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CHAPTER 1

Introduction to  
Apache Spark
There is no better time to learn Spark than now. Spark has become one of the critical 

components in the big data stack because of its ease of use, speed, and flexibility. This 

scalable data processing system is being widely adopted across many industries by 

many small and big companies, including Facebook, Microsoft, Netflix, and LinkedIn. 

This chapter provides a high-level overview of Spark, including the core concepts, the 

architecture, and the various components inside the Apache Spark stack.

 Overview
Spark is a general distributed data processing engine built for speed, ease of use, and 

flexibility. The combination of these three properties is what makes Spark so popular 

and widely adopted in the industry.

The Apache Spark website claims it can run a certain data processing job up to 100 

times faster than Hadoop MapReduce. In fact, in 2014, Spark won the Daytona GraySort 

contest, which is an industry benchmark for sorting 100TB of data (one trillion records). 

The submission from Databricks claimed Spark was able to sort 100TB of data three 

times faster and using ten times fewer resources than the previous world record set by 

Hadoop MapReduce.

Since the inception of the Spark project, the ease of use has been one of the main 

focuses of the Spark creators. It offers more than 80 high-level, commonly needed 

data processing operators to make it easy for developers, data scientists, and data 

analysts to build all kinds of interesting data applications. In addition, these operators 

are available in multiple languages, namely, Scala, Java, Python, and R. Software 

engineers, data scientists, and data analysts can pick and choose their favorite 

language to solve large- scale data processing problems with Spark.
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In terms of flexibility, Spark offers a single unified data processing stack that can be 

used to solve multiple types of data processing workloads, including batch processing, 

interactive queries, iterative processing needed by machine learning algorithms, and 

real-time streaming processing to extract actionable insights at near real-time. Before 

the existence of Spark, each of these types of workload required a different solution and 

technology. Now companies can just leverage Spark for most of their data processing 

needs. Using a single technology stack will help with dramatically reducing the 

operational cost and resources.

A big data ecosystem consists of many pieces of technology including a distributed 

storage engine called HDFS, a cluster management system to efficiently manage a cluster 

of machines, and different file formats to store a large amount of data efficiently in binary 

and columnar format. Spark integrates really well with the big data ecosystem. This is 

another reason why Spark adoption has been growing at a really fast pace.

Another really cool thing about Spark is it is open source; therefore, anyone can 

download the source code to examine the code, to figure out how a certain feature was 

implemented, or to extend its functionalities. In some cases, it can dramatically help 

with reducing the time to debug problems.

 History
Spark started out as a research project at Berkeley AMPLab in 2009. At that time, the 

researchers of this project observed the inefficiencies of the Hadoop MapReduce 

framework in handling interactive and iterative data processing use cases, so they came 

up with ways to overcome those inefficiencies by introducing ideas such as in-memory 

computation and an efficient way of dealing with fault recovery. Once this research 

project proved to be a viable solution that outperformed MapReduce, it was open 

sourced in 2010 and became the Apache top-level project in 2013. A group of researchers 

working on this research project got together and founded a company called Databricks; 

they raised more than $43 million in 2013. Databricks is the primary commercial 

steward behind Spark. In 2015, IBM announced a major investment in building a Spark 

technology center to advance Apache Spark by working closely with the open source 

community and building Spark into the core of its company’s analytics and commerce 

platforms.

Chapter 1  IntroduCtIon to apaChe Spark 
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Two popular research papers about Spark are “Spark: Cluster Computing with 

Working Sets” and “Resilient Distributed Datasets: A Fault-Tolerant Abstraction for  

In- Memory Cluster Computing.” These papers were well received at academic 

conferences and provide good foundations for anyone who would like to learn and 

understand Spark. You can find them at http://people.csail.mit.edu/matei/

papers/2010/hotcloud_spark.pdf and http://people.csail.mit.edu/matei/

papers/2012/nsdi_spark.pdf, respectively.

Since its inception, the Spark open source project has been an active project with 

a vibrant community. The number of contributors has increased to more than 1,000 in 

2016, and there are more than 200,000 Apache Spark meetups. In fact, the number of 

Apache Spark contributors has exceeded the number of contributors of one of the most 

popular open source projects called Apache Hadoop. Spark is so popular now that it 

has its own summit called Spark Summit, which is held annually in North America and 

Europe. The summit attendance has doubled each year since its inception.

The creators of Spark selected the Scala programming language for their project 

because of the combination of Scala’s conciseness and static typing. Now Spark is 

considered to be one of the largest applications written in Scala, and its popularity 

certainly has helped Scala to become a mainstream programming language.

 Spark Core Concepts and Architecture
Before diving into the details of Spark, it is important to have a high-level understanding 

of the core concepts and the various core components in Spark. This section will cover 

the following:

• Spark clusters

• The resource management system

• Spark applications

• Spark drivers

• Spark executors

Chapter 1  IntroduCtIon to apaChe Spark 
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 Spark Clusters and the Resource Management System
Spark is essentially a distributed system that was designed to process a large volume 

of data efficiently and quickly. This distributed system is typically deployed onto a 

collection of machines, which is known as a Spark cluster. A cluster size can be as small 

as a few machines or as large as thousands of machines. The largest publicly announced 

Spark cluster in the world has more than 8,000 machines. To efficiently and intelligently 

manage a collection of machines, companies rely on a resource management system 

such as Apache YARN or Apache Mesos. The two main components in a typical resource 

management system are the cluster manager and the worker. The cluster manager 

knows where the workers are located, how much memory they have, and the number 

of CPU cores each one has. One of the main responsibilities of the cluster manager is to 

orchestrate the work by assigning it to each worker. Each worker offers resources (memory, 

CPU, etc.) to the cluster manager and performs the assigned work. An example of the 

type of work is to launch a particular process and monitor its health. Spark is designed to 

easily interoperate with these systems. Most companies that have been adopting big data 

technologies in recent years usually already have a YARN cluster to run MapReduce jobs 

or other data processing frameworks such as Apache Pig or Apache Hive.

Startup companies that fully adopt Spark can just use the out-of-the-box Spark 

cluster manager to manage a set of dedicated machines to perform data processing 

using Spark. Figure 1-1 depicts this type of setup.

Figure 1-1. Interactions between a Spark application and a cluster manager

Chapter 1  IntroduCtIon to apaChe Spark 
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 Spark Application
A Spark application consists of two parts. The first is the application data processing 

logic expressed using Spark APIs, and the other is the Spark driver. The application data 

processing logic can be as simple as a few lines of code to perform a few data processing 

operations or can be as complex as training a large machine learning model that 

requires many iterations and could run for many hours to complete. The Spark driver 

is the central coordinator of a Spark application, and it interacts with a cluster manager 

to figure out which machines to run the data processing logic on. For each one of those 

machines, the Spark driver requests that the cluster manager launch a process called the 

Spark executor. Another important job of the Spark driver is to manage and distribute 

Spark tasks onto each executor on behalf of the application. If the data processing 

logic requires the Spark driver to display the computed results to a user, then it will 

coordinate with each Spark executor to collect the computed result and merge them 

together. The entry point into a Spark application is through a class called SparkSession, 

which provides facilities for setting up configurations as well as APIs for expressing data 

processing logic.

 Spark Driver and Executor
Each Spark executor is a JVM process and is exclusively allocated to a specific Spark 

application. This was a conscious design decision to avoid sharing a Spark executor 

between multiple Spark applications in order to isolate them from each other so one badly 

behaving Spark application wouldn’t affect other Spark applications. The lifetime of a 

Spark executor is the duration of a Spark application, which could run for a few minutes or 

for a few days. Since Spark applications are running in separate Spark executors, sharing 

data between them will require writing the data to an external storage system like HDFS.

As depicted in Figure 1-2, Spark employs a master-slave architecture, where the 

Spark driver is the master and the Spark executor is the slave. Each of these components 

runs as an independent process on a Spark cluster. A Spark application consists of one 

and only one Spark driver and one or more Spark executors. Playing the slave role, each 

Spark executor does what it is told, which is to execute the data processing logic in the 

form of tasks. Each task is executed on a separate CPU core. This is how Spark can speed 

up the processing of a large amount of data by processing it in parallel. In addition to 

executing assigned tasks, each Spark executor has the responsibility of caching a portion 

of the data in memory and/or on disk when it is told to do so by the application logic.

Chapter 1  IntroduCtIon to apaChe Spark 
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At the time of launching a Spark application, you can request how many Spark 

executors an application needs and how much memory and the number of CPU cores 

each executor should have. Figuring out an appropriate number of Spark executors, 

the amount of memory, and the number of CPU requires some understanding of the 

amount of data that will be processed, the complexity of the data processing logic, and 

the desired duration by which a Spark application should complete the processing logic.

 Spark Unified Stack
Unlike its predecessors, Spark provides a unified data processing engine known as the 

Spark stack. Similar to other well-designed systems, this stack is built on top of a strong 

foundation called Spark Core, which provides all the necessary functionalities to manage 

and run distributed applications such as scheduling, coordination, and fault tolerance. 

In addition, it provides a powerful and generic programming abstraction for data 

processing called resilient distributed datasets (RDDs). On top of this strong foundation 

is a collection of components where each one is designed for a specific data processing 

workload, as shown in Figure 1-3. Spark SQL is for batch as well as interactive data 

processing. Spark Streaming is for real-time stream data processing. Spark GraphX is for 

graph processing. Spark MLlib is for machine learning. Spark R is for running machine 

learning tasks using the R shell.

Figure 1-2. A small Spark cluster with three executors

Chapter 1  IntroduCtIon to apaChe Spark 
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This unified engine brings several important benefits to the task of building scalable 

and intelligent big data applications. First, applications are simpler to develop and 

deploy because they use a unified set of APIs and run on a single engine. Second, it is 

way more efficient to combine different types of data processing (batch, streaming, etc.) 

because Spark can run those different sets of APIs over the same data without writing 

the intermediate data out to a storage system. Finally, the most exciting benefit is Spark 

enables new applications that were not possible before because of its ease of composing 

different sets of data processing types within a Spark application. For example, it can 

run interactive queries over the results of machine learning predictions of real-time 

data streams. An analogy that everyone can relate to is the smartphone, which consists 

of a powerful camera, cell phone, and GPS device. By combining the functions of these 

components, a smartphone enables innovative applications such as Waze, a traffic and 

navigation application.

 Spark Core
Spark Core is the bedrock of the Spark distributed data processing engine. It consists 

of two parts: the distributed computing infrastructure and the RDD programming 

abstraction.

Figure 1-3. Spark unified stack
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8

The distributed computing infrastructure is responsible for the distribution, 

coordination, and scheduling of computing tasks across many machines in the 

cluster. This enables the ability to perform parallel data processing of a large volume 

of data efficiently and quickly on a large cluster of machines. Two other important 

responsibilities of the distributed computing infrastructure are handling of computing 

task failures and efficiently moving data across machines, which is known as data 

shuffling. Advanced users of Spark need to have intimate knowledge of the Spark 

distributed computing infrastructure to be effective at designing highly performant 

Spark applications.

The key programming abstraction in Spark is called RDD, and it is something every 

Spark developer should have some knowledge of, especially its APIs and main concepts. 

The technical definition of an RDD is that it is an immutable and fault-tolerant collection 

of objects partitioned across a cluster that can be manipulated in parallel. Essentially, it 

provides a set of APIs for Spark application developers to easily and efficiently perform 

large-scale data processing without worrying where data resides on the cluster or dealing 

with machine failures. For example, say you have a 1.5TB log file that resides on HDFS 

and you need to find out the number of lines containing the word Exception. You can 

create an instance of RDD to represent all the log statements in that log file, and Spark 

can partition them across the nodes in the cluster such that filtering and counting logic 

can be executed in parallel to speed up the search and counting logic.

The RDD APIs are exposed in multiple programming languages (Scala, Java, and 

Python), and they allow users to pass local functions to run on the cluster, which is 

something that is powerful and unique. RDDs will be covered in detail in Chapter 3.

The rest of the components in the Spark stack are designed to run on top of Spark 

Core. Therefore, any improvements or optimizations done in Spark Core between 

versions of Spark will be automatically available to the other components.

 Spark SQL
Spark SQL is a component built on top of Spark Core, and it is designed for structured 

data processing at scale. Its popularity has skyrocketed since its inception because it 

brings a new level of flexibility, ease of use, and performance.

Chapter 1  IntroduCtIon to apaChe Spark 
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Structured Query Language (SQL) has been the lingua franca for data processing 

because it is fairly easy for users to express their intent, and the execution engine then 

performs the necessary intelligent optimizations. Spark SQL brings that to the world of 

data processing at the petabyte level. Spark users now can issue SQL queries to perform 

data processing or use the high-level abstraction exposed through the DataFrames 

APIs. A DataFrame is effectively a distributed collection of data organized into named 

columns. This is not a novel idea; in fact, this idea was inspired by data frames in R and 

Python. An easier way to think about a DataFrame is that it is conceptually equivalent to 

a table in a relational database.

Behind the scenes, Spark SQL leverages the Catalyst optimizer to perform the kinds 

of the optimizations that are commonly done in many analytical database engines.

Another feature Spark SQL provides is the ability to read data from and write data 

to various structured formats and storage systems, such as JavaScript Object Notation 

(JSON), comma-separated value (CSV) files, Parquet or ORC files, relational databases, 

Hive, and others. This feature really helps in elevating the level of versatility of Spark 

because Spark SQL can be used as a data converter tool to easily convert data from one 

format to another.

According to a 2016 Spark survey, Spark SQL was the fastest-growing component. 

This makes sense because Spark SQL enables a wider audience beyond big data 

engineers to leverage the power of distributed data processing (i.e., data analysts or 

anyone who is familiar with SQL).

The motto for Spark SQL is to write less code, read less data, and let the optimizer do 

the hard work.

 Spark Structured Streaming and Streaming
It has been said that “Data in motion has equal or greater value than historical data.” 

The ability to process data as it arrives is becoming a competitive advantage for many 

companies in highly competitive industries. The Spark Streaming module enables 

the ability to process real-time streaming data from various data sources in a high- 

throughput and fault-tolerant manner. Data can be ingested from sources such as Kafka, 

Flume, Kinesis, Twitter, HDFS, or TCP sockets.

Chapter 1  IntroduCtIon to apaChe Spark 
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The main abstraction in the first generation of the Spark Streaming processing 

engine is called discretized stream (DStream), which implements an incremental 

stream processing model by splitting the input data into small batches (based on a time 

interval) that can regularly combine the current processing state to produce new results. 

In other words, once the incoming data is split into small batches, each batch is treated 

as an RDD and replicated out onto the cluster so they can be processed accordingly.

Stream processing sometimes involves joining with data at rest, and Spark makes it 

easy to do so. In other words, combining batch and interactive queries with streaming 

processing can be easily done in Spark because of the unified Spark stack.

A new scalable and fault-tolerant streaming processing engine called Structured 

Streaming was introduced in Spark 2.1, and it was built on top of the Spark SQL engine. 

This engine further simplifies the life of streaming processing application developers 

by treating streaming computation the same way as one would express a batch 

computation on static data. This new engine will automatically execute the streaming 

processing logic incrementally and continuously as new streaming data continues to 

arrive. A new and important feature that Structured Streaming provides is the ability to 

process incoming streaming data based on the event time, which is necessary for many 

of the new streaming processing use cases. Another unique feature in the Structured 

Streaming engine is the end-to-end, exactly once guarantee, which will make a big data 

engineer’s life much easier than before in terms of saving data to a storage system such 

as a relational database or a NoSQL database.

As this new engine matures, undoubtedly it will enable a new class of streaming 

processing applications that are easy to develop and maintain.

According to Reynold Xin, Databricks’ chief architect, the simplest way to perform 

streaming analytics is not having to reason about streaming.

 Spark MLlib
In addition to providing more than 50 common machine learning algorithms, the 

Spark MLlib library provides abstractions for managing and simplifying many of the 

machine learning model building tasks, such as featurization, pipeline for constructing, 

evaluating and tuning model, and persistence of models to help with moving the model 

from development to production.

Chapter 1  IntroduCtIon to apaChe Spark 
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Starting with Spark 2.0, the MLlib APIs will be based on DataFrames to take 

advantage of the user friendliness and many optimizations provided by the Catalyst and 

Tungsten components in the Spark SQL engine.

Machine learning algorithms are iterative in nature, meaning they run through 

many iterations until a desired objective is achieved. Spark makes it extremely easy 

to implement those algorithms and run them in a scalable manner through a cluster 

of machines. Commonly used machine learning algorithms such as classification, 

regression, clustering, and collaborative filtering are available out of the box for data 

scientists and engineers to use.

 Spark Graphx
Graph processing operates on data structures consisting of vertices and edges 

connecting them. A graph data structure is often used to represent real-life networks of 

interconnected entities, including professional social networks on LinkedIn, networks 

of connected web pages on the Internet, and so on. Spark GraphX is a component 

that enables graph-parallel computations by providing an abstraction of a directed 

multigraph with properties attached to each vertex and edge. The GraphX component 

includes a collection of common graph processing algorithms including page ranks, 

connected components, shortest paths, and others.

 SparkR
SparkR is an R package that provides a light-weight front end to use Apache Spark. 

R is a popular statistical programming language that supports data processing and 

machine learning tasks. However, R was not designed to handle large datasets that 

can’t fit on a single machine. SparkR leverages Spark’s distributed computing engine to 

enable large- scale data analysis using the familiar R shell and popular APIs that many 

data scientists love.

Chapter 1  IntroduCtIon to apaChe Spark 



12

 Apache Spark Applications
Spark is a versatile, fast, and scalable data processing engine. It was designed to be a 

general engine since the beginning days and has proven that it can be used to solve 

various use cases. Many companies in various industries are using Spark to solve real-life 

use cases. The following is a small list of applications that were developed using Spark:

• Customer intelligence applications

• Data warehouse solutions

• Real-time streaming solutions

• Recommendation engines

• Log processing

• User-facing services

• Fraud detection

 Example Spark Application
In the world of big data processing, the canonical example application is a word count 

application. This tradition started with the introduction of the MapReduce framework. 

Since then, every big data processing technology book must follow this unwritten 

tradition by including this canonical example. The problem space in the word count 

example application is easy for everyone to understand since all it does is count how 

many times a particular word appears in a given set of documents, whether that is a 

chapter of a book or hundreds of terabytes of web pages from the Internet. Listing 1-1 

contains the word count example written in Spark using Scala APIs.

Listing 1-1. Word Count Example Application in Spark in the Scala Language

val textFiles = sc.textFile("hdfs://<folder contains text files")

val words = textFiles.flatMap(line => line.split(" "))

val wordTuples = words.map(word => (word, 1))

val wordCounts = wordTuples.reduceByKey(_ + _)

wordCounts.saveAsTextFile("hdfs://<outoupt folder>")
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13

There is a lot going on behind these five lines of code. The first line is responsible for 

reading in the text files in the specified folder. The second line iterates through each line 

in each of the files, tokenizes each line into an array of words, and finally flattens each 

array into one word per line. To count the number of words across all the documents, the 

third line attaches a count of 1 to each word. The fourth line performs the summation 

of the count of each word. Finally, the last line saves the result in the specified folder. 

Ideally this gives you a general sense of the ease of use of Spark to perform data 

processing. Future chapters will go into much more detail about what each of these lines 

of code does.

 Summary
In this chapter, you learned the following:

• Apache Spark has certainly produced many sparks since its 

inception. It has created much excitement and many opportunities 

in the world of big data. More important, it allows you to create 

many new and innovating big data applications to solve a diverse 

set of use cases.

• The three important properties of Spark to note are ease of use, 

speed, and flexibility.

• The Spark distributed computing infrastructure employs a master- 

slave architecture. Each Spark application consists of a driver, which 

plays the master role, and one or more executors, which are the 

slaves, to process data in parallel.

• Spark provides a unified scalable and distributed data processing 

engine that can be used for batch processing, interactive and 

exploratory data processing, real-time streaming processing, training 

machine learning models and performing predictions, and graph 

processing.

• Spark applications can be written in multiple programming 

languages including Scala, Java, Python, and R.
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CHAPTER 2

Working with Apache Spark
This chapter provides details about the different ways of working with Spark, including 

using the Spark shell, submitting a Spark application from the command line, and using 

a hosted cloud platform called Databricks. The last part of this chapter is geared toward 

software engineers who want to set up the Apache Spark source code on a local machine 

to examine the Spark code and learn how certain features were implemented.

 Downloading and Installing Spark
For the purposes of learning or experimenting with Spark, it is good to install Spark 

locally on your computer. This way you can easily try the Spark features or test your data 

processing logic with small datasets. By having Spark locally installed on your laptop, 

you can learn Spark from anywhere, including in your comfortable living room, on the 

beach, or at a bar in Mexico.

Spark is written in the Scala programming language, and it is packaged in such a way 

that it can be run on both Windows and Unix-like systems (e.g., Linux and macOS).  

All that is needed is to have Java installed on your computer.

Setting up a multitenant Spark production cluster requires a lot more details and 

resources and is beyond the scope of this book.

 Downloading Spark
The Download section of the Apache Spark website (http://spark.apache.org/

downloads.html) has detailed instructions for downloading the prepackaged Spark 

binary file. At the time of writing this book, the latest version is 2.3.0. In terms of the 

package type, choose the one with the latest version of Hadoop. Figure 2-1 shows 

the various options for downloading Spark. The important thing is to download the 

prepackaged binary file because it contains the necessary JAR files to run Spark on your 

http://spark.apache.org/downloads.html
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computer. Clicking the link on line 4 will trigger the binary file download process. There 

is a way to manually package the Spark binary from source code, and the instructions for 

how to do that will be available later in the chapter.

Figure 2-1. Apache Spark download options

 Installing Spark
Once the binary file is successfully downloaded onto your computer, the next  

step is to uncompress it. The downloaded file, spark-2.x.x-bin-hadoop2.7.tgz, is in a 

GZIP- compressed tar archive file, so you need to use the right tool to uncompress it.

For Linux or Mac computers, the tar command should already exist. So, run the 

following command to uncompress the downloaded file:

tar xvf spark-2.x.x-bin-hadoop2.7.tgz

For Windows computers, you can use either the WinZip or 7-zip tool to unzip the 

downloaded file.

Once the uncompressing is successfully finished, there should be a directory  

called spark-2.x.x-bin-hadoop2.7. From here on, this directory is referred to as the 

Spark directory.

Note If a different version of Spark was downloaded, the directory name will be 
slightly different.
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There are about a dozen directories underneath the Spark directory. Table 2-1 lists 

the ones you should know.

Table 2-1. Subdirectories Inside the spark-2.1.1-bin-hadoop2.7 Directory

Name Description

bin Contains the various executable files to bring up a Spark shell in Scala or python, 

submit Spark applications, and run Spark examples

data Contains small sample data files for various Spark examples

examples Contains both the source code and binary file for all Spark examples

jars Contains the necessary binaries that are needed to run Spark

sbin Contains the executable files to manage the Spark cluster

After the uncompressing step, the next step is to test the installation by bringing up 

the Spark shell.

A Spark shell is like a Unix shell, but it is for Spark. It provides an interactive 

environment to make it easy to learn the Spark APIs and to analyze data interactively. 

The cool thing is that it is available in either Scala or Python. If you are a data scientist 

and Python is your cup of tea, then you will be at home. The following sections will show 

how to bring up the Spark Scala and Spark Python shells.

Note the Scala programming language is a JVM language, and thus it is easy for 
Scala to use existing Java libraries.

 Spark Scala Shell

To start a Spark Scala shell, enter this command in the Spark directory:

./bin/spark-shell
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After a few seconds, you should see something similar to Figure 2-2.

Figure 2-2. Scala Spark shell output

To exit the Scala Spark shell, type :quit or :q.

Note the Spark Scala shell requires Java 1.8.x installed on your machine.

 Spark Python Shell

To start up a Spark Python shell, enter this command in the Spark directory:

./bin/pyspark

After a few seconds, you should see something similar to Figure 2-3.

Figure 2-3. Output of the Python Spark shell
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To exit the Python Spark shell, press Ctrl+D.

Note the Spark python shell requires python 2.6.x or newer installed on your 
machine.

Both the Spark Scala shell and the Spark Python shell are extensions of Scala 

REPL and Python REPL, respectively. REPL is an acronym for read-eval-print loop. It 

is basically an interactive computer programming environment that takes user input, 

evaluates it, and returns the result to the user. Once a line of code is entered, the REPL 

will immediately provide feedback about whether there was a syntactic error. If there 

are no syntactic errors, that line of code will evaluated, and the output is displayed in 

the shell if there is any. The interactive and immediate feedback environment allows 

developers to be very productive by bypassing the code compilation step in the normal 

software development process.

For the purpose of learning Spark, the Spark shell is a convenient tool to use on 

your local computer anytime and anywhere. It doesn’t have any external dependencies, 

other than the data files you would like to process. However, if you have an Internet 

connection, then it is possible to access those remote data files, but it will be slow.

The remaining chapters of this book will use the Spark Scala shell.

 Having Fun with the Spark Scala Shell
This section will provide detailed information about the Scala Spark shell and a set of 

useful commands to know to be effective at using it for exploratory data analysis or for 

building Spark applications interactively.

The command ./bin/spark-shell effectively starts a Spark application and 

provides an environment where you can interactively call Spark Scala APIs to easily 

perform exploratory data processing. Since the Spark Scala shell is an extension of the 

Scala REPL, it is a great way to use it to learn Scala and Spark at the same time.

 Useful Spark Scala Shell Commands and Tips
Once a Spark Scala shell is started, it puts you in an interactive environment where you 

can enter shell commands and Scala code. This section will cover the various useful 

commands and a few tips for working with this shell.
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Once you are inside the Spark shell, type the following to bring up a complete list of 

available commands:

scala>  :help

Figure 2-4 shows the output of the previous command.

Figure 2-4. List of available shell commands

Some commands are used more often than others because of their usefulness. 

Table 2-2 describes the commonly used commands.

Table 2-2. Useful Spark Shell Commands to Know

Name Description

:history this command displays what was entered during the previous Spark shell session as 

well as the current session. It is useful for copying purposes.

:load this command loads and executes the code in the provided file. this is particular 

useful when the data processing gets a bit long. It is a bit easier to keep track of the 

logic and what’s going in a file than in the shell.

:reset after experimenting with the various Scala or Spark apIs for a while, you may lose 

track of the value of various variables. this command resets the shell to a clean state 

to make it easy to reason about.

(continued)
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In addition to these commands, a helpful feature for improving developer 

productivity is the code completion feature. Similar to popular integrated development 

environments (IDEs) like Eclipse or IntelliJ, the code completion feature helps 

developers by exploring the possible options and reducing typing errors.

Inside the shell, type spa and then hit the Tab key. The environment will add 

characters to transform spa to spark. In addition, it will show a list of possible matches 

for spark, as shown in Figure 2-5.

scala> spa <tab>

Name Description

:silent this is for an advanced user who is a bit tired at looking at the output of each Scala 

or Spark apI that was entered in the shell. the command will stop the shell from 

displaying the default output after evaluating an expression. to re-enable the output, 

simply type :silent again.

:quit this is a pretty self-explanatory command but useful to know. oftentimes, people try 

to quit the shell by entering :exit, which doesn’t work.

:type this command displays the type of a variable, for example, :type <variable name>.

Table 2-2. (continued)

Figure 2-5. Tab completion output of spa

In addition to completing the name of a partially entered word, the tab completion 

feature can show the available member variables and functions of an object.

Inside the shell, type spark. and then hit the Tab key. This will display a list of 

available member variable and functions of the Scala object represented by the spark 

variable, as shown in Figure 2-6.
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The command :history displays the previously entered commands or lines of code. 

This suggests that the Spark shell maintains a record of what was entered. One way to 

quickly display or recall what was entered recently is by pressing the up arrow key. Once 

you scroll up to the line you would like to execute, simply just hit Enter to execute it.

 Basic Interactions with Scala and Spark
Now that you know how to navigate around the Spark shell, this section will introduce 

a few fundamental ways of working with Scala and Spark in the Spark shell. This 

fundamental knowledge will be really helpful in future chapters, which go into much 

deeper details of topics such as Spark RDDs, Spark SQL, and so on.

 Basic Interactions with Scala

Let’s start working with Scala in the Spark Scala shell, which provides a full-blown 

environment for learning Scala. Think of the Spark Scala shell as a Scala application 

with an empty body, which is where you come in. You fill this empty body with Scala 

functions and logic for your application. The intention of this section is to demonstrate 

a few simple Scala examples in the Spark shell. Scala is a fascinating programming 

language that is powerful, concise, and elegant. (Please refer to Scala-related books to 

learn more about the Scala programming language.)

Let’s begin with some basic Scala. The canonical example for learning any 

programming language is the “Hello World” example, which entails printing out a 

message, so let’s do that. Enter the following line into the Spark Scala shell; the output 

should look something like Figure 2-7:

scala> println("Hello from Spark Scala shell")

Figure 2-6. List of available member variables and functions of the object called spark
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The next example is to define an array of ages and print those element values in the 

Spark shell. In addition, this example illustrates the code completion feature that was 

mentioned in the previous section.

To define an array of ages and assign it to an immutable variable, enter the following 

into the Spark shell. See Figure 2-8 for the evaluation output.

scala> val ages = Array(20, 50, 35, 41)

Figure 2-7. Output of the “Hello World” example

Figure 2-8. Output of defining an array of ages

Now you can refer to the variable ages, as in the following line of code. Let’s pretend 

that you can’t exactly remember a function name in the Array class that you can use to 

iterate through the elements in the array, but you know it starts with fo. Then you can 

just enter the following and hit Tab to see how the Spark shell can help you:

scala> ages.fo

After you press the Tab key, the Spark shell displays the output shown in Figure 2-9.

Figure 2-9. Output of code completion

Aha—what you need is the foreach function to iterate through the elements in the 

array. Let’s use it to print the ages.

scala> ages.foreach(println)
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Figure 2-10 shows the expected output.

Figure 2-10. Output from printing the ages

The previous line of code may look a bit cryptic for those who are new to Scala; 

however, you can intuitively guess what it does. As the function foreach iterates through 

each element in the ages array, it passes that element to the println function to print 

the value to the console. You will use this style quite a bit in the coming chapters.

The last example in this section is to define a Scala function to determine whether an 

age is an odd or even number, and then you will use it to find out what the odd-number 

ages are in the array.

scala> def isOddAge(age:Int) : Boolean = {

  (age % 2) == 1

}

If you are coming from a Java programming background, the previous function 

signature may look a bit strange, but it is not too difficult to decipher what the function 

does. Notice the function doesn’t use the return keyword to return the value of the 

expression in its body. In Scala, it is not necessary to add the return keyword. The output 

of the last statement in a function body will be returned to the caller (if that functions was 

defined to return a value). See Figure 2-11 for the output from the Spark shell.

Figure 2-11. If there is not a syntax error, the Spark shell returns the function 
signature

To figure out what the odd-number ages are in the ages array, you will leverage the 

filter function in the Array class.

scala> ages.filter(age => isOddAge(age)).foreach(println)
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The previous line of code does the filtering and then iterates through the result to 

print out the odd ages. It is a common practice in Scala to use function chaining to make 

the code concise. See Figure 2-12 for the output from the Spark shell.

Figure 2-12. Output of filtering and printing only the ages that are odd numbers

Now let’s try the shell command called :type on a Scala variable and function that 

was defined earlier. This command comes in handy after you have been using the Spark 

shell for a while and lose track of the data type of a certain variable or the return type of a 

function. See Figure 2-13 for examples of using the:type command.

Figure 2-13. Output of the :type command

For the purpose of learning Spark, it is not absolutely necessary to master the Scala 

programming language. However, you must be comfortable with knowing and working 

with the basics of Scala. Here is a good resource about learning just enough Scala to 

learn Spark: https://github.com/deanwampler/JustEnoughScalaForSpark. This 

resource was presented at various Spark-related conferences.

 Spark UI and Basic Interactions with Spark

In the previous section, I mentioned the Spark shell is a Scala application. That is only 

partially true. The Spark shell is actually a Spark application written in Scala. When the 

Spark shell is started, a few things are initialized and set up for you to use, including 

Spark UI and a few important variables.

Chapter 2  WorkIng WIth apaChe Spark

https://github.com/deanwampler/JustEnoughScalaForSpark


26

Spark UI

If you carefully examine the Spark shell output in either Figure 2-2 or Figure 2-3, you will 

see a line that looks something like the following. The URL may look a bit different for 

your Spark shell, but the important thing is the URL.

Spark context Web UI available at http://192.168.1.73:4042

If you point your browser to that URL in your Spark shell, your browser will display 

something like Figure 2-14.

Figure 2-14. The Spark UI

The Spark UI is a web application designed to help with monitoring and debugging 

Spark applications. It contains detailed runtime information and various resource 

consumptions of a Spark application. The runtime includes various metrics that are 

tremendously helpful in diagnosing performance issues in your Spark applications. One 

thing to note is that the Spark UI is available only while a Spark application is running.

The navigation bar at the top of the Spark UI contains links to the various tabs 

including jobs, stages, storage, environment, executors, and SQL. For now, I will briefly 

cover the Environment and Executors tabs and will describe the remaining tabs in later 

chapters.

The Environment tab contains the basic information about the environment that a 

Spark application is running in. The sections are Runtime Information, Spark Properties, 

System Properties, and Classpath Entries. Table 2-3 provides some details about each of 

these areas.
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The Executors tab contains the summary and breakdown information for each of the 

executors that is supporting a Spark application. This information includes the capacity 

of certain resources as well as how much is being used in each executor. The resources 

include memory, disk, CPU, and so on. The Summary section provides a bird’s-eye view 

of the resource consumption across all the executors in a Spark application. See  

Figure 2- 15 for more details.

Table 2-3. Information About the Various Sections Inside the Environment Tab

Name Description

runtime 

Information

this section contains the locations and versions of the various components that 

Spark depends on, including Java and Scala.

Spark  

properties

this area contains the basic and advanced properties that are configured in a Spark 

application. the basic properties include the basic information about an application 

such as application ID, name, etc. the advanced properties are meant to turn on 

or off certain features of Spark or to tweak them in certain ways that are best for 

a particular application. See https://spark.apache.org/docs/latest/

configuration.html for a comprehensive list of configurable properties.

System 

properties

these properties are mainly at the oS and Java level and are not Spark specific.

Classpath  

entries

this area contains a list of classpaths and Jar files that are used in a Spark 

application.
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Basic Interactions with Spark

Once a Spark shell is successfully started, a notable variable called spark is initialized 

and ready to be used in the Spark shell. This spark variable is an instance of a class 

called SparkSession. Let’s use the :type command to verify this.

scala>:type spark

The Spark shell displays its type, as shown in Figure 2-16.

Figure 2-15. Executors tab of a Spark application that uses only a single executor

Figure 2-16. Showing the type of the spark variable
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The SparkSession class was introduced in Spark 2.0 to provide a single point of entry 

to interact with underlying Spark functionalities. This class has APIs for reading data 

from an unstructured text file as well as structured and binary data in various formats 

including JSON, CSV, Parquet, ORC, and so on. In addition, SparkSession provides a 

facility for retrieving and setting Spark-related configurations.

Let’s start interacting with the spark variable in the Spark shell to print out a few 

useful pieces of information, such as the version and existing configurations. From the 

Spark shell, type the following code to print the Spark version (see Figure 2-17 for the 

output):

scala> spark.version

Figure 2-17. Spark version output

To be a little more formal, you can use the println function that you learned in the 

previous section to print out the Spark version, as shown in Figure 2-18.

scala> println("Spark version:" + spark.version)

Figure 2-18. Displaying the Spark version using the println function

To see the default configuration that was configured in the Spark shell, you access 

the conf variable of spark. Here is the code to display the default configuration in the 

Spark shell (the output is shown in Figure 2-19):

scala> spark.conf.getAll.foreach(println)
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To see the complete set of available objects you can access from spark, you can 

leverage the Spark shell code completion features.

scala> spark.<tab>

Figure 2-20 contains the result of the previous command.

Figure 2-19. Default configuration in the Spark shell application

Figure 2-20. A complete list of variables that can be accessed from the spark 
variable

Future chapters will have more examples of using spark to interact with the 

underlying Spark functionalities.

 Introduction to Databricks
Databricks is a commercial product that is offered by a company called Databricks, 

which is the main driving force behind Apache Spark. According to its product 

documentation, Databricks is a just-in-time data platform that runs in the cloud and is 

fully managed. The main goal of this platform is to make big data simple and empower 

anyone to easily build and deploy advanced analytics solutions. It is built around Apache 

Spark and provides four main value propositions to customers around the world. See 

Figure 2-21 for more details.
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• Fully managed Spark clusters

• An interactive workspace for exploration and visualization

• A production pipeline scheduler

• A platform for powering your favorite Spark-based applications

Figure 2-21. Databricks platform

The Databricks product has two versions, the full platform and the community 

edition. The full platform is a paid product for companies to leverage all the advanced 

features in the Databricks product. The community edition is free and ideal for those 

who want to try Databricks and to learn Apache Spark.

The following section will cover the basic features of the Databricks community 

edition so you can use Databricks to learn Apache Spark. Once you are familiar with 

Databricks, you will find it easy and intuitive to learn Spark, to perform data analysis, or 

to build Spark applications. This section is not intended to be a comprehensive guide 

about the Databricks product. All future examples will be done in a Spark shell. For a 

comprehensive guide about DataBricks, please refer to https://docs.databricks.com/

user-guide/index.html.

The first step to use Databricks is to sign up for a free account on the Databricks 

community edition at https://accounts.cloud.databricks.com/registration.

html#signup/community. This process is pretty simple and quick, and an account can 
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be created in a matter of minutes. Once the necessary information is provided and 

submitted in the sign-up form, you will receive an email from Databricks to confirm your 

email, which looks something like Figure 2-22.

Figure 2-22. Databricks email to confirm your email address

By clicking the link in the previous email, you will be taken to the Databricks sign-in 

form, as shown in Figure 2-23.

