaction processing (OLTP), 135
Optimized Row Columnar (ORC),

105–106
Outer joins, 169

P, Q
ParagramGridBuilder, 363
Parquet files, 104–105

Pipeline, 359–361
Pivoting, 161–163
Predicate pushdown, 109
Production streaming

applications, 326
Project Tungsten, 215–216

R
Ranking functions, 204
Rate data source, 253
Reinforcement learning, 335
Relational database management

system (RDBMS), 88
Resilient distributed datasets (RDDs), 6

actions
collect(), 69
count(), 70
first(), 70
reduce(func), 71
saveAsTextFile(path), 74
take(n), 71
takeOrdered, 73
takeSample, 73
top Action, 74

creation, 56
data partitioning and placement, 53
dataset, 51
data shuffling, 83
fault tolerant, 52
immutable, 52
in-memory computing, 53
key/value pair

creation, 75
groupByKey, 77
join, 80
reduceByKey, 78
sortByKey, 79

Index

390

machine learning algorithms, 84
operations, 54–55
parallel data structures, 52
rich set, 54
storage options, 84
transformations (see Transformations)

RFormula transformer, 349–350
Right outer joins, 168–169

S
Shuffle hash join, 175–176
Sliding window aggregation

avg() function, 293
groupBy transformation, 294
overlapping, 291
temperature data, 292
windowing type, 291

Socket data source, 236, 251
Spark

applications, 5, 12
clusters and resource management

system, 4
concepts and architecture, 3
Databricks, 1
data processing, 2
Daytona GraySort, 1
download options, 16
download process, 48
driver and executor, 5
Graphx, 11
Hadoop MapReduce, 1
history, 2
installation

binary file, 16
Linux/Mac computers, 16
Python shell, 18–19

Scala shell, 17
Spark directory, 16–17

MLlib, 11
notebook creation

“Interactions with Spark”
section, 44–45

IPython, 41
markdown statement, 42
markup statement, 42–43
menu item, 40
plus icon, 45
println statement, 43
publishing confirmation

dialog box, 46
publishing menu

item, 46
Scala language option, 40
Workspace column, 39

Spark Core, 7
SparkR, 11
SQL, 8
streaming processing, 9–10
unified stack, 6

Spark GraphX, 6
Spark machine learning library

(Spark MLlib), 6
DataFrames, 339
end-to-end ML pipeline, 338
estimators (see Estimators)
features, 338
ML process and main

abstractions, 338–339
model tuning

CrossValidator, 362, 365–366
model hyperparameters, 362
model parameters, 362
TrainValidationSplit, 362, 364
validators, 362–364

Resilient distributed datasets (RDDs) (cont.)

Index

391

pipeline, 359–361
Spark SQL, 338
transformers (see Transformers)

Spark Scala shell
commands, 20
Databricks, 30
default configuration, 29
list of variables, 30
member variables and functions, 22
Spark UI, 26
spark variable, 28
version, println function, 29

Spark Scala types, 92
Spark SQL

aggregations (see Aggregations)
business analysts, 88
component, 87
DataFrames (see DataFrames)
datasets (see Datasets)
running SQL, 136–139
storage systems, 139–142
Structured APIs, 87, 88

Spark streaming
arbitrary stateful processing, 300

action, 304
flatMapGroupsWithState, 310
handling state timeouts, 303
mapGroupsWithState, 305
structured streaming, 300

core concepts
core pieces, 235
data sinks, 239
data sources, 236
offset, 241
out-of-the box data source, 236
output modes, 237
trigger types, 238
watermarking, 241

DataFrames (see DataFrames)
data sources

casting message content, 261
custom, 262
file, 256
Kafka, 257
rate, 253
socket, 251
startingOffsets and endingOffsets

options, 258
deep dive (see Deep dive)
DStream (see Discretized stream

(DStream))
duplicating data, 316
event-time (see Event-time processing)
fault tolerance

checkpointLocation Option, 319
spark runtime, 320
streaming application code, 320

features, 287
messages, 241
monitoring streaming

queries, 324
overview, 230
query metrics, 321
sinks (see Data sinks)
structured streaming (see Structured

streaming)
Standardization, 358
StandardScaler estimator, 358–359
Stateful type, 275–276
Stateless type, 275
status() function, 245
StopWordsRemover

transformer, 345, 346
Storage systems, 139–142
Storage tab, 143–144
StreamingQueryListener interface, 324

Index

392

Streaming query metrics, 321–323
Stream processing

batch data processing, 220
challenges, 222
core and universal concepts, 222
data delivery semantics, 223
engines

Apache Apex, 228
Apache Beam, 228
Apache Flink, 228
Apache Kafka, 228
Apache Samza, 228
Apache Storm, 228
record-at-a-time and

micro- batching, 229
event time and processing, 225
notion of time, 224
spark (see Spark streaming)
system properties, 221
windowing patterns, 226