Figure 2-23. Databricks sign-in page
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After a successful sign-in using the email and password that you provided during the 

sign-up step, you will see the Databricks welcome page, as shown in Figure 2-24.

Figure 2-24. Databricks welcome page

Over time, the welcome page may evolve, so it may not look exactly like Figure 2-24. 

Feel free to explore by going into those featured notebooks at the top.

The goal of this section is to create a notebook in Databricks so you can learn 

the commands that were covered in the previous section. To this, you need to do the 

following:

 1. Create a cluster.

 2. Create a folder.

 3. Create a notebook.

 Creating a Cluster
One of the coolest features of the Databricks community edition (CE) is that it provides a 

single-node Spark cluster with 6GB of memory for free. At the time of writing this book, 

this single-node cluster is hosted on the AWS cloud. Each Databricks CE account can 
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create only one cluster at a time. A cluster will continue to stay up as long as it is being 

used. Databricks will automatically shut it down if it is idle for a certain amount of time 

(two hours). This means you can either shut down the cluster yourself or let Databricks 

do it on your behalf.

To create a cluster, click the Clusters icon in the vertical navigation bar on the left 

side of the page. The Clusters page looks like Figure 2-25.

Figure 2-25. Databricks Clusters page with no active clusters

Now click the Create Cluster button to bring up the New Cluster form, as shown in 

Figure 2-26.
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The only required field on this form is the cluster name. Table 2-4 briefly describes 

all the fields.

Figure 2-26. Create Cluster form

Table 2-4. Fields on the Databricks New Cluster Form

Name Description

Cluster name this is a unique name to identify your cluster. the name can have a space 

between each word. For example, it can be named “my spark cluster.”

Databricks runtime 

Version

Databricks supports many versions of Spark. For learning purposes, select 

the latest version, which was automatically filled in for you. each version 

is tied to a specific aWS image.

Instance For the Ce edition, no other choices are available.

aWS – availability Zone this allows you to decide which aWS availability zone your single-node 

cluster will run in. the options may look different based on your location.

Spark – Spark Config this allows you to specify any application-specific configurations that 

should be included to launch the Spark cluster. examples of this include 

JVM configurations, the ability to turn on certain Spark features, and so on.
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Once the Cluster Name field is filled in, click the Create Cluster button. Depending 

on the day, it can take from one minute to ten minutes to create your single-node Spark 

cluster. Once the Spark cluster was successfully created, a green dot appears next to your 

cluster name, as shown in Figure 2-27.

Figure 2-27. After a cluster is created successfully

Feel free to explore by clicking the name of your cluster or various links on this 

page. Notice if you try to create another Spark cluster by following the previous steps, 

Databricks will not allow you to do so while there is already a running cluster.

To stop an active Spark cluster, click the square in the Actions column.

For more information on creating and managing Spark clusters on Databricks, see 

https://docs.databricks.com/user-guide/clusters/index.html.

Let’s move on to the next step, which is to create a folder.

 Creating a Folder
Before going into how to create folder, it is worth taking a moment to describe the 

workspace concept in Databricks. The easiest way to think about a workspace is to treat 

it as the root folder on your computer, which means you can put files there or create 

folders to help you organize your files in a specific manner.

To create a folder, click the Workspace icon in the vertical navigation bar on the left 

side of the page. The Workspace column will slide out, as shown in Figure 2-28.
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Now click the downward arrow in the upper right of the Workspace column, and a 

cascading drop-down menu will appear, as shown in Figure 2-29.

Figure 2-28. Workspace column

Figure 2-29. Menu item for creating a folder
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Selecting the Folder menu item will bring up the New Folder Name dialog box, as 

shown in Figure 2-30.

Figure 2-30. New Folder Name dialog box

Now you can enter a folder name, such as Chapter 2, and click the Create Folder 

button to complete the process. The Chapter 2 folder should now appear in the 

Workspace column, as shown in Figure 2-31.

Figure 2-31. Chapter 2 folder appears in the Workspace column

Before moving on to create a notebook, it is worth mentioning there is an alternative 

way to create a folder, which is by placing the mouse pointer anywhere in the Workspace 

column and right-clicking; then the same menu options will appear.

For more details on using workspaces and creating folders, please check out 

https://docs.databricks.com/user-guide/workspace.html.
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 Creating a Notebook
Next you want to create a Scala notebook in the Chapter 2 folder. First select the  

Chapter 2 folder in the Workspace column. The Chapter 2 column slides out after the 

Workspace column, and it looks something like Figure 2-32.

Figure 2-32. The Chapter 2 column appears to the right of the Workspace column

Now you can either click the downward arrow in the upper-right corner of the 

Chapter 2 column or right-click anywhere in the Chapter 2 column to bring up the 

menu, as shown in Figure 2-33.
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Selecting the Notebook menu item will bring up the Create Notebook dialog box. 

Give your notebook a name and make sure to select the Scala option for the Language 

field. The value for the cluster should be filled in automatically because the Databricks 

CE edition can have only one cluster a time. Your dialog box should look something like 

Figure 2-34.

Figure 2-33. Creating a notebook menu item

Figure 2-34. Create Notebook dialog box with the Scala language option selected
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If you have never worked with IPython Notebook, the notebook concept may seem a 

bit strange at first. However, once you get used to it, you will love it.

A notebook is essentially an interactive computational environment (similar to the 

Spark shell but way better) in which you can execute Spark code, document your code 

with rich text using Markdown or HTML, and visualize the result of your data analysis 

with various types of charts and graphs.

The following section will cover only a few essential instructions to help you be 

productive at using Spark notebooks. For a comprehensive list of instructions on how to 

use and interact with Databricks notebooks, please see https://docs.databricks.com/

user-guide/notebooks/index.html.

A Spark notebook contains a collection of cells, where each one contains a block of 

code either to execute or to mark up for documentation purposes.

Once the Create button is clicked, a new notebook is created, as shown in Figure 2- 35.

Figure 2-35. New Scala notebook
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Note a good practice of using a Spark notebook is to break your data processing 
logic into multiple logical groups so each group resides in one or more cells. this is 
similar to the practice of developing maintainable software applications.

You are going to divide your notebook into two parts. The first part will contain the 

code snippets you typed in the earlier “Basic Interactions with Scala” section, and the 

second part will contain the code snippets you typed in the earlier “Basic Interactions 

with Spark” section.

Let’s start with adding a markdown statement into the first cell of the notebook by 

enter the following (see Figure 2-36):

%md #### Basic Interactions with Scala

To execute that markup statement, first make sure the mouse cursor is in cell 1 and 

then hold down the Shift key and hit the Enter key. That is the shortcut for running code 

or markup statements in a cell. The result should look like Figure 2-37.

Figure 2-36. Cell containing section header markup statement
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Notice the Shift+Enter key combination not only executed what’s in that cell but also 

created a new cell below it. Now let’s type the “Hello World” example from earlier into 

the second cell and execute that cell. The output should look like Figure 2-38.

Figure 2-37. The output of executing a markup statement in a cell

Figure 2-38. Output of executing the println statement
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Copy the remaining three code statements in the “Interactions with Scala” section 

into the notebook, as shown in Figure 2-39.

Just like the Spark Scala shell, a Scala notebook is a full-blown Scala interactive 

environment where you can execute Scala code.

Now let’s enter the second markup statement to denote the beginning of the second 

part of the notebook and then paste the remaining code snippets from the “Interactions 

with Spark” section. See Figure 2-40 for the output.

%md #### Basic Interactions with Spark

Figure 2-39. The remaining code statements from the “Interactions with Scala” 
section
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There are a few important notes to know when working with a Spark notebook. 

One of the convenient features in a Spark notebook is autosaving. The content of the 

notebook is automatically saved as you enter market statements or code snippets. In fact, 

the available menu items under the File menu item don’t even have an option for saving 

a notebook.

Sometimes there is a need to create a new cell between two existing cells. One way 

to do this is to move the mouse cursor to the space between two existing cells; then click 

the plus icon that appears to create a new cell. See Figure 2-41 to see what the plus icon 

looks like.

Figure 2-41. Using a plus icon to insert a new cell between two existing cells

Figure 2-40. Output of the code snippets from the “Interactions with Spark” section
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Sometimes you will want to share your notebook with a co-worker who works 

in a remote office or with other collaborators to either show off your awesome Spark 

knowledge or get their feedback on your analysis of certain datasets. Databricks makes 

it easy to do that. Simply click the File menu item at the top of your Spark notebook and 

select the Publish submenu item, as shown in Figure 2-42.

Clicking the Publish submenu item will bring up the confirmation dialog box 

(Figure 2-43), and if you follow through with it, then the Notebook Published dialog box 

(Figure 2-44) provides a URL that you can send to anyone in the world. With that URL, 

your co-worker or collaborators will have access to the read-only view of your book plus 

the options of importing it into their Databricks accounts.

Figure 2-43. Publishing confirmation dialog box

Figure 2-42. Notebook publishing menu item
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Figure 2-44. Notebook published URL

This section covered only the essential parts of using Databricks. There are other 

advanced features that make it really enticing to use Databricks as the platform of choice 

for performing interactive data analysis or building advanced data solutions.

The Databricks CE has made it much easier than ever before to learn Spark. I highly 

recommend giving Databricks a try in your journey of learning Spark.

 Setting Up the Spark Source Code
This section is geared toward software developers or anyone who is interested in 

learning how Spark works at the code level. Since Apache Spark is an open source 

project, its source code is public and available for you to download, examine, and study 

how certain features were implemented. The Spark code was written in Scala by some of 

the smartest Scala programmers on the planet, so examining the Spark code is another 

way of improving your Scala programming skills and knowledge.

There are two ways to download the Apache Spark source code to your computer. The 

first way is to download it from the Spark download page (http://spark.apache.org/ 

downloads.html), which is the same page you used earlier to download the Spark  

binary file. This time choose the Source Code package type, as shown in Figure 2-45.
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To complete the source code download process, click the link on line 4 to download 

the compressed source code file. The final step is to uncompress that file into your 

choice of directory.

The second way to download the Apache Spark source code is to use the git clone 

command. This requires an installation of git on your computer. You can download 

git from https://git-scm.com/downloads; the installation instructions are available 

at https://git-scm.com/book/en/v2/Getting-Started-Installing-Git. Once git is 

properly installed on your computer, issue the following command to clone the Apache 

Spark git repository on GitHub (https://github.com/apache/spark):

git clone git://github.com/apache/spark.git

There are roughly about 2,600 Scala files in Spark, so it will take a minute or two to 

download all those files.

Once the Apache Spark source code is downloaded on your computer, check 

http://spark.apache.org/developer-tools.html for the details about how to import 

them into your favorite IDE.

Figure 2-45. Apache Spark source download option
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 Summary
In this chapter, you learned the following:

• There are a few tools to use to learn Spark. You can either use the 

locally installed Spark or use a Databricks CE account. These tools 

make it easy for anyone to learn Spark.

• The Spark shell is a powerful and interactive environment to learn 

Spark or to analyze data interactively. There are two types of Spark 

shell: the Spark Scala shell and the Spark Python shell.

• The Spark shell provides a set of commands to help its users become 

productive.

• Databricks is a fully managed data platform designed to make big 

data simple and to empower anyone to easily build and deploy 

advanced analytics solutions. The interactive workspace helps 

you organize notebooks into folders. Each notebook contains a 

combination of markup statements and Spark code snippets. Sharing 

a notebook with others requires only a few mouse clicks.

• For software developers who are really interested in learning about 

the internals of Spark, downloading and examining the Apache Spark 

source code is a great way to satisfy that curiosity.
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CHAPTER 3

Resilient Distributed 
Datasets
This chapter covers the oldest foundational concept in Spark called resilient distributed 

datasets (RDDs). To truly understand how Spark works, you must understand the 

essence of RDDs. They provide an extremely solid foundation that other abstractions are 

built upon. The ideas behind RDDs are pretty unique in the distributed data processing 

framework landscape, and they were introduced in a timely manner to solve the pressing 

needs of dealing with the complexity and efficiency of iterative and interactive data 

processing use cases. Starting with Spark 2.0, Spark users will have fewer needs for 

directly interacting with RDD, but having a strong mental model of how RDD works is 

essential. In a nutshell, Spark revolves around the concept of RDDs.

 Introduction to RDDs
RDDs represent both the idea of how a large dataset is represented in Spark and the 

abstraction for working with it. This section will cover the former part, and the following 

sections will cover the latter part.

According to the seminal paper on Spark,1 RDDs are immutable, fault-tolerant, 

parallel data structures that let users explicitly persist intermediate results in memory, 

control their partitioning to optimize data placement, and manipulate them using a rich 

set of operators. Let’s dissect this description to truly understand the ideas behind the 

RDD concept.

1 “Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing”
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 Immutable
RDDs are designed to be immutable, which means you can’t specifically modify a 

particular row in the dataset represented by that RDD. You can call one of the available 

RDD operations to manipulate the rows in the RDD into the way you want, but that 

operation will return a new RDD. The basic RDD will stay unchanged, and the new RDD 

will contain the data in the way that you want. The immutability of RDDs essentially 

requires an RDD to carry its lineage information that Spark leverages to efficiently 

provide the fault tolerance capability.

 Fault Tolerant
The ability to process multiple datasets in parallel usually requires a cluster of machines 

to host and execute the computational logic. If one or more of those machines dies or 

becomes extremely slow because of unexpected circumstances, then how will that affect 

the overall data processing of those datasets? The good news is that Spark automatically 

takes care of handling the failure on behalf of its users by rebuilding the failed portion 

using the lineage information, which will be discussed later in this chapter.

 Parallel Data Structures
Imagine the use case where someone gives you a large log file that is 1TB size and you 

are asked to find out how many log statements contain the word exception in it. A slow 

solution would be to iterate through that log file from the beginning to the end and 

execute the logic of determining whether a particular log statement contains the word 

exception. A faster solution would be to divide that 1TB file into several chunks and 

execute the aforementioned logic on each chunk in a parallelized manner to speed up 

the overall processing time. Each chunk contains a collection of rows.

The collection of rows is essentially the data structure that holds a set of rows and 

provides the ability to iterate through each row. Each chunk contains a collection of 

rows, and all the chunks are being processed in parallel. This is where the phrase parallel 

data structures comes from.
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 In-Memory Computing
The idea of speeding up the computation of large datasets that reside on disks in a 

parallelized manner using a cluster of machines was introduced by a MapReduce paper2 

from Google. This idea was implemented and is made available in the Hadoop open 

source project. Building on that solid foundation, RDD pushes the speed boundary by 

introducing a novel idea, which is the ability to do distributed in-memory computation.

It is always fascinating to examine the stories that led up the creation of an 

innovative idea. In the world of big data processing, once you are able to extract insights 

from large datasets in a reliable manner using a set of rudimentary techniques, then you 

want to use more sophisticated techniques as well to reduce the amount of time it takes 

to do that. This is where distributed in-memory computation helps. The sophisticated 

technique I am referring to is using machine learning to perform various predictions 

or to extract patterns out of large datasets. Machine learning algorithms are iterative in 

nature, meaning they need to go through many iterations to arrive at an optimal state. 

This is where distributed in-memory computation can help in reducing the completion 

time from days to hours. Another use case that can hugely benefit from distributed 

in-memory computation is interactive data mining, where multiple ad hoc queries are 

performed on the same subset of data. If that subset of data is persisted in memory, 

those queries will take seconds and not minutes to complete.

 Data Partitioning and Placement
The information about how the rows in a dataset are partitioned into chunks and about 

their physical location is considered to be the dataset metadata. This information helps 

Spark perform optimizations while executing the computational logic.

For example, while joining two datasets, the data partition information is useful 

to determine whether it is necessary to move the rows from various chunks of the two 

datasets to the same location to perform the join. Moving data across machines is an 

expensive operation, and therefore minimizing it would dramatically reduce the overall 

processing time.

Data placement information helps to reinforce the data locality concept, which 

means bringing the computation to where the data lives. Knowing where the chunks 

2 “MapReduce: Simplified Data Processing on Large Clusters”. https://static.
googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
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are located on a cluster, Spark can use those machines to host and execute the 

computational logic on those chunks, and therefore the time to read the rows from those 

chunks would be much less than reading them from a different node on the cluster.

 Rich Set of Operations
RDDs provide a rich set of commonly needed data processing operations. They include the 

ability to perform data transformation, filtering, grouping, joining, aggregation, sorting, and 

counting. These operations will be covered in more detail in the second half of this chapter.

One thing to note about these operations is that they operate at the coarse-grained 

level, meaning the same operation is applied to many rows, not to any specific row.

In summary, an RDD is represented as an abstraction and is defined by the following 

five pieces of information:

• A set of partitions, which are the chunks that make up the entire dataset

• A set of dependencies on parent RDDs

• A function for computing all the rows in the data set

• Metadata about the partitioning scheme (optional)

• Where the data lives on the cluster (optional); if the data lives on 

HDFS, then it would be where the block locations are located

The Spark runtime uses these five pieces of information to schedule and execute the 

user data processing logic that is expressed via the RDD operations, which are described 

in the following section.

The first three pieces of information make up the lineage information, which Spark 

uses for two purposes. The first one is determining the order of execution of RDDs, and 

the second one is for failure recovery purposes.

 RDD Operations
This section will go into detail about the commonly used RDD operations and their behavior. 

Before going into the details, it is imperative to internalize a few core concepts about them.

The RDD operations operate at a coarse-grained level, which was described earlier. 

Each row in a dataset is represented as a Java object, and the structure of this Java object 

is opaque to Spark. The user of RDD has complete control over how to manipulate this 
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Java object. This flexibility comes with a lot of responsibilities, meaning some of the 

commonly needed operations such as the computing average will have to be hand- 

crafted. Higher-level abstractions such as the Spark SQL component will provide this 

functionality out of the box.

The RDD operations are classified into two types: transformations and actions. 

Table 3-1 describes the main differences between them.

Table 3-1. Main Differences Between Transformations and Actions

Type Evaluation Returned Value

transformation lazy another rDD

action eager some result or write result to disk

Transformation operations are lazily evaluated, meaning Spark will delay the 

evaluations of the invoked operations until an action is taken. In other words, the 

transformation operations merely record the specified transformation logic and will 

apply them at a later point. On the other hand, invoking an action operation will trigger 

the evaluation of all the transformations that preceded it, and it will either return some 

result to the driver or write data to a storage system, such as HDFS or the local file 

system.

The lazy evaluation design makes sense in the world of big data. It is not desirable 

to immediately trigger an evaluation of every single filtering operation when a dataset 

is large in size. The typical end goal of a data processing task is to write the result out 

to some external storage system or to see how many records there are. This is when it 

makes sense to evaluate all the previously specified computational logic. One important 

optimization technique behind the lazy evaluation concept is the ability to collapse or 

combine similar transformations into a single operation during execution time.

In short, RDDs are immutable, RDD transformations are lazily evaluated, and RDD 

actions are eagerly evaluated and trigger the computation of your data processing logic.
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 Creating RDDs
Before invoking any transformation or action operations, you must have an RDD in 

hand. There are three ways to create an RDD.

The first way to create an RDD is to parallelize an object collection, meaning 

converting it to a distributed dataset that can be operated in parallel. This is a great way 

to get started in learning Spark because it is simple and doesn’t require any data files. 

This approach is often used to quickly try a feature or do some experimenting in Spark. 

The way to parallelize an object collection is to call the parallelize method of the 

SparkContext class. See Listing 3-1 for an example.

Listing 3-1. Creating an RDD from an Object Collection

val stringList = Array("Spark is awesome","Spark is cool")

val stringRDD = spark.sparkContext.parallelize(stringList)

The stringRDD variable represents an RDD that you can apply transformation or 

action operations to.

The second way to create an RDD is to read a dataset from a storage system, which 

can be a local computer file system, HDFS, Cassandra, Amazon S3, and so on. Listing 3-2 

shows an example of reading a text file called data.txt from the local computer file system 

in the /tmp directory.

Listing 3-2. Creating an RDD from a File Data Source

val fileRDD = spark.sparkContext.textFile("/tmp/data.txt")

The first argument of the textFile method is an URI that points to a path or a file on 

the local machine or to a remote storage system. When it starts with an hdfs:// prefix, it 

points to a path or a file that resides on HDFS, and when it starts with an s3n:// prefix, 

then it points to a path or a file that resides on AWS S3. If a URI points to a directory, then 

the textFile method will read all the files in that directory.

The textFile method assumes each file is a text file and each line is delimited by 

a new line. The textFile method returns an RDD that represents all the lines in all the 

files. One important to note for Spark beginners is that the textFile method is lazily 

evaluated, which means if you made the mistake of specifying a wrong file or path or 

misspelling a directory name, then this problem would not surface until one of the 

actions is taken.

Chapter 3  resilient DistributeD Datasets



57

The third way to create an RDD is by invoking one of the transformation operations 

on an existing RDD. Once you start becoming competent with Spark, you will do this all 

the time without thinking twice about it.

 Transformations
Table 3-2 describes commonly used transformations. For a complete list of 

transformations, refer to the RDD API documentation at https://spark.apache.

org/docs/latest/api/scala/index.html#org.apache.spark.rdd. Remember, these 

transformations operate on the dataset being associated with an RDD instance and 

return a new RDD.

By going through the following examples, ideally you get a sense of how easy it is to 

manipulate small and large datasets using the functional APIs provided by RDD.

Table 3-2. Common Transformations

Name Description

map(func) this applies the provided function to each row as iterating 

through the rows in the dataset. the returned rDD will 

contain whatever the provided func returns.

flatMap(func) similar to map(func), the func should return a 

collection rather than a single element, and this method 

will flatten out the returned collection. this allows an input 

item to map to zero or more output items.

filter(func) Only the elements that the func function returns true will 

be collected in the returned rDD. in other words, collect 

only the rows that meet the condition defined in the given 

func function.

mapPartitions(func) similar to map(func), but this applies at the partition 

(chunk) level. this requires the func function to take the 

input as an iterator to iterate through each row in the 

partition.

(continued)

Chapter 3  resilient DistributeD Datasets

https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.rdd
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.rdd


58

Note the func argument in each of the transformations listed in table 3-2 
represents either an anonymous function or a fully defined function definition.

 Transformation Examples
The following examples build on the stringRDD created in the “Creating RDDs” section.

 map(func)

The most fundamental, versatile, and commonly used transformation is the map 

operation. It is used to transform some aspect of the data per row to something else. 

Listing 3-3 shows a simple example to convert each line to uppercase.

Listing 3-3. Using a Map Transformation to Convert All Characters in the String 

to Uppercase

val allCapsRDD = stringRDD.map(line => line.toUpperCase)

allCapsRDD.collect().foreach(println)

Name Description

mapParitionsWithIndex(func) this is similar to mapPartitions, but an additional 

partition index number is provided to the func function.

union(otherRDD) this transformation does what it sounds like. it combines 

the rows in the source rDD with otherRDD.

intersection(otherRDD) Only the rows that exist in both the source rDD and 

otherRDD are returned.

substract(otherRDD) this subtracts the rows in otherRDD from the source 

rDD.

distinct([numTasks]) this removes duplicate rows from the source rDD.

sample(withReplace, fraction, 

seed)

this is usually used to reduce a large dataset to a smaller 

one by randomly selecting a fraction of rows using the 

given seed and with or without replacements.

Table 3-2. (continued)
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The second statement will collect all the rows in  allCapsRDD and transfer them to 

the driver side, then they will be printed out one per line. Listing 3-4 displays the output.

Listing 3-4. Output After the Converting All the Strings to Uppercase

SPARK IS COOL

SPARK IS AWESOME

Sometimes the transformation logic is complex and requires calling other APIs. In 

that case, it is best to define a function to encapsulate that complexity. See Listing 3-5 for 

an example of defining a function and using it in the map transformation.

Listing 3-5. Defining a Function and Using It in the Map Transformation

def toUpperCase(line:String) : String = {  line.toUpperCase }

stringRDD.map(l => toUpperCase(l)).collect.foreach(println)

The output of the second line should be identical to the output in Listing 3-4. 

By abstracting the complex logic in a function, it will be easier to test that logic in an 

independent manner as well as improve the readability and maintainability of the data 

processing logic.

Another common usage of the map transformation is to convert data in text format 

to a Scala object via a case class. The will improve the readability and maintainability 

of the data processing logic because the logic can refer to the actual parameter name.  

See Listing 3-6 for an example.

Listing 3-6. Using a map Transformation to Convert Text Data into Scala Contact 

Objects

case class Contact(id:Long, name:String, email:String)

val contactData = Array("1#John Doe#jdoe@domain.com","2#Mary  

Jane#mjane@domain.com")

val contactDataRDD = spark.sparkContext.parallelize(contactData)

val contactRDD = contactDataRDD.map(l => {

         val contactArray = l.split("#")

         Contact(contactArray(0).toLong, contactArray(1), contactArray(2))

})

contactRDD.collect.foreach(println)
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The output should look something like Listing 3-7.

Listing 3-7. Output of the Contact Data from Contact Objects

Contact(1,John Doe,jdoe@domain.com)

Contact(2,Mary Jane,mjane@domain.com)

Note in the context of data processing in spark using scala apis, the case class 
is often used as a light-weight and immutable data object.

One last note about the map transformation is that the input type and the return type 

of func don’t have to be of the same type. To illustrate this behavior, Listing 3-8 uses a 

map transformation to transform a collection of strings to a collection of integers. The 

stringRDD is RDD[String], and the stringLenRDD is RDD[Int].

Listing 3-8. Transforming from a Collection of Strings to a Collection of Integers

val stringLenRDD = stringRDD.map(l => l.length)

stringLenRDD.collect.foreach(println)

 flatMap(func)

The second most commonly used transformation is flatMap. Let’s say you want to 

transform the stringRDD from a collection of strings to a collection of words. The 

flatMap transformation is perfect for this use case. See Listing 3-9 for an example.

Listing 3-9. Using the flatMap Transformation to Transform Lines into Words

val wordRDD = stringRDD.flatMap(line => line.split(" "))

wordRDD.collect().foreach(println)

The output will look something like Listing 3-10.

Chapter 3  resilient DistributeD Datasets



61

Listing 3-10. Output of the flatMap Transformation Operation

Spark

is

awesome

Spark

is

cool

It is extremely important to have a clear understanding of the behavior differences 

between the map and flatMap transformations. See Listing 3-11 for an example and then 

closely examine the output in Listing 3-12 and Listing 3-13 to see the output differences.

Listing 3-11. The Behavior of map vs. flatMap

stringRDD.map(line => line.split(" ")).collect

stringRDD.flatMap(line => line.split(" ")).collect

Listing 3-12. The Output of the map Transformation

Array[Array[String]] = Array(Array(Spark, is, awesome), Array(Spark, is, cool))

Listing 3-13. The Output of the flatMap Transformation

Array[String] = Array(Spark, is, awesome, Spark, is, cool)

The logic inside both the map and flatMap methods is identical, but their output 

is very different. When a line of words is split by a space, its output contains an array 

of words, and that’s why there are two arrays in Listing 3-12. flatMap transformation 

flattens the array, and therefore its output contains only the single array of words.

flatMap is a powerful and useful transformation to know, so make sure to grok it.

 filter(func)

Another commonly used transformation is the filter transformation. It does what its 

name sounds like, which is to filter a dataset down to the rows that meet the conditions 

defined inside the given func.

A simple example is to find out how many lines in the stringRDD contain the word 

awesome. Another example is to filter a 1TB log file down to only the lines that contain 

the word Exception. See Listing 3-14 for an example.
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Listing 3-14. Filtering for Lines That Contain the Word Awesome

val awesomeLineRDD = stringRDD.filter(line => line.contains("awesome"))

awesomeLineRDD.collect

There should be only one line in the output, as shown in Listing 3-15.

Listing 3-15. Output After the Filtering

Array(Spark is awesome)

In the simple example, the anonymous function has only one Boolean predicate. The 

filtering logic can be as complex as it needs to be, just as long as the given func returns a 

Boolean value.

 mapPartitions(func)/mapPartitionsWithIndex(index, func)

Both mapPartitions and mapPartitionsWithIndex are useful transformations for 

situations where there is a need to perform some expensive and required setups before 

the transformation of each row starts. Instead of performing this expensive operation per 

row, you can reduce it to just the number of partitions. An example of an expensive setup 

could be creating a database connection or creating an HttpClient or JSON parser. In 

general, the number of partitions in an RDD is way smaller than the number of rows in a 

dataset; therefore, reducing the number of expensive setup operations to just the number 

of partitions is preferred. The mapPartition transformation calls the provided func once 

per partition. If an RDD has ten partitions, then the given func will be called exactly ten 

times. Each time it is called, the mapPartition transformation passes an iterator to the 

given func for it to loop through each of the rows in that particular partition.

The method signature of the given func must be func(Iterator[T]) => 

Iterator[U]), which means it takes an iterator of type T and returns an iterator of type U, 

where type U and type T don’t necessarily have to the same.

One small difference between the mapPartitionWithIndex and mapPartition 

transformations is that the partition number is available to the former transformation.

In short, the mapPartitions and mapPartitionsWithIndex transformations are used 

to optimize the performance of your data processing logic by reducing the number of 

times the expensive setup step is called.
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Listing 3-16 first creates an RDD with two partitions and then creates a random 

generator per partitions before iterating through each row. Finally, as it iterates through 

the row, it adds a random number to each row in each partition in the RDD. Listing 3-17 

shows the output after collecting. Your output maybe different because of the random 

number generator.

Listing 3-16. Performing a Setup Before Performing a Transformation on Each Row

import scala.util.Random

val sampleList = Array("One", "Two", "Three", "Four","Five")

val sampleRDD = spark.sparkContext.parallelize(sampleList, 2)

val result = sampleRDD.mapPartitions((itr:Iterator[String]) => {

                val rand = new Random(System.currentTimeMillis +  

Random.nextInt)

               itr.map(l => l + ":" + rand.nextInt)

           }

result.collect()

Listing 3-17. Output After Collecting

Array[String] = Array(One : -570064612, Two : -171309453,  

Three : -1918855253, Four : 1535308064, Five : 1033042948)

If the processing logic inside the mapPartitions and mapPartitionsWitIndex 

transformations is complex and becoming difficult to read, it is better to abstract that 

logic into a function. That approach not only improves the readability but makes it easier 

to test that logic.

See Listing 3-18 for an example of defining a function and how it is used; Listing 3-19 

shows the output.

Listing 3-18. Creating a Function to Encapsulate the Logic of Adding Random 

Numbers to Each Row

import scala.util.Random

def addRandomNumber(rows:Iterator[String]) = {

  val rand = new Random(System.currentTimeMillis + Random.nextInt)

  rows.map(l => l + " : " + rand.nextInt)

}
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You can call the function defined in Listing 3-18 inside the mapPartitions 

transformation.

Listing 3-19. Using the addRandomNumber Function in the mapPartitions 

Transformation

val result = sampleRDD.mapPartitions((rows:Iterator[String]) => 

addRandomNumber(rows))

A silly example of using the mapPartitionsWithIndex transformation is to see which 

numbers belong to each partition. See Listing 3-20 for how to do that.

Listing 3-20. Using the mapPartitionsWithIndex Transformation

val numberRDD =  spark.sparkContext.parallelize(List(1,2,3,4,5,6,7,8,9,10), 2)

numberRDD.mapPartitionsWithIndex((idx:Int, itr:Iterator[Int]) => {

         itr.map(n => (idx, n) )          

      }).collect()

Listing 3-21 shows the output where each row is a tuple; the first element is the 

partition number, and the second element is the original integer value.

Listing 3-21. Output of the mapPartitionsWithIndex Transformation

Array[(Int, Int)] = Array((0,1), (0,2), (0,3), (0,4), (0,5), (1,6), (1,7), 

(1,8), (1,9), (1,10))

Based on the output in Listing 3-21, you know that the partition number starts with 

0 rather than 1. By rearranging the numbers in the format in Listing 3-21, you can easily 

determine how many integers each partition has. This knowledge is useful to determine 

whether it is necessary to repartition the numbers so they are evenly distributed across 

the partitions. This will help speed up the data processing logic.

The next three transformations belong to a category called set operations. They are 

union, intersection, and subtract.
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 union(otherRDD)

Unlike previous transformations that take a function as an argument, a union 

transformation takes another RDD as an argument, and it will return an RDD that 

combines the rows from both RDDs. This is useful for situations when there is a need to 

append some rows to an existing RDD. This transformation does not remove duplicate 

rows of the resulting RDD.

See Listing 3-22 for how to combine rows from two RDDs.

Listing 3-22. Combining Rows from Two RDDs

val rdd1 = spark.sparkContext.parallelize(Array(1,2,3,4,5))

val rdd2 = spark.sparkContext.parallelize(Array(1,6,7,8))

val rdd3 = rdd1.union(rdd2)

rdd3.collect()

See Listing 3-23 for the output from the union transformation.

Listing 3-23. Output of the union Transformation

Array[Int] = Array(1, 2, 3, 4, 5, 1, 6, 7, 8)

 intersection(otherRDD)

If there were two RDDs and there is a need to find out which rows exist in both of them, 

then this is the right transformation to use. The way this transformation figures out 

which rows exist in both RDDs is by comparing their hash codes. This transformation 

guarantees the returned RDD will not contain any duplicate rows. Unlike the map and 

filter transformations, the implementation of this transformation moves rows with the 

same hash code to the same executor to perform the intersection. See Listing 3-24 for an 

example of using the intersection transformation.

Listing 3-24. Performing an Intersection of Two RDDs

val rdd1 = spark.sparkContext.parallelize(Array("One", "Two", "Three"))

val rdd2 = spark.sparkContext.parallelize(Array("two","One","threed","One"))

val rdd3 = rdd1.intersection(rdd2)

rdd3.collect()
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As expected, the output in Listing 3-25 shows the only value that appears in the 

output is One.

Listing 3-25. Output of an Intersection Transformation

Array[Int] = Array(One)

Note if you are curious about the implementation of the intersection transformation,  
take a look at that function in the RDD.scala file at https://github.com/
apache/spark. You will see that it uses a cogroup with a null value.

 substract(otherRDD)

A good use case for this transformation is when there is a need to compute the statistics 

of word usage in a certain book or a set of speeches. A typical first task in this process is 

to remove the stop words, which refers to a set of commonly used words in a language. In 

the English language, examples of stop words are is, it, the, and and. So, if you have one 

RDD that contains all the words in a book and another RDD that contains just the list of 

stop words, then subtracting the first one from the second one will yield another RDD 

that contains only nonstop words. See Listing 3-26 for an example of using the subtract 

transformation.

Listing 3-26. Removing Stop Words Using the subtract Transformation

val words = spark.sparkContext.parallelize(List("The amazing thing about 

spark is that it is very simple to learn")).flatMap(l => l.split(" ")).

map(w => w.toLowerCase)

val stopWords = spark.sparkContext.parallelize(List("the it is to that")).

flatMap(l => l.split(" "))

val realWords = words.substract(stopWords)

realWords.collect()

The output in Listing 3-27 should not contain any of the stop words.
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Listing 3-27. Output of the subtract Transformation

Array[String] = Array(simple, learn, amazing, spark, about, very, thing)

 distinct( )

The distinct transformation represents another flavor of transformation where it 

doesn’t take any function or another RDD as an input parameter. Instead, it is a directive 

to the source RDD to remove any duplicate rows. The question is, how does it determine 

whether two rows are the same? A common approach is to transpose the content of each 

row into a numeric value by computing the hash code of the content. That is exactly what 

Spark does. To remove duplicate rows in an RDD, it simply computes the hash code of 

each row and compares them to determine whether two rows are identical.

See Listing 3-28 for an example of the distinct transformation.

Listing 3-28. Removing Duplicates Using the distinct Transformation

val duplicateValueRDD = spark.sparkContext.parallelize(List("one", 1, 

"two", 2, "three", "one", "two", 1, 2)

duplicateValueRDD.distinct().collect

As expected, the output contains only unique rows. See Listing 3-29 for the output.

Listing 3-29. Output of the distinct Transformation

Array[Any] = Array(1, 2, two, one, three)

 sample(withReplacement, fraction, seed)

Sampling is a common technique used in statistical analysis or machine learning to 

either reduce a large dataset to a more manageable size or to split the input dataset 

into a training set and a validation set when training a machine learning model. 

This transformation performs the sampling of the rows in the source RDD based 

on the following three inputs: with replacement, fraction, and seed values. The 

withReplacement parameter determines whether an already sampled row will be placed 

back into RDD for the next sampling. If the withReplacement parameter value is true, 

it means a particular row may appear multiple times in the output. The given fraction 
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value must be between 0 and 1, and it is not guaranteed that the returned RDD will have 

the exact fraction number of rows of the original RDD. The optional seed parameter is 

used to seed the random generator, and it has a default value if one is not provided.

The example in Listing 3-30 first creates an RDD with ten numbers, which are placed 

in two partitions; then it will try to sample the withReplacement value as true and the 

fraction as 0.3.

Listing 3-30. Sampling with Replacement

val numbers =  spark.sparkContext.parallelize(List(1,2,3,4,5,6,7,8,9,10), 2)

numbers.sample(true, 0.3).collect

If you run the second statement multiple times, you will see a value may appear 

multiple times in the output and the number of elements may be less than or more than 

fraction 0.3. See Listing 3-31 for a few sample outputs.

Listing 3-31. Output of Sampling

Array[Int] = Array(1, 7, 7, 8)

Array[Int] = Array(1, 6, 6, 7, 8, 9, 10)

Note to visually understand how rDD transformations and actions work, check out  
the visual diagrams provided by Jeff thompson at http://training.databricks.
com/visualapi.pdf.

 Actions
The data processing logic in a typical Spark application will contain one or more actions, 

which tell Spark to start executing all the transformation logic that led up to a particular 

action. Since an action is what triggers the execution of the transformation logic in an 

application, the absence of actions in a Spark application would mean that the application 

does absolutely nothing. In exploratory data analysis, it is fairly common either to want to 

know the size of the input dataset or to see what the first few rows look like. Spark provides 

a set of diverse actions to help with these use cases. One way to distinguish whether an 

RDD API is an action or a transformation is that an action will either write the content of 

an RDD out to a storage system or return all or a subset of the content to the user, but it 

doesn’t return an RDD. Table 3-3 lists the commonly used actions.
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 Action Examples
The following section will provide more details and working examples of the previous 

actions.

 collect( )

This is a fairly easy-to-understand action because it does exactly what it sounds like. 

It collects all the rows from each of the partitions in an RDD and brings them over to 

the driver program. If your RDD contains 100 million rows, then it is not a good idea to 

Table 3-3. Common Actions

Name Description

collect() Collects all the rows in the dataset from executors. all the 

rows will be sent from executors to the driver program. the 

collect action is usually used after the dataset is filtered 

down to a small dataset.

count() returns the number of rows in the dataset.

first() returns the first row in the dataset to the driver program.

take(n) returns the first n rows in the dataset to the driver 

program. first() is equivalent to take(1).

reduce(func) performs an aggregation on the rows in the dataset using 

the provided func. the provided func should follow the 

commutative and associative rule for the result to be 

correctly computed in parallel.

takeSample(withReplacement, 

n, [seed])

randomly samples up to n rows with either a replacement 

or not and returns them to the driver program.

takeOrdered(n, [ordering]) returns the first n rows in the dataset to the driver 

program and orders them by either natural ordering or 

custom ordering.

top(n, [ordering]) returns the top n elements in the dataset.

saveAsTextFile(path) Writes all the rows in the dataset as a text file into the 

provided directory. each row will be converted to a string 

using the toString() method.
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invoke the collect action because the driver program most likely doesn’t have sufficient 

memory to hold all those rows. As a result, the driver will most likely run into an out-of- 

memory error and your Spark application or shell will die. This action is typically used 

once the RDD is filtered down to a smaller size that can fit the memory size of the driver 

program. See Listing 3-32 for an example of using this action. Listing 3-33 shows the 

output.

Listing 3-32. Using the collect Action to See the Rows in the Small RDD

val numberRDD =  spark.sparkContext.parallelize(List(1,2,3,4,5,6,7,8,9,10), 2)

numberRDD.collect()

Listing 3-33. The Output of the collect Action: An Array of Integers

Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

 count( )

Similar to the collect action, this action does exactly what it sounds like. It returns the 

number of rows in an RDD by getting the count from all partitions and finally sums them up. 

See Listing 3-34 for an example of using the count action. Listing 3-35 shows the output.

Listing 3-34. Counting the Number of Rows in an RDD

val numberRDD =  spark.sparkContext.parallelize(List(1,2,3,4,5,6,7,8,9,10), 2)

numberRDD.count()

Listing 3-35. Output of the count Action: A long

Long = 10

 first( )

This action returns the first row in an RDD. Now you may be wondering, what does the 

first row mean? Is there any ordering involved? It turns out it literally means the first row 

in the first partition. However, be careful about calling this action if your RDD is empty. 

In that case, this action will throw an exception. See Listing 3-36 for an example of using 

this action. Listing 3-37 shows the output.
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Listing 3-36. Getting the First Row in an RDD

val numberRDD =  spark.sparkContext.parallelize(List(1,2,3,4,5,6,7,8,9,10), 2)

numberRDD.first()

Listing 3-37. The Output of the first Action

Int = 1

 take(n)

This action returns the first n rows in the RDD by collecting rows from the first partition 

and then moves to the next partition until the number of rows matches n or the last 

partition is reached. If n is larger than the number of rows in the dataset, then it will 

return all the rows. take(1) is equivalent to the first() action. See Listing 3-38 for an 

example of using this action. Listing 3-39 shows the output.

Listing 3-38. Getting the First Row in an RDD

val numberRDD =  spark.sparkContext.parallelize(List(1,2,3,4,5,6,7,8,9,10), 2)

numberRDD.take(6)

Listing 3-39. The Output of the take(6) Action

Array[Int] = Array(1, 2, 3, 4, 5, 6)

 reduce(func)

Compared to other actions, this one is pretty different. It reduces all the rows in the 

dataset to a single value using the provided function. A common use case is to perform 

a sum of all the integers in the dataset. There are two rules that the provided functions 

must follow. The first one is it must be a binary operator, meaning it must take two 

arguments of the same type, and it produces an output of the same type. The second one 

is it must follow the commutative and associative properties in order for the result to be 

computed correctly in a parallel manner. See the following note for more details about 

the commutative and associative properties.

If you haven’t worked with Scala collection APIs much, then it can be kind of 

confusing to understand what’s going on. Let’s say you have an RDD of integers like 

Listing 3-40.

Chapter 3  resilient DistributeD Datasets



72

Listing 3-40. Defining an RDD of Integers

val numberRDD =  spark.sparkContext.parallelize(List(1,2,3,4,5,6,7,8,9,10), 2)

The provided function to the reduce action will need to have a function signature 

like in Listing 3-41.

Listing 3-41. Defining a function to perform addition

def add(v1:Int, v2:Int) : Int = {

      println(s"v1: $v1, v2: $v2 => (${v1 + v2})")

      v1 + v2

 }

Now let’s call the reduce action on the numberRDD. See Listing 3-42.

Listing 3-42. Using the Function add as an Argument for the reduce Action

numberRDD.reduce(add)

You should see output similar to Listing 3-43.

Listing 3-43. The Output from Calling the reduce Action

v1: 1, v2: 2 => (3)

v1: 6, v2: 7 => (13)

v1: 3, v2: 3 => (6)

v1: 13, v2: 8 => (21)

v1: 6, v2: 4 => (10)

v1: 10, v2: 5 => (15)

v1: 21, v2: 9 => (30)

v1: 30, v2: 10 => (40)

v1: 15, v2: 40 => (55)

res62: Int = 55

As expected, the sum of the integers from 1 to 10 is 55. Now if you closely inspect the 

first line in the output, you will see that the inputs are basically the first two values of 1 

and 2. On the third line, the first value is the sum of 1 and 2, and the second value is 3. 
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Basically, at the beginning of each partition it takes the first two numbers and passes them 

into the provided function. For the remaining numbers in the partition, it takes the output 

of the function and passes it in as the first argument, and the value of the second argument 

is the next number in the partition.

Note in mathematics, the commutative property of a binary operation implies 
that changing the order of the operands has no impact on the result. On the other 
hand, the associative property says that changing how the operands are grouped 
has no impact on the result. examples of binary operations that obey both the 
commutative and associative properties are addition and multiplication.

 takeSample(withReplacement, n, [seed])

The behavior of this action is similar to the behavior of the sample transformation. The 

main difference is this action returns an array of sampled rows to the driver program. 

The same caution for the collect action is applicable here in terms of the large number 

of returned rows.

 takeOrdered(n, [ordering])

This action returns n rows in a certain order. The default ordering for this action is the 

natural ordering. If the rows are integers, then the default ordering is ascending. If you 

need to return n rows with the values in descending order, then you specify the reverse 

ordering. See Listing 3-44 for an example of using this action with both ascending and 

descending order. Listing 3-45 shows the output.

Listing 3-44. Examples of the takeOrdered Action with Ascending and 

Descending Order

val numberRDD =  spark.sparkContext.parallelize(List(1,2,3,4,5,6,7,8,9,10), 2)

numberRDD.takeOrdered(4)

numberRDD.takeOrdered(4)(Ordering[Int].reverse)
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Listing 3-45. Output for the takeOrdered Action with Ascending and Descending 

Order

Array[Int] = Array(1, 2, 3, 4)

Array[Int] = Array(10, 9, 8, 7)

 top(n, [ordering])

A good use case for using this action is for figure out the top k (largest) rows in an RDD as 

defined by the implicit ordering. This action does the opposite of the takeOrdered action. 

See Listing 3-46 for an example of using this action. Listing 3-47 shows the output.

Listing 3-46. Using the top Action

val numberRDD =  spark.sparkContext.parallelize(List(1,2,3,4,5,6,7,8,9,10), 2)

numberRDD.top(4)

Listing 3-47. Output of Using the top Action

Array[Int] = Array(10, 9, 8, 7)

 saveAsTextFile(path)

Unlike previous actions, this one does not return anything to the driver program. 

Instead, it will write out each row in the RDD as a string to the specified path. If an RDD 

has five partitions, the saveAsTextFile action will write out the rows in each partition 

in its own file; therefore, there will be five part files in the specified path. Notice that 

this action takes a path name rather than a file name, and it will fail if the specified path 

already exists. The intention for this behavior is to prevent the accidental overwriting of 

existing data.

 Working with Key/Value Pair RDD
Up until now, you’ve worked with RDDs where each row represents a single value, such 

as an integer or a string. There are many use cases where there is a need to perform 

grouping by a certain key or aggregate or join two RDDs. For example, if you have a 

dataset that contains the population at the city level and you want to roll up at the state 

level, then you need to group those rows by state and sum the population of all the cities 
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in each state. Spark provides a specific RDD type called a key/value pair RDD for these 

use cases. To qualify as a key/value pair RDD, each row must consist of a tuple where the 

first element represents the key and the second element represents the value. The type of 

both key and value can be a simple type such as an integer or string or can be a complex 

type such as an object or a collection of values or another tuple.

The pair RDD comes with a set of APIs to allow you to perform general operations 

around the key such as grouping, aggregation, and joining. The following sections cover 

how to create key/value pair RDDs and use the associated transformations and actions.

 Creating Key/Value Pair RDD
In Scala, the simplest way to create a pair RDD is to arrange the data of each row into 

two parts: key and value. Then use the built-in Scala class called Tuple2, which is a 

shorthand version of using parentheses. See Listing 3-48 for an example of creating a 

pair RDD.

Listing 3-48. Creating a Pair RDD

val rdd = sc.parallelize(List("Spark","is","an", "amazing", "piece", 

"of","technology"))

val pairRDD = rdd.map(w => (w.length,w))

pairRDD.collect().foreach(println)

Listing 3-48 creates a tuple for each row, where the key is the length and the value is 

the word. They are wrapped inside a pair of parentheses. Once each row is arranged in 

such a manner, then you can easily discover words with the same length by grouping by 

key. See Listing 3-49 for the output of calling the collect action on pairRDD.

Listing 3-49. Output of Pair RDD

(5,Spark)

(2,is)

(2,an)

(7,amazing)

(5,piece)

(2,of)

(10,technology)
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The key and value in a pair RDD can be a scalar value or a complex value, which can 

be an object, collection of objects, or another tuple. So, it is quite flexible.

Note When using a custom object as the key in the pair rDD, the class of that 
object must have both custom equals() and hashCode() methods defined.

 Key/Value Pair RDD Transformations
In addition to the transformations listed in Table 3-4, a key/value pair RDD has 

additional transformations that are designed to operate on keys.

Table 3-4. Common Transformations for Pair RDD

Name Description

groupByKey([numTasks]) Groups all the values of the same key together. For a  

dataset of (K,V) pairs, the returned rDD has the type  

(K, Iterable<V>).

reduceByKey(func, 

[numTasks])

First performs the grouping of values with the same key and then 

applies the specified func to return the list of values down to a 

single value. For a dataset of (K,V) pairs, the returned rDD has 

the type of (K, V).

sortByKey([ascending], 

[numTasks])

sorts the rows according to the keys. by default, the keys are 

sorted in ascending order.

join(otherRDD, 

[numTasks])

Joins the rows in both rDDs by matching their keys. each row 

of the returned rDD contains a tuple where the first element is 

the key and the second element is another tuple containing the 

values from both rDDs.

Some of the transformations listed in Table 3-4 have an optional numTasks 

parameter, which is used to control the degree of parallelism when Spark performs the 

transformation on the parent RDD. By default, the degree of parallelism is the number 

of partitions of the parent RDD. During the tuning process, if there is a belief the 

transformation will be completed sooner by increasing the degree of parallelism, then 

you can specify a value for the numTasks that is larger than the number of partitions of 

the parent RDD.
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The following section provides an example of using the pair RDD transformations 

listed in Table 3-4.

 groupByKey([numTasks])

This transformation does exactly what it sounds like. It will group all the rows with the 

same key into a single row. Essentially the number of rows in the returned RDD will be 

the same as the number of unique keys in the parent RDD. Each row in the returned 

RDD contains a unique key and a list of values of that same key. See Listing 3-50 for an 

example of using this transformation; Listing 3-51 shows the output.

Listing 3-50. Using the groupByKey Transformation to Group Words by Their 

Length

val rdd = sc.parallelize(List("Spark","is","an", "amazing", "piece", 

"of","technology"))

val pairRDD = rdd.map(w => (w.length,w))

val wordByLenRDD = pairRDD.groupByKey()

wordByLenRDD.collect().foreach(println)

Listing 3-51. Output of the groupByKey Transformation After Grouping Words 

by Their Length

(10,CompactBuffer(technology))

(2,CompactBuffer(is, an, of))

(5,CompactBuffer(Spark, piece))

(7,CompactBuffer(amazing))

Oftentimes there is a need to perform some processing on the list of values of each 

key after the groupByKey transformation is performed. If that processing is done using a 

binary operation that complies with the commutative and associated properties, then it 

is best to use the reduceByKey transformation to speed up the processing logic. You can 

find more details about this in the following section.
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 reduceByKey(func, [numTasks])

This transformation is often used to reduce all the values of the same key to a single 

value. The process is carried out in two steps, as depicted in Figure 3-1. The first one 

is to group the values of the same key together, and the second step is to apply the 

given reduce function to the list of values of each key. The implementation of this 

transformation contains a built-in optimization to perform this two-step process at two 

levels. The first level is at each individual partition, and the second level is across all the 

partitions. By applying this transformation at each individual partition first, it therefore 

collapses all the rows with the same key in the same partition to a single row, and as a 

result, the amount of data that needs to be moved across many partitions is dramatically 

reduced. See Listing 3-52 for an example of using this transformation; Listing 3-53 shows 

the output.

Partition #1

(candy1, 7.2)

(candy1, 9.2)

(candy2, 3.5)
(candy2, 6.0)

(candy2, 9.5)

(candy1, 9.2)
(candy2, 9.5)
(candy3, 3.0)

(candy1, 2.0)
(candy3, 3.0)

(candy3, 3.0)

Partition #2

output

Figure 3-1. The two-step process in the reduceByKey transformation
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Listing 3-52. Using the reduceByKey Transformation to Tally the Price

val candyTx = sc.parallelize(List(("candy1", 5.2), ("candy2", 3.5),

                                                     ("candy1", 2.0), 

("candy2", 6.0), 

("candy3", 3.0))

val summaryTx = candyTx.reduceByKey((total, value) => total + value)

summaryTx.collect()

Listing 3-53. Output of reduceByKey After Tallying the Price

(candy1,7.2)

(candy2,9.5)

(candy3,3.0)

 sortByKey([ascending],[numTasks])

This transformation is simple to understand. It sorts the rows according the key, 

and there is an option to specify whether the result should be in ascending (default) 

or descending order. Building on the example in Listing 3-52, the key and value are 

swapped so you can sort the rows based on the transaction amount. See Listing 3-54 for 

an example of sorting by the transaction amount; Listing 3-55 shows the output.

Listing 3-54. Using the sortByKey Transformation to Sort by Price

val summaryByPrice = summaryTx.map(t => (t._2, t._1)).sortByKey()

summaryByPrice.collect

Listing 3-55. Output of Using the sortByKey Transformation to Sort Based on Price

Array[(Double, String)] = Array((3.0,candy3), (7.2,candy1), (9.5,candy2))

If you want to sort the price in descending order, then you just need to set the value 

of the first parameter to false. See Listing 3-56 for an example of sorting in descending 

order, and see Listing 3-57 for the output.

Listing 3-56. Using the sortByKey transformation Based on Price in Descending 

Order

val summaryByPrice = summaryTx.map(t => (t._2, t._1)).sortByKey(false)

summaryByPrice.collect
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Listing 3-57. Output of Using the sortByKey Transformation to Sort Based on 

Price in Descending Order

(9.5,candy2)

(7.2,candy1)

(3.0,candy3)

 join(otherRDD)

Performing any meaningful data analysis usually involves joining two or more datasets. 

The join transformation is used to combine the information of two datasets to enable 

rich data analysis or to extract insights. For example, if one dataset contains the 

transaction information and it has a member ID and details of the transaction and 

another dataset contains the member information, by joining these two datasets you can 

answer questions such as, what is the breakdown of the transactions by the age group, 

and which age group made the largest number of transactions?

By joining the dataset of type (K,V) and dataset (K,W), the result of the joined 

dataset is (K,(V,W)). There are several variations of joining two datasets, like left and 

right outer joins. For more details on the behavior of these types of join, please refer to 

https://en.wikipedia.org/wiki/Join_(SQL).

The example in Listing 3-58 has two datasets that are already set up as key/value pair 

RDDs. The first one contains the member transaction. The second contains information 

about each member ID and a group each member belongs to.

Listing 3-58. Join of Member Transaction Dataset and Member Group Dataset

val memberTx = sc.parallelize(List((110, 50.35), (127, 305.2), (126, 211.0),

                                    (105, 6.0),(165, 31.0), (110, 40.11)))

val memberInfo = sc.parallelize(List((110, "a"), (127, "b"), (126, "b"),  

(105, "a"),(165, "c")))

val memberTxInfo = memberTx.join(memberInfo)

memberTxInfo.collect().foreach(println)

The join in Listing 3-58 is the inner join type, where the output contains only the 

rows with matching keys from both datasets. See Listing 3-59 for the output.
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Listing 3-59. Output of the Join Transformation

(105,(6.0,a))

(165,(31.0,c))

(110,(50.35,a))

(110,(40.11,a))

(126,(211.0,b))

(127,(305.2,b))

 Key/Value Pair RDD Actions
In addition to the actions listed in Table 3-5, pair RDD has a small set of actions. This 

section provides some details and working examples of these actions. These actions will 

bring the result back to the driver side, so be careful about the amount of data that will 

be brought back.

Table 3-5. Actions for Pair RDD

Name Description

countByKey() returns a map where each entry contains the key and a count of values

collectAsMap() similar behavior as the collect action; return type is a map

lookup(key) performs a look by key and returns all values that have the same specified key

The following section provides an example for each of the actions listed in Table 3-5.

 countByKey( )

For a given pair RDD, this action ignores the value of each row and reports only the number 

of values with the same key for each key to the driver. See Listing 3-60 for an example and 

Listing 3-61 for the output. Notice the returned data is a Scala map data structure.

Listing 3-60. Using countByKey to count the number of elements for each key

val candyTx = sc.parallelize(List(("candy1", 5.2), ("candy2", 3.5), 

("candy1", 2.0), ("candy3", 6.0)))

candyTx.countByKey()
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Listing 3-61. Using countByKey

scala.collection.Map[String,Long] = Map(candy1 -> 2, candy2 -> 1, candy3 -> 1)

 collectAsMap( )

Similar to the collect action, this one brings the entire dataset to the driver side as a 

map, where each entry represents a row. See Listing 3-62 for the example and Listing 3- 63 

for the output.

Listing 3-62. Using the collectAsMap Action

val candyTx = sc.parallelize(List(("candy1", 5.2), ("candy2", 3.5), 

("candy1", 2.0), ("candy3", 6.0)))

candyTx.collectAsMap()

Listing 3-63. Output of the collectAsMap Action

scala.collection.Map[String,Double] = Map(candy2 -> 3.5, candy1 -> 2.0, 

candy3 -> 6.0)

Notice if the dataset contains multiple rows with the same key, it will be collapsed 

into a single entry in the map. There are four rows in the candyTx pair RDD; however, 

there are only three rows in the output. Two candy1 rows are collapsed into a single row.

 lookup(key)

This action can be used as a quick way to verify whether a particular key exists in the 

RDD. See Listing 3-64 for an example and Listing 3-65 for the output. If there is more 

than one row with the same key, then the value of all those rows will be returned.

Listing 3-64. Using the lookup Action

val candyTx = sc.parallelize(List(("candy1", 5.2), ("candy2", 3.5), 

("candy1", 2.0), ("candy3", 6.0)))

candyTx.lookup("candy1")

candyTx.lookup("candy2")

candyTx.lookup("candy5")
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Listing 3-65. Output of the lookup Examples in Listing 3-64

Seq[Double] = WrappedArray(5.2, 2.0)

Seq[Double] = WrappedArray(3.5)

Seq[Double] = WrappedArray()

 Understand Data Shuffling
Certain key/value transformations and actions require moving data from multiple 

partitions to other partitions, meaning across executors and machines. This process 

is known as the shuffle, which is quite important to be familiar with because it is an 

expensive operation. During the shuffling process, the data needs to be serialized, 

written to disk, transferred over the network, and finally deserialized. It is not possible 

to completely avoid the shuffling, but there are techniques or best practices to minimize 

the need to shuffle the data. Shuffling data will add latency to the completion of the data 

processing in your Spark jobs.

Let’s take the reduceByKey transformation as an example to understand the shuffle. 

This transformation needs to read data from all partitions to find all the values for 

all keys in the RDD, and for each key it brings all the values from different partitions 

together to compute the final value. To prepare for the shuffle, each partition prepares 

the data by sorting them based on the targeted partition and then writing them to a 

single file. On the targeted partition, it will read the relevant blocks of this file based on 

its partition index.

In general, any transformation or action that performs some sort of grouping, 

aggregating, or joining by key will need to perform data shuffling. Here is a subset of the 

transformations that fall into this category: groupByKey, reduceByKey, aggregateByKey, 

and join.

 Having Fun with RDD Persistence
One of the distinguishing features of Spark from other data processing engines or 

frameworks is the ability to persist the data of an RDD in memory across all the 

executors in a cluster. Once the data of an RDD is persisted in memory, then any future 

computations on that data will be really fast, often more than ten times the data that 

is not in memory. There are two typical use cases that can tremendously benefit from 
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the data persisted in memory. The first one is data exploration or interactive analysis. 

Let’s say there is a large service log file that is several hundred gigabytes, and there is 

a need to perform analysis on various types of exceptions. The first step is to filter this 

log file down to only the lines that contain the key word Exception and then cache that 

dataset in memory. Subsequent exploratory and interactive analysis of various types 

of exceptions can be done on that dataset in memory, and they will be very fast. The 

second use case is the iterative algorithms. Machine learning algorithms are often 

iterative in nature, meaning they will run through many iterations to optimize the loss 

function. In this process, they might use one or more datasets that don’t change with 

each iteration; therefore, if those datasets are persisted, then that will help speeding up 

the time it takes for the algorithms to complete.

Persisting an RDD is extremely simple to do by calling the transformation persist() 

or cache(). Since they are transformations, only once a subsequent action is taken will 

the RDD be persisted in memory. By default, Spark will persist the dataset in memory. 

One question to ask is what happens if there isn’t sufficient memory in all the executors 

in your Spark applications to persist an RDD in memory. For instance, let’s say a Spark 

application has ten executors and each one has 6GB of RAM. If the size of an RDD you 

would like to persist in memory is 70GB, then that wouldn’t fit into 60GB of RAM. This 

is where the storage-level concept comes in. There are two options that you can specify 

when persisting the data of an RDD in memory: location and serialization. The location 

option determines whether the data of an RDD should be stored in memory or on disk 

or a combination of the two. The serialization option determines whether the data in 

the RDD should be stored as a serialized object or not. These two options represent the 

different types of trade-offs you are making: CPU time and memory usage. See Table 3-6 

for the details of the two aforementioned options.

Table 3-6. Storage Options for Persisting RDD

Option Memory Space CPU Time In Memory On Disk

MEMORY_ONLY high low Yes no

MEMORY_AND_DISK high Medium some some

MEMORY_ONLY_SER low high Yes no

MEMORY_AND_DISK_SER low high some some

DISK_ONLY low high no Yes
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If the data of an RDD is no longer needed to be persisted in memory, then you can 

use the unpersist() function to remove it from memory to make room for other RDDs. 

A Spark cluster usually has a limited amount of memory; if you keep persisting RDDs, 

Spark will use the LRU eviction policy to automatically evict the RDDs that have not been 

recently accessed.

 Summary
You learned the following in this chapter:

• In Spark, RDD is the foundational abstraction in terms of concepts 

and programming model. Other programming abstractions are built 

on top of RDD.

• RDD provides a rich set of operations to make it easy to perform 

data analysis in Spark. Operations are classified into two types: 

transformation and action. Transformations are designed to 

be lazy evaluated to provide opportunities for Spark to perform 

optimizations. Actions are eager evaluated, and they trigger the 

computation of all the transformation logic that preceded the call to 

an action.

• Pair RDD provides the additional capabilities of grouping, 

aggregation, and joining of datasets based on key.

• The data shuffle is an expensive but necessary data movement 

process, so it is important for Spark developers to be familiar with 

it. The goal is to not eliminate the shuffle process but to minimize 

the number of times the shuffling needs to happen in your Spark 

application.

• RDD persistence is a great way to speed the computation logic in 

your Spark jobs. Understanding the various storage levels will give 

you the confidence to pick the right one that is appropriate for your 

use case and to make the right trade-off in terms of CPU time and 

space efficiency.
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RDD EXERCISES

the following exercises are based on the movies.tsv and movie-ratings.tsv files in the 

chapter3/data/movies directory. the columns in these files are delimited by a tab.

each line in the movies.tsv file represents an actor who played in a movie. if a movie has 

ten actors in it, then there will be ten rows for that particular movie.

 1. Compute the number of movies produced in each year. the output should have 

two columns: year and count. the output should be ordered by the count in 

descending order.

 2. Compute the number of movies each actor was in. the output should have 

two columns: actor and count. the output should be ordered by the count in 

descending order.

 3. Compute the highest-rated movie per year and include all the actors in that 

movie. the output should have only one movie per year, and it should contain 

four columns: year, movie title, rating, and a semicolon-separated list of 

actor names. this question will require joining the movies.tsv and movie- 

ratings.tsv files. there are two approaches to this problem. the first one 

is to figure out the highest-rated movie per year first and then join with the list 

of actors. the second one is to perform the join first and then figure out the 

highest-rated movies per year along with a list of actors. the result of each 

approach is different than the other one. Why do you think that is?

 4. Determine which pair of actors worked together most. Working together 

is defined as appearing in the same movie. the output should have three 

columns: actor 1, actor 2, and count. the output should be sorted by the count 

in descending order. the solution to this question will require a self-join.
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CHAPTER 4

Spark SQL (Foundations)
As Spark evolves as a unified data processing engine with more features in each 

new release, its programming abstraction also evolves. The RDD was the initial core 

programming abstraction when Spark was introduced to the world in 2012. In Spark 

1.6, a new programming abstraction, called Structured APIs, was introduced. This is the 

preferred way of performing data processing for the majority of use cases. The Structured 

APIs were designed to enhance developers’ productivity with easy-to-use, intuitive, and 

expressive APIs. In this new way of doing data processing, the data needs to be organized 

into a structured format, and the data computation logic needs to follow a certain 

structure. Armed with these two pieces of information, Spark can perform optimizations 

to speed up data processing applications.

Figure 4-1 shows how the Spark SQL component is built on top of the good old 

reliable Spark Core component. This layered architecture means any improvements in 

the Spark Core component will be automatically available to the Spark SQL component.

Spark Shell

Spark Core

Spark SQL

Spark Applications

DataFrame API

Catalyst Optimizer

Figure 4-1. Spark SQL components
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This chapter covers the Spark SQL module, which enables you to write less code 

to get things done, and underneath the covers it intelligently performs optimizations. 

The Spark SQL module consists of two main parts. The first one is the representation 

of the Structure APIs, called DataFrames and Datasets, that define the high-level APIs 

for working with structured data. The DataFrame concept was inspired by the Python 

pandas DataFrame; the main difference is that a DataFrame in Spark can handle a large 

volume of data that is spread across many machines. The second part of the Spark SQL 

module is the Catalyst optimizer, which does all the hard work behind the scenes to 

make your life easier and to speed up your data processing logic. One of the cool features 

the Spark SQL module offers is the ability to execute SQL queries to perform data 

processing. By virtue of this capability, Spark is able to gain a new group of users called 

business analysts, who are familiar with the SQL language because it is one of the main 

tools they use on a regular basis.

One main concept that differentiates structured data from unstructured data is 

a schema, which defines the structure of the data in the form of column names and 

associated data types. The schema concept is an integral part of the Spark Structured 

APIs.

Structured data is often captured in a certain format. Some of the formats are text 

based, and some of them are binary based. Common formats for text data are CSV, XML, 

and JSON, and common formats for binary data are Avro, Parquet, and ORC. Out of the 

box, the Spark SQL module makes it easy to read data and write data from and to any of 

these formats. One unanticipated benefit comes out of this versatility is that Spark can be 

used as a data format conversion tool.

 Introduction to DataFrames
A DataFrame is an immutable, distributed collection of data that is organized into 

rows, where each one consists a set of columns and each column has a name and 

an associated type. In other words, this distributed collection of data has a structure 

defined by a schema. If you are familiar with the table concept in a relational database 

management system (RDBMS), then you will realize that a DataFrame is essentially 

equivalent. Each row in the DataFrame is represented by a generic Row object. Unlike 

the RDD APIs, the DataFrame APIs offer a set of domain-specific operations that 

are relational and have rich semantics. The details of the APIs will be covered in the 
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following sections. Like the RDD APIs, the DataFrame APIs are classified into two 

buckets: transformations and actions. The evaluation semantics are identical in RDDs. 

Transformations are lazily evaluated, and actions are eagerly evaluated.

DataFrames can be created by reading data from the many structured data sources 

mentioned previously as well as by reading data from tables in Hive and databases.  

In addition, the Spark SQL module makes it easy to convert an RDD to a DataFrame by 

providing the schema information about the data in the RDD. The DataFrame APIs are 

available in Scala, Java, Python, and R.

 Creating DataFrames
There are many ways to create a DataFrame; one common thing among them is the need 

to provide a schema, either implicitly or explicitly.

 Creating DataFrames from RDDs
Let’s start with creating a DataFrame from an RDD. Listing 4-1 first creates an RDD with 

two columns of the integer type, and then it calls the toDF implicit function to convert an 

RDD to a DataFrame using the specified column names. The column types are inferred 

from the data in the RDD. Listing 4-2 shows two of the commonly used functions in a 

DataFrame, printSchema and show. Function printSchema prints out the column names 

and their associated type to the console. Function show prints the data in a DataFrame 

out in a tabular format. By default, it displays 20 rows. To change the default number of 

rows to display, you can pass in a number to the show function. See Listing 4-3 for an 

example of specifying a number of rows to display.

Listing 4-1. Creating a DataFrame from an RDD of Numbers

import scala.util.Random

val rdd = spark.sparkContext.parallelize(1 to 10).map(x => (x,  

Random.nextInt(100)* x))

val kvDF = rdd.toDF("key","value")
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Listing 4-2. Printing the Schema and Showing the Data of a DataFrame

kvDF.printSchema

|-- key: integer (nullable = false)

|-- value: integer (nullable = false)

kvDF.show

+---+-----+

|key|value|

+---+-----+

|  1|   58|

|  2|   18|

|  3|  237|

|  4|   32|

|  5|   80|

|  6|  210|

|  7|  567|

|  8|  360|

|  9|  288|

| 10|  260|

+---+-----+

Listing 4-3. Calling the Function show to Display Five Rows in Tabular Format

kvDF.show(5)

+---+-----+

|key|value|

+---+-----+

|  1|   59|

|  2|   60|

|  3|   66|

|  4|  280|

|  5|   40|

+---+-----+

Note the actual numbers in the value column may look different for you 
because they are generated randomly by calling the Random.nextInt() function.
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Another way to create a DataFrame is by specifying an RDD with a schema 

that is created programmatically. Listing 4-4 first creates an RDD using an array 

of Row objects, where each Row object contains three columns; then it creates a 

schema programmatically. Finally, it provides the RDD and schema to the function 

createDataFrame to convert to a DataFrame. Listing 4-5 shows the schema and the data 

in the peopleDF DataFrame.

Listing 4-4. Creating a DataFrame from an RDD with a Schema Created 

Programmatically

import org.apache.spark.sql.Row

import org.apache.spark.sql.types._

val peopleRDD = spark.sparkContext.parallelize(Array(Row(1L, "John 

Doe",  30L),

                                                Row(2L, "Mary Jane", 25L)))

val schema = StructType(Array(

        StructField("id", LongType, true),

        StructField("name", StringType, true),

        StructField("age", LongType, true)

))

val peopleDF = spark.createDataFrame(peopleRDD, schema)

Listing 4-5. Displaying the Schema of peopleDF and Its Data

peopleDF.printSchema

 |-- id: long (nullable = true)

 |-- name: string (nullable = true)

 |-- age: long (nullable = true)

peopleDF.show

+--+-----------+---+

|id|       name|age|

+--+-----------+---+

| 1|   John Doe| 30|

| 2|  Mary Jane| 25|

+--+-----------+---+
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The ability to programmatically create a schema gives Spark applications the 

flexibility to adjust the schema based on some external configuration.

Each StructField object has three pieces of information: name, type, and whether 

the value is nullable.

The type of each column in a DataFrame is mapped to an internal Spark type, which 

can be a simple scalar type or a complex type. Table 4-1 describes the available internal 

Spark data types and associated Scala types.

 Creating DataFrames from a Range of Numbers
Spark 2.0 introduced a new entry point for Spark applications. It is represented by 

a class called SparkSession, which has a convenient function called range that 

can easily create a DataFrame with a single column with the name id and the type 

Table 4-1. Spark Scala Types

Data Type Scala Type

BooleanType Boolean

ByteType Byte

ShortType Short

IntegerType Int

LongType Long

FloatType Float

DoubleType Double

DecimalType java.math.BigDecial

StringType String

BinaryType Array[Byte]

TimestampType java.sql.Timestamp

DateType java.sql.Date

ArrayType scala.collection.Seq

MapType scala.collection.Map

StructType org.apache.spark.sql.Row
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LongType. This function has a few variations that can take additional parameters 

to specify the start and end of a range as well as the steps of the range. Listing 4-6 

provides examples of using this function to create a DataFrame.

Listing 4-6. Using the SparkSession.range Function to Create a DataFrame

val df1 = spark.range(5).toDF("num").show

+---+

|num|

+---+

|  0|

|  1|

|  2|

|  3|

|  4|

+---+

spark.range(5,10).toDF("num").show

+---+

|num|

+---+

|  5|

|  6|

|  7|

|  8|

|  9|

+---+

spark.range(5,15,2).toDF("num").show

+---+

|num|

+---+

|  5|

|  7|

|  9|

| 11|

| 13|

+---+
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The previous version of the range function takes three parameters. The first one 

represents the starting value, the second one represents the end value (exclusive), and 

the last one represents the step size. Notice the range function can create only a single-

column DataFrame. Do you have any ideas about how to create a DataFrame with more 

than one column?

One option to create a multicolumn DataFrame is to use Spark’s implicits that 

convert a collection of tuples inside a Scala Seq collection. See Listing 4-7 for examples of 

using Spark’s toDF implicit.

Listing 4-7. Converting a Collection Tuple to a DataFrame Using Spark’s toDF 

Implicit

val movies = Seq(("Damon, Matt", "The Bourne Ultimatum", 2007L),

                 ("Damon, Matt", "Good Will Hunting", 1997L))

val moviesDF = movies.toDF("actor", "title", "year")

moviesDF.printSchema

|-- actor: string (nullable = true)

|-- title: string (nullable = true)

|-- year: long (nullable = false)

moviesDF.show

+-----------+--------------------+----+

|      actor|               title|year|

+-----------+--------------------+----+

|Damon, Matt|The Bourne Ultimatum|2007|

|Damon, Matt|   Good Will Hunting|1997|

+-----------+--------------------+----+

These fun ways of creating DataFrames make it easy to learn and to work with the 

DataFrame APIs without needing to load the data from some external files. However, 

when you start doing serious data analysis with large datasets, then it is imperative to 

know how to load data from external data sources, which will be covered next.
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 Creating DataFrames from Data Sources
Out of the box, Spark SQL supports six built-in data sources, where each data source is 

mapped to a data format. The data source layer in the Spark SQL module is designed to 

be extensible, so custom data sources can be easily integrated into the DataFrame APIs. 

There are hundreds of custom data sources written by the Spark community, and it is not 

too difficult to implement them.

The two main classes in Spark SQL for reading and writing data are DataFrameReader 

and DataFrameWriter, respectively. This section will cover the details of working with 

the APIs in the DataFrameReader class and the various available options when reading 

data from a specific data source.

An instance of the DataFrameReader class is available as the read variable of the 

SparkSession class. Listing 4-8 provides an example of referring to this variable.

Listing 4-8. Using read Variable from SparkSession

spark.read

The common pattern for interacting with DataFrameReader is described in  

Listing 4-9.

Listing 4-9. Common Pattern for Interacting with DataFrameReader

spark.read.format(...).option("key", value").schema(...).load()

Table 4-2 describes the three main pieces of information that are used when reading 

data: format, option, and schema. More specific details about these three pieces of 

information will be provided in upcoming sections.
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Listing 4-10. Specifying the Data Source Format

spark.read.json("<path>")

spark.read.format("json")

spark.read.parquet("<path>")

spark.read.format("parquet")

spark.read.jdbc

spark.read.format("jdbc")

spark.read.orc("<path>")

spark.read.format("orc")

spark.read.csv("<path>")

spark.read.format("csv")

spark.read.text("<path>")

spark.read.format("text")

// custom data source – fully qualifed package name

spark.read.format("org.example.mysource")

Table 4-2. Three Main Pieces of Information for DataFrameReader

Name Optional Comments

format no this can be one of the built-in data sources or a custom format. For a built-in 

format, you can use a short name (json, parquet, jdbc, orc, csv, text). 

For a custom data source, you need to provide a fully qualified name. See 

Listing 4-10 for details and examples.

option Yes DataFrameReader has a set of default options for each data source format. 