StreamQueryManager, 325
String functions, 183–186
StringIndexer estimator, 343–344, 348,

352–354
Structured Query Language (SQL), 9
Structured streaming

batch and streaming
processing, 234

challenges, 232
continuous processing, 235
DataFrame and Dataset, 234
event-time processing and

maintaining state, 234
file1.json, 245
file2.json, 245
file3.json, 247
file data source, 242
isStreaming function, 243

managing streaming queries, 247
mobile event data, 242–243
overview, 233
start() function, 244
status() and lastProgress()

functions, 246
ten-second sliding window, 244
transactional integration, 234
treating streaming data, 233

Supervised learning
classification and

regression, 332–333
MLlib, 333

T
Time windows, 200–202
Tokenizer transformer, 344
TrainValidationSplit, 362, 364
Transformations

distinct(), 67
filter(func), 61
flatMap(func), 60
intersection, 65
list of, 57–58
map(func), 58
mapPartitions, 62
mapPartitionsWithIndex, 62
sampling, 67
substract, 66
union, 65

Transformers
Binarizer, 341
Bucketizer, 342
HashingTF, 346
input and output, 340
OneHotEncoder, 343–344
process, 339

Index

393

StopWordsRemover, 345–346
Tokenizer, 344
types, 340
VectorAssembler, 347

Triggers
continuous processing

mode, 280, 284
fixed interval type, 280
micro-batch mode, 282
one-time trigger type, 282
processing modes, 283

Tumbling window operation, see Fixed
window operation

U
Unsupervised learning

clustering, 334
MLlib, 335

User-defined functions (UDFs), 194–196
User shopping transactions, 205

V
VectorAssembler transformer, 347, 348

W, X, Y, Z
Watermarking

groupBy transformation, 300
handling late data, 296–297
input directory, 298
JSON files, 298
output mode, 300
perspective of, 296
Watermark API, 299

Window functions
analytic functions, 204
avg, 208
components, 203
concat/round, 203
frame, 203
max, 206–207
rank, 205–206
ranking functions, 204
shopping transaction data, 205
specification, 203
SQL, 210–211
sum, 209
types, 204

Word2Vec estimator, 355–356

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Introduction to Apache Spark
	Overview
	History
	Spark Core Concepts and Architecture
	Spark Clusters and the Resource Management System
	Spark Application
	Spark Driver and Executor

	Spark Unified Stack
	Spark Core
	Spark SQL
	Spark Structured Streaming and Streaming
	Spark MLlib
	Spark Graphx
	SparkR

	Apache Spark Applications
	Example Spark Application
	Summary

	Chapter 2: Working with Apache Spark
	Downloading and Installing Spark
	Downloading Spark
	Installing Spark
	Spark Scala Shell
	Spark Python Shell

	Having Fun with the Spark Scala Shell
	Useful Spark Scala Shell Commands and Tips
	Basic Interactions with Scala and Spark
	Basic Interactions with Scala
	Spark UI and Basic Interactions with Spark
	Spark UI
	Basic Interactions with Spark

	Introduction to Databricks
	Creating a Cluster
	Creating a Folder
	Creating a Notebook

	Setting Up the Spark Source Code
	Summary

	Chapter 3: Resilient Distributed Datasets
	Introduction to RDDs
	Immutable
	Fault Tolerant
	Parallel Data Structures
	In-Memory Computing
	Data Partitioning and Placement
	Rich Set of Operations

	RDD Operations
	Creating RDDs
	Transformations
	Transformation Examples
	map(func)
	flatMap(func)
	filter(func)
	mapPartitions(func)/mapPartitionsWithIndex(index, func)
	union(otherRDD)
	intersection(otherRDD)
	substract(otherRDD)
	distinct()
	sample(withReplacement, fraction, seed)

	Actions
	Action Examples
	collect()
	count()
	first()
	take(n)
	reduce(func)
	takeSample(withReplacement, n, [seed])
	takeOrdered(n, [ordering])
	top(n, [ordering])
	saveAsTextFile(path)

	Working with Key/Value Pair RDD
	Creating Key/Value Pair RDD
	Key/Value Pair RDD Transformations
	groupByKey([numTasks])
	reduceByKey(func, [numTasks])
	sortByKey([ascending],[numTasks])
	join(otherRDD)

	Key/Value Pair RDD Actions
	countByKey()
	collectAsMap()
	lookup(key)

	Understand Data Shuffling

	Having Fun with RDD Persistence
	Summary

	Chapter 4: Spark SQL (Foundations)
	Introduction to DataFrames
	Creating DataFrames
	Creating DataFrames from RDDs
	Creating DataFrames from a Range of Numbers
	Creating DataFrames from Data Sources
	Creating DataFrames by Reading Text Files
	Creating DataFrames by Reading CSV Files
	Creating DataFrames by Reading JSON Files
	Creating DataFrames by Reading Parquet Files
	Creating DataFrames by Reading ORC Files
	Creating DataFrames from JDBC