You can override those default values by providing a value to the option 

function.

schema Yes Some data sources have the schema embedded inside the data files, i.e., 

parquet and orC. in those cases, the schema is automatically inferred. For 

other cases, you may need to provide a schema.
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Table 4-3 describes Spark’s six built-in data sources and provides comments for each 

of them.

 Creating DataFrames by Reading Text Files

Text files contain unstructured data. As it is read into Spark, each line becomes a row in 

the DataFrame. There are lots of free books available for download in plain-text format 

at www.gutenberg.org/. For plain-text files, one common way to parse the words of 

each line is by splitting it with a space as a delimiter. This is similar to how a typical word 

count example works. See Listing 4-11 for an example of reading a text file.

Listing 4-11. Reading the README.md File As a Text File from a Spark Shell

val textFile = spark.read.text("README.md")

textFile.printSchema

|-- value: string (nullable = true)

// show 5 lines and don't truncate

textFile.show(5, false)

Table 4-3. Spark’s Built-in Data Sources

Name Data Format Comments

text 

file

text no structure.

CSV text Comma-separated values. this can be used to specify another delimiter. the 

column name can be referred from the header.

JSon text popular semistructured format. the column name and data type are inferred 

automatically.

parquet Binary (default format.) popular binary format in the hadoop community.

orC Binary another popular binary format in the hadoop community.

JdBC Binary a common format for reading and writing to the rdBMS.
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+-------------------------------------------------------------------------+

|value                                                                    |

+-------------------------------------------------------------------------+

|# Apache Spark                                                           |

|                                                                         |

|Spark is a fast and general cluster computing system for Big Data. It provides |

|high-level APIs in Scala, Java, Python, and R, and an optimized engine that    |

|supports general computation graphs for data analysis. It also supports a      |

+-------------------------------------------------------------------------+

If a text file contains a delimiter that you can use to parse the columns in each line, 

then it is better to read it using the CSV format, which will be covered in the following 

section.

 Creating DataFrames by Reading CSV Files

One of the popular text file formats is CSV, which stands for comma-separated values. 

Popular tools such as Microsoft Excel can easily import and export data in CSV format. 

The CSV parser in Spark is designed to be flexible such that it can parse a text file using 

a user-provided delimiter. The comma delimiter just happens to be the default one. This 

means you can use the CSV format to read tab- separated value text files or other text files 

with an arbitrary delimiter.

Some CSV files have a header, and some don’t. Since a column value may contain 

a comma, it is a good practice to escape it using a special character. Table 4-4 describes 

commonly used options when working with the CSV format. For a complete list of 

options, please see the CSVOptions class at Spark GitHub (https://github.com/apache/

spark).
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Table 4-4. CSV Common Options

Key Values Default Description

sep Single character , this is a single-character value used as a delimiter 

for each column.

header true, false false if the value is true, it means the first line in the file 

represents the column names.

escape any character \ this is the character to use to escape the character 

in the column value that is the same as sep.

inferSchema true, false false this specifies whether Spark should try to infer the 

column type based on column value.

Specifying the header and inferSchema options as true won’t require you to specify 

a schema. Otherwise, you need to define a schema by hand or programmatically create it 

and pass it into the schema function. If the inferSchema option is false and no schema is 

provided, Spark will assume the data type of all the columns to be the string type.

The data file you are using as an example is called movies.csv in the folder data/

chapter4. This file contains a header for each column: actor, title, year. Listing 4-12 

provides a few examples of reading a CSV file.

Listing 4-12. Reading CSV Files with Various Options

val movies = spark.read.option("header","true").csv("<path>/book/chapter4/

data/movies/movies.csv")

movies.printSchema

 |-- actor: string (nullable = true)

 |-- title: string (nullable = true)

 |-- year: string (nullable = true)

// now try to infer the schema

val movies2 = spark.read.option("header","true").

option("inferSchema","true")

    .csv("<path>/book/chapter4/data/movies/movies.csv")
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movies2.printSchema

 |-- actor: string (nullable = true)

 |-- title: string (nullable = true)

 |-- year: integer (nullable = true)

// now try to manually provide a schema

import org.apache.spark.sql.types._

val movieSchema = StructType(Array(StructField("actor_name", StringType, true),

                                StructField("movie_title", StringType, true),

                                StructField("produced_year", LongType, true)))

val movies3 = spark.read.option("header","true").schema(movieSchema)

                                 .csv("<path>/book/chapter4/data/movies/

movies.csv")

movies3.printSchema

 |-- actor_name: string (nullable = true)

 |-- movie_title: string (nullable = true)

 |-- produced_year: long (nullable = true)

movies3.show(5)

+-----------------+--------------+--------------+

|       actor_name|   movie_title| produced_year|

+-----------------+--------------+--------------+

|McClure, Marc (I)| Freaky Friday|          2003|

|McClure, Marc (I)|  Coach Carter|          2005|

|McClure, Marc (I)|   Superman II|          1980|

|McClure, Marc (I)|     Apollo 13|          1995|

|McClure, Marc (I)|      Superman|          1978|

+-----------------+--------------+--------------+

The first example reads the file movies.csv by specifying the first line as the header. 

Spark was able to recognize the column names. However, since you didn’t specify the 

inferSchema option, all the columns have the type as string. The second example 

added the inferSchema option, and Spark was able to identify the column type. The third 

example provides a schema with column names different than what is in the header, so 

Spark uses the column names from the schema.
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Now let’s try to read in a text file with a delimiter that is different, not a comma. 

Instead, it is a tab. In this case, you specify a value for the sep option that Spark will use. 

See Listing 4-13 for an example of reading a file called movies.tsv in the folder data/

chapter4.

Listing 4-13. Reading a TSV File with the CSV Format

val movies4 = spark.read.option("header","true").option("sep", "\t")

     .schema(movieSchema).csv("<path>/book/chapter4/data/movies/movies.tsv")

movies.printSchema

|-- actor_name: string (nullable = true)

|-- movie_title: string (nullable = true)

|-- produced_year: long (nullable = true)

As you can see, it is quite easy to work with text files that have comma-separated 

values as well as other- separated values.

 Creating DataFrames by Reading JSON Files

JSON is a well-known format in the JavaScript community. It is considered to be a 

semistructured format because each object (aka row) has a structure and each column 

has a name. In the web application development space, JSON is a widely used data 

format for transferring data between the back-end server and the browser side. One of 

the strengths of JSON is that it provides a flexible format that can model any use case; 

it can also support a nested structure. JSON has one disadvantage that is related to 

verbosity. The column names are repeated in each row in the data file (imagine your 

data file has 1 million rows).

Spark makes it easy to read data in a JSON file. However, there is one thing that 

you need to pay attention to. A JSON object can be expressed on a single line or across 

multiple lines, and this is something you need to let Spark know. Given that a JSON data 

file contains only column names and no data type, how is Spark able to come up with a 

schema? Spark tries its best to infer the schema by parsing a set of sample records. The 

number of records to sample is determined by the samplingRatio option, which has a 

default value of 1.0. Therefore, it is quite expensive to read a large JSON file. In this case, 

you can lower the samplingRatio value to speed up the data loading process. Table 4-5 

describes the common options for the JSON format.
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Listing 4-14 shows two examples of reading JSON files. The first one simply reads 

a JSON file without overriding any option value. Notice Spark automatically detects 

the column name and data type based on the information in the JSON file. The second 

example specifies a schema.

Listing 4-14. Various Examples of Reading a JSON File

val movies5 = spark.read.json("<path>/book/chapter4/data/movies/movies.json")

movies.printSchema

 |-- actor_name: string (nullable = true)

 |-- movie_title: string (nullable = true)

 |-- produced_year: long (nullable = true)

// specify a schema to override the Spark's inferring schema.

// producted_year is specified as integer type

import org.apache.spark.sql.types._

val movieSchema2 = StructType(Array(StructField("actor_name", StringType, true),

                             StructField("movie_title", StringType, true),

                             StructField("produced_year", IntegerType, true)))

val movies6 = spark.read.option("inferSchema","true").schema(movieSchema2)

                              .json("<path>/book/chapter4/data/movies/

movies.json")

movies6.printSchema

 |-- actor_name: string (nullable = true)

 |-- movie_title: string (nullable = true)

 |-- produced_year: integer (nullable = true)

Table 4-5. JSON Common Options

Key Values Default Description

allowComments true, false false ignores comments in the JSon file

multiLine true, false false treats the entire file as a large JSon object that spans 

many lines

samplingRatio 0.3 1.0 Specifies the sampling size to read to infer the schema
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What happens when a column data type specified in the schema doesn’t match up 

with the value in the JSON file? By default, when Spark encounters a corrupted record or 

runs into a parsing error, it will set the value of all the columns in that row to null. Instead 

of getting null values, you can tell Spark to fail fast. Listing 4-15 tells Spark’s parsing logic 

to fail fast by specifying the mode option as failFast.

Listing 4-15. Parsing Error and How to Tell Spark to Fail Fast

// set data type for actor_name as BooleanType

import org.apache.spark.sql.types._

val badMovieSchema = StructType(Array(StructField("actor_name", 

BooleanType, true),

                                       StructField("movie_title", 

StringType, true),

                                       StructField("produced_year", 

IntegerType, true)))

val movies7 = spark.read.schema(badMovieSchema)

                                . json("<path>/book/chapter4/data/movies/

movies.json")

movies7.printSchema

 |-- actor_name: boolean (nullable = true)

 |-- movie_title: string (nullable = true)

 |-- produced_year: integer (nullable = true)

movies7.show(5)

+----------+-----------+-------------+

|actor_name|movie_title|produced_year|

+----------+-----------+-------------+

|      null|       null|         null|

|      null|       null|         null|

|      null|       null|         null|

|      null|       null|         null|

|      null|       null|         null|

+----------+-----------+-------------+
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// tell Spark to fail fast when facing a parsing error

val movies8 = spark.read.option("mode","failFast").schema(badMovieSchema)

                                 .json("<path>/book/chapter4/data/movies/

movies.json")

movies8.printSchema

 |-- actor_name: boolean (nullable = true)

 |-- movie_title: string (nullable = true)

 |-- produced_year: integer (nullable = true)

// Spark will throw a RuntimeException when executing an action

movies8.show(5)

ERROR Executor: Exception in task 0.0 in stage 3.0 (TID 3)

java.lang.RuntimeException: Failed to parse a value for data type 

BooleanType (current token: VALUE_STRING).

 Creating DataFrames by Reading Parquet Files

Parquet is one of the most popular open source columnar storage formats in the Hadoop 

ecosystem, and it was created at Twitter. Its popularity is because it is a self-describing 

data format and it stores data in a highly compact structure by leveraging compressions. 

The columnar storage format is designed to work well with a data analytics workload 

where only a small subset of the columns are used during the data analysis. Parquet 

stores the data of each column in a separate file; therefore, columns that are not needed 

in a data analysis wouldn’t have to be unnecessarily read in. It is quite flexible when it 

comes to supporting a complex data type with a nested structure. Text file formats such 

as CVS and JSON are good for small files, and they are human-readable. For working 

with large datasets that are stored in long-term storage, Parquet is a much better file 

format to use to reduce storage costs and to speed up the reading step. If you take a peek 

at the movies.parquet file in the chapter4/data/movies folder, you will see that its size 

is about one-sixth the size of movies.csv.

Spark works extremely well with the Parquet file format, and in fact Parquet is the 

default file format for reading and writing data in Spark. Since Parquet files are self-

contained, meaning the schema is stored inside the Parquet data file, it is easy to work 

with Parquet in Spark. Listing 4-16 shows an example of reading a Parquet file. Notice 

that you don’t need to provide a schema or ask Spark to infer the schema. Spark can 

retrieve the schema from the Parquet file.
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One of the cool optimizations that Spark does when reading data from Parquet is that 

it does decompression and decoding in column batches.

Listing 4-16. Reading a Parquet File in Spark

// Parquet is the default format, so we don't need to specify the format 

when reading

val movies9 = spark.read.load("<path>/book/chapter4/data/movies/movies.

parquet")

movies9.printSchema

 |-- actor_name: string (nullable = true)

 |-- movie_title: string (nullable = true)

 |-- produced_year: long (nullable = true)

// If we want to be more explicit, we can specify the path to the parquet 

function

val movies10 = spark.read.parquet("<path>/book/chapter4/data/movies/movies.

parquet")

movies10.printSchema

 |-- actor_name: string (nullable = true)

 |-- movie_title: string (nullable = true)

 |-- produced_year: long (nullable = true)

 Creating DataFrames by Reading ORC Files

Optimized Row Columnar (ORC) is another popular open source self-describing 

columnar storage format in the Hadoop ecosystem. It was created by a company called 

Cloudera as part of the initiative to massively speed up Hive. It is quite similar to Parquet 

in terms of efficiency and speed and was designed for analytics workloads. Working with 

ORC files is just as easy as working with Parquet files. Listing 4-17 shows an example of 

creating a DataFrame from reading from an ORC file.
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Listing 4-17. Reading an ORC File in Spark

val movies11 = spark.read.orc("<path>/book/chapter4/data/movies/movies.orc")

movies11.printSchema

 |-- actor_name: string (nullable = true)

 |-- movie_title: string (nullable = true)

 |-- produced_year: long (nullable = true)

movies11.show(5)

+--------------------------+-------------------+--------------+

|                actor_name|        movie_title| produced_year|

+--------------------------+-------------------+--------------+

|         McClure, Marc (I)|       Coach Carter|          2005|

|         McClure, Marc (I)|        Superman II|          1980|

|         McClure, Marc (I)|          Apollo 13|          1995|

|         McClure, Marc (I)|           Superman|          1978|

|         McClure, Marc (I)| Back to the Future|          1985|

+--------------------------+-------------------+--------------+

 Creating DataFrames from JDBC

JDBC is a standard application API for reading data from and writing data to a relational 

database management system. Spark has support for JDBC data sources, which means 

you can use Spark to read data from and write data to any of the existing RDBMSs such 

as MySQL, PostgreSQL, Oracle, SQLite, and so on. There are a few important pieces of 

information you need to provide when working with a JDBC data source: a JDBC driver 

for your RDBMS, a connection URL, authentication information, and a table name.

For Spark to connect to an RDBMS, it must have access to the JDBC driver JAR file at 

runtime. Therefore, you need to add the location of a JDBC driver to the Spark classpath. 

Listing 4-18 shows how to connect to MySQL from the Spark shell.

Listing 4-18. Specifying a JDBC Driver When Starting a Spark Shell

 ./bin/spark-shell ../jdbc/mysql-connector-java-5.1.45/mysql-connector-

java-5.1.45-bin.jar  --jars ../jdbc/mysql-connector-java-5.1.45/mysql-

connector-java-5.1.45-bin.jar
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Once the Spark shell is successfully started, you can quickly verify to see whether 

Spark can connect to the RDBMS by using the java.sql.DriverManager class, as shown 

in Listing 4-19. This example is trying to test a connection to MySQL. The URL format 

will be a bit different if your RDBMS is not MySQL, so consult the documentation of the 

JDBC driver you are using.

Listing 4-19. Testing the Connection to MySQL in the Spark Shell

import java.sql.DriverManager

val connectionURL = "jdbc:mysql://localhost:3306/<table>?user=<username>

&password=<password>"

val connection = DriverManager.getConnection(connectionURL)

connection.isClosed()

connection close()

If you didn’t get any exception about the connection, then the Spark shell was able to 

successfully connect to your RDBMS.

Table 4-6 describes the main options that you need to specify when using a JDBC 

data source. For a complete list of options, please consult https://spark.apache.org/

docs/latest/sql-programming-guide.html#jdbc-to- other-databases.

Table 4-6. Main Options for a JDBC Data Source

Key Description

url the JdBC urL for Spark to connect to. at the minimum, it should contain the host, port, 

and database name. For MySQL, it may look something like this: jdbc:mysql://

localhost:3306/sakila.

dbtable the name of a database table for Spark to read data from or write data to.

driver the class name of the JdBC driver that Spark will instantiate to connect to the previous 

urL. Consult the JdBC driver documentation that you are using. For the MySQL 

Connector/J driver, the class name is com.mysql.jdbc.Driver.
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Listing 4-20 shows an example of reading data from a table called film of the sakila 

database on a MySQL server that runs on localhost at port 3306.

Listing 4-20. Reading Data from a Table in MySQL Server

val mysqlURL= "jdbc:mysql://localhost:3306/sakila"
val filmDF = spark.read.format("jdbc").option("driver", "com.mysql.jdbc.
Driver")
                                      .option("url", mysqlURL)
                                      .option("dbtable", "film")
                                      .option("user", "<username>")
                                      .option("password","<password>")
                                      .load()

filmDF.printSchema
 |-- film_id: integer (nullable = false)
 |-- title: string (nullable = false)
 |-- description: string (nullable = true)
 |-- release_year: date (nullable = true)
 |-- language_id: integer (nullable = false)
 |-- original_language_id: integer (nullable = true)
 |-- rental_duration: integer (nullable = false)
 |-- rental_rate: decimal(4,2) (nullable = false)
 |-- length: integer (nullable = true)
 |-- replacement_cost: decimal(5,2) (nullable = false)
 |-- rating: string (nullable = true)
 |-- special_features: string (nullable = true)
 |-- last_update: timestamp (nullable = false)

filmDF.select("film_id","title").show(5)

+-------+-----------------+
|film_id|            title|
+-------+-----------------+
|      1| ACADEMY DINOSAUR|
|      2|   ACE GOLDFINGER|
|      3| ADAPTATION HOLES|
|      4| AFFAIR PREJUDICE|
|      5|      AFRICAN EGG|

+-------+-----------------+
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When working with a JDBC data source, Spark pushes the filter conditions all the way 

down to the RDBMS as much as possible. By doing this, much of the data will be filtered 

out at the RDBMS level, and therefore this will not only speed up the data filtering logic 

but dramatically reduce the amount of data Spark needs to read. This optimization 

technique is known as predicate pushdown, and Spark will often do this when it knows a 

data source can support the filtering capability. Parquet is another data source that has 

this capability. The “Catalyst Optimizer” section in chapter 5 will provide an example of 

what this looks like.

 Working with Structured Operations
Now that you know how to create DataFrames, the next part is to learn how to 

manipulate or transform them using the provided structured operations. Unlike the 

RDD operations, the structured operations are designed to be more relational, meaning 

these operations mirror the kind of expressions you can do with SQL, such as projection, 

filtering, transforming, joining, and so on. Similar to RDD operations, the structured 

operations are divided into two categories: transformation and action. The semantics 

of the structured transformations and actions are identical to the ones in RDDs. In 

other words, structured transformations are lazily evaluated, and structured actions are 

eagerly evaluated.

Structured operations are sometimes described as a domain-specific language 

(DSL) for distributed data manipulation. A DSL is a computer language specialized for 

a particular application domain. In this case, the application domain is the distributed 

data manipulation. If you have ever worked with SQL, then it is fairly easy to learn the 

structured operations.

Table 4-7 describes the commonly used DataFrame structured transformations.  

As a reminder, DataFrames are immutable, and their transformation operations always 

return a new DataFrame.
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Table 4-7. Commonly Used DataFrame Structured Transformations

Operation Description

select this selects one or more columns from an existing set of columns in the 

dataFrame. a more technical term for select is projection. during the 

projection process, columns can be transformed and manipulated.

selectExpr this supports powerful SQL expressions in transforming columns while 

performing projection.

filter

where

Both filter and where have the same semantics. where is more relational 

than filter, and it is similar to the where condition in SQL. they are both 

used for filtering rows based on the given Boolean conditions.

distinct

dropDuplicates

this removes duplicate rows from the dataFrame.

sort

orderBy

this sorts the dataFrame by the provided columns.

limit this returns a new dataFrame by taking the first n rows.

union this combines two dataFrames and return them as a new dataFrame.

withColumn this is used to add a new column or replace an existing column in the dataFrame.

withColumnRenamed this renames an existing column. if a given column name doesn’t exist in 

the schema, then it is a no-op.

drop this drops one or more columns from a dataFrame. this operation does 

nothing if a specified given column name doesn’t exist.

sample this randomly selects a set of rows based on the given fraction parameter, 

an optional seed value, and an optional replacement option.

randomSplit this splits the dataFrames into one or more dataFrames based on the given 

weights. it is commonly used to split the master data set into training and 

test data sets in the machine learning model training process.

join this joins two dataFrames. Spark supports many types of joins. You can find 

more details in Chapter 5.

(continued)
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 Working with Columns

Most of the DataFrame structured operations in Table 4-7 will require you to specify one 

or more columns. For some of them, the columns are specified in the form of a string, 

and for some the columns need to be specified as instances of the Column class. It is 

completely fair to question why there are two options and when to use what. To answer 

those questions, you need to understand the functionality the Column class provides. At a 

high level, the functionalities that the Column class provides can be broken down into the 

following categories:

• Mathematical operations such as addition, multiplication, and so on

• Logical comparisons between a column value or a literal such as 

equality, greater than, less than, and so on

• String pattern matching such as like, starting with, ending with, and 

so on

For a complete list of available functions in the Column class, please refer to the 

Scala documentation at https://spark.apache.org/docs/latest/api/scala/index.

html#org.apache.spark.sql.Column.

With an understanding of the functionality that the Column class provides, you can 

conclude that whenever there is a need to specify some kind of column expression, then 

it is necessary to specify the column as an instance of the Column class rather than a 

string. The upcoming examples will make this clear.

There are different ways of referring to a column, which has created confusion in the 

Spark user community. A common question is when to use which one, and the answer is 

it depends. Table 4-8 describes the available options.

Operation Description

groupBy this groups a dataFrame by one or more columns. a common pattern is to 

perform some kind of aggregation after the groupBy operation. You can find 

more details in Chapter 5.

describe this computes the common statistics about numeric and string columns in 

the dataFrame. available statistics are count, mean, stddev, min, max, and 

arbitrary approximate percentiles.

Table 4-7. (continued)
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The col and column functions are synonymous, and both are available in the Scala 

and Python Spark APIs. If you often switch between the Spark Scala and Python APIs, 

then it makes sense to use the col function so there is a consistency in your code. If you 

mostly or exclusively use the Spark Scala APIs, then my recommendation is to use ' (tick 

mark) because there is only a single character to type. The DataFrame class has its own 

col function, which is used to disambiguate between columns with the same name from 

two or more DataFrames when performing a join. Listing 4-21 provides examples of 

different ways to refer to a column.

Listing 4-21. Different Ways of Referring to a Column

import org.apache.spark.sql.functions._

val kvDF = Seq((1,2),(2,3)).toDF("key","value")

// to display column names in a DataFrame, we can call the columns function

kvDF.columns

Array[String] = Array(key, value)

kvDF.select("key")

kvDF.select(col("key"))

Table 4-8. Different Ways of Referring to a Column

Way Example Description

"" "columName" this refers to a column as a string type.

col col("columnName") the col function returns an instance of the 

Column class.

column column("columnName") Similar to col, this function returns an instance 

of the Column class.

$ $"columnName" this is a syntactic sugar way of constructing a 

Column class in Scala.

' (tick mark) 'columnName this is a syntactic sugar way of constructing a 

Column class in Scala by leveraging the Scala 

symbolic literals feature.
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kvDF.select(column("key"))

kvDF.select($"key")

kvDF.select('key)

// using the col function of DataFrame

kvDF.select(kvDF.col("key"))

kvDF.select('key, 'key > 1).show

+---+----------+

|key| (key > 1)|

+---+----------+

|  1|     false|

|  2|      true|

+---+----------+

The previous example illustrates a column expression, and therefore it is required 

to specify a column as an instance of the Column class. If the column was specified 

as a string, then it would result in a type mismatch error. More examples of column 

expressions will be shown in the following examples of using various DataFrame 

structure operations.

 Working with Structured Transformations

This section provides examples of working with the structured transformations listed 

in Table 4-7. All the examples will consistently use ' as a way to refer to columns in a 

DataFrame. To reduce redundancy, most of the examples will refer to the same movies 

DataFrame that was created from reading from a Parquet file, illustrated in Listing 4-22.

Listing 4-22. Creating the movies DataFrame from a Parquet File

val movies = spark.read.parquet("<path>/chapter4/data/movies/movies.parquet")

select(columns)

This transformation is commonly used to perform projection, meaning selecting all 

or a subset of columns from a DataFrame. During the selection, each column can be 

transformed via a column expression. There are two variations of this transformation. 

Chapter 4  Spark SQL (FoundationS)



114

One takes the column as a string, and the other takes columns as the Column class. This 

transformation does not permit you to mix the column type when using one of these two 

variations. See Listing 4-23 for an example of the two variations.

Listing 4-23. Two Variations of the select Transformation

movies.select("movie_title","produced_year").show(5)

+-------------------+--------------+

|        movie_title| produced_year|

+-------------------+--------------+

|       Coach Carter|          2005|

|        Superman II|          1980|

|          Apollo 13|          1995|

|           Superman|          1978|

| Back to the Future|          1985|

+-------------------+--------------+

// using a column expression to transform year to decade

movies.select('movie_title,('produced_year - ('produced_year % 10)).

as("produced_decade")).show(5)

+-------------------+----------------+

|        movie_title| produced_decade|

+-------------------+----------------+

|       Coach Carter|            2000|

|        Superman II|            1980|

|          Apollo 13|            1990|

|           Superman|            1970|

| Back to the Future|            1980|

+-------------------+----------------+

The second example requires two column expressions: modulo and subtraction. 

Both them are implemented by the modulo (%) and subtraction (-) functions in the 

Column class (see the Scala documentation mentioned earlier). By default, Spark uses the 

column expression as the name of the result column. To make it more readable, the as 

function is commonly used to rename it to a more human-readable column name. As an 

astute reader, you can probably figure out the select transformation can be used to add 

one or more columns to a DataFrame.
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selectExpr(expressions)

This transformation is a variant of the select transformation. The one big difference 

is that it accepts one or more SQL expressions, rather than columns. However, both 

are essentially performing the same projection task. SQL expressions are powerful and 

flexible constructs to allow you to express column transformation logic in a natural way, 

just like the way you think. You can express SQL expressions in a string format, and Spark 

will parse them into a logical tree so they will be evaluated in the right order. Let’s say 

you want to create a new DataFrame that has all the columns in the movies DataFrame 

and introduce a new column to represent the decade a movie was produced in; then you 

would do something like in Listing 4-24.

Listing 4-24. Adding the decade Column to the movies DataFrame Using a SQL 

Expression

movies.selectExpr("*","(produced_year - (produced_year % 10)) as decade").

show(5)

+-----------------+-------------------+--------------+-------+

|       actor_name|        movie_title| produced_year| decade|

+-----------------+-------------------+--------------+-------+

|McClure, Marc (I)|       Coach Carter|          2005|   2000|

|McClure, Marc (I)|        Superman II|          1980|   1980|

|McClure, Marc (I)|          Apollo 13|          1995|   1990|

|McClure, Marc (I)|           Superman|          1978|   1970|

|McClure, Marc (I)| Back to the Future|          1985|   1980|

+-----------------+-------------------+--------------+-------+

The combination of SQL expressions and built-in functions makes it easy to perform 

certain data analysis that otherwise would take multiple steps. Listing 4-25 shows how 

easy it is to determine the number of unique movie titles and unique actors in the 

movies dataset in a single statement. The count function performs an aggregation over 

the entire DataFrame.
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Listing 4-25. Using a SQL Expression and Built-in Functions

movies.selectExpr("count(distinct(movie_title)) as 

movies","count(distinct(actor_name)) as actors").show

+-------+-------+

| movies| actors|

+-------+-------+

|   1409|   6527|

+-------+-------+

filler(condition), where(condition)

This transformation is a fairly straightforward one to understand. It is used to filter 

out the rows that don’t meet the given condition, in other words, when the condition 

evaluates to false. A different way of looking at the behavior of the filter transformation is 

that it returns only the rows that meet the specified condition. The given condition can 

simple or as complex as it needs to be. Using this transformation will require knowing 

how to leverage a few logical comparison functions in the Column class, like equality, 

less than, greater than, and inequality. Both the filter and where transformations have 

the same behavior, so pick the one you are most comfortable with. The latter one is just 

a bit more relational than the former. See Listing 4-26 for a few examples of performing 

filtering.

Listing 4-26. Filter Rows with Logical Comparison Functions in the Column Class

movies.filter('produced_year < 2000)

movies.where('produced_year > 2000)

movies.filter('produced_year >= 2000)

movies.where('produced_year >= 2000)
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// equality comparison require 3 equal signs

movies.filter('produced_year === 2000).show(5)

+------------------+---------------------+--------------+

|        actor_name|          movie_title| produced_year|

+------------------+---------------------+--------------+

| Cooper, Chris (I)|   Me, Myself & Irene|          2000|

| Cooper, Chris (I)|          The Patriot|          2000|

|   Jolie, Angelina| Gone in Sixty Sec...|          2000|

|    Yip, Françoise|       Romeo Must Die|          2000|

|    Danner, Blythe|     Meet the Parents|          2000|

+------------------+---------------------+--------------+

// inequality comparison uses an interesting looking operator =!=

movies.select("movie_title","produced_year").filter('produced_year =!= 

2000).show(5)

+-------------------+--------------+

|        movie_title| produced_year|

+-------------------+--------------+

|       Coach Carter|          2005|

|        Superman II|          1980|

|          Apollo 13|          1995|

|           Superman|          1978|

| Back to the Future|          1985|

+-------------------+--------------+

// to combine one or more comparison expressions, we will use either the OR 

and AND expression operator

movies.filter('produced_year >= 2000 && length('movie_title) < 5).show(5)

+----------------+------------+--------------+

|      actor_name| movie_title| produced_year|

+----------------+------------+--------------+

| Jolie, Angelina|        Salt|          2010|

|  Cueto, Esteban|         xXx|          2002|

|   Butters, Mike|         Saw|          2004|

|  Franko, Victor|          21|          2008|

|   Ogbonna, Chuk|        Salt|          2010|

+----------------+------------+--------------+
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// the other way of accomplishing the same result is by calling the filter 

function two times

movies.filter('produced_year >= 2000).filter(length('movie_title) < 5).show(5)

distinct, dropDuplicates

These two transformations have identical behavior. However, dropDuplicates allows 

you to control which columns should be used in deduplication logic. If none is specified, 

the deduplication logic will use all the columns in the DataFrame. Listing 4-27 shows 

different ways of counting how many movies are in the movies data set.

Listing 4-27. Using distinct and dropDuplicates to Achieve the Same Goal

movies.select("movie_title").distinct.selectExpr("count(movie_title) as 

movies").show

movies.dropDuplicates("movie_title").selectExpr("count(movie_title) as 

movies").show

+------+

|movies|

+------+

|  1409|

+------+

In terms of performance, there is no difference between these two approaches 

because Spark will transform them into the same logical plan.

sort(columns), orderBy(columns)

Both of these transformations have the same semantics. The orderBy transformation is 

more relational than the other one. By default, the sorting is in ascending order, and it is 

fairly easy to change it to descending. When specifying more than one column, it is possible 

to have a different order for each of the columns. See Listing 4-28 for some examples.

Listing 4-28. Sorting the DataFrame in Ascending and Descending Order

val movieTitles = movies.dropDuplicates("movie_title")

                         .selectExpr("movie_title", "length(movie_title) as 

title_length", , "produced_year")
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movieTitles.sort('title_length).show(5)

+-----------+-------------+--------------+

|movie_title| title_length| produced_year|

+-----------+-------------+--------------+

|         RV|            2|          2006|

|         12|            2|          2007|

|         Up|            2|          2009|

|         X2|            2|          2003|

|         21|            2|          2008|

+-----------+-------------+--------------+

// sorting in descending order

movieTitles.orderBy('title_length.desc).show(5)

+---------------------+-------------+--------------+

|          movie_title| title_length| produced_year|

+---------------------+-------------+--------------+

| Borat: Cultural L...|           83|          2006|

| The Chronicles of...|           62|          2005|

| Hannah Montana & ...|           57|          2008|

| The Chronicles of...|           56|          2010|

| Istoriya pro Rich...|           56|          1997|

+---------------------+-------------+--------------+

// sorting by two columns in different orders

movieTitles.orderBy('title_length.desc, 'produced_year).show(5)

+---------------------+-------------+--------------+

|          movie_title| title_length| produced_year|

+---------------------+-------------+--------------+

| Borat: Cultural L...|           83|          2006|

| The Chronicles of...|           62|          2005|

| Hannah Montana & ...|           57|          2008|

| Istoriya pro Rich...|           56|          1997|

| The Chronicles of...|           56|          2010|

+---------------------+-------------+--------------+
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In the previous example, notice the title of the last two movies are at the same length, 

but their years are ordered in the correct ascending order.

limit(n)

This transformation returns a new DataFrame by taking the first n rows. This 

transformation is commonly used after the sorting is done to figure out the top n or 

bottom n rows based on the sorting order. Listing 4-29 shows an example of using the 

limit transformation to figure out the top ten actors with the longest names.

Listing 4-29. Using the limit Transformation to Figure Out the Top Ten Actors 

with the Longest Names

// first create a DataFrame with their name and associated length

val actorNameDF = movies.select("actor_name").distinct.selectExpr 

("*", "length(actor_name) as length")

// order names by length and retrieve the top 10

actorNameDF.orderBy('length.desc).limit(10).show

+-----------------------------+-------+

|                   actor_name| length|

+-----------------------------+-------+

| Driscoll, Timothy 'TJ' James|     28|

| Badalamenti II, Peter Donald|     28|

|  Shepard, Maridean Mansfield|     27|

|  Martino, Nicholas Alexander|     27|

|  Marshall-Fricker, Charlotte|     27|

|  Phillips, Christopher (III)|     27|

|  Pahlavi, Shah Mohammad Reza|     27|

|   Juan, The Bishop Don Magic|     26|

|   Van de Kamp Buchanan, Ryan|     26|

|   Lough Haggquist, Catherine|     26|

+-----------------------------+-------+
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union(otherDataFrame)

You learned earlier that DataFrames are immutable. So if there is a need to add more 

rows to an existing DataFrame, then the union transformation is useful for that purpose 

as well as for combining rows from two DataFrames. This transformation requires 

both DataFrames to have the same schema, meaning both column names and their 

order must exactly match. Let say one of the movies in the DataFrame is missing an 

actor and you want to fix that issue. See Listing 4-30 for how to do that using the union 

transformation.

Listing 4-30. Adding a Missing Actor to the movies DataFrame

// we want to add a missing actor to movie with title as "12"

val shortNameMovieDF = movies.where('movie_title === "12")

shortNameMovieDF.show

+---------------------+------------+---------------+

|           actor_name| movie_title| produced_year |

+---------------------+------------+---------------+

|     Efremov, Mikhail|          12|           2007|

|      Stoyanov, Yuriy|          12|           2007|

|      Gazarov, Sergey|          12|           2007|

| Verzhbitskiy, Viktor|          12|           2007|

+---------------------+------------+---------------+

// create a DataFrame with one row

import org.apache.spark.sql.Row

val forgottenActor = Seq(Row("Brychta, Edita", "12", 2007L))

val forgottenActorRDD = spark.sparkContext.parallelize(forgottenActor)

val forgottenActorDF = spark.createDataFrame(forgottenActorRDD, 

shortNameMovieDF.schema)
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// now adding the missing action

val completeShortNameMovieDF = shortNameMovieDF.union(forgottenActorDF)

completeShortNameMovieDF.union(forgottenActorDF).show

+---------------------+------------+--------------+

|           actor_name| movie_title| produced_year|

+---------------------+------------+--------------+

|     Efremov, Mikhail|          12|          2007|

|      Stoyanov, Yuriy|          12|          2007|

|      Gazarov, Sergey|          12|          2007|

| Verzhbitskiy, Viktor|          12|          2007|

|       Brychta, Edita|          12|          2007|

+---------------------+------------+--------------+

withColumn(colName, column)

This transformation is used to add a new column to a DataFrame. It requires two input 

parameters: a column name and a value in the form of a column expression. You 

can accomplish pretty much the same goal by using the selectExpr transformation. 

However, if the given column name matches one of the existing ones, then that column 

is replaced with the given column expression. Listing 4-31 provides examples of adding a 

new column as well as replacing an existing one.

Listing 4-31. Adding a Column As Well As Replacing a Column Using the 

withColumn Transformation

// adding a new column based on a certain column expression

movies.withColumn("decade", ('produced_year - 'produced_year % 10)).show(5)

+------------------+-------------------+--------------+-------+

|        actor_name|        movie_title| produced_year| decade|

+------------------+-------------------+--------------+-------+

| McClure, Marc (I)|       Coach Carter|          2005|   2000|

| McClure, Marc (I)|        Superman II|          1980|   1980|

| McClure, Marc (I)|          Apollo 13|          1995|   1990|

| McClure, Marc (I)|           Superman|          1978|   1970|

| McClure, Marc (I)| Back to the Future|          1985|   1980|

+------------------+-------------------+--------------+-------+
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// now replace the produced_year with new values

movies.withColumn("produced_year", ('produced_year - 'produced_year % 10)).

show(5)

+------------------+-------------------+--------------+

|        actor_name|        movie_title| produced_year|

+------------------+-------------------+--------------+

| McClure, Marc (I)|       Coach Carter|          2000|

| McClure, Marc (I)|        Superman II|          1980|

| McClure, Marc (I)|          Apollo 13|          1990|

| McClure, Marc (I)|           Superman|          1970|

| McClure, Marc (I)| Back to the Future|          1980|

+------------------+-------------------+--------------+

withColumnRenamed(existingColName, newColName)

This transformation is strictly about renaming an existing column name in a DataFrame. 

It is fair to ask why in the world Spark provides this transformation. As it is turns out, this 

transformation is useful in the following situations:

• To rename a cryptic column name to a more human-friendly name. 

The cryptic column name can come from an existing schema that 

you don’t have control of, such as when the column you need in a 

Parquet file was produced by your company’s partner.

• Before joining two DataFrames that happen to have one or more 

same column name. This transformation can be used to rename one 

or more columns in one of the two DataFrames so you can refer to 

them easily after the join.

Notice that if the provided existingColName doesn’t exist in the schema, Spark 

doesn’t throw an error, and it will silently do nothing. Listing 4-32 renames some of the 

column names in the movies DataFrame to short names. By the way, this is something 

that can be accomplished by using the select or selectExpr transformation. I will leave 

that as an exercise for you.
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Listing 4-32. Using the withColumnRenamed Transformation to Rename Some 

of the Column Names

movies.withColumnRenamed("actor_name", "actor")

      .withColumnRenamed("movie_title", "title")

      .withColumnRenamed("produced_year", "year").show(5)

+------------------+-------------------+-----+

|             actor|              title| year|

+------------------+-------------------+-----+

| McClure, Marc (I)|       Coach Carter| 2005|

| McClure, Marc (I)|        Superman II| 1980|

| McClure, Marc (I)|          Apollo 13| 1995|

| McClure, Marc (I)|           Superman| 1978|

| McClure, Marc (I)| Back to the Future| 1985|

+------------------+-------------------+-----+

drop(columnName1, columnName2)

This transformation simply drops the specified columns from the DataFrame. You can 

specify one or more column names to drop, but only the ones that exist in the schema 

will be dropped and the ones that don’t will be silently ignored. You can use the select 

transformation to drop columns by projecting only the columns that you want to keep. 

In the case that a DataFrame has 100 columns and you want to drop a few, then this 

transformation is more convenient to use than the select transformation. Listing 4-33 

provides examples of dropping columns.

Listing 4-33. Dropping Two Columns: One Exists and the Other One Doesn’t

movies.drop("actor_name", "me").printSchema

 |-- movie_title: string (nullable = true)

 |-- produced_year: long (nullable = true)

As you can see from the previous example, the second column, me, doesn’t exist in 

the schema, so the drop transformation simply ignores it.

Chapter 4  Spark SQL (FoundationS)



125

sample(fraction), sample(fraction, seed), sample(fraction, seed, 
withReplacement)

This transformation returns a randomly selected set of rows from the DataFrame. The 

number of the returned rows will be approximately equal to the specified fraction, which 

represents a percentage, and the value has to be between 0 and 1. The seed is used to 

seed the random number generator, which is used to generate a row number to include 

in the result. If a seed is not specified, then a randomly generated value is used. The 

withReplacement option is used to determine whether a randomly selected row will be 

placed back into the selection pool. In other words, when withReplacement is true, a 

particular selected row has the potential to be selected more than once. So, when would 

you need to use this transformation? It is useful in the case where the original dataset is 

large and there is a need to reduce it to a smaller size so you can quickly iterate on the 

data analysis logic. Listing 4-34 provides examples using the sample transformation.

Listing 4-34. Different Ways of Using the sample Transformation

// sample with no replacement and a fraction

movies.sample(false, 0.0003).show(3)

+---------------------+----------------------+--------------+

|           actor_name|           movie_title| produced_year|

+---------------------+----------------------+--------------+

|      Lewis, Clea (I)|  Ice Age: The Melt...|          2006|

|       Lohan, Lindsay|   Herbie Fully Loaded|          2005|

| Tagawa, Cary-Hiro...|       Licence to Kill|          1989|

+---------------------+----------------------+--------------+

// sample with replacement, a fraction and a seed

movies.sample(true, 0.0003, 123456).show(3)

+---------------------+---------------+--------------+

|           actor_name|    movie_title| produced_year|

+---------------------+---------------+--------------+

| Panzarella, Russ (V)| Public Enemies|          2009|

|         Reed, Tanoai|      Daredevil|          2003|

|         Moyo, Masasa|   Spider-Man 3|          2007|

+---------------------+---------------+--------------+
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As you can see, the returned movies are pretty random.

randomSplit(weights)

This transformation is commonly used during the process of preparing the data to train 

machine learning models. Unlike the previous transformations, this one returns one 

or more DataFrames. The number of DataFrames it returns is based on the number of 

weights you specify. If the provided set of weights don’t add up to 1, then they will be 

normalized accordingly to add up to 1. Listing 4-35 provides an example of splitting the 

movies DataFrames into three smaller ones.

Listing 4-35. Using randomSplit to split the movies DataFrames into Three Parts

// the weights need to be an Array

val smallerMovieDFs = movies.randomSplit(Array(0.6, 0.3, 0.1))

// let's see if the counts are added up to the count of movies DataFrame

movies.count

Long = 31393

smallerMovieDFs(0).count

Long = 18881

smallerMovieDFs(0).count + smallerMovieDFs(1).count + smallerMovieDFs(2).

count

Long = 31393

 Working with Missing or Bad Data

In reality, the data you often work with is not as clean as you would like. Maybe it’s 

because the data evolves over time, and therefore some columns have values and 

some don’t. It is important to deal with this kind of issue at the beginning of your data 

manipulation logic to prevent any unpleasant surprises that will cause your long- 

running data processing job to stop working.
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The Spark community recognizes that the need to deal with missing data is a fact of 

life; therefore, Spark provides a dedicated class called DataFrameNaFunctions to help in 

dealing with this inconvenient issue. An instance of DataFrameNaFunctions is available 

as the an member variable inside the DataFrame class. There are three common ways 

of dealing with missing or bad data. The first way is to drop the rows that have missing 

values in a one or more columns. The second way is to fill those missing values with 

user-provided values. The third way is to replace the bad data with something that you 

know how to deal with.

Let’s start with dropping rows with missing data. You can tell Spark to drop rows 

where any column or only the specific columns have missing values. Listing 4-36 shows 

a few different ways of dropping rows with missing data.

Listing 4-36. Dropping Rows with Missing Data

// first create a DataFrame with missing values in one or more columns

import org.apache.spark.sql.Row

val badMovies = Seq(Row(null, null, null),

                    Row(null, null, 2018L),

                    Row("John Doe", "Awesome Movie", null),

                    Row(null, "Awesome Movie", 2018L),

                    Row("Mary Jane", null, 2018L))

val badMoviesRDD = spark.sparkContext.parallelize(badMovies)

val badMoviesDF = spark.createDataFrame(badMoviesRDD, movies.schema)

badMoviesDF.show

+----------+--------------+--------------+

|actor_name|   movie_title| produced_year|

+----------+--------------+--------------+

|      null|          null|          null|

|      null|          null|          2018|

|  John Doe| Awesome Movie|          null|

|      null| Awesome Movie|          2018|

| Mary Jane|          null|          2018|

+----------+--------------+--------------+
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// dropping rows that have missing data in any column

// both of the lines below will achieve the same purpose

badMoviesDF.na.drop().show

badMoviesDF.na.drop("any").show

+----------+------------+--------------+

|actor_name| movie_title| produced_year|

+----------+------------+--------------+

+----------+------------+--------------+

// drop rows that have missing data in every single column

badMoviesDF.na.drop("all").show

+----------+--------------+--------------+

|actor_name|   movie_title| produced_year|

+----------+--------------+--------------+

|      null|          null|          2018|

|  John Doe| Awesome Movie|          null|

|      null| Awesome Movie|          2018|

| Mary Jane|          null|          2018|

+----------+--------------+--------------+

// drops rows when column actor_name has missing data

badMoviesDF.na.drop(Array("actor_name")).show

+----------+--------------+--------------+

|actor_name|   movie_title| produced_year|

+----------+--------------+--------------+

|  John Doe| Awesome Movie|          null|

| Mary Jane|          null|          2018|

+----------+--------------+--------------+
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describe(columnNames)

Sometimes it is useful to have a general sense of the basic statistics of the data you 

are working with. The basic statistics this transformation can compute for string and 

numeric columns are count, mean, standard deviation, minimum, and maximum.  

You can pick and choose which string or numeric columns to compute the statistics for. 

See Listing 4-37 for an example.

Listing 4-37. Use the describe Transformation to Show Statistics for the 

produced_year Column

movies.describe("produced_year").show

+-------+-------------------+

|summary|      produced_year|

+-------+-------------------+

|  count|              31392|

|   mean| 2002.7964449541284|

| stddev|  6.377236851493877|

|    min|               1961|

|    max|               2012|

+-------+-------------------+

 Working with Structured Actions

This section covers the structured actions. They have the same eager evaluated 

semantics as the RDD actions, so they trigger the computation of all the transformations 

that lead up to a particular action. Table 4-9 describes the structured actions.
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Table 4-9. Commonly Used Structured Actions

Operation Description

show()

show(numRows)

show(truncate)

show(numRows, truncate)

displays a number of rows in a tabular format. if numRows 

is not specified, it will show the top 20 rows. the truncate 

option controls whether to truncate the string column if it is 

longer than 20 characters.

head()

first()

head(n)

take(n)

returns the first row. if n is specified, then it will return the 

first n rows. first is an alias for head. take(n) is an alias 

for first(n).

takeAsList(n) returns the first n rows as a Java list. Be careful not to take too 

many rows; otherwise, it may cause an out-of-memory error on 

the application’s driver process.

collect

collectAsList

returns all the rows as an array or Java list. apply the same 

caution as the one described in the takeAsList action.

count returns the number of rows in a dataFrame.

Most of these are self-explanatory. The show action was used in many examples 

earlier in the chapter. One interesting action is called describe, which is described next.

 Introduction to Datasets
At one point in the history of Spark, there was a lot of confusion about the differences 

between the DataFrame and Dataset APIs. Given these options, it is fair to ask what 

are the differences between them, what are the advantages and disadvantages of each 

option, and when to use which one. Recognizing this huge confusion in the Spark user 

community, Spark designers decided to unify the DataFrame APIs with the Dataset APIs 

in Spark 2.0 to have one fewer abstraction for users to learn and remember. Starting with 

the Spark 2.0 release, there is only one high-level abstraction called a Dataset, which 

has two flavors: a strongly typed API and an untyped API. The term DataFrame didn’t 

go away; instead, it has been redefined as an alias for a collection of generic objects in a 

Dataset. From the code perspective, what I am saying is a DataFrame is essentially a type 

alias for Dataset[Row], where a Row is a generic untyped JVM object. A Dataset is defined 
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as a collection of strongly typed JVM objects, represented by either a case class in Scala 

or a class in Java. Table 4-10 describes the Dataset API flavors that are available in each of 

the programming languages that Spark supports.

The Python and R languages have no compile-time type safety; therefore, only the 

untyped Dataset APIs (aka DataFrame) are supported.

Consider the Dataset as a younger brother of the DataFrame; however, it is more about 

type safety and is object-oriented. A Dataset is a strongly typed, immutable collection 

of data. Similar to a DataFrame, the data in a Dataset is mapped to a defined schema. 

However, there are a few important differences between a DataFrame and a Dataset.

• Each row in a Dataset is represented by a user-defined object so that 

you can refer to an individual column as a member variable of that 

object. This provides you with compile-type safety.

• A Dataset has helpers called encoders, which are smart and efficient 

encoding utilities that convert data inside each user-defined object 

into a compact binary format. This translates into a reduction of 

memory usage if and when a Dataset is cached in memory as well as 

a reduction in the number of bytes that Spark needs to transfer over a 

network during the shuffling process.

In terms of limitations, the Dataset APIs are available in only strongly typed 

languages such as Scala and Java. At this point, a question should pop into your mind 

regarding when to use the DataFrame APIs and the Dataset APIs. The Dataset APIs 

are good for production jobs that need to run on a regular basis and are written and 

maintained by data engineers. For most interactive and explorative analysis use cases, 

using the DataFrame APIs would be sufficient.

Table 4-10. Dataset Flavors

Language Flavor

Scala dataset[t] and dataFrame

Java dataset[t]

python dataFrame

r dataFrame
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Note a case class in the Scala language is like a JavaBean class in the Java 
language; however, it has a few built-in interesting properties. an instance of a 
case class is immutable, and therefore it is commonly used to model domain- 
specific objects. in addition, it is easy to reason about the internal states of the 
instances of a case class because they are immutable. the toString and 
equals methods are automatically generated to make it easier to print out the 
content of the case class and to compare different case class instances. Scala 
case classes work well with the pattern matching feature in Scala language.

 Creating Datasets
There are a few ways to create a Dataset, but the first thing you need to do is to define a 

domain-specific object to represent each row. The first way is to transform a DataFrame 

to a Dataset using the as(Symbol) function of the DataFrame class. The second way is 

to use the SparkSession.createDataset() function to create a Dataset from a local 

collection objects. The third way is to use the toDS implicit conversion utility. Listing 4-38 

provides examples of creating Datasets using the different ways described earlier.

Listing 4-38. Different Ways of Creating Datasets

// define Movie case class

case class Movie(actor_name:String, movie_title:String, produced_year:Long)

// convert DataFrame to strongly typed Dataset

val moviesDS = movies.as[Movie]

// create a Dataset using SparkSession.createDataset() and the toDS 

implicit function

val localMovies = Seq(Movie("John Doe", "Awesome Movie", 2018L),

                                 Movie("Mary Jane", "Awesome Movie", 2018L))

val localMoviesDS1 = spark.createDataset(localMovies)

val localMoviesDS2 = localMovies.toDS()

localMoviesDS1.show
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+----------+--------------+--------------+

|actor_name|   movie_title| produced_year|

+----------+--------------+--------------+

|  John Doe| Awesome Movie|          2018|

| Mary Jane| Awesome Movie|          2018|

+----------+--------------+--------------+

Out of the three ways of creating Datasets, the first way is the most popular one. 

During the process of transforming a DataFrame to a Dataset using a Scala case class, 

Spark will perform a validation to ensure the member variable names in the Scala case 

class matches up with the column names in the schema of the DataFrame. If there is a 

mismatch, Spark will let you know.

 Working with Datasets
Now that you have a Dataset, you can manipulate it using the transformations and 

actions described earlier. Previously you referred to the columns in the DataFrame 

using one of the options described earlier. With a Dataset, each row is represented by 

a strongly typed object; therefore, you can just refer to the columns using the member 

variable names, which will give you type safety as well as compile-time validation.  

If there is a misspelling in the name, the compiler will flag them immediately during the 

development phase. See Listing 4-39 for examples of manipulating a Dataset.

Listing 4-39. Manipulating a Dataset in a Type-Safe Manner

// filter movies that were produced in 2010 using

moviesDS.filter(movie => movie.produced_year == 2010).show(5)

+-------------------+---------------------+--------------+

|         actor_name|          movie_title| produced_year|

+-------------------+---------------------+--------------+

|  Cooper, Chris (I)|             The Town|          2010|

|    Jolie, Angelina|                 Salt|          2010|

|    Jolie, Angelina|          The Tourist|          2010|

|     Danner, Blythe|       Little Fockers|          2010|

| Byrne, Michael (I)| Harry Potter and ...|          2010|

+-------------------+---------------------+--------------+
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// displaying the title of the first movie in the moviesDS

moviesDS.first.movie_title

String = Coach Carter

// try with misspelling the movie_title and get compilation error

moviesDS.first.movie_tile

error: value movie_tile is not a member of Movie

// perform projection using map transformation

val titleYearDS = moviesDS.map(m => ( m.movie_title, m.produced_year))

titleYearDS.printSchema

 |-- _1: string (nullable = true)

 |-- _2: long (nullable = false)

// demonstrating a type-safe transformation that fails at compile time, 

performing subtraction on a column with string type

// a problem is not detected for DataFrame until runtime

movies.select('movie_title - 'movie_title)

// a problem is detected at compile time

moviesDS.map(m => m.movie_title - m.movie_title)

error: value - is not a member of String

// take action returns rows as Movie objects to the driver

moviesDS.take(5)

Array[Movie] = Array(Movie(McClure, Marc (I),Coach Carter,2005), 

Movie(McClure, Marc (I),Superman II,1980), Movie(McClure, Marc (I),Apollo 

13,1995))

For those who use the Scala programming language on a regular basis, working 

with the strongly typed Dataset APIs will feel natural and give you impression that those 

objects in the Dataset reside locally.

When you use the strongly typed Dataset APIs, Spark implicitly converts each Row 

instance to the domain-specific object that you provide. This conversion has some cost 

in terms of performance; however, it provides more flexibility.

One general guideline to help with deciding when to use a DataSet over a DataFrame 

is the desire to have a higher degree of type safety at compile time.
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 Using SQL in Spark SQL
In the big data era, SQL has been described as the lingua franca for big data analysis. 

One of the coolest features Spark provides is the ability to use SQL to perform distributed 

data manipulation or analysis at scale. Data analysts who are proficient at SQL can now 

be productive at using Spark to perform data analysis on large datasets. One important 

note to remember is SQL in Spark is designed to be used for online analytic processing 

(OLAP) use cases and not online transaction processing (OLTP) use cases. In other 

words, it is not applicable for low-latency use cases.

SQL has evolved and improved over time. Spark implements a subset of the ANSI 

SQL:2003 revision, which most popular RDBMS servers support. Being compliant with 

this particular revision means the Spark SQL data processing engine can be evaluated 

by an existing and widely used industry-standard decision support benchmark called 

TPC- DS.

As a testament of the power of the Spark SQL engine, in late 2016, Facebook started 

migrating some of its largest Apache Hive workloads to Spark to take advantage of the 

power of the Spark SQL engine. See this post for more details: https://code.facebook.

com/posts/1671373793181703/apache-spark-scale-a-60-tb-production-use-case/.

Note Structured Query Language (SQL) is a domain-specific language, and 
it is widely used to perform data analysis and manipulation of structured data 
organized in a table format. the concepts in SQL are based on relational algebra; 
however, it is an easy language to learn. one key difference between SQL and 
other programming languages such as Scala or python is that SQL is a declarative 
programming language, which means you express what want to do with the data 
and let the SQL execution engine figure out the necessary optimizations to speed 
up execution time. if you are new to SQL, there is a free course at https://www.
datacamp.com/courses/intro-to-sql-for-data-science.
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 Running SQL in Spark
Spark provides a few different ways to run SQL in Spark.

• Spark SQL CLI (./bin/spark-sql)

• JDBC/ODBC server

• Programmatically in Spark applications

This first two options provide an integration with Apache Hive to leverage the Hive 

metastore, which is a repository that contains the metadata and schema information 

about the various system and user-defined tables. This section will cover only the last 

option.

DataFrames and Datasets are essentially like tables in a database. Before you can 

issue SQL queries to manipulate them, you need to register them as temporary views. 

Each view has a name, and that is what is used as the table name in the select clause. 

Spark provides two levels of scoping for the temporary views. One is at the Spark session 

level. When a DataFrame is registered at this level, only the queries that are issued in the 

same session can refer to that DataFrame. The session-scoped level will disappear when 

a Spark session is closed. The second scoping level is at the global level, which means 

these views are available to SQL statements in all Spark sessions. All the registered 

views are maintained in the Spark metadata catalog that can be accessed through 

SparkSession. See Listing 4-40 for example of registering views and using the Spark 

catalog to inspect the metadata of those views.

Listing 4-40. Registering the movies DataFrame as a Temporary View and 

Inspecting the Spark Metadata Catalog

// display tables in the catalog, expecting an empty list

spark.catalog.listTables.show

+-----+---------+------------+----------+------------+

| name| database| description| tableType| isTemporary|

+-----+---------+------------+----------+------------+

// now register movies DataFrame as a temporary view

movies.createOrReplaceTempView("movies")
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// should see the movies view in the catalog

spark.catalog.listTables.show

+-------+---------+------------+----------+------------+

|   name| database| description| tableType| isTemporary|

+-------+---------+------------+----------+------------+

| movies|     null|        null| TEMPORARY|        true|

+-------+---------+------------+----------+------------+

// show the list of columns of movies view in catalog

spark.catalog.listColumns("movies").show

+--------------+------------+---------+---------+------------+---------+

|          name| description| dataType| nullable| isPartition| isBucket|

+--------------+------------+---------+---------+------------+---------+

|    actor_name|        null|   string|     true|       false|    false|

|   movie_title|        null|   string|     true|       false|    false|

| produced_year|        null|   bigint|     true|       false|    false|

+--------------+------------+---------+---------+------------+---------+

// register movies as global temporary view called movies_g

movies.createOrReplaceGlobalTempView("movies_g")

The previous example gives you a couple of views to select from. The programmatic 

way of issuing SQL queries is to use the sql function of the SparkSession class. Inside the 

SQL statement, you have access to all SQL expressions and built-in functions. Once the 

SparkSession.sql function executes the given SQL query, it will return a DataFrame. The 

ability to issue SQL statements and use DataFrame transformations and actions provides 

you with a lot of flexibility in how you choose to perform distributed data processing in 

Spark. Listing 4-41 provides examples of issuing simple and complex SQL statements.

Listing 4-41. Programmatically Executing SQL Statements in Spark

// simple example of executing a SQL statement without a registered view

val infoDF = spark.sql("select current_date() as today , 1 + 100 as value")

infoDF.show

+----------+------+

|     today| value|

+----------+------+

|2017-12-27|   101|

+----------+------+
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// select from a view

spark.sql("select * from movies where actor_name like '%Jolie%' and 

produced_year > 2009").show

+---------------+----------------+--------------+

|     actor_name|     movie_title| produced_year|

+---------------+----------------+--------------+

|Jolie, Angelina|            Salt|          2010|

|Jolie, Angelina| Kung Fu Panda 2|          2011|

|Jolie, Angelina|     The Tourist|          2010|

+---------------+----------------+--------------+

// mixing SQL statement and DataFrame transformation

spark.sql("select actor_name, count(*) as count from movies group by actor_name")

         .where('count > 30)

         .orderBy('count.desc)

         .show

+-------------------+------+

|         actor_name| count|

+-------------------+------+

|   Tatasciore, Fred|    38|

|      Welker, Frank|    38|

| Jackson, Samuel L.|    32|

|      Harnell, Jess|    31|

+-------------------+------+

// using a subquery to figure out the number movies were produced in each year.

// leverage """ to format multi-line SQL statement

spark.sql("""select produced_year, count(*) as count

                    from (select distinct movie_title, produced_year from 

movies)

                   group by produced_year""")

         .orderBy('count.desc).show(5)
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+-------------+------+

|produced_year| count|

+-------------+------+

|         2006|    86|

|         2004|    86|

|         2011|    86|

|         2005|    85|

|         2008|    82|

+-------------+------+

// select from a global view requires prefixing the view name with key word 

'global_temp'

spark.sql("select count(*) from global_temp.movies_g").show

+-----+

|count|

+-----+

|31393|

+-----+

Instead of reading the data file through DataFrameReader and then registering the 

newly created DataFrame as a temporary view, it is possible to issue a SQL query directly 

from a file. See Listing 4-42 for an example.

Listing 4-42. Issuing a SQL Query Directly from a File

spark.sql("SELECT * FROM parquet.`<path>/chapter4/data/movies/movies.

parquet`").show(5)

 Writing Data Out to Storage Systems
At this point, you know how to read data from various file formats or from a database 

server using DataFrameReader, and you know how use SQL or transformations and 

actions of structured APIs to manipulate the data. At some point, you will need to write 

the data in a DataFrame out to an external storage system, i.e., a local file system, HDFS, 

or Amazon S3. In a typical ETL data processing job, the results will most likely be written 

out to some storage system.
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In Spark SQL, the DataFrameWriter class is responsible for the logic and complexity 

of writing out the data in a DataFrame to an external storage system. An instance of the 

DataFrameWriter class is available to you as the write variable in the DataFrame class. 

The pattern for interacting with DataFrameWriter is somewhat similar to the interacting 

pattern of DataFrameReader. From a Spark shell or in a Spark application, you refer to it 

as in Listing 4-43.

Listing 4-43. Using the write Variable from the DataFrame Class

movies.write

Listing 4-44 describes the common pattern for interacting with DataFrameWriter.

Listing 4-44. Common Interacting Pattern with DataFrameWriter

movies.write.format(...).mode(...).option(...).partitionBy(...).bucketBy(...) 

.sortBy(...).save(path)

Similar to DataFrameReader, the default format is Parquet; therefore, it is not 

necessary to specify a format when writing the data out in Parquet format. The 

partitionBy, bucketBy, and sortBy functions are used to control the directory structure 

of the output files in the file-based data sources. By structuring the directory layout 

based on the read patterns, it will dramatically reduce the amount of data that needs to 

be read for analysis. You’ll learn more about this later in the chapter. The input to the 

save function is a directory name, not a file name.

One of the important options in the DataFrameWriter class is the save mode, which 

controls how Spark will handle the situation when the specified output folder already 

exists. Table 4-11 lists the various supported save modes.
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Listing 4-45 shows a few examples of using various combinations of formats and 

modes.

Listing 4-45. Using DataFrameWriter to Write Data to File-Based Sources

// write data out as CVS format, but using a '#' as delimiter

movies.write.format("csv").option("sep", "#").save("/tmp/output/csv")

// write data out using overwrite save mode

movies.write.format("csv").mode("overwrite").option("sep", "#").save 

("/tmp/output/csv")

The number of files written out to the output directory corresponds to the number of 

partitions a DataFrame has. Listing 4-46 shows how to find out the number of partitions 

a DataFrame has.

Listing 4-46. Displaying the Number of Partitions a DataFrame Has

movies.rdd.getNumPartitions

Int = 1

In some cases, the content of a DataFrame is not large, and there is a need to write to 

a single file. A small trick to achieve this goal is to reduce the number of partitions in your 

DataFrame to one and then write it out. Listing 4-47 shows an example of how to do that.

Table 4-11. Save Modes

Mode Description

append this appends the dataFrame data to the list of files that already exist at 

the specified destination location.

overwrite this completely overwrites any data files that already exist at the 

specified destination location with the data in the dataFrame.

error

errorIfExists

default

this is the default mode. if the specified destination location exists, then 

DataFrameWriter will throw an error.

ignore if the specified destination location exists, then simply do nothing. in other 

words, silently don’t write out the data in the dataFrame.
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Listing 4-47. Reducing the Number of Partitions in a DataFrame to 1

val singlePartitionDF = movies.coalesce(1)

The idea of writing data out using partitioning and bucketing is borrowed from 

the Apache Hive user community. As a general rule of thumb, the partition by column 

should have low cardinality. In the movies DataFrame, the produced_year column is 

a good candidate for the partition by column. Let’s say you are going to write out the 

movies DataFrame with partitioning by the produced_year column. DataFrameWriter 

will write out all the movies with the same produced_year into a single directory. The 

number of directories in the output folder will correspond to the number of years in the 

movies DataFrame. See Listing 4-48 for an example of using the partitionBy function.

Listing 4-48. Writing the movies DataFrame Using the Parquet Format and 

Partition by the produced_year Column

movies.write.partitionBy("produced_year").save("/tmp/output/movies")

// the /tmp/output/movies directory will contain the following subdirectories

produced_year=1961 to produced_year=2012

The directory names generated by the partitionBy option seems strange because 

each directory name consists of the partitioning column name and the associated value. 

These two pieces of information are used at data reading time to choose which directory 

to read based on the data access pattern, and therefore it ends up reading much less data 

than otherwise.

 The Trio: DataFrames, Datasets, and SQL
Now you know there are three different ways of manipulating structured data in the 

Spark SQL module. Table 4-12 shows where each option falls in the syntax and analysis 

spectrum.

The main point here is the earlier you can catch the errors, the more productive you 

will be and the more stable your data processing applications will be.
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 DataFrame Persistence
DataFrames can be persisted/cached in memory just like how it is done with RDDs. The 

same familiar persistence APIs (persist and unpersist) are available in the DataFrame 

class. However, there is one big difference when caching a DataFrame. Spark SQL knows 

the schema of the data inside a DataFrame, so it organizes the data in a columnar format 

as well as applies any applicable compressions to minimize space usage. The net result 

is it will require much less space to store a DataFrame in memory than storing an RDD 

when both are backed by the same data file. All the different storage options described in 

Table 3-5 are applicable for persisting a DataFrame. Listing 4-49 demonstrates persisting 

a DataFrame with a human-readable name so it is easy to identify in the Spark UI.

Listing 4-49. Persisting a DataFrame with a Human-Readable Name

val numDF = spark.range(1000).toDF("id")

// register as a view

numDF.createOrReplaceTempView("num_df")

// use Spark catalog to cache the numDF using name "num_df"

spark.catalog.cacheTable("num_df")

// force the persistence to happen by taking the count action

numDF.count

At this point, point your browser to the Spark UI (http://localhost:4040 when 

running the Spark shell) and click the Storage tab. See Figure 4-2 for an example.

Table 4-12. Syntax and Analysis Errors Spectrum

SQL DataFrame Dataset

System errors runtime Compile time Compile time

analysis errors runtime runtime Compile time
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 Summary
In this chapter, you learned the following:

• The Spark SQL module provides a new and powerful abstraction 

for structured distributed data manipulation. Structured data has a 

defined schema, which consists of column names and a column data 

type.

• The main programming abstraction in Spark SQL is the Dataset, 

and it has two flavors of APIs: a strongly typed API and an untyped 

API. For strongly typed APIs, each row is represented by a domain-

specified object. For untyped APIs, each row is represented by a 

Row object. A DataFrame is now just an alias of Dataset[Row]. The 

strongly typed APIs give you static typing and compile-time checking; 

therefore, they are available only in the strongly typed languages 

(Scala and Java).

• Spark SQL supports a variety of popular data sources, and the 

DataFrameReader class is responsible for creating DataFrames by 

reading data from any of these data sources.

• Similar to RDD, a Dataset has two types of structured operations. 

They are transformation and actions. The former is lazy evaluated, 

and the latter is eagerly evaluated.

• Spark SQL supports the ability to use SQL for queries against large 

sets. This opens up Spark to data analysts and nonprogrammers.

• Writing out data from either a Dataset or DataFrame is done via a 

class called DataFrameWriter.

Figure 4-2. Storage tab
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SPARK SQL EXERCISES

the following questions are identical to the ones in Chapter 3. here you should use the Spark 

SQL Structured apis or SQL to solve these problems.

 1. Compute the number of movies produced in each year. the output should have 

two columns: year and count. the output should be ordered by the count in 

descending order.

 2. Compute the number of movies each actor was in. the output should have 

two columns: actor and count. the output should be ordered by the count in 

descending order.

 3. Compute the highest-rated movie per year and include all the actors in that 

movie. the output should have only one movie per year, and it should contain 

four columns: year, movie title, rating, and a semicolon-separated list of 

actor names. this question will require joining the movies.tsv and movie- 

ratings.tsv files. there are two approaches to this problem. the first one 

is to figure out the highest-rated movie per year first and then join with the list 

of actors. the second one is to perform the join first and then figure out the 

highest-rated movies per year along with a list of actors. the result of each 

approach is different than the other one. Why do you think that is?

 4. determine which pair of actors worked together most. Working together 

is defined as appearing in the same movie. the output should have three 

columns: actor 1, actor 2, and count. the output should be sorted by the count 

in descending order. the solution to this question will require a self-join.
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CHAPTER 5

Spark SQL (Advanced)
Chapter 4 introduced the foundational elements of the Spark SQL module including the 

core abstraction, structured operations for manipulating structured data, and the support 

for reading data from and writing data to a variety of data sources. Building on top of that 

foundation, this chapter covers some of the advanced capabilities of the Spark SQL module 

as well as takes a peek behind the curtain to explain the optimization and execution 

efficiency that the Catalyst optimizer and Tungsten engine provide. To help you perform 

complex analytics, Spark SQL provides a set of powerful and flexible aggregation capabilities, 

the ability to join multiple datasets, a large set of built-in and high-performant functions, and 

a set of advanced analytic functions. This chapter covers each of these topics in detail.

 Aggregations
Performing any interesting analytics on big data usually involves some kind of 

aggregation to summarize the data in order to extract patterns or insights or to generate 

summary reports. Aggregations usually require some form of grouping either on the 

entire dataset or on one or more columns, and then they apply aggregation functions 

such as summing, counting, or averaging to each group. Spark provides many commonly 

used aggregation functions as well as the ability to aggregate the values into a collection, 

which then can be further analyzed. The grouping of rows can be done at different levels, 

and Spark supports the following levels: 

• Treat a DataFrame as one group.

• Divide a DataFrame into multiple groups by using one or more columns 

and perform one or more aggregations on each of those groups.

• Divide a DataFrame into multiple windows and perform moving 

average, cumulative sum, or ranking. If a window is based on time, 

the aggregations can be done with tumbling or sliding windows.
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 Aggregation Functions
In Spark, all aggregations are done via functions. The aggregation functions are designed 

to perform aggregation on a set of rows, whether that set of rows consists of all the 

rows or a subgroup of rows in a DataFrame. The documentation of the complete list 

of aggregation functions for Scala language is available at http://spark.apache.

org/docs/latest/api/scala/index.html#org.apache.spark.sql.functions$. For 

the Spark Python APIs, sometimes there are gaps in terms of the availability of some 

functions.

 Common Aggregation Functions

This section describes a set of commonly used aggregation functions and provides 

examples of working with them. Table 5-1 describes the aggregation functions. For a 

complete list, please see the URL mentioned earlier. 

Table 5-1. Commonly Used Aggregation Functions

Operation Description

count(col) Returns the number of items per group.

countDistinct(col) Returns the unique number of items per group.

approx_count_

distinct(col)

Returns the approximate number of unique items per group.

min(col) Returns the minimum value of the given column per group.

max(col) Returns the maximum value of the given column per group.

sum(col) Returns the sum of the values in the given column per group.

sumDistinct(col) Returns the sum of the distinct values of the given column per group.

avg(col) Returns the average of the values of the given column per group.

skewness(col) Returns the skewness of the distribution of the values of the given column 

per group.

kurtosis(col) Returns the kurtosis of the distribution of the values of the given column 

per group.

(continued)
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To demonstrate the usage of these functions, we are going to use the flight summary 

dataset, which is derived from the data files available on the Kaggle site (https://www.

kaggle.com/usdot/flight-delays/data). This dataset contains the 2015 U.S. domestic 

flight delays and cancellations. Listing 5-1 contains the code for creating a DataFrame 

from reading this dataset.

Listing 5-1. Creating a DataFrame by Reading a Flight Summary Dataset

val flight_summary = spark.read.format("csv")

                               .option("header", "true")

                               .option("inferSchema","true")

                                .load("<path>/chapter5/data/flights/ 

flight- summary.csv")

// use count action to find out number of rows in this data set

flight_summary.count()

Long = 4693

Remember that the count() function of the DataFrame is an action, so it 

immediately returns a value. All the functions listed in Table 5-1 are lazily evaluated 

functions.

The following is the schema of the flight_summary dataset:

 |-- origin_code: string (nullable = true)

 |-- origin_airport: string (nullable = true)

 |-- origin_city: string (nullable = true)

Operation Description

variance(col) Returns the unbiased variance of the values of the given column per group.

stddev(col) Returns the standard deviation of the values of the given column per group.

collect_list(col) Returns a collection of values of the given column per group. the returned 

collection may contain duplicate values.

collect_set(col) Returns a collection of unique values per group.

Table 5-1. (continued)
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 |-- origin_state: string (nullable = true)

 |-- dest_code: string (nullable = true)

 |-- dest_airport: string (nullable = true)

 |-- dest_city: string (nullable = true)

 |-- dest_state: string (nullable = true)

 |-- count: integer (nullable = true)

Each row represents the flights from origin_airport to dest_airport. The count 

column contains the number of flights.

All the following examples are performing aggregation at the entire DataFrame level. 

Examples of performing aggregations at the subgroup level are given later in this chapter.

count(col)

Counting is a commonly used aggregation to find out the number of items in a group. 

Listing 5-2 computes the count for both the origin_airport and dest_airport 

columns, and as expected, the count is the same. To improve the readability of the result 

column, you can use the as function to give it a friendlier column name. Notice that you 

need to call the show action to see the result.

Listing 5-2. Computing the Count for Different Columns in the flight_summary 

DataFrame

flight_summary.select(count("origin_airport"), count("dest_airport").

as("dest_count")).show

+----------------------+-----------+

| count(origin_airport)| dest_count|

+----------------------+-----------+

|                  4693|       4693|

+----------------------+-----------+

When counting the number of items in a column, the count(col) function doesn’t 

include the null value in the count. To include the null value, the column name should 

be replaced with *. Listing 5-3 demonstrates this behavior by creating a small DataFrame 

with a null value in a few columns.
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Listing 5-3. Counting Items with a Null Value

import org.apache.spark.sql.Row

case class Movie(actor_name:String, movie_title:String, produced_year:Long)

val badMoviesDF = Seq( Movie(null, null, 2018L),

                       Movie("John Doe", "Awesome Movie", 2018L),

                       Movie(null, "Awesome Movie", 2018L),

                        Movie("Mary Jane", "Awesome Movie", 2018L)).toDF

badMoviesDF.show

+----------+--------------+--------------+

|actor_name|   movie_title| produced_year|

+----------+--------------+--------------+

|      null|          null|          2018|

|  John Doe| Awesome Movie|          2018|

|      null| Awesome Movie|          2018|

| Mary Jane| Awesome Movie|          2018|

+----------+--------------+--------------+

// now performing the count aggregation on different columns

badMoviesDF.select(count("actor_name"), count("movie_title"), 

count("produced_year"), count("*")).show

+------------------+-------------------+---------------------+---------+

| count(actor_name)| count(movie_title)| count(produced_year)| count(1)|

+------------------+-------------------+---------------------+---------+

|                 2|                  3|                    4|        4|

+------------------+-------------------+---------------------+---------+

The above output table confirms that the count(col) function doesn’t include null 

in the final count.

countDistinct(col)

This function does what it sounds like. It counts only the unique items per group. The 

output in Listing 5-4 shows the difference in the count result between the countDistinct 

function and the count function. As it turns out, there are 322 unique airports in the 

flight_summary dataset.
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Listing 5-4. Counting Unique Items in a Group

flight_summary.select(countDistinct("origin_airport"), countDistinct("dest_

airport"), count("*")).show

+-------------------------------+-----------------------------+---------+

| count(DISTINCT origin_airport)| count(DISTINCT dest_airport)| count(1)|

+-------------------------------+-----------------------------+---------+

|                            322|                          322|     4693|

+-------------------------------+-----------------------------+---------+

approx_count_distinct (col, max_estimated_error=0.05)

Counting the exact number of unique items in each group in a large dataset is an 

expensive and time-consuming operation. In some use cases, it is sufficient to have 

an approximate unique count. One of those use cases is in the online advertising 

business where there are hundreds of millions of ad impressions per hour and there is 

a need to generate a report to show the number of unique visitors per certain type of 

member segment. Approximating a count of distinct items is a well-known problem in 

the computer science field, and it is also known as the cardinality estimation problem. 