	Working with Structured Operations
	Working with Columns
	Working with Structured Transformations
	select(columns)
	selectExpr(expressions)
	filler(condition), where(condition)
	distinct, dropDuplicates
	sort(columns), orderBy(columns)
	limit(n)
	union(otherDataFrame)
	withColumn(colName, column)
	withColumnRenamed(existingColName, newColName)
	drop(columnName1, columnName2)
	sample(fraction), sample(fraction, seed), sample(fraction, seed, withReplacement)
	randomSplit(weights)

	Working with Missing or Bad Data
	describe(columnNames)

	Working with Structured Actions

	Introduction to Datasets
	Creating Datasets
	Working with Datasets

	Using SQL in Spark SQL
	Running SQL in Spark

	Writing Data Out to Storage Systems
	The Trio: DataFrames, Datasets, and SQL
	DataFrame Persistence
	Summary

	Chapter 5: Spark SQL (Advanced)
	Aggregations
	Aggregation Functions
	Common Aggregation Functions
	count(col)
	countDistinct(col)
	approx_count_distinct (col, max_estimated_error=0.05)
	min(col), max(col)
	sum(col)
	sumDistinct(col)
	avg(col)
	skewness(col), kurtosis(col)
	variance(col), stddev(col)

	Aggregation with Grouping
	Multiple Aggregations per Group
	Collection Group Values

	Aggregation with Pivoting

	Joins
	Join Expressions and Join Types
	Working with Joins
	Inner Joins
	Left Outer Joins
	Right Outer Joins
	Outer Joins (aka Full Outer Joins)
	Left Anti-Joins
	Left Semi-Joins
	Cross (aka Cartesian)

	Dealing with Duplicate Column Names
	Use the Original DataFrame
	Renaming Column Before Joining
	Using a Joined Column Name

	Overview of a Join Implementation
	Shuffle Hash Join
	Broadcast Hash Join

	Functions
	Working with Built-in Functions
	Working with Date-Time Functions
	Working with String Functions
	Working with Math Functions
	Working with Collection Functions
	Working with Miscellaneous Functions

	Working with User-Defined Functions

	Advanced Analytics Functions
	Aggregation with Rollups and Cubes
	Rollups
	Cube

	Aggregation with Time Windows
	Window Functions

	Catalyst Optimizer
	Logical Plan
	Physical Plan
	Catalyst in Action

	Project Tungsten
	Summary

	Chapter 6: Spark Streaming
	Stream Processing
	Concepts
	Data Delivery Semantics
	Notion of Time
	Windowing

	Stream Processing Engine Landscape

	Spark Streaming Overview
	Spark DStream
	Spark Structured Streaming
	Overview
	Core Concepts
	Data Sources
	Output Modes
	Trigger Types
	Data Sinks
	Watermarking

	Structured Streaming Application
	Streaming DataFrame Operations
	Selection, Project, and Aggregation Operations
	Join Operations

	Working with Data Sources
	Working with the Socket Data Source
	Working with the Rate Data Source
	Working with the File Data Source
	Working with the Kafka Data Source
	Working with the Custom Data Source

	Working with Data Sinks
	Working with the File Data Sink
	Working with the Kafka Data Sink
	Working with the Foreach Data Sink
	Working with the Console Data Sink
	Working with the Memory Data Sink

	Deep Dive on Output Modes
	Deep Dive on Triggers

	Summary

	Chapter 7: Spark Streaming (Advanced)
	Event Time
	Fixed Window Aggregation Over an Event Time
	Sliding Window Aggregation Over an Event Time
	Aggregation State
	Watermarking: Limit State and Handle Late Data

	Arbitrary Stateful Processing
	Arbitrary Stateful Processing with Structured Streaming
	Handling State Timeouts
	Arbitrary State Processing in Action
	Extracting Patterns with mapGroupsWithState
	User Sessionization with flatMapGroupsWithState

	Handling Duplicate Data
	Fault Tolerance
	Streaming Application Code Change
	Spark Runtime Change

	Streaming Query Metrics and Monitoring
	Streaming Query Metrics
	Monitoring Streaming Queries

	Summary

	Chapter 8: Machine Learning with Spark
	Machine Learning Overview
	Machine Learning Terminologies
	Machine Learning Types
	Supervised Learning
	Unsupervised Learning
	Reinforcement Learning

	Machine Learning Process

	Spark Machine Learning Library
	Machine Learning Pipelines
	Transformers
	Estimators
	Pipeline
	Model Tuning

	Machine Learning Tasks in Action
	Classification
	Model Hyperparameters
	Example

	Regression
	Model Hyperparameters
	Example

	Recommendation
	Model Hyperparameters
	Example

	Deep Learning Pipeline
	Summary

	Index