Luckily, there is already a well-known algorithm called HyperLogLog (https://

en.wikipedia.org/wiki/HyperLogLog) that you can use to solve this problem, and 

Spark has implemented a version of this algorithm inside the approx_count_distinct 

function. Since the unique count is an approximation, there will be a certain amount of 

error. This function allows you to specify a value for an acceptable estimation error for 

this use case. Listing 5-5 demonstrates the usage and behavior of the approx_count_

distinct function. As you dial down the estimation error, it will take longer and longer 

for this function to complete and return the result.

Listing 5-5. Counting Unique Items in a Group

// let's do the counting on the "count" colum of flight_summary DataFrame.  

// the default estimation error is 0.05 (5%)

flight_summary.select(count("count"),countDistinct("count"), approx_count_

distinct("count", 0.05)).show
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+--------------+----------------------+-----------------------------+

| count(count) | count(DISTINCT count)| approx_count_distinct(count)|

+--------------+----------------------+-----------------------------+

|          4693|                  2033|                         2252|

+--------------+----------------------+-----------------------------+

// to get a sense how much approx_count_distinct function is faster than 

countDistinct function,

// trying calling them separately

flight_summary.select(countDistinct("count")).show

// specify 1% estimation error

flight_summary.select(approx_count_distinct("count", 0.01)).show

On my Mac laptop, the approx_count_distinct function took about 0.1 second, and 

the countDistinct function took 0.6 second. The larger the approximation estimation 

error, the less time the approx_count_distinct function takes to complete.

min(col), max(col)

The minimum value and maximum value of the items in a group are the two ends of a 

spectrum. These two functions are fairly easy to understand and work with. Listing 5-6 

extracts these two values from the count column.

Listing 5-6. Getting the Minimum and Maximum Values of the count Column

flight_summary.select(min("count"), max("count")).show

+-----------+-----------+

| min(count)| max(count)|

+-----------+-----------+

|          1|      13744|

+-----------+-----------+

// looks like there is one very busy airport with 13744 incoming flights 

from another airport. It will be interesting to find which airport.
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sum(col)

This function computes the sum of the values in a numeric column. Listing 5-7 performs 

the sum of all the flights in the flight_summary dataset.

Listing 5-7. Using the sum Function to Sum Up the count Values

flight_summary.select(sum("count")).show

+-----------+

| sum(count)|

+-----------+

|    5332914|

+-----------+

sumDistinct(col)

This function does what it sounds like. It sums up only the distinct values of a numeric 

column. The sum of the distinct counts in the flight_summary DataFrame should be less 

than the total sum displayed in Listing 5-7. See Listing 5-8 for computing the sum of the 

distinct values.

Listing 5-8. Using the sumDistinct Function to Sum Up the Distinct count Values

flight_summary.select(sumDistinct("count")).show

+--------------------+

| sum(DISTINCT count)|

+--------------------+

|             3612257|

+--------------------+

avg(col)

This function calculates the average value of a numeric column. This convenient 

function simply takes the total and divides it by the number of items. Let’s see whether 

Listing 5-8 can validate the hypothesis.
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Listing 5-9. Computing the Average Value of the count Column Using Two 

Different Ways

flight_summary.select(avg("count"), (sum("count") / count("count"))).show

+-------------------+----------------------------+

|         avg(count)| (sum(count) / count(count))|

+-------------------+----------------------------+

| 1136.3549968037503|          1136.3549968037503|

+-------------------+----------------------------+

skewness(col), kurtosis(col)

In the field of statistics, the distribution of the values in a dataset tells a lot of stories 

behind the dataset. Skewness is a measure of the symmetry of the value distribution in a 

dataset. In a normal distribution or bell-shaped distribution, the skew value is 0. Positive 

skew indicates the tail on the right side is longer or fatter than the left side. Negative skew 

indicates the opposite, where the tail of the left side is longer or fatter than the right side. 

The tail of both sides is even when the skew is 0.

Kurtosis is a measure of the shape of the distribution curve, whether the curve is 

normal, flat, or pointy. Positive kurtosis indicates the curve is slender and pointy, and 

negative kurtosis indicates the curve is fat and flat. Listing 5-10 calculates the skewness 

and kurtosis for the count distribution in the flight_summary dataset.

Listing 5-10. Computing the Skewness and Kurtosis of the column Count

flight_summary.select(skewness("count"), kurtosis("count")).show

+------------------+------------------+

|   skewness(count)|   kurtosis(count)|

+------------------+------------------+

| 2.682183800064101| 10.51726963017102|

+------------------+------------------+

The result seems to suggest the distribution of the counts is not symmetric and 

the right tail is longer or fatter than the left tail. The kurtosis value suggests that the 

distribution curve is pointy.
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variance(col), stddev(col)

In statistics, variance and standard deviation are used to measure the dispersion, or 

the spread, of the data. In other words, they are used to tell the average distance of the 

values from the mean. When the variance value is low, it means the values are close to 

the mean. Variance and standard deviation are related; the latter is the square root of the 

former.

The variance and stddev functions are used to calculate the variance and standard 

deviation, respectively. Spark provides two different implementations of these functions; 

one uses sampling to speed up the calculation, and the other uses the entire population. 

Listing 5-11 shows the variance and standard deviation of the count column in the 

flight_summary DataFrame.

Listing 5-11. Computing the Variance and Standard Deviation Using the 

variance and sttdev Functions

// use the two variations of variance and standard deviation

flight_summary.select(variance("count"), var_pop("count"), stddev("count"), 

stddev_pop("count")).show

+-----------------+------------------+------------------+-----------------+

|  var_samp(count)|    var_pop(count)|stddev_samp(count)|stddev_pop(count)|

+-----------------+------------------+------------------+-----------------+

|1879037.7571558713|1878637.3655604832|  1370.779981308405| 1370.633928355957|

+-----------------+------------------+------------------+-----------------+

It looks like the count values are pretty spread out in the flight_summary 

DataFrame.

 Aggregation with Grouping
This section covers aggregation with grouping of one or more columns. The aggregations 

are usually performed on datasets that contain one or more categorical columns, which 

have low cardinality. Examples of categorical values are gender, age, city name, or 

country name. The aggregations will be done through the functions that are similar to 

the ones mentioned earlier. However, instead of performing aggregation on the global 

group in a DataFrame, they will perform the aggregation on each of the subgroups inside 

a DataFrame.
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Performing aggregation with grouping is a two-step process. The first step is to 

perform the grouping by using the groupBy(col1,col2,...) transformation, and that’s 

where you specify which columns to group the rows by. Unlike other transformations 

that return a DataFrame, the groupBy transformation returns an instance of the 

RelationalGroupedDataset class, which you then can apply one or more aggregation 

functions to. Listing 5-12 demonstrates a simple grouping of using one column and 

one aggregation. Notice that the groupBy columns will automatically be included in the 

output.

Listing 5-12. Grouping by origin_airport and Performing a count Aggregation

flight_summary.groupBy("origin_airport").count().show(5, false)

+--------------------------------------------------+------+

|                      origin_airport              | count|

+--------------------------------------------------+------+

|Melbourne International Airport                   |     1|

|San Diego International Airport (Lindbergh Field) |    46|

|Eppley Airfield                                   |    21|

|Kahului Airport                                   |    18|

|Austin-Bergstrom International Airport            |    41|

+--------------------------------------------------+------+

The previous result table tells you that the flights going out of the Melbourne 

International Airport (Florida) are going to only one other airport. However, the flights 

going out of the Kahului Airport can land at one of the 18 other airports.

To make things a bit more interesting, let’s trying grouping by two columns to 

calculate the same metric at the city level. Listing 5-13 shows how to do that.
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Listing 5-13. Grouping by origin_state and origin_city and Performing a Count 

Aggregation

flight_summary.groupBy('origin_state, 'origin_city).count

                .where('origin_state === "CA").orderBy('count.desc).show(5)

+-------------+-----------------+-------+

| origin_state|      origin_city|  count|

+-------------+-----------------+-------+

|           CA|    San Francisco|     80|

|           CA|      Los Angeles|     80|

|           CA|        San Diego|     47|

|           CA|          Oakland|     35|

|           CA|       Sacramento|     27|

+-------------+-----------------+-------+

In addition to grouping by two columns, the previous statement filters the rows 

to only the ones with a CA state. The orderBy transformation is used to make it easier 

to identify which city has the most number of options in terms of destination airport. 

It makes sense that both San Francisco and Los Angeles in California have the largest 

number of destination airports that one can fly to.

The class RelationalGroupedDataset provides a standard set of aggregation 

functions that you can apply to each subgroup. They are avg(cols), count(), 

mean(cols), min(cols), max(cols), and sum(cols). Except for the count() function, all 

the remaining ones operate on numeric columns.

 Multiple Aggregations per Group

Sometimes there is a need to perform multiple aggregations per group at the same time. 

For example, in addition to the count, you also would like to know the minimum and 

maximum values. The RelationalGroupedDataset class provides a powerful function 

called agg that takes one or more column expressions, which means you can use any of 

the aggregation functions including the ones listed in Table 5-1. One cool thing is these 

aggregation functions return an instance of the Column class so you can then apply any 

of the column expressions using the provided functions. A common need is to rename 

the column after the aggregation is done to make it shorter, more readable, and easier to 

refer to. Listing 5-14 demonstrates how to do everything that was just described.
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Listing 5-14. Multiple Aggregations After Grouping by origin_airport

import org.apache.spark.sql.functions._

flight_summary.groupBy("origin_airport")

                        .agg(

                                count("count").as("count"),

                                min("count"), max("count"),

                                sum("count")

                         ).show(5)

+--------------------+------+-----------+-----------+-----------+

|      origin_airport| count| min(count)| max(count)| sum(count)|

+--------------------+------+-----------+-----------+-----------+

|Melbourne Interna...|     1|       1332|       1332|       1332|

|San Diego Interna...|    46|          4|       6942|      70207|

|     Eppley Airfield|    21|          1|       2083|      16753|

|     Kahului Airport|    18|         67|       8313|      20627|

|Austin-Bergstrom ...|    41|          8|       4674|      42067|

+--------------------+------+-----------+-----------+-----------+

By default the aggregation column name is the aggregation expression, which makes 

the column name a bit long and not easy to refer to. A common pattern is to use the 

Column.as function to rename the column to something more suitable.

The versatile agg function provides an additional way to express the column 

expressions via a string-based key-value map. The key is the column name, and the value 

is an aggregation function, which can be avg, max, min, sum, or count. Listing 5-15 shows 

examples of this approach.

Listing 5-15. Specifying Multiple Aggregations Using a Key-Value Map

flight_summary.groupBy("origin_airport")

                        .agg(

                                 "count" -> "count",

                                 "count" -> "min",

                                 "count" -> "max",

                                 "count" -> "sum")

                       .show(5)
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The result is the same as in Listing 5-14. Notice there isn’t an easy way to rename the 

aggregation result column name. One advantage this approach has over the first one is the 

map can programmatically be generated. When writing production ETL jobs or performing 

exploratory analysis, the first approach is used more often than the second one.

 Collection Group Values

The functions collect_list(col) and collect_set(col) are useful for collecting all the 

values of a particular group after the grouping is applied. Once the values of each group 

are collected into a collection, then there is freedom to operate on them in any way 

you choose. There is one small difference between the returned collection of these two 

functions, which is the uniqueness. The collection_list function returns a collection 

that may contain duplicate values, and the collection_set function returns a collection 

that contains only unique values. Listing 5-16 shows using the collection_list 

function to collect the destination cities that have more 5,500 flights coming into them 

from each of the origin states.

Listing 5-16. Using collection_list to Collect High-Traffic Destination Cities per 

Origin State

val highCountDestCities = flight_summary.where('count > 5500)

                                          .groupBy("origin_state")

                                           .agg(collect_list("dest_city").

as("dest_cities"))

highCountDestCities.withColumn("dest_city_count", size('dest_cities)).

show(5, false)

+-------------+--------------------------------------+----------------+

| origin_state|             dest_cities              | dest_city_count|

+-------------+--------------------------------------+----------------+

|           AZ| [Seattle, Denver, Los Angeles]       |               3|

|           LA| [Atlanta]                            |               1|

|           MN| [Denver, Chicago]                    |               2|

|           VA| [Chicago, Boston, Atlanta]           |               3|

|           NV| [Denver, Los Angeles, San Francisco] |               3|

+-------------+--------------------------------------+----------------+
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 Aggregation with Pivoting
Pivoting is a way to summarize the data by specifying one of the categorical columns

and then performing aggregations on another columns such that the categorical 

values are transposed from rows into individual columns. Another way of thinking 

about pivoting is that it is a way to translate rows into columns while applying one or 

more aggregations. This technique is commonly used in data analysis or reporting. 

The pivoting process starts with the grouping of one or more columns, then pivots on 

a column, and finally ends with applying one or more aggregations on one or more 

columns. Listing 5-17 shows a pivoting example on a small dataset of students where 

each row contains the student name, gender, weight, and graduation year. You would 

like to know the average weight of each gender for each graduation year.

Listing 5-17. Pivoting on a Small Dataset

import org.apache.spark.sql.Row

case class Student(name:String, gender:String, weight:Int, graduation_year:Int)

val studentsDF = Seq(Student("John", "M", 180, 2015),

                                    Student("Mary", "F", 110, 2015),

                                    Student("Derek", "M", 200, 2015),

                                    Student("Julie", "F", 109, 2015),

                                    Student("Allison", "F", 105, 2015),

                                    Student("kirby", "F", 115, 2016),

                                    Student("Jeff", "M", 195, 2016)).toDF

// calculating the average weight for each gender per graduation year

studentsDF.groupBy("graduation_year").pivot("gender").avg("weight").show()

+----------------+------+------+

| graduation_year|     F|     M|

+----------------+------+------+

|            2015| 108.0| 190.0|

|            2016| 115.0| 195.0|

+----------------+------+------+
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The previous example has one aggregation, and the gender categorical column has 

only two possible unique values; therefore, the result table has only two columns. If the 

gender column has three possible unique values, then there will be three columns in 

the result table. You can leverage the agg function to perform multiple aggregations, 

which will create more columns in the result table. See Listing 5-18 for an example of 

performing multiple aggregations on the same DataFrame as in Listing 5-17.

Listing 5-18. Multiple Aggregations After Pivoting

studentsDF.groupBy("graduation_year").pivot("gender")

                  .agg(

                          min("weight").as("min"),

                          max("weight").as("max"),

                          avg("weight").as("avg")

                  ).show()

+---------------+------+------+------+------+------+------+

|graduation_year| F_min| F_max| F_avg| M_min| M_max| M_avg|

+---------------+------+------+------+------+------+------+

|           2015|   105|   110| 108.0|   180|   200| 190.0|

|           2016|   115|   115| 115.0|   195|   195| 195.0|

+---------------+------+------+------+------+------+------+

The number of columns added after the group columns in the result table is 

the product of the number of unique values of the pivot column and the number of 

aggregations.

If the pivoting column has a lot of distinct values, you can selectively choose which 

values to generate the aggregations for. Listing 5-19 shows how to specify values to the 

pivoting function.
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Listing 5-19. Selecting Which Values of Pivoting Columns to Generate the 

Aggregations For

studentsDF.groupBy("graduation_year").pivot("gender", Seq("M"))

                  .agg(

                          min("weight").as("min"),

                          max("weight").as("max"),

                          avg("weight").as("avg")

                  ).show()

+----------------+------+------+------+

| graduation_year| M_min| M_max| M_avg|

+----------------+------+------+------+

|            2015|   180|   200| 190.0|

|            2016|   195|   195| 195.0|

+----------------+------+------+------+

Specifying a list of distinct values for the pivot column actually will speed up the 

pivoting process. Otherwise, Spark will spend some effort in figuring out a list of distinct 

values on its own.

 Joins
To perform any kind of complex and interesting data analysis or manipulations, you 

often need to bring together the data from multiple datasets through the process of 

joining. This is a well-known technique in SQL parlance. Performing a join will combine 

the columns of two datasets (could be different or same), and the combined DataFrame 

will contain columns from both sides. This will enable you to further analyze the 

combined dataset in ways that you couldn’t with just each individual dataset. Let’s take 

an example of the two datasets from an online e-commerce company. One represents 

the transactional data that contains information about which products were purchased 

by which customers (aka a fact table). The other one represents the details about 

each individual customer (aka a dimension table). By joining these two datasets, you 

can extract insights about which products are more popular with certain segments of 

customers in terms of age or location.
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This section covers how to perform joining in Spark SQL using the join 

transformation and the various types of join it supports. The last portion of this section 

describes a few details about how Spark SQL internally performs the joining.

Note In the world of performing data analysis using SQL, a join is a technique 
that is used quite often. If you are new to SQL, it is highly recommended that 
you learn the fundamental concepts and the different kinds of join at https://
en.wikipedia.org/wiki/Join_(SQL). a few tutorials about joins are 
provided at https://www.w3schools.com/sql/sql_join.asp.

 Join Expressions and Join Types
Performing a join of two datasets requires you to specify two pieces of information. The 

first one is a join expression that specifies which columns from each dataset should be 

used to determine which rows from both datasets will be included in the joined dataset. 

The second one is the join type, which determines what should be included in the joined 

dataset. Table 5-2 describes the supported join types in Spark SQL. 

Table 5-2. Join Types

Type Description

Inner join

(aka equi- join)

Returns rows from both datasets when the join expression evaluates to true.

Left outer join Returns rows from the left dataset even when the join expression evaluates to false.

Right outer join Returns rows from the right dataset even when the join expression evaluates to false.

Outer join Returns rows from both datasets even when the join expression evaluates to false.

Left anti join Returns rows only from the left dataset when the join expression evaluates to false.

Left semi join Returns rows only from the left dataset when the join expression evaluates to true.

Cross

(aka Cartesian)

Returns rows by combining each row from the left dataset with each row in the 

right dataset. the number of rows will be a product of the size of each dataset.
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To help visualize some of the join types, Figure 5-1 shows a set of Venn diagrams 

for the common join types (source: https://en.wikipedia.org/wiki/Join_

(SQL)#Outer_join). 

 Working with Joins
To demonstrate how to perform joining in Spark SQL, I’ll use two small DataFrames. The 

first one represents a list of employees, and each row contains the employee name and 

the department they belong to. The second one contains a list of departments, and each 

row contains a department ID and department name. Listing 5-20 contains a snippet of 

code to create these two DataFrames.

Listing 5-20. Creating Two Small DataFrames to Use in the Following Join Type 

Examples

case class Employee(first_name:String, dept_no:Long)

val employeeDF = Seq( Employee("John", 31),

                                       Employee("Jeff", 33),

                                       Employee("Mary", 33),

                                       Employee("Mandy", 34),

                                       Employee("Julie", 34),

                                        Employee("Kurt", null.

asInstanceOf[Int])

                               ).toDF

A B A B A B A B

Inner Join Left Outer Join Right Outer Join Full Outer Join

Figure 5-1. Venn diagrams for common join types
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case class Dept(id:Long, name:String)

val deptDF = Seq( Dept(31, "Sales"),

                              Dept(33, "Engineering"),

                              Dept(34, "Finance"),

                              Dept(35, "Marketing")

                           ).toDF

// register them as views so we can use SQL for perform joins

employeeDF.createOrReplaceTempView("employees")

deptDF.createOrReplaceTempView("departments")

 Inner Joins

This is the most commonly used join type with the join expression containing the 

equality comparison of the columns from both datasets. The joined dataset will contain 

the rows only when the join expression evaluates to true, in other words, when the join 

column values are the same in both datasets. Rows that don’t have matching column 

values will be excluded from the joined dataset. If the join expression is using the 

equality comparison, then the number of rows in the joined table will only be as large 

as the size of the smaller dataset. In Spark SQL, the inner join is the default join type, so 

it is optional to specify it in the join transformation. Listing 5-21 provides examples of 

performing an inner join.

Listing 5-21. Performing an Inner Join by the Department ID

// define the join expression of equality comparison

val deptJoinExpression = employeeDF.col("dept_no") === deptDF.col("id")

// perform the join

employeeDF.join(deptDF, joinExpression, "inner").show

// no need to specify the join type since "inner" is the default

employeeDF.join(deptDF, joinExpression).show
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+----------+--------+---+------------+

|first_name| dept_no| id|        name|

+----------+--------+---+------------+

|      John|      31| 31|       Sales|

|      Jeff|      33| 33| Engineering|

|      Mary|      33| 33| Engineering|

|     Mandy|      34| 34|     Finance|

|     Julie|      34| 34|     Finance|

+----------+--------+---+------------+

// using SQL

spark.sql("select * from employees JOIN departments on dept_no == id").show

As expected, the joined dataset contains only the rows with matching department 

IDs from both the employee and department datasets and the columns from both 

datasets. The output tells you exactly which department each employee belongs to.

The join expression can be specified inside the join transformation or using the 

where transformation. It is possible to refer to the columns in the join expression using 

a short-handed version if the column names are unique. If not, then it is required to 

specify which DataFrame a particular column comes from by using the col function. 

Listing 5-22 shows different ways of expressing a join expression.

Listing 5-22. Different Ways of Expressing a Join Expression

// a shorter version of the join expression

employeeDF.join(deptDF, 'dept_no === 'id).show

// specify the join expression inside the join transformation

employeeDF.join(deptDF, employeeDF.col("dept_no") === deptDF.col("id")).show

// specify the join expression using the where transformation

employeeDF.join(deptDF).where('dept_no === 'id).show

A join expression is simply a Boolean predicate, and therefore it can be as simple as 

comparing two columns or as complex as chaining multiple logical comparisons of pairs 

of columns.
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 Left Outer Joins

The joined dataset of this join type includes all the rows from an inner join plus all 

the rows from the left dataset that the join expression evaluates to false. For those 

nonmatching rows, it will fill in a NULL value for the columns of the right dataset. See 

Listing 5-23 for an example of doing a left outer join.

Listing 5-23. Performing a Left Outer Join

// the join type can be either "left_outer" or "leftouter"

employeeDF.join(deptDF, 'dept_no === 'id, "left_outer").show

// using SQL

spark.sql("select * from employees LEFT OUTER JOIN departments on dept_no 

== id").show

+-----------+--------+-----+------------+

| first_name| dept_no|   id|        name|

+-----------+--------+-----+------------+

|       John|      31|   31|       Sales|

|       Jeff|      33|   33| Engineering|

|       Mary|      33|   33| Engineering|

|      Mandy|      34|   34|     Finance|

|      Julie|      34|   34|     Finance|

|       Kurt|       0| null|        null|

+-----------+--------+-----+------------+

As expected, the number of rows in the joined dataset is the same as the number 

of rows in the employee DataFrame. Since there is no matching department with an 

ID value of 0, it fills in a NULL value for that row. The result of this particular left outer 

join enables you to tell which department an employee is assigned to as well as which 

employees are not assigned to a department.

 Right Outer Joins

The behavior of this join type resembles the behavior of the left outer join type, except 

the same treatment is applied to the right dataset. In other words, the joined dataset 

includes all the rows from an inner join plus all the rows from the right dataset that 
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the join expression evaluates to false. For those nonmatching rows, it will fill in a NULL 

value for the columns of the left dataset. See Listing 5-24 for an example of doing a right 

outer join.

Listing 5-24. Performing a Right Outer Join

employeeDF.join(deptDF, 'dept_no === 'id, "right_outer").show

// using SQL

spark.sql("select * from employees RIGHT OUTER JOIN departments on dept_no 

== id").show

+-----------+--------+----+------------+

| first_name| dept_no|  id|        name|

+-----------+--------+----+------------+

|       John|      31|  31|       Sales|

|       Mary|      33|  33| Engineering|

|       Jeff|      33|  33| Engineering|

|      Julie|      34|  34|     Finance|

|      Mandy|      34|  34|     Finance|

|       null|    null|  35|   Marketing|

+-----------+--------+----+------------+

As expected, the marketing department doesn’t have any matching rows from the 

employee dataset. The joined dataset tells you the department an employee is assigned 

to as well as which departments have no employees.

 Outer Joins (aka Full Outer Joins)

The behavior of this join type is effectively the same as combining the result of both 

the left outer join and the right outer join. See Listing 5-25 for an example of doing an 

outer join.
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Listing 5-25. Performing an Outer Join

employeeDF.join(deptDF, 'dept_no === 'id, "outer").show

// using SQL

spark.sql("select * from employees FULL OUTER JOIN departments on dept_no 

== id").show

+-----------+--------+-----+------------+                                           

| first_name| dept_no|   id|        name|

+-----------+--------+-----+------------+                                           

|       Kurt|       0| null|        null|

|      Mandy|      34|   34|     Finance|

|      Julie|      34|   34|     Finance|

|       John|      31|   31|       Sales|

|       Jeff|      33|   33| Engineering|

|       Mary|      33|   33| Engineering|

|       null|    null|   35|   Marketing|

+-----------+--------+-----+------------+

The result from the outer join allows you to see not only which department an 

employee is assigned to and which departments have employees but also which 

employees are not assigned to a department and which departments don’t have any 

employees.

 Left Anti-Joins

This join type enables you to find out which rows from the left dataset don’t have any 

matching rows on the right dataset, and the joined dataset will contain only the columns 

from the left dataset. See Listing 5-26 for an example of doing a left anti-join and what 

the joined dataset looks like.

Listing 5-26. Performing a Left Anti-Join

employeeDF.join(deptDF, 'dept_no === 'id, "left_anti").show

// using SQL

spark.sql("select * from employees LEFT ANTI JOIN departments on dept_no == 

id").show
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+----------+--------+

|first_name| dept_no|

+----------+--------+

|      Kurt|       0|

+----------+--------+

The result from the left anti-join can easily tell you which employees are not assigned 

to a department. Notice the right anti-join type doesn’t exist; however, you can easily 

switch the datasets around to achieve the same goal.

 Left Semi-Joins

The behavior of this join type is similar to the inner join type, except the joined dataset 

doesn’t include the columns from the right dataset. Another way of thinking about this 

join type is its behavior is the opposite of the left anti-join, where the joined dataset 

contains only the matching rows. See Listing 5-27 for an example of doing a left  

semi- join and what the joined dataset looks like.

Listing 5-27. Performing a Left Semi-Join

employeeDF.join(deptDF, 'dept_no === 'id, "left_semi").show

// using SQL

spark.sql("select * from employees LEFT SEMI JOIN departments on dept_no == 

id").show

+-----------+--------+

| first_name| dept_no|

+-----------+--------+

|       John|      31|

|       Jeff|      33|

|       Mary|      33|

|      Mandy|      34|

|      Julie|      34|

+-----------+--------+
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 Cross (aka Cartesian)

In terms of usage, this join type is the simplest to use because the join expression is not 

needed. Its behavior can be a bit dangerous because it joins every single row in the left 

dataset with every row in the right dataset. The size of the joined dataset is the product 

of the size of the two datasets. For example, if the size of each dataset is 1,024, then the 

size of the joined dataset is more than 1 million rows. For this reason, the way to use this 

join type is by explicitly using a dedicated transformation in DataFrame, rather than 

specifying this join type as a string. See Listing 5-28 for an example of doing a cross join 

and what the joined dataset looks like.

Listing 5-28. Performing a Cross Join

// using crossJoin transformation and display the count

employeeDF.crossJoin(deptDF).count

Long = 24

// using SQL and to display up to 30 rows to see all rows in the joined 

dataset

spark.sql("select * from employees CROSS JOIN departments").show(30)

+----------+--------+----+------------+

|first_name| dept_no|  id|        name|

+----------+--------+----+------------+

|      John|      31|  31|       Sales|

|      John|      31|  33| Engineering|

|      John|      31|  34|     Finance|

|      John|      31|  35|   Marketing|

|      Jeff|      33|  31|       Sales|

|      Jeff|      33|  33| Engineering|

|      Jeff|      33|  34|     Finance|

|      Jeff|      33|  35|   Marketing|

|      Mary|      33|  31|       Sales|

|      Mary|      33|  33| Engineering|

|      Mary|      33|  34|     Finance|

|      Mary|      33|  35|   Marketing|

|     Mandy|      34|  31|       Sales|
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|     Mandy|      34|  33| Engineering|

|     Mandy|      34|  34|     Finance|

|     Mandy|      34|  35|   Marketing|

|     Julie|      34|  31|       Sales|

|     Julie|      34|  33| Engineering|

|     Julie|      34|  34|     Finance|

|     Julie|      34|  35|   Marketing|

|      Kurt|       0|  31|       Sales|

|      Kurt|       0|  33| Engineering|

|      Kurt|       0|  34|     Finance|

|      Kurt|       0|  35|   Marketing|

+----------+--------+----+------------+

 Dealing with Duplicate Column Names
Sometimes there is an unexpected issue that comes up after joining two DataFrames 

with one or more columns that have the same name. When this happens, the joined 

DataFrame would have multiple columns with the same name. In this situation, it is not 

easy to refer to one of those columns while performing some kind of transformation on 

the joined DataFrame. Listing 5-29 simulates this.

Listing 5-29. Simulating a Joined DataFrame with Multiple Column Names That 

Are the Same

// add a new column to deptDF with name dept_no

val deptDF2 = deptDF.withColumn("dept_no", 'id)

deptDF2.printSchema

 |-- id: long (nullable = false)

 |-- name: string (nullable = true)

 |-- dept_no: long (nullable = false)

// now employeeDF with deptDF2 using dept_no column

val dupNameDF = employeeDF.join(deptDF2, employeeDF.col("dept_no") === 

deptDF2.col("dept_no"))
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dupNameDF.printSchema

 |-- first_name: string (nullable = true)

 |-- dept_no: long (nullable = false)

 |-- id: long (nullable = false)

 |-- name: string (nullable = true)

 |-- dept_no: long (nullable = false)

Notice the dupNameDF DataFrame now has two columns with the same name, dept_

no. Spark will throw an error when you try to project the dupNameDF DataFrame using 

dept_no in Listing 5-30.

Listing 5-30. Projecting the Column dept_no in the dupNameDF DataFrame

dupNameDF.select("dept_no")

org.apache.spark.sql.AnalysisException: Reference 'dept_no' is ambiguous, 

could be: dept_no#30L, dept_no#1050L.;

As it turns out, there are several ways to deal with this issue.

 Use the Original DataFrame

The joined DataFrame remembers which columns come from which original DataFrame 

during the joining process. To disambiguate which DataFrame a particular column 

comes from, you can just tell Spark to prefix it with its original DataFrame name. See 

Listing 5-31 for how to do this.

Listing 5-31. Using the Original DataFrame deptDF2 to Refer to the dept_no 

Column in the Joined DataFrame

dupNameDF.select(deptDF2.col("dept_no"))

 Renaming Column Before Joining

To avoid the previous column name ambiguity issue, another approach is to rename a 

column in one of the DataFrames using the withColumnRenamed transform. Since this is 

simple, I will leave it as an exercise for you.
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 Using a Joined Column Name

In the case when the joined column name is the same in both DataFrames, you can 

leverage a version of the join transformation that automatically removes the duplicate 

column name from the joined DataFrame. However, if this were a self-join, meaning 

joining a DataFrame to itself, then there is no way to refer to other duplicate column 

names. In that case, you would need to use the first technique to rename the columns 

of one of the DataFrames. Listing 5-32 shows an example of performing a join using a 

joined column name.

Listing 5-32. Performing a Join Using a Joined Column Name

val noDupNameDF = employeeDF.join(deptDF2, "dept_no")

noDupNameDF.printSchema

 |-- dept_no: long (nullable = false)

 |-- first_name: string (nullable = true)

 |-- id: long (nullable = false)

 |-- name: string (nullable = true)

Notice there is only one dept_no column in the noDupNameDF DataFrame.

 Overview of a Join Implementation
Joining is one of the most expensive operations in Spark. At a high level, there are 

two different strategies Spark uses to join two datasets. They are shuffle hash join and 

broadcast join. The main criteria for selecting a particular strategy is based on the size 

of the two datasets. When the size of both datasets is large, then the shuffle hash join 

strategy is used. When the size of one of the datasets is small enough to fit into the 

memory of the executors, then the broadcast join strategy is used. The following sections 

give the details of how each joining strategy works.

 Shuffle Hash Join

Conceptually, joining is about combining the columns of the rows of two datasets that 

meet the condition specified in the join expression. To do that, those rows with the 

same column values need to be co-located on the same partition. The shuffle hash join 

implementation consists of two steps. The first step is to compute the hash value of 
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the columns in the join expression of each row in each dataset and then shuffle those 

rows with the same hash value to the same partition. To determine which partition a 

particular row will be moved to, Spark performs a simple arithmetic operation, which 

computes the modulo of the hash value by the number of partitions. Once the first 

step is completed, the second step combines the columns of those rows that have the 

same column hash value. At a high level, these two steps are similar to the steps in the 

MapReduce programming model.

Figure 5-2 shows the shuffling going on in the shuffle hash join. As mentioned, this 

is an expensive operation because it requires moving a lot of data from across many 

machines over a network. When moving data across a network, the data will usually will 

go through a data serialization and deserialization process. Imagine performing a join 

on two large datasets where the size of each one is 100GB. In this scenario, it will need 

to move approximately 200GB of data around. It is not possible to completely avoid a 

shuffle hash join when joining two large datasets, but it is important to be mindful about 

reducing the frequency of joining them whenever possible. 

 Broadcast Hash Join

This join strategy is applicable only when one of the datasets is small enough to fit into 

memory. Knowing that the shuffle hash join is an expensive operation, the broadcast 

hash join avoids shuffling both datasets and instead shuffles only the smaller one. 

Similar to the shuffle hash join strategy, this one also consists of two steps. The first one 

is to broadcast a copy of the entire smaller dataset to each of the partitions of the larger 

Dataset #1 Dataset #2

Shuffle Shuffle

Partition #1 Partition #2 Partition #3 Partition #4

Figure 5-2. Shuffle hash join
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dataset. The second step is to iterate through each row in the larger dataset and look up 

the corresponding rows in the smaller dataset with matching column values. Figure 5-3 

shows the broadcasting of the smaller dataset. 

It is fairly easy to understand that a broadcast hash join is preferred when possible. 

Spark SQL for the most part can automatically figure out whether to use a broadcast 

hash join or shuffle hash join based on some statistics it has about datasets while reading 

them. However, it is feasible to provide a hint to Spark SQL to use a broadcast hash join 

when using the join transformation. Listing 5-33 provides an example of doing that.

Listing 5-33. Providing a Hint to Use a Broadcast Hash Join to the broadcast 

deptDF

import org.apache.spark.sql.functions.broadcast

// print out the execution plan to verify broadcast hash join strategy is used

employeeDF.join(broadcast(deptDF), employeeDF.col("dept_no") === deptDF.

col("id")).explain()

Small Dataset

Broadcast

Small Dataset

Large Dataset

Partition #1

Small Dataset

Partition #2

Small Dataset

Partition #3

Figure 5-3. Broadcast hash join
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// using SQL

spark.sql("select /*+ MAPJOIN(departments) */ * from employees JOIN 

departments on dept_no == id").explain()

== Physical Plan ==

*BroadcastHashJoin [dept_no#30L], [id#41L], Inner, BuildRight

:- LocalTableScan [first_name#29, dept_no#30L]

+- BroadcastExchange HashedRelationBroadcastMode(List(input[0, bigint, 

false]))

   +- LocalTableScan [id#41L, name#42]

 Functions
The DataFrame APIs are designed to operate or transform individual rows in a data set, 

such as filtering or grouping.  If we would like to transform the value of a column of each 

row in a data set, such as converting a string from upper case to camel case, then we would 

use a function to do that. Functions are basically methods that are applied to columns.  

Spark SQL provides a larget set of commonly needed functions as well as an easy way for 

us to create new ones.

 Working with Built-in Functions
To be effective at using Spark SQL to perform distributed data manipulations, you 

must be proficient working with Spark SQL built-in functions. These built-in functions 

are designed to generate optimized code for execution at runtime, so it is best to take 

advantage of them before trying to come up with your own functions. One commonality 

among these functions is they are designed to take one or more columns of the same 

row as the input, and they return only a single column as the output. Spark SQL provides 

more than 200 built-in functions, and they are grouped into different categories. These 

functions can be used inside DataFrame operations, such as select, filter, groupBy, 

and so on. For a complete list of built-in functions, please refer to the Spark API Scala 

documentation at https://spark.apache.org/docs/latest/api/scala/index.

html#org.apache.spark.sql.functions$. Table 5-3 classifies them into different 

categories. 
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Table 5-3. A Subset of Built-in Functions for Each Category

Category Description

date time unix_timestamp, from_unixtime, to_date, current_date, current_

timesatmp, date_add, date_sub, add_months, datediff, months_

between, dayofmonth, dayofyear, weekofyear, second, minute, hour, 

month

String concat, length, levenshtein, locate, lower, upper, ltrim, rtrim, trim, 

lpad, rpad, repeat, reverse, split, substring, base64

Math cos, acos, sin, asin, tan, atan, ceil, floor, exp, factorial, log, pow, 

radian, degree, sqrt, hex, unhex

Cryptography cr32, hash, md5, sha1, sha2

aggregation approx._count_distinct, countDistinct, sumDistinct, avg, corr, 

count, first, last, max, min, skewness, sum

Collection array_contain, explode, from_json, size, sort_array, to_json, size

Window dense_rank, lag, lead, ntile, rank, row_number

Miscellaneous coalesce, isNan, isnull, isNotNull, monotonically_increasing_id, 

lit, when

Most of these functions are easy to understand and straightforward to use. The 

following sections will provide working examples of some of the interesting functions.

 Working with Date-Time Functions

The more you use Spark to perform data analysis, the higher chance you have 

encountering datasets that contain one more date- or time-related columns. The Spark 

built- in date-time functions broadly fall into the following three categories: converting 

the date or timestamp from one format to another, performing date-time calculations, 

and extracting specific values from a date or timestamp.

The date and time conversion functions help with converting a string into either a 

date, a timestamp, or a Unix time stamp, and vice versa. Internally it uses the Java date 

format pattern syntax, which is documented at http://docs.oracle.com/javase/

tutorial/i18n/format/simpleDateFormat.html. The default date format these 
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functions use is yyyy-MM-dd HH:mm:ss. Therefore, if the date format of a date or 

timestamp column is different, then you need to provide that pattern to these conversion 

functions. Listing 5-34 shows an example of converting a date and timestamp in string 

type to the Spark date and timestamp type.

Listing 5-34. Converting a date and timestamp in string type to Spark Date and 

Timestamp type.

// the last two columns don't follow the default date format

val testDateTSDF = Seq((1, "2018-01-01", "2018-01-01 15:04:58:865", "01-01-

2018", "12-05-2017 45:50"))

                                     . toDF("id", "date", "timestamp", 

"date_str", "ts_str")

// convert these strings into date, timestamp and unix timestamp

// and specify a custom date and timestamp format

val testDateResultDF =  testDateTSDF.select(to_date('date).as("date1"),

                                              to_timestamp('timestamp).

as("ts1"),

                                              to_date('date_str,  

"MM-dd-yyyy").as("date2"),

                                              to_timestamp('ts_str,  

"MM-dd-yyyy mm:ss").as("ts2"),

                                              unix_timestamp('timestamp).

as("unix_ts")).show(false)

// date1 and ts1 are of type date and timestamp respectively

testDateResultDF.printSchema

 |-- date1: date (nullable = true)

 |-- ts1: timestamp (nullable = true)

 |-- date2: date (nullable = true)

 |-- ts2: timestamp (nullable = true)

 |-- unix_ts: long (nullable = true)

testDateResultDF.show

ChapteR 5  SpaRk SQL (advanCed)



181

+---------+-------------------+----------+--------------------+-----------+

|    date1|                ts1|     date2|                 ts2|    unix_ts|

+---------+-------------------+----------+--------------------+-----------+

|2018-01-01| 2018-01-01 15:04:58| 2018-01-01| 2017-12-05 00:45:50| 1514847898|

+---------+-------------------+----------+--------------------+-----------+

It is just as easy to convert a date or timestamp to a time string by using the 

date_format function with a custom date format or using the from_unixtime function 

to convert a Unix timestamp (in seconds) to a string. See Listing 5-35 for examples of the 

conversions.

Listing 5-35. Converting a Date, Timestamp, and Unix Timestamp to a String

testDateResultDF.select(date_format('date1, "dd-MM-YYYY").as("date_str"),

                                     date_format('ts1, "dd-MM-YYYY 

HH:mm:ss").as("ts_str"),

                                     from_unixtime('unix_ts,"dd-MM-YYYY 

HH:mm:ss").as("unix_ts_str")).show

+-----------+--------------------+--------------------+

|   date_str|              ts_str|         unix_ts_str|

+-----------+--------------------+--------------------+

| 01-01-2018| 01-01-2018 15:04:58| 01-01-2018 15:04:58|

+-----------+--------------------+--------------------+

The date-time calculation functions are useful for figuring out the difference 

between two dates or timestamps as well as for performing date or time arithmetic. 

Listing 5-36 has working examples of a date-time calculation.

Listing 5-36. Date-Time Calculation Examples

val employeeData = Seq( ("John", "2016-01-01", "2017-10-15"),

                         ("May", "2017-02-06", "2017-12-25"))

                          .toDF("name", "join_date", "leave_date")
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employeeData.show

+-----+-----------+-----------+

| name|  join_date| leave_date|

+-----+-----------+-----------+

| John| 2016-01-01| 2017-10-15|

|  May| 2017-02-06| 2017-12-25|

+-----+-----------+-----------+

// perform date and month calcuations

employeeData.select('name, datediff('leave_date, 'join_date).as("days"),

                    months_between('leave_date, 'join_date).as("months"),

                    last_day('leave_date).as("last_day_of_mon"))

                    .show

+-----+-----+-----------+----------------+

| name| days|     months| last_day_of_mon|

+-----+-----+-----------+----------------+

| John|  653| 21.4516129|      2017-10-31|

|  May|  322|10.61290323|      2017-12-31|

+-----+-----+-----------+----------------+

// perform date addition and substration

val oneDate = Seq(("2018-01-01")).toDF("new_year")

oneDate.select(date_add('new_year, 14).as("mid_month"),

                         date_sub('new_year, 1).as("new_year_eve"),

                         next_day('new_year, "Mon").as("next_mon")).show

+-----------+-------------+-----------+

|  mid_month| new_year_eve|   next_mon|

+-----------+-------------+-----------+

| 2018-01-15|   2017-12-31| 2018-01-08|

+-----------+-------------+-----------+

The ability to extract specific fields of a date or timestamp value such as year, month, 

hour, minutes, and second is convenient when working with time-series data. For 

example, when there is a need to group all the stock transactions by quarter or month or 

week, then you can just extract that information from the transaction date and group by 

those values. Listing 5-37 shows how easy it is to extract fields from a date or timestamp.
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Listing 5-37. Extracting Specific Fields from a Date Value

val valentimeDateDF = Seq(("2018-02-14 05:35:55")).toDF("date")

valentimeDateDF.select(year('date).as("year"),

                                       quarter('date).as("quarter"),

                                       month('date).as("month"),

                                       weekofyear('date).as("woy"),

                                       dayofmonth('date).as("dom"),

                                       dayofyear('date).as("doy"),

                                       hour('date).as("hour"),

                                       minute('date).as("minute"),

                                       second('date).as("second"))

                             .show

+-----+--------+------+----+----+----+-----+-------+-------+

| year| quarter| month| woy| dom| doy| hour| minute| second|

+-----+--------+------+----+----+----+-----+-------+-------+

| 2018|       1|     2|   7|  14|  45|    5|     35|     55|

+-----+--------+------+----+----+----+-----+-------+-------+

 Working with String Functions

Undoubtedly most columns in the majority of datasets are of string type. The Spark SQL 

built-in string functions provide versatile and powerful ways of manipulating this type 

of column. Broadly speaking, these functions fall into two buckets. The first one is about 

transforming a string, and the second one is about applying regular expressions either to 

replace some part of a string or to extract certain parts of a string based on a pattern.

There are many ways to transform a string. The most common ones are trimming, 

padding, uppercasing, lowercasing, and concatenating. Listing 5-38 demonstrates the 

various ways of transforming a string using the various built-in string functions.

Listing 5-38. Different Ways of Transforming a String with Built-in String 

Functions

val sparkDF = Seq(("  Spark  ")).toDF("name")

// trimming

sparkDF.select(trim('name).as("trim"),

                         ltrim('name).as("ltrim"),
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                         rtrim('name).as("rtrim"))

             .show

+-----+------+------+

| trim| ltrim| rtrim|

+-----+------+------+

|Spark| Spark| Spark|

+-----+------+------+

// padding a string to a specified length with given pad string

// first trim spaces around string "Spark" and then pad it so the final 

length is 8 characters long

sparkDF.select(trim('name).as("trim"))

             .select(lpad('trim, 8, "-").as("lpad"),

                         rpad('trim, 8, "=").as("rpad"))

             .show

+--------+--------+

|    lpad|    rpad|

+--------+--------+

|---Spark|Spark===|

+--------+--------+

// transform a string with concatenation, uppercase, lowercase and reverse

val sparkAwesomeDF = Seq(("Spark", "is", "awesome")).toDF("subject", 

"verb", "adj")

sparkAwesomeDF.select(concat_ws(" ",'subject, 'verb, 'adj).as("sentence"))

                             .select(lower('sentence).as("lower"),

                                        upper('sentence).as("upper"),

                                        initcap('sentence).as("initcap"),

                                        reverse('sentence).as("reverse"))

                             .show

+-----------------+-----------------+-----------------+-----------------+

|            lower|            upper|          initcap|          reverse|

+-----------------+-----------------+-----------------+-----------------+

| spark is awesome| SPARK IS AWESOME| Spark Is Awesome| emosewa si krapS|

+-----------------+-----------------+-----------------+-----------------+
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// translate from one character to another

sparkAwesomeDF.select('subject, translate('subject, "ar", "oc").

as("translate")).show

+--------+----------+

| subject| translate|

+--------+----------+

|   Spark|     Spock|

+--------+----------+

Regular expressions are a powerful and flexible way to replace some portion of a 

string or extract substrings from a string. The regexp_extract and regexp_replace 

functions are designed specifically for those purposes. Spark leverages the Java regular 

expressions library for the underlying implementation of these two string functions.

The input parameters to the regexp_extract function are a string column, a pattern 

to match, and a group index. There could be multiple matches of the pattern in a string; 

therefore, the group index (starts with 0) is needed to identify which one. If there are no 

matches for the specified pattern, this function returns an empty string. See Listing 5-39 

for an example of working with the regexp_extract function.

Listing 5-39. Using the regexp_extract String Function to Extract “fox” Using a 

Pattern

val rhymeDF = Seq(("A fox saw a crow sitting on a tree singing \"Caw! Caw! 

Caw!\"")).toDF("rhyme")

// using a pattern

rhymeDF.select(regexp_extract('rhyme, "[a-z]*o[xw]",0).as("substring")).show

+------------+

|   substring|

+------------+

|         fox|

+------------+
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The input parameters to the regexp_replace string function are the string column, 

a pattern to match, and a value to replace with. See Listing 5-40 for an example of the 

regexp_replace function.

Listing 5-40. Using the regexp_replace String Function to Replace “fox” and 

“crow” with “animal”

val rhymeDF = Seq(("A fox saw a crow sitting on a tree singing \"Caw! Caw! 

Caw!\"")).toDF("rhyme")

// both lines below produce the same output

rhymeDF.select(regexp_replace('rhyme, "fox|crow", "animal") 

.as("new_rhyme")).show(false)

rhymeDF.select(regexp_replace('rhyme, "[a-z]*o[xw]", "animal") 

.as("new_rhyme")).show(false)

+-------------------------------------------------------------------------+

|                                 new_rhyme                               |

+-------------------------------------------------------------------------+

|A animal saw a animal sitting on a tree singing "Caw! Caw! Caw!"         |

+-------------------------------------------------------------------------+

 Working with Math Functions

The second most common column type is the numerical type. This is especially true 

in customer transaction or IoT sensor–related datasets. Most of the math functions 

are fairly self-explanatory and easy to use. This section covers one very useful and 

commonly used function called round, which performs the half-up rounding of a 

numeric value based on a given scale. The scale determines the number of decimal 

points to round up to. There are two variations of this function. The first one takes a 

column with a floating-point value and a scale, and the second one takes only a column 

with a floating-point value. The second variation essentially calls the first one with a 

value of 0 for the scale. Listing 5-41 demonstrates the behavior of the round function.
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Listing 5-41. Demonstrates the Behavior of round with Various Scales

numberDF.select(round('pie).as("pie0"),

                            round('pie, 1).as("pie1"),

                            round('pie, 2).as("pie2"),

                            round('gpa).as("gpa"),

                            round('year).as("year"))

                 .show

// because it is a half-up rounding, the gpa value is rounded up to 4.0

+-----+------+-----+----+-----+

| pie0|  pie1| pie2| gpa| year|

+-----+------+-----+----+-----+

|  3.0|   3.1| 3.14| 4.0| 2018|

+-----+------+-----+----+-----+

 Working with Collection Functions

The collection functions are designed to work with complex data types such as arrays, 

maps, and structs. This section covers the two specific types of collection functions. The 

first is about working with the array datatype, and the second one is about working with 

the JSON data format.

Instead of a single scalar value, sometimes a particular column in a dataset contains 

a list of values. One way to model that is by using an array data type. For example, let 

say there is a dataset about tasks that need to be done per day. In this dataset, each row 

represents a list of tasks per day, so it has a date column, and the other column contains 

a list of tasks. You can use the array related collection functions to easily get the array 

size, check for the existence of a value, or sort the array. Listing 5-42 contains examples 

of working with the various array related functions.

Listing 5-42. Using Array Collection Functions to Manipulate a List of Tasks

// create an tasks DataFrame

val tasksDF = Seq(("Monday", Array("Pick Up John", "Buy Milk", "Pay 

Bill"))).toDF("day", "tasks")

// schema of tasksDF

tasksDF.printSchema
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 |-- day: string (nullable = true)

 |-- tasks: array (nullable = true)

 |    |-- element: string (containsNull = true)

// get the size of the array, sort it, and check to see if a particular 

value exists in the array

tasksDF.select('day, size('tasks).as("size"),

                                 sort_array('tasks).as("sorted_tasks"),

                                  array_contains('tasks, "Pay Bill").

as("shouldPayBill"))

             .show(false)

+------+-----+------------------------------------+--------------+

| day  | size|           sorted_tasks             | shouldPayBill|

+------+-----+------------------------------------+--------------+

|Monday|    3| [Buy Milk, Pay Bill, Pick Up John] |     true     |

+------+-----+------------------------------------+--------------+

// the explode function will create a new row for each element in the array

tasksDF.select('day, explode('tasks)).show

+-------+-------------+

|    day|          col|

+-------+-------------+

| Monday| Pick Up John|

| Monday|     Buy Milk|

| Monday|     Pay Bill|

+-------+-------------+

A lot of unstructured datasets are in the form of JSON, which is a self-describing 

data format that is used quite often in the industry. One popular example is to encode 

a Kafka message payload in JSON format. Since this format is widely supported in 

most popular programming languages, a Kafka consumer written in one of these 

programming languages can easily decode those Kafka messages. The JSON-related 

collection functions are useful for converting a JSON string to and from a struct data 

type. The main functions are from_json, get_json_object, and to_json. Once a JSON 

string is converted to a Spark struct data type, then you can easily extract those values. 

See Listing 5-43 for examples of working with the from_json and to_json functions.
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Listing 5-43. Examples of Using the from_json and to_json Functions

import org.apache.spark.sql.types._

// create a string that contains JSON string

val todos = """{"day": "Monday","tasks": ["Pick Up John","Buy Milk","Pay 

Bill"]}"""

val todoStrDF = Seq((todos)).toDF("todos_str")

// at this point, todoStrDF is DataFrame with one column of string type

todoStrDF.printSchema

 |-- todos_str: string (nullable = true)

// in order to convert a JSON string into a Spark struct data type, we need 

to describe its structure to Spark

val todoSchema = new StructType().add("day", StringType).

add("tasks",  ArrayType(StringType))

// use from_json to convert JSON string

val todosDF = todoStrDF.select(from_json('todos_str, todoSchema).

as("todos"))

// todos is a struct data type that contains two fields: day and tasks

todosDF.printSchema

|-- todos: struct (nullable = true)

|    |-- day: string (nullable = true)

|    |-- tasks: array (nullable = true)

|    |    |-- element: string (containsNull = true)

// retrieving value out of struct data type using the getItem function of 

Column class

todosDF.select('todos.getItem("day"),

                         'todos.getItem("tasks"),

                         'todos.getItem("tasks").getItem(0).as("first_task")

                        ).show(false)
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+---------+-------------------------------------------------+-------------+

|todos.day| todos.tasks                                     | first_task  |

+---------+-------------------------------------------------+-------------+

|   Monday| [Pick Up John, Buy Milk, Pay Bill]| Pick Up John|

+---------+-------------------------------------------------+-------------+

// to convert a Spark struct data type to JSON string, we can use to_json 

function

todosDF.select(to_json('todos)).show(false)

+-------------------------------------------------------------------------+

|                          structstojson(todos)                           |

+-------------------------------------------------------------------------+

| {"day":"Monday","tasks":["Pick Up John","Buy Milk","Pay Bill"]}         |

+-------------------------------------------------------------------------+

 Working with Miscellaneous Functions

A few functions in the miscellaneous category are interesting and useful in certain 

situations. This section covers the following functions: monotonically_increasing_id, 

when, coalesce, and lit.

Sometimes there is a need to generate monotonically increasing unique, but not 

necessarily consecutive, IDs for each row in the dataset. It is quite an interesting problem 

if you spend some time thinking about it. For example, if a dataset has 200 million rows 

and they are spread across many partitions (machines), how do you ensure the values 

are unique and increasing at the same time? This is the job of the monotonically_

increasing_id function, which generates IDs as 64-bit integers. The key part in its 

algorithm is that it places the partition ID in the upper 31 bits. Listing 5-44 shows an 

example of using the monotonically_increasing_id function.

Listing 5-44. monotonically_increasing_id in Action

// first generate a DataFrame with values from 1 to 10 and spread them 

across 5 partitions

val numDF = spark.range(1,11,1,5)
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// verify that there are 5 partitions

numDF.rdd.getNumPartitions

Int = 5

// now generate the monotonically increasing numbers and see which ones are 

in which partition

numDF.select('id, monotonically_increasing_id().as("m_ii"),

                        spark_partition_id().as("partition")).show

+---+------------+----------+

| id|        m_ii| partition|

+---+------------+----------+

|  1|           0|         0|

|  2|           1|         0|

|  3|  8589934592|         1|

|  4|  8589934593|         1|

|  5| 17179869184|         2|

|  6| 17179869185|         2|

|  7| 25769803776|         3|

|  8| 25769803777|         3|

|  9| 34359738368|         4|

| 10| 34359738369|         4|

+---+------------+----------+

// the above table shows the values in m_ii columns have a different range 

in each partition.

If there is a need to evaluate a value against a list of conditions and return a value, 

then a typical solution is to use a switch statement, which is available in most high-level 

programming languages. When there is a need to do this with the value of a column in a 

DataFrame, then you can use the when function for this use case. See Listing 5-45 for an 

example of using the when function.
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Listing 5-45. Using the when Function to Convert a Numeric Value to a String

// create a DataFrame with values from 1 to 7 to represent each day of the week

val dayOfWeekDF = spark.range(1,8,1)

// convert each numerical value to a string

dayOfWeekDF.select('id, when('id === 1, "Mon")

                                        .when('id === 2, "Tue")

                                        .when('id === 3, "Wed")

                                        .when('id === 4, "Thu")

                                        .when('id === 5, "Fri")

                                        .when('id === 6, "Sat")

                                        .when('id === 7, "Sun").as("dow")

                        ).show

+---+----+

| id| dow|

+---+----+

|  1| Mon|

|  2| Tue|

|  3| Wed|

|  4| Thu|

|  5| Fri|

|  6| Sat|

|  7| Sun|

+---+----+

// to handle the default case when we can use the otherwise function of the 

column class

dayOfWeekDF.select('id, when('id === 6, "Weekend")

                                        .when('id === 7, "Weekend")

                                        .otherwise("Weekday").as("day_type")

                                   ).show
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+--+--------+

|id|day_type|

+--+--------+

| 1| Weekday|

| 2| Weekday|

| 3| Weekday|

| 4| Weekday|

| 5| Weekday|

| 6| Weekend|

| 7| Weekend|

+--+--------+

When working with data, it is important to handle null values properly. One of 

the ways to do that is to convert them to some other values that represent null in your 

data processing logic. Borrowing from the SQL world, Spark provides a function called 

coalesce that takes one or more column values and returns the first one that is not null. 

Each argument in the coalesce function must be of type Column, so if you want to fill in 

a literal value, then you can leverage the lit function. The way this function works is it 

takes a literal value as an input and returns an instance of the Column class that wraps 

the input. See Listing 5-46 for an example of using both the coalesce and lit functions 

together.

Listing 5-46. Using coalesce to Handle a Null Value in a Column

// create a movie with null title

case class Movie(actor_name:String, movie_title:String, produced_year:Long)

val badMoviesDF = Seq( Movie(null, null, 2018L),

                            Movie("John Doe", "Awesome Movie", 2018L)).toDF

// use coalese to handle null value in title column

badMoviesDF.select(coalesce('actor_name, lit("no_name")).as("new_title")).

show

+----------+

| new_title|

+----------+

|   no_name|

|  John Doe|

+----------+
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 Working with User-Defined Functions
Even though Spark SQL provides a large set of built-in functions for most common 

use cases, there will always be cases where none of those functions can provide the 

functionality your use cases need. However, don’t despair. Spark SQL provides a fairly 

simple facility to write user-defined functions (UDFs) and use them in your Spark data 

processing logic or applications in a similar manner as using built-in functions. UDFs 

are effectively one of the ways you can extend Spark’s functionality to meet your specific 

needs. Another thing that I really like about Spark is that UDFs can be written in either 

Python, Java, or Scala, and they can leverage and integrate with any necessary libraries. 

Since you are able to use a programming language that you are most comfortable with to 

write UDFs, it is extremely easy and fast to develop and test UDFs.

Conceptually, UDFs are just regular functions that take some inputs and provide 

an output. Although UDFs can be written in either Scala, Java, or Python, you must be 

aware of the performance differences when UDFs are written in Python. UDFs must be 

registered with Spark before they are used so Spark knows to ship them to executors to 

be used and executed. Given that executors are JVM processes that are written in Scala, 

they can execute Scala or Java UDFs natively inside the same process. If a UDF is written 

in Python, then an executor can’t execute it natively, and therefore it has to spawn a 

separate Python process to execute the Python UDF. In addition to the cost of spawning 

a Python process, there is a large cost in terms of serializing data back and forth for every 

single row in the dataset.

There are three steps involved in working with UDFs. The first one is to write a 

function and test it. The second step is to register that function with Spark by passing in 

the function name and its signature to Spark’s udf function. The last step is to use UDF 

in either the DataFrame code or when issuing SQL queries. The registration process is 

slightly different when using a UDF within SQL queries. Listing 5-47 demonstrates the 

three steps mentioned earlier with a simple UDF.
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Listing 5-47. A Simple UDF in Scala to Convert Numeric Grades to Letter Grades

// create student grades DataFrame

case class Student(name:String, score:Int)

val studentDF = Seq(Student("Joe", 85),

                                  Student("Jane", 90),

                                  Student("Mary", 55)).toDF()

// register as a view

studentDF.createOrReplaceTempView("students")

// create a function to convert grade to letter grade

def letterGrade(score:Int) : String = {   

   score match {    

     case score if score > 100 => "Cheating"    

     case score if score >= 90 => "A"    

     case score if score >= 80 => "B"    

     case score if score >= 70 => "C"    

     case _ => "F"  

   }

}

// register as a UDF

val letterGradeUDF = udf(letterGrade(_:Int):String)

// use the UDF to convert scores to letter grades

studentDF.select($"name",$"score",

                 letterGradeUDF($"score").as("grade")).show

+-----+------+------+

| name| score| grade|

+-----+------+------+

|  Joe|    85|     B|

| Jane|    90|     A|

| Mary|    55|     F|

+-----+------+------+
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// register as UDF to use in SQL

spark.sqlContext.udf.register("letterGrade", letterGrade(_: Int): String)

spark.sql("select name, score, letterGrade(score) as grade from students").show

+-----+------+------+

| name| score| grade|

+-----+------+------+

|  Joe|    85|     B|

| Jane|    90|     A|

| Mary|    55|     F|

+-----+------+------+

 Advanced Analytics Functions
The previous sections covered the built-in functions Spark SQL provides for basic 

analytic needs such as aggregation, joining, pivoting, and grouping. All those functions 

take one or more values from a single row and produce an output value, or they take a 

group of rows and return an output.

This section will cover the advanced analytics capabilities Spark SQL offers. The 

first one is about multidimensional aggregations, which is useful for use cases that 

involve hierarchical data analysis, where calculating subtotals and totals across a set 

of grouping columns is commonly needed. The second capability is about performing 

aggregations based on time windows, which is useful when working with time-series 

data such as transactions or sensor values from IoT devices. The third one is the ability to 

perform aggregations within a logical grouping of rows, which is referred to as a window. 

This capability enables you to easily perform calculations such as a moving average, a 

cumulative sum, or the rank of each row.

 Aggregation with Rollups and Cubes
Rollups and cube are basically more advanced versions of grouping on multiple 

columns, and they are generally used to generate subtotals and grand totals across the 

combinations and permutations of those columns. The order of the provided set of 

columns is treated as a hierarchy for grouping.
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 Rollups

When working with hierarchical data such as the revenue data that spans different 

departments and divisions, rollups can easily calculate the subtotals and a grand total 

across them. Rollups respect the given hierarchy of the given set of rollup columns and 

always start the rolling up process with the first column in the hierarchy. The grand total 

is listed in the output where all the column values are null. Listing 5-48 demonstrates 

how a rollup works.

Listing 5-48. Performing Rollups with Flight Summary Data

// read in the flight summary data

val flight_summary = spark.read.format("csv")

                                           .option("header", "true")

                                           .option("inferSchema","true")

                                            .load(<path>/chapter5/data/

flights/flight-summary.csv)

// filter data down to smaller size to make it easier to see the rollups result

val twoStatesSummary = flight_summary.select('origin_state, 'origin_city, 'count)

                                              .where('origin_state === "CA" 

|| 'origin_state === "NY")

                                             .where('count > 1 && 'count < 20)

                                              .where('origin_city =!= "White 

Plains")

                                               .where('origin_city =!= 

"Newburgh")

                                               .where('origin_city =!= 

"Mammoth Lakes")

                                               .where('origin_city =!= 

"Ontario")
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// let's see what the data looks like
twoStatesSummary.show
+-------------+--------------+------+
| origin_state|   origin_city| count|
+-------------+--------------+------+
|           CA|     San Diego|    18|
|           CA| San Francisco|     5|
|           CA| San Francisco|    14|
|           CA|     San Diego|     4|
|           CA| San Francisco|     2|
|           NY|      New York|     4|
|           NY|      New York|     2|
|           NY|        Elmira|    15|
|           NY|        Albany|     5|
|           NY|        Albany|     3|
|           NY|      New York|     4|
|           NY|        Albany|     9|
|           NY|      New York|    10|
+-------------+--------------+------+

// perform the rollup by state, city, then calculate the sum of the count, 
and finally order by null last
twoStateSummary.rollup('origin_state, 'origin_city)
                             .agg(sum("count") as "total")
                              .orderBy('origin_state.asc_nulls_last, 

'origin_city.asc_nulls_last).show

+-------------+--------------+------+
| origin_state|   origin_city| total|
+-------------+--------------+------+
|           CA|     San Diego|    22|
|           CA| San Francisco|    21|
|           CA|          null|    43|
|           NY|        Albany|    17|
|           NY|        Elmira|    15|
|           NY|      New York|    20|
|           NY|          null|    52|
|         null|          null|    95|
+-------------+--------------+------+
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This output shows the subtotals per state on the third and seventh lines, and the 

grand total is shown on the last line with a null value in both the original_state and 

origin_city columns. The trick is to sort with the asc_nulls_last option, so Spark SQL 

will order null values last.

 Cube

A cube is basically a more advanced version of a rollup. It performs the aggregations 

across all the combinations of the grouping columns. Therefore, the result includes what 

a rollup provides as well as other combinations. In our example of cubing by the origin_

state and origin_city, the result will include the aggregation for each of the original 

cities. The way to use the cube function is similar to how you use the rollup function. 

See Listing 5-49 for an example.

Listing 5-49. Performing a Cube Across the origin_state and origin_city Columns

// perform the cube across origin_state and origin_city

twoStateSummary.cube('origin_state, 'origin_city)

                             .agg(sum("count") as "total")

                              .orderBy('origin_state.asc_nulls_last, 

'origin_city.asc_nulls_last).show

// see result below

+-------------+--------------+------+

| origin_state|   origin_city| total|

+-------------+--------------+------+

|           CA|     San Diego|    22|

|           CA| San Francisco|    21|

|           CA|          null|    43|

|           NY|        Albany|    17|

|           NY|        Elmira|    15|

|           NY|      New York|    20|

|           NY|          null|    52|

|         null|        Albany|    17|

|         null|        Elmira|    15|
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|         null|      New York|    20|

|         null|     San Diego|    22|

|         null| San Francisco|    21|

|         null|          null|    95|

+-------------+--------------+------+

In the result table, the lines that have a null value in the origin_state column 

represent the aggregation of all the cities in a state. Therefore, the result of a cube will 

always have more rows than the result of a rollup.

 Aggregation with Time Windows
Aggregation with time windows was introduced in Spark 2.0 to make it easy to work 

with time-series data, which consists of a series of data points in time order. This kind of 

dataset is common in industries such as finance or telecommunications. For example, 

the stock market transaction dataset has the transaction date, opening price, close 

price, volume, and other pieces of information for each stock symbol. Time window 

aggregations can help with answering questions such as what is the weekly average 

closing price of Apple stock or the monthly moving average closing price of Apple stock 

across each week.

Window functions come in a few versions, but they all require a timestamp type 

column and a window length, which can be specified in seconds, minutes, hours, days, 

or weeks. The window length represents a time window that has a start time and end 

time, and it is used to determine which bucket a particular piece of time-series data 

should belong to. Another version takes additional input for the sliding window size, 

which tells how much a time window should slide by when calculating the next bucket. 

These versions of the window function are the implementations of the tumbling window 

and sliding window concepts in world event processing, and they will be described in 

more detail in Chapter 6.

The following examples will use the Apple stock transactions, which can be found  

on the Yahoo Finance web site at https://in.finance.yahoo.com/q/hp?s=AAPL.  

Listing 5-50 calculates the weekly average price of Apple stock based on one year of data.
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Listing 5-50. Using the Time Window Function to Calculate the Average Closing 

Price of Apple Stock

val appleOneYearDF = spark.read.format("csv")

                                               .option("header", "true")

                                                .option("inferSchema","true")

                                                .load("<path>/chapter5/data/

stocks/aapl-2017.csv")

// display the schema, the first column is the transaction date

appleOneYearDF.printSchema

 |-- Date: timestamp (nullable = true)

 |-- Open: double (nullable = true)

 |-- High: double (nullable = true)

 |-- Low: double (nullable = true)

 |-- Close: double (nullable = true)

 |-- Adj Close: double (nullable = true)

 |-- Volume: integer (nullable = true)

// calculate the weekly average price using window function inside the 

groupBy transformation

// this is an example of the tumbling window, aka fixed window

val appleWeeklyAvgDF = appleOneYearDF.groupBy(window('Date, "1 week"))

                                                 .agg(avg("Close").

as("weekly_avg"))

// the result schema has the window start and end time

appleWeeklyAvgDF.printSchema

 |-- window: struct (nullable = true)

 |    |-- start: timestamp (nullable = true)

 |    |-- end: timestamp (nullable = true)

 |-- weekly_avg: double (nullable = true)
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// display the result with ordering by start time and round up to 2 decimal 

points

appleWeeklyAvgDF.orderBy("window.start")

                               .selectExpr("window.start", "window.end",

                                                   "round(weekly_avg, 2) as 

weekly_avg")

                               .show(5)

// notice the start time is inclusive and end time is exclusive

+--------------------+--------------------+---------------+

|               start|                 end|     weekly_avg|

+--------------------+--------------------+---------------+

| 2016-12-28 16:00:00| 2017-01-04 16:00:00|         116.08|

| 2017-01-04 16:00:00| 2017-01-11 16:00:00|         118.47|

| 2017-01-11 16:00:00| 2017-01-18 16:00:00|         119.57|

| 2017-01-18 16:00:00| 2017-01-25 16:00:00|         120.34|

| 2017-01-25 16:00:00| 2017-02-01 16:00:00|         123.12|

+--------------------+--------------------+---------------+

The previous example uses a one-week tumbling window, where there is no overlap. 

Therefore, each transaction is used only once to calculate the moving average. The 

example in Listing 5-51 uses the sliding window. This means some transactions will be 

used more than once in calculating the average monthly moving average. The window 

size is four weeks, and it slides by one week at a time in each window.

Listing 5-51. Use the Time Window Function to Calculate the Monthly Average 

Closing Price of Apple Stock

// 4 weeks window length and slide by one week each time

val appleMonthlyAvgDF = appleOneYearDF.groupBy(window('Date, "4 week", "1 

week"))

                                                         .agg(avg("Close").

as("monthly_avg"))

// display the results with order by start time

appleMonthlyAvgDF.orderBy("window.start")

                                 .selectExpr("window.start", "window.end", 

"round(monthly_avg, 2) as monthly_avg")

                                .show(5)
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+--------------------+--------------------+------------+

|               start|                 end| monthly_avg|

+--------------------+--------------------+------------+

| 2016-12-07 16:00:00| 2017-01-04 16:00:00|      116.08|

| 2016-12-14 16:00:00| 2017-01-11 16:00:00|      117.79|

| 2016-12-21 16:00:00| 2017-01-18 16:00:00|      118.44|

| 2016-12-28 16:00:00| 2017-01-25 16:00:00|      119.03|

| 2017-01-04 16:00:00| 2017-02-01 16:00:00|      120.42|

+--------------------+--------------------+------------+

Since the sliding window interval is one week, the previous result table shows that 

the start time difference between two consecutive rows is one week apart. Between two 

consecutive rows, there are about three weeks of overlapping transactions, which means 

a transaction is used more than one time to calculate the moving average.

 Window Functions
Up to this point, you know how to use functions such as concat or round to compute 

an output from one or more column values of a single row and leverage aggregation 

functions such as max or sum to compute an output for each group of rows. Sometimes 

there is a need to operate on a group of rows and return a value for every input row. 

Window functions provide this unique capability to make it easy to perform calculations 

such as a moving average, a cumulative sum, or the rank of each row.

There are two main steps for working with window functions. The first one is to 

define a window specification that defines a logical grouping of rows called a frame, 

which is the context in which each row is evaluated. The second step is to apply a 

window function that is appropriate for the problem that you are trying to solve. You can 

find more details about the available window functions in the following sections.

The window specification defines three important components the window 

functions will use. The first component is called partition by, and this is where you 

specify one or more columns to group the rows by. The second component is called 

order by, and it defines how the rows should be ordered based on one or more columns 

and whether the ordering should be in ascending or descending order. Out of the three 

components, the last one is more complicated and will require a detailed explanation. 

The last component is called frame, and it defines the boundary of the window with 

respect to the current row. In other words, the “frame” restricts which rows to be 
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included when calculating a value for the current row. A range of rows to include in a 

window frame can be specified using the row index or the actual value of the order by 

expression. The last component is applicable for some of the window functions, and 

therefore it may not be necessary for some scenarios. A window specification is built 

using the functions defined in the org.apache.spark.sql.expressions.Window class. 

The rowsBetween and rangeBetweeen functions are used to define the range by row 

index and actual value, respectively.

Window functions can be categorized into three different types: ranking functions, 

analytic functions, and aggregate functions. The ranking functions and analytic 

functions are described in Table 5-4 and Table 5-5, respectively. For aggregate functions, 

you can use any of the previously mentioned aggregation functions as a window 

function. You can find a complete list of the window functions at https://spark.

apache.org/docs/latest/api/java/org/apache/spark/sql/functions.html. 

Table 5-4. Ranking Functions

Name Description

rank Returns the rank or order of rows within a frame based on some sorting order.

dense_rank Similar to rank, but leaves no gaps in the ranks when there are ties.

percent_rank Returns the relative rank of rows within a frame.

ntile(n) Returns the ntile group Id in an ordered window partition. For example, if n is 4, 

the first quarter of the rows will get a value of 1, the second quarter of rows will 

get a value of 2, and so on.

row_number Returns a sequential number starting with 1 with a frame.

Table 5-5. Analytic Functions

Name Description

cume_dist Returns the cumulative distribution of values with a frame. In other words, 

the fraction of rows that are below the current row.

lag(col, offset) Returns the value of the column that is offset rows before the current row.

lead(col, 

offset)

Returns the value of the column that is offset rows after the current row.
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Let’s put the aforementioned steps together by working through a small sample 

dataset to demonstrate window function capabilities. Table 5-6 contains the shopping 

transaction data of two fictitious users, John and Mary. 

With this shopping transaction data, let’s try using window functions to answer the 

following questions: 

• For each user, what are the two highest transaction amounts?

• What is the difference between the transaction amount of each user 

and their highest transaction amount?

• What is the moving average transaction amount of each user?

• What is the cumulative sum of the transaction amount of each user?

To answer the first question, you apply the rank window function over a window 

specification that partitions the data by user and sorts it by the amount in descending 

order. The ranking window function assigns a rank to each row based on the sorting 

order of each row in each frame. See Listing 5-52 for the actual code to solve the first 

question.

Table 5-6. User Shopping Transactions

Name Date Amount

John 2017-07-02 13.35

John 2016-07-06 27.33

John 2016-07-04 21.72

Mary 2017-07-07 69.74

Mary 2017-07-01 59.44

Mary 2017-07-05 80.14
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Listing 5-52. Apply the Rank Window Function to Find out the Top Two 

Transactions per User

// small shopping transaction data set for two users

val txDataDF= Seq(("John", "2017-07-02", 13.35),

                               ("John", "2017-07-06", 27.33),

                               ("John", "2017-07-04", 21.72),

                               ("Mary",  "2017-07-07", 69.74),

                               ("Mary",  "2017-07-01", 59.44),

                               ("Mary",  "2017-07-05", 80.14))

                              .toDF("name", "tx_date", "amount")

// import the Window class

import org.apache.spark.sql.expressions.Window

// define window specification to partition by name and order by amount in 

descending amount

val forRankingWindow = Window.partitionBy("name").orderBy(desc("amount"))

// add a new column to contain the rank of each row, apply the rank 

function to rank each row

val txDataWithRankDF = txDataDF.withColumn("rank", rank().

over(forRankingWindow))

// filter the rows down based on the rank to find the top 2 and display the 

result

txDataWithRankDF.where('rank < 3).show(10)

+------+-----------+-------+-----+

|  name|    tx_date| amount| rank|

+------+-----------+-------+-----+

|  Mary| 2017-07-05|  80.14|    1|

|  Mary| 2017-07-07|  69.74|    2|

|  John| 2017-07-06|  27.33|    1|

|  John| 2017-07-04|  21.72|    2|

+------+-----------+-------+-----+

The approach for solving the second question involves applying the max function 

over the amount column across all the rows of each partition. In addition to partitioning 

by the username, it also needs to define a frame boundary that includes all the rows 
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in each partition. To do that, you use the Window.rangeBetween function with Window.

unboundedPreceding as the start value and Window.unboundedFollowing as the end 

value. Listing 5-53 defines a window specification according to the logic defined earlier 

and applies the max function over it.

Listing 5-53. Applying the max Window Function to Find the Difference of Each 

Row and the Highest Amount

// use rangeBetween to define the frame boundary that includes all the rows 

in each frame

val forEntireRangeWindow = Window.partitionBy("name")

                                   .orderBy(desc("amount"))

                                   .rangeBetween(Window.unboundedPreceding,

                                   Window.unboundedFollowing)

// apply the max function over the amount column and then compute the 

difference

val amountDifference = max(txDataDF("amount")).over(forEntireRangeWindow) - 

txDataDF("amount")

// add the amount_diff column using the logic defined above

val txDiffWithHighestDF = txDataDF.withColumn("amount_diff", 

round(amountDifference, 3))

// display the result

txDiffWithHighestDF.show

+------+-----------+-------+-------------+

|  name|    tx_date| amount|  amount_diff|

+------+-----------+-------+-------------+

|  Mary| 2017-07-05|  80.14|          0.0|

|  Mary| 2017-07-07|  69.74|         10.4|

|  Mary| 2017-07-01|  59.44|         20.7|

|  John| 2017-07-06|  27.33|          0.0|

|  John| 2017-07-04|  21.72|         5.61|

|  John| 2017-07-02|  13.35|        13.98|

+------+-----------+-------+-------------+
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To compute the transaction amount moving average of each user in the order of 

transaction date, you will leverage the avg function to calculate the average amount for 

each row based on a set of rows in a frame. For this particular example, you want each 

frame to include three rows: the current row plus one row before it and one row after it. 

Depending a particular use case, the frame might include more rows before and after the 

current row. Similar to the previous examples, the window specification will partition the 

data by user, but the rows in each frame will be sorted by transaction date. Listing 5-54 

shows how to apply the avg function over the window specification described earlier.

Listing 5-54. Applying the Average Window Function to Compute the Moving 

Average Transaction Amount

// define the window specification

// a good practice is to specify the offset relative to Window.currentRow

val forMovingAvgWindow = Window.partitionBy("name").orderBy("tx_date")

                     .rowsBetween(Window.currentRow-1,Window.currentRow+1)

// apply the average function over the amount column over the window  

specification

// also round the moving average amount to 2 decimals

val txMovingAvgDF = txDataDF.withColumn("moving_avg",

                                               round(avg("amount").

over(forMovingAvgWindow), 2))

// display the result

txMovingAvgDF.show

+------+-----------+-------+-----------+

|  name|    tx_date| amount| moving_avg|

+------+-----------+-------+-----------+

|  Mary| 2017-07-01|  59.44|      69.79|

|  Mary| 2017-07-05|  80.14|      69.77|

|  Mary| 2017-07-07|  69.74|      74.94|

|  John| 2017-07-02|  13.35|      17.54|

|  John| 2017-07-04|  21.72|       20.8|

|  John| 2017-07-06|  27.33|      24.53|

+-------+----------+-------+-----------+
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To compute the cumulative sum of the transaction amount for each user, you will 

apply the sum function over a frame that consists of all the rows up to the current row. 

The partition by and order by clauses are the same as the moving average example. 

Listing 5-55 shows how to apply the sum function over the window specification 

described earlier.

Listing 5-55. Applying the sum Window function to compute the cumulative 

sum of transaction amount

// define the window specification with each frame includes all the  

previous rows and the current row

val forCumulativeSumWindow = Window.partitionBy("name").orderBy("tx_date")

                                              . rowsBetween(Window.unbounded 

Preceding,Window.currentRow)

// apply the sum function over the window specification

val txCumulativeSumDF = txDataDF.withColumn("culm_sum",

                                                round(sum("amount").over 

(forCumulativeSumWindow),2))

// display the result

txCumulativeSumDF.show

+------+-----------+-------+---------+

|  name|    tx_date| amount| culm_sum|

+------+-----------+-------+---------+

|  Mary| 2017-07-01|  59.44|    59.44|

|  Mary| 2017-07-05|  80.14|   139.58|

|  Mary| 2017-07-07|  69.74|   209.32|

|  John| 2017-07-02|  13.35|    13.35|

|  John| 2017-07-04|  21.72|    35.07|

|  John| 2017-07-06|  27.33|     62.4|

+------+-----------+-------+---------+

The default frame of a window specification includes all the preceding rows and up 

to the current row. For the previous example, it is not necessary to specify the frame, so 

you should get the same result.
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The previous window function examples were written using the DataFrame APIs. It 

is possible to achieve the same goals using SQL with the PARTITION BY, ORDER BY, ROWS 

BETWEEN, and RANGE BETWEEN key words. The frame boundary can be specified using 

the following key words: UNBOUNDED PRECEDING, UNBOUNDED FOLLOWING, CURRENT ROW, 

<value> PRECEDING, and <value> FOLLOWING. Listing 5-56 shows examples of using the 

window functions with SQL.

Listing 5-56. Example of a Window Function in SQL

// register the txDataDF as a temporary view called tx_data

txDataDF.createOrReplaceTempView("tx_data")

// use RANK window function to find top two highest transaction amount

spark.sql("select name, tx_date, amount, rank from

                (

                  select name, tx_date, amount,

                              RANK() OVER (PARTITION BY name ORDER BY amount 

DESC) as rank from tx_data

                ) where rank < 3").show

// difference between  maximum transaction amount

spark.sql("select name, tx_date, amount, round((max_amount - amount),2) as 

amount_diff from

                 (

                   select name, tx_date, amount, MAX(amount) OVER

                       (PARTITION BY name ORDER BY amount DESC

                         RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED 

FOLLOWING

                       ) as max_amount from tx_data)"

               ).show

ChapteR 5  SpaRk SQL (advanCed)



211

// moving average

spark.sql("select name, tx_date, amount, round(moving_avg,2) as moving_avg from

                 (

                   select name, tx_date, amount, AVG(amount) OVER

                       (PARTITION BY name ORDER BY tx_date

                          ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING

                       ) as moving_avg from tx_data)"

               ).show

// cumulative sum

spark.sql("select name, tx_date, amount, round(culm_sum,2) as moving_avg from

                (

                  select name, tx_date, amount, SUM(amount) OVER

                      (PARTITION BY name ORDER BY tx_date

                       ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW

                      ) as culm_sum from tx_data)"

                ).show

When using the window functions in SQL, the partition by, order by, and frame 

window must be specified in a single statement.

 Catalyst Optimizer
The easiest way to write efficient data processing applications is to not worry about it 

and get your data processing applications automatically optimized. That is the promise 

of the Spark Catalyst, which is a query optimizer and is the second major component 

in the Spark SQL module. It plays a major role in ensuring the data processing logic 

written in either DataFrame APIs or SQL runs efficiently and quickly. It was designed to 

minimize end-to-end query response times as well as to be extensible such that Spark 

users can inject user code into the optimizer to perform custom optimization. At a high 

level, the Spark Catalyst translates the user-written data processing logic into a logical 

plan, then optimizes it using heuristics, and finally converts the logical plan to a physical 

plan. The final step is to generate code based on the physical plan. Figure 5-4 provides a 

visual representation of the steps.
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The idea of taking user expressions of what needs to be done and then figuring out 

the most efficient means of executing those steps is an idea that has been around a 

long time in the RDBMS world. However, the novelties introduced in the Spark Catalyst 

are the extensibility and the way it was developed using the functional programming 

constructs in Scala. These two novelties enable the Spark Catalyst to mature quickly 

through the Spark user community contributions.

The following sections will provide some brief details of each step in the Catalyst 

optimization process as well as show a few examples of the generated query plan. 

 Logical Plan
The first step in the Catalyst optimization process is to create a logical plan from either 

a DataFrame object or the abstract syntax tree of the parsed SQL query. The logical 

plan is an internal representation of the user data processing logic in the form of a 

tree of operators and expression. Next, the Catalyst analyzes the logical plan to resolve 

references to ensure they are valid. Then it applies a set of rule-based and cost-based 

optimizations to the logical plan. Both of these types of optimization follow the principle 

of pruning unnecessary data as early as possible and minimizing per-operator cost.

The rule-based optimizations include constant folding, project pruning, predicate 

pushdown, and others. For example, during this optimization phase, the Catalyst may 

decide to move the filter condition before performing a join. For curious minds, the 

list of rule-based optimizations is defined in the org.apache.spark.sql.catalyst.

optimizer.Optimizer class.

The cost-based optimizations were introduced in Spark 2.2 to enable Catalyst to be 

more intelligent in selecting the right kind of join based on the statistics of the data being 

processed. The cost-based optimization relies on the detailed statistics of the columns 

participating in the filter or join conditions, and that’s why the statistics collection 

framework was introduced. Examples of the statistics include the cardinality, the 

number of distinct values, max/min, average/max length, and so on.

SQL

Data
Frames

Logical Plan Physical Plan RDD

Figure 5-4. Catalyst optimizer
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 Physical Plan
Once the logical plan is optimized, the Catalyst will generate one or more physical plans 

using the physical operators that match the Spark execution engine. In addition to the 

optimizations performed in the logical plan phase, the physical plan phase performs 

its own ruled-based optimizations, including combining projections and filtering 

into a single operation as well as pushing the projections or filtering predicates all 

the way down to the data sources that support this feature, i.e., Parquet. Again, these 

optimizations follow the data pruning principle described earlier. The final step the 

Catalyst performs is to generate the Java bytecode of the cheapest physical plan.

 Catalyst in Action
This section shows how to use the explain function of the DataFrame class to display 

the logical and physical plans.

To see both the logical plan and the physical plan, you can call the explain function 

with the extended argument as a Boolean true value. Otherwise, this function displays 

only the physical plan.

The small and somewhat silly example first reads the movie data in Parquet format, 

then performs filtering based on produced_year, then adds a column called produced_

decade and projects the movie_title and produced_decade columns, and finally filters 

rows based on produced_decade. The goal here is to prove that the Catalyst performs the 

predicate pushdown and filtering condition optimizations. See Listing 5-57 for how to 

generate the logical and physical plans.

Listing 5-57. Using the explain Function to Generate the Logical and Physical 

Plans

// read movies data in Parquet format

val moviesDF = spark.read.load("<path>/book/chapter4/data/movies/movies.

parquet")

// perform two filtering conditions

val newMoviesDF = moviesDF.filter('produced_year > 1970)

                                              .withColumn("produced_decade", 

'produced_year + 'produced_

year % 10)
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                                              .select('movie_title, 

'produced_decade).where 

('produced_decade > 2010)

// display the logical and physical plans

newMoviesDF.explain(true)

== Parsed Logical Plan ==

'Filter ('produced_decade > 2010)

+- Project [movie_title#408, produced_decade#415L]

   +-  Project [actor_name#407, movie_title#408, produced_year#409L, 

(produced_year#409L + (produced_year#409L % cast(10 as bigint)))  

AS produced_decade#415L]

      +- Filter (produced_year#409L > cast(1970 as bigint))

          +-  Relation[actor_name#407,movie_title#408,produced_year#409L] 

parquet

== Analyzed Logical Plan ==

movie_title: string, produced_decade: bigint

Filter (produced_decade#415L > cast(2010 as bigint))

+- Project [movie_title#408, produced_decade#415L]

   +-  Project [actor_name#407, movie_title#408, produced_year#409L, 

(produced_year#409L + (produced_year#409L % cast(10 as bigint)))  

AS produced_decade#415L]

      +- Filter (produced_year#409L > cast(1970 as bigint))

          +-  Relation[actor_name#407,movie_title#408,produced_year#409L] 

parquet

== Optimized Logical Plan ==

Project [movie_title#408, (produced_year#409L + (produced_year#409L % 10)) 

AS produced_decade#415L]

+-  Filter ((isnotnull(produced_year#409L) && (produced_year#409L > 1970)) 

&& ((produced_year#409L + (produced_year#409L % 10)) > 2010))

   +- Relation[actor_name#407,movie_title#408,produced_year#409L] parquet

== Physical Plan ==

*Project [movie_title#408, (produced_year#409L + (produced_year#409L % 10)) 

AS produced_decade#415L]
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+-  *Filter ((isnotnull(produced_year#409L) && (produced_year#409L > 1970)) 

&& ((produced_year#409L + (produced_year#409L % 10)) > 2010))

   +-  *FileScan parquet [movie_title#408,produced_year#409L] Batched: 

true, Format: Parquet, Location: InMemoryFileIndex[file:<path>/

book/chapter4/data/movies/movies.pa..., PartitionFilters: [], 

PushedFilters: [IsNotNull(produced_year), GreaterThan(produced_year, 

1970)], ReadSchema: struct<movie_title:string,produced_year:bigint>

If you carefully analyze the optimized logical plan, you will see that it combines 

both filtering conditions into a single filter. The physical plan shows that Catalyst both 

pushes down the filtering of produced_year and performs the projection pruning to the 

FileScan step.

 Project Tungsten
Starting in 2015, the Spark designers observed that the Spark workloads were 

increasingly bottlenecked by CPU and memory rather than I/O and network 

communication. It is a bit counterintuitive but not too surprising, given the 

advancements on the hardware side like 10Gbps network links and high-speed 

SSD. Project Tungsten was created to improve the efficiency of using memory and 

CPU in Spark applications and to push the performance closer to the limits of modern 

hardware. There are three initiatives in the Tungsten project.

• Manage memory explicitly by using off-heap management 

techniques to eliminate the overhead of the JVM object model and 

minimize garbage collection.

• Use intelligent cache-aware algorithms and data structures to exploit 

memory hierarchy.

• Use whole-stage code generation to minimize virtual function calls 

by combining multiple operators into a single Java function.

The hard and interesting work that went into the Tungsten project has dramatically 

improved the Spark execution engine since Spark 2.0. Much of the work in the Tungsten 

project happens behind the scenes in the execution engine. The following example 

demonstrates a small glimpse into the whole-stage code generation initiative by 

examining the physical plan. In the following output, whenever an asterisk (*) appears 
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before an operator, it means the whole-stage code generation is enabled. Listing 5-58 

displays the physical plan of filtering and summing integers in a DataFrame.

Listing 5-58. Demonstrating the Whole-Stage Code Generation by Looking at 

the Physical Plan

spark.range(1000).filter("id > 100").selectExpr("sum(id)").explain()

== Physical Plan ==

*HashAggregate(keys=[], functions=[sum(id#13L)], output=[sum(id)#23L])

+- Exchange SinglePartition

   +-  *HashAggregate(keys=[], functions=[partial_sum(id#13L)], 

output=[sum#25L])

      +- *Filter (id#13L > 100)

         +- *Range (0, 1000, step=1, splits=8)

The whole-stage code generation combines the logic of filtering and summing 

integers into a single Java function.

 Summary
This chapter covered a lot of useful and powerful features available in the Spark SQL 

module.

• Aggregation is one of the mostly commonly used features in 

the world of big data analytics. Spark SQL provides many of the 

commonly needed aggregation functions such as sum, count, 

avg, and so on. Aggregation with pivoting provides a nice way of 

summarizing the data as well as transposing columns into rows.

• Doing any useful and meaningful data processing often requires 

joining two or more datasets. Spark SQL supports many of the 

standard join types that exist in the SQL world.

• Spark SQL comes with a rich set of built-in functions, which should 

cover most of the common needs for working with strings, math, 

dates and times, and so on. If none of them meets a particular needs 

of a use case, then it is fairly easy to write a user-defined function that 

can be used with both the DataFrame APIs and SQL queries.
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• Window functions are powerful and advanced analytics functions 

because they can compute a value for each row in the input 

group. They are particular useful for computing moving average, a 

cumulative sum, or the rank of each row.

• The Catalyst optimizer enables you to write efficient data processing 

applications without having to reason about them too much. 

The cost-based optimizer was introduced in Spark 2.2 to enable 

Catalyst to be more intelligent about selecting the right kind of join 

implementation based on the collected statistics of the data being 

processed.

• Project Tungsten is the workhorse behind the scenes that speeds 

up the execution of data process applications by employing a few 

advanced techniques to improve the efficiency of using memory  

and CPU.
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CHAPTER 6

Spark Streaming
In addition to batch data processing, streaming data processing has become a  

must-have capability for any business that wants to harness the value of real-time data 

to either increase their competitive advantage or to improve their user experience. With 

the advent of the Internet of Things, the volume and velocity of real-time data have 

increased even more than before. For Internet companies such as Facebook, LinkedIn, 

and Twitter, millions of social activities happening every second on their platforms are 

represented as streaming data.

At a high level, streaming processing is about the continuous processing of 

unbounded streams of data. Doing this at scale, in a fault-tolerant and consistent 

manner, is quite a challenging task. Luckily, the stream processing engines such as 

Spark, Flink, Samza, Heron, and Kafka have been steadily and dramatically maturing 

over the last few years to enable businesses to build and operate complex stream 

processing applications.

More and more interesting use cases of real-time data processing have emerged 

as the community understands how best to apply the increasingly mature streaming 

engines to their business needs. For example, Uber leverages streaming processing 

capabilities to understand the number of riders and drivers on its platform at near 

real-time, and these near real-time insights influence business decisions such as 

moving excess drivers from low-demand areas to higher-demand areas in a city. Most 

Internet companies leverage some kind of A/B experimentation system to perform 

A/B testing when releasing new features or trying a new design. Streaming processing 

enables a faster reaction to the experiments by reducing the time it takes to understand 

an experiment’s effectiveness from days to hours. Fraud detection is an area that has 

embraced stream processing because of the benefits it gains from instant insights of 

fraud activities so that they can be either stopped or monitored. For large companies 

that have hundreds of online services, a common need is to monitor their health by 
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processing the large volume of generated logs at near real-time via streaming data 

processing. There are many more interesting real-time data processing use cases, and 

some of them will be shared in this chapter.

This chapter starts with describing a few useful stream processing concepts and 

then provides a short introduction to the stream processing engine landscape. Then the 

remaining sections of this chapter will describe the Spark streaming processing engine 

in detail and the APIs it provides.

 Stream Processing
In the world of big data, batch data processing became widely known with the 

introduction of Hadoop. The popular MapReduce framework is one of the components 

in the Hadoop ecosystem, and it became the king of batch data processing because of 

its capabilities and robustness. After a period of innovation in the batch data processing 

area, most challenges in this space are now well understood. Since then, the big data 

open source community has shifted its focus and innovations to the streaming data 

processing space.

Batch data processing is about running the computational logic through a fixed 

input dataset and producing a result at the end. This means the processing will stop 

when it gets to the end of the dataset. By contrast, stream processing is about running 

the computational logic through an unbounded dataset, and therefore the processing 

is continuous and long running. Although the difference between batch data and 

streaming data is mainly about the finiteness, streaming data processing is much more 

complex and challenging than batch data processing because of the unbounded data 

nature, the incoming order of the real-time data, the different rates that the data will 

arrive, and the expectation of correctness and low latency in the face of machine failure.

In the world of batch data processing, it is not uncommon to hear that it takes hours 

to finish a complex batching data processing job because of the size of the input datasets. 

In the world of streaming data processing, there is an expectation that streaming 

processing engines will provide low latency and high throughput by delivering incoming 

streams of data as quickly and efficiently as possible so they can react or extract insight 
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quickly. Performing any interesting and meaningful streaming data processing usually 

involves maintaining some kind of state in a fault-tolerant manner. For example, a stock 

trading streaming application would like to maintain and display the top 10 or 20 most 

actively traded stocks through the day. To accomplish this goal, the running count of 

each stock must be maintained either by the streaming processing engine on behalf of 

the application or by the application itself. Usually the state is maintained in memory 

and backed by some resilient storage such as disk, so the state is resilient to machine 

failures.

Streaming data processing doesn’t work in a silo. Sometimes there is a need to work 

together with batch data processing to enrich the incoming streaming data. A good 

example of this is when a page view streaming application needs to compute the page 

view statistics of its users based on user location; then it needs to join user clicks and 

streaming data with member data. A good streaming processing engine should provide 

an easy way to join batch data with streaming data without much effort.

One of the common use cases of streaming data processing is to perform some 

aggregations of incoming data and then write that summarized data out to an external 

data sink to be consumed by either a web application or a data analytics engine. The 

desire here is to have an end-to-end, exactly once guarantee of the data in the face of 

failure, whether that is because of machine failures or some bugs in the data processing 

application. The key here is how the streaming processing engine deals with failure such 

that the incoming data is not lost as well as not double counted.

As streaming processing engines mature, they provide not only the desired 

distributed system properties such as fast, scalable, and fault tolerant, but they also 

provide easy and developer-friendly ways of performing data streaming computation 

by up-leveling the abstraction from low-level APIs to high-level declarative languages 

such as SQL. With this advancement, it is much easier to build a self-service streaming 

platform to enable product teams to quickly make meaningful business decisions by 

tapping into the data or events that are generated by various products in the company. 

Remember, one of the goals in data streaming processing is to extract business insights 

in a timely manner so businesses can either react quickly or make business actions.
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In summary, streaming data processing has its own set of unique challenges, which 

are a result of processing data that is continuous and unbounded. It is important to be 

mindful about these challenges as you set out to build long-running streaming data 

processing applications or when evaluating a particular streaming processing engine. 

The challenges are as follows:

• Maintaining a potentially large state in a reliable manner for data 

streaming applications

• Efficiently and quickly delivering messages for applications to 

process

• Dealing with streaming data that arrives out of order

• Joining with batch data to enrich the incoming streaming data

• End-to-end, exactly once guarantee delivery of data even where there 

is failure

• Dealing with an uneven data arrival rate

 Concepts
To be effective at performing streaming data processing, it is imperative to understand 

the following core and universal concepts. These important concepts are very much 

applicable to developing streaming applications on any streaming processing engine. 

Knowing these concepts will be useful when evaluating streaming processing engines; 

they also enable you to ask the right questions to find out how much support a particular 

streaming processing engine provides in each of these areas:

• Data delivery semantics

• Notion of time

• Windowing
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 Data Delivery Semantics

When a piece of data enters a streaming processing engine, it has the responsibility 

of delivering it to the streaming application for processing. There are three types of 

guarantees that a streaming processing engine can provide even under failure scenarios.

• At most once: This implies that a streaming processing engine 

guarantees that a piece of data will be delivered to an application 

no more than one time, but it could be zero times. In other words, 

there is a chance that a piece of data will be lost, and therefore an 

application will not see it at all. For some use cases, this is acceptable, 

but it is not for some other use cases. One of those use cases is a 

financial transaction processing application. Losing data can result in 

not charging customers and therefore a reduction in revenue.

• At least once: This implies that a streaming processing engine guarantees 

that a piece of data will be delivered to an application one or more 

times. There is no data lost in this case; however, there is a potential 

for double or triple counting. In the example of financial transaction 

processing applications, it means that a transaction is applied multiple 

times, which results in complaints from customers. This guarantee is 

stronger than at most once because no data will be lost.

• Exactly once: This implies that a streaming processing engine 

guarantees that a piece of data will be delivered to an application 

exactly one time only, no more and no less. In this case, there is 

no data loss and no double counting. Most modern and popular 

streaming processing engines provide this kind of guarantee. Of the 

three guarantees, this one is the most desirable for building critical 

business streaming applications.
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One way of looking at these delivery semantics is they fall into a spectrum, where at 

most once is the weakest guarantee and exactly once is the strongest guarantee, which is 

depicted in Figure 6-1.

When evaluating a streaming processing engine, it is important to not only 

understand the level of guarantee it provides but also understand the implementation 

behind this guarantee. Most modern streaming processing engines employ a 

combination of check-pointing and write-ahead log techniques to provide an exactly 

once guarantee.

 Notion of Time

In the world of streaming data processing, the notion of time is important because it 

enables you to understand what’s going on in terms of time. For example, in the case of 

a real-time anomaly detection application, the notion of time gives you insights into the 

number of suspicious transactions occurring in the last five minutes or at a certain part 

of the day.

There are two important types of time: event time and processing time. As depicted 

in Figure 6-2, event time represents the time when the piece of data was created, 

and typically this information is encoded in the data. For example, in the case of IoT 

devices that take an ocean temperature in a certain part of the world, the event time is 

when the temperature was taken. The encoding of the temperature data may consist 

of the temperature itself and a timestamp. The processing time represents the time 

when the stream processing engine processes a piece of data. In the example of the 

Figure 6-1. Delivery semantics spectrum
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ocean temperature IoT devices, the processing time is the clock time of the streaming 

processing engine at the time it starts to perform transformations or aggregations on the 

temperature data.

To truly understand what’s going behind the incoming stream of data, it is imperative 

to be able to process the incoming data in terms of event time because the event time 

represents the point in time that the data was created. In an ideal state, the data will 

arrive and be processed shortly after it was created, and therefore the gap between 

the event time and processing time is small. In reality, that is often not the case, and 

therefore the lag varies over time according to the conditions that prevent the data from 

arriving immediately after it was created. The greater the lag, the greater the need to be 

able to process data using the event time and not using the processing time. Figure 6-3 

illustrates the relationship between event time and processing time; it also shows an 

example of what the lag looks like in reality. The notion of time is very much related to 

the windowing concept, which is described next. To deal with an unbounded incoming 

stream of data, one common practice in the streaming data processing world is to divide 

the incoming data into chunks by using the start and end times as the boundary. It is 

fairly obvious that it makes more sense to use the event time as the temporal boundaries.

Figure 6-2. Event time and processing

Chapter 6  Spark Streaming



226

 Windowing

Given the unbounded nature of streaming data, it is not feasible to have a global view of 

the incoming streaming data. Hence, to extract any meaningful value from the incoming 

data, you need to process it in chunks. For example, given a traffic count sensor that 

emits a count of the number of cars every 20 seconds, it is not feasible to compute a 

final sum. Instead, it is more logical to ask how many cars pass that sensor every minute 

or every five minutes. In this case, you need to partition the traffic-counting data into 

chunks of one minute or five minutes, respectively. Each chunk is called a window.

Windowing is a common streaming data processing pattern where the unbounded 

incoming stream of data is divided into chunks based on temporal boundaries, 

which can either be event time or processing time, although the former is used more 

commonly to reflect the actual reality of the data. However, given that the data may not 

arrive in the order it was created or it may be delayed because of network congestion, it 

is not possible to always have all the data that was created in that time window.

There are three commonly used windowing patterns, and most modern streaming 

processing engines support them. Figure 6-4 shows the three patterns.

Figure 6-3. The lag between event time and processing time
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A fixed/tumbling window basically divides the incoming stream of data into fixed-

size segments, where each one has a window length, a start time, and an end time. Each 

incoming piece of data will be slotted into one and only one fixed/tumbling window. 

With this small batch of data in each window, it is easy to reason about when performing 

aggregations such as sum, max, or average.

A sliding window is another way of dividing the incoming stream of data into fixed-

size segments, where each one has a window length and a sliding interval. If the sliding 

interval is the same size as the window length, then it is the same as the fixed/tumbling 

window. The example in Figure 6-4 shows that the sliding interval is smaller than the 

window length. This implies that one or more pieces of data will be included in more 

than one sliding window. Because of the overlapping of the windows, the aggregation 

will produce a smoother result than in the fixed/tumbling window.

The session window type is commonly used to analyze user behavior on a web site.  

Unlike the fixed/tumbling and sliding window, it has no predetermined window length.  

Rather, it is determined usually by a gap of inactivity that is greater than some threshold.  

For example, the length of a session window on Facebook is determined by the duration of 

activities that a user does, such as browsing the user feeds, sending messages, and so on.

 Stream Processing Engine Landscape
There is no shortage of innovations from the open source community in coming up 

with solutions for streaming data processing. In fact, at the moment, there are multiple 

streaming processing engines. Some of the earlier streaming processing engines were 

Figure 6-4. Three commonly used windowing patterns
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born out of necessity, some of the later ones were born out of research projects, and 

some evolved from batching processing engines. This section presents a few of the 

popular streaming processing engines: Apache Storm, Apache Samza, Apache Flink, 

Apache Kafka Streams, Apache Apex, and Apache Beam.

Apache Storm is one of the pioneers in the area of streaming data processing, and 

its popularity is mainly associated with the large-scale streaming processing that Twitter 

does. Apache Storm’s initial release was in 2011, and it became an Apache top-level 

project in 2014. In 2015, Twitter abandoned Apache Storm and switched over to Heron, 

which is the next generation of Apache Storm. Heron is more resource efficient and 

provides much better throughput than Apache Storm.

Apache Samza was created at LinkedIn to help solve its streaming processing needs, 

and it was open sourced in 2013. It was designed to work closely with Kafka and to run 

on top of Hadoop YARN for process isolation, security, and fault tolerance. Apache 

Samza was designed to process streams, which are composed of ordered, partitioned, 

replayable, and fault-tolerant sets of immutable messages.

Apache Flink started out as a fork of the research project called Stratosphere: 

Information Management on the Cloud. It became an Apache top-level project in 2015, 

and ever since then it has been steadily gaining popularity as a high-throughput and 

low-latency streaming engine. One key difference between Apache Flink and Apache 

Storm and Apache Samza is that Apache Flink supports both batch and streaming 

processing in the same engine.

Apache Kafka has evolved from a distributed publish-subscribe messaging system 

to a distributed streaming platform. It was created at LinkedIn and became a top-level 

Apache project in 2012. Unlike other streaming processing engines, Kafka’s stream 

processing capabilities are packaged as a light-weight library, which makes it easy to 

write real-time streaming applications.

Apache Apex is a relatively newcomer to this space. It was developed at a company 

called DataTorrent, which decided to open source it in 2016. Apache Apex is considered 

a Hadoop YARN native platform that unifies stream and batch processing.

Apache Beam is quite an interesting project that came out of Google in 2016. The 

main idea behind this project was to provide a powerful and easy-to-use model for both 

streaming and batch processing that is portable across a variety of runtime platforms, 

such as Apache Flink, Apache Spark, and Google Cloud DataFlow. In other words, think 

of Apache Beam as an uber-API for big data.
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There are two standard stream processing models, and each of the previous 

streaming processing engines (except Apache Beam) is subscribed to one of them.  

The two models are called record-at-a-time and micro-batching, as shown in Figure 6-5.

Both models have inherent advantages and disadvantages. The record-at-a-time 

model does what it sounds like; it immediately processes each piece of input data as it 

arrives. As a result, this model provides the lowest possible latency. The micro-batching 

model waits and accumulates a small batch of input data based on a configurable 

batching interval and then processes each batch in parallel. It is fairly obvious that the 

micro-batching model can’t provide the same level of latency as the other model. In 

terms of throughput, though, the micro-batch has a much higher rate because a batch of 

data is processed in an optimized manner, and therefore the cost per each piece of data 

is low compared to the other model. One interesting side note is that it is fairly easy to 

build a micro-batching model on top of a record-of-a-time model.

Of all the streaming processing engines listed, only Apache Spark employs the 

micro-batching model; however, there is already some work underway to support the 

record-at-a-time model.

Figure 6-5. Two different models of streaming processing
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 Spark Streaming Overview
One of the contributing factors to the popularity of Apache Spark’s unified data 

processing platform is the ability to perform streaming data processing as well as batch 

data processing.

With the high-level description of the intricacies and challenges of stream processing 

as well as a few core concepts out of the way, the remainder of this chapter will focus 

on the Spark streaming topic. First, it will provide a short and high-level understanding 

of some of the capabilities of Spark’s first-generation streaming processing engine 

called DStream. Then the bulk of the chapter will provide details about Spark’s second 

streaming processing engine called Structured Streaming. New Spark streaming 

applications should be developed on top of Structured Streaming to take advantage of 

some of the unique and advanced features it provides.

 Spark DStream
The first generation of the Spark streaming processing engine was introduced in 2012, 

and the main programming abstraction in this engine is called a discretized stream, 

or DStream. The way it works is by employing the micro-batching model to divide the 

incoming stream of data into batches, which are then processed by the Spark batch 

processing engine. This makes a lot of sense when an RDD is the main programming 

abstraction model. Each batch is internally represented by an RDD. The number of 

pieces of data in a batch is a function of the incoming data rate and the batch interval. 

Figure 6-6 shows the way DStream works at a high level.

A DStream can be created from an input data stream from sources such as Kafka, 

AWS Kinesis, a file, or a socket. One of the key pieces of information that is needed when 

creating a DStream is the batch interval, which can be in seconds or in milliseconds. 

With a DStream, you can apply a high-level data processing function such as map, filter, 

Figure 6-6. Spark DStream
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reduce, or reduceByKey on the incoming stream of data. Additionally, you can perform 

windowing operations such as reducing and counting over either a fixed/tumbling or a 

sliding window by providing a window length and a slide interval. One important note 

is that the window length and slide interval must be multiples of a batch interval. For 

example, if the batch interval is three seconds and the fixed/tumbling interval is used, 

then the window length and slide interval can be six seconds. Maintaining arbitrary state 

while performing computations across batches of data is supported in DStream, but it 

is a manual process and a bit cumbersome. One of the cool things you can do with a 

DStream is to join it with either another DStream or an RDD that represents static data. 

After all the processing logic is complete, you can use a DStream to write the data out to 

external systems such as a database, a file system, or HDFS.

Any new Spark streaming applications should be developed on the second 

generation Spark streaming processing engine called Structured Streaming, which will 

be covered in the next section. For the remainder of this section, you will look at a small 

word count Spark DStream application; the goal is to give you a sense of what a typical 

Spark DStream application looks like. Listing 6-1 contains the code for the word count 

application, which is an example from Apache Spark (see https://bit.ly/2G8N30G).

Listing 6-1. Apache Spark DStream Word Count Application

object NetworkWordCount {

  def main(args: Array[String]) {

    // Create the context with a 1 second batch size

    val sparkConf = new SparkConf().setAppName("NetworkWordCount")

    val ssc = new StreamingContext(sparkConf, Seconds(1))

    val host = "localhost"

    val port = 9999

     val lines = ssc.socketTextStream(host, port, StorageLevel.MEMORY_AND_

DISK_SER)

    val words = lines.flatMap(_.split(" "))

    val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _)

    wordCounts.print()
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    ssc.start()

    ssc.awaitTermination()

  }

}

There are a few important steps when putting together a DStream application. The 

entry point to a DStream application is StreamingContext, and one of the required 

inputs is a batch interval, which defines a time duration that Spark uses to batch 

incoming data into an RDD for processing. It also represents a trigger point for when 

Spark should execute the streaming application computation logic. For example, 

if the batch interval is three seconds, then Spark batches all the data that arrives 

within that three-second interval; after that interval elapses, it will turn that batch of 

data into an RDD and process it according to the processing logic you provide. Once 

a StreamingContext is created, the next step is to create an instance DStream by 

defining an input source. The previous example defines the input source as a socket 

that reads lines of text. After this point, then you provide the processing logic for the 

newly created DStream. The processing logic in the previous example is not complex. 

Once an RDD for a collection of lines is available after one second, then Spark executes 

the logic of splitting each line into words, converting each word into a tuple of the 

word and a count of 1, and finally summing up the count of the same word. Finally, 

the counts are printed out on the console. Remember that a streaming application is 

a long-running application; therefore, it requires a signal to start the task of receiving 

and processing the incoming stream of data. That signal is given by calling the 

start() function of StreamingContext, and this is usually done at the end of the file. 

The awaitTermination() function is used to wait for the execution of the streaming 

application to stop as well as a mechanism to prevent the driver from exiting while your 

streaming application is running. In a typically program, once the last line of code is 

executed, it will exit. However, a long-running streaming application needs to keep going 

once it is started and will end only when you explicitly stop it.

 Spark Structured Streaming
Structured Streaming is Spark’s second-generation streaming engine. It was designed to 

be much faster, more scalable, and more fault tolerant and to address the shortcomings 

in the first-generation streaming engine. It was designed for developers to build 
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end-to-end streaming applications that can react to data in real-time using a simple 

programming model that it is built on top of the optimized and solid foundation of the 

Spark SQL engine. One distinguishing aspect of Structured Streaming is that it provides a 

unique and easy way for engineers to build streaming applications.

Building production-grade streaming applications requires overcoming many 

challenges, and with that in mind, the Structured Streaming engine was designed to help 

deal with these challenges:

• Handling end-to-end reliability and guaranteeing correctness

• Performing complex transformations on a variety of incoming data

• Processing data based on the event time and dealing with out-of-

order data easily

• Integrating with a variety of data sources and data sinks

The following sections will cover various aspects of the Structured Streaming engine 

and the support it provides to deal with these challenges.

 Overview
There are two key ideas in Structured Streaming. The first one is treating streaming 

computation just like the way batch computation is treated, meaning treating the 

incoming data stream as an input table, and as a new set of data arrives, treating that as a 

new set of rows being appended to the input table, just like in Figure 6-7.

Figure 6-7. Treating streaming data as a table being continuously updated
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Another way to think of a stream of incoming data is as nothing more than a table 

being continuously appended. This simple yet radical idea has many implications. One 

of them is the ability to leverage the existing Structured APIs for DataFrame and Dataset 

in Scala, Java, or Python to perform streaming computations and have the Structured 

Streaming engine take care of running them incrementally and continuously as the new 

streaming data arrives. Figure 6-8 provides a visual comparison between performing 

batch and stream processing in Spark. The other implication is that the same Catalyst 

engine discussed in the previous chapter is used to optimize the streaming computation 

expressed via the Structured APIs. The knowledge you gain from working with the 

Structured APIs is directly transferrable to building streaming applications running on 

the Spark Structured Streaming engine. The only remaining parts to be learned are the 

ones that are specific to the streaming processing domain, such as event-time processing 

and maintaining state.

The second key idea is the transactional integration with the storage systems to 

provide an end-to-end, exactly once guarantee. The goal here is to ensure that the 

serving applications that read data from the storage systems see a consistent snapshot 

of the data that has been processed by the streaming applications. Traditionally, it 

is a developer’s responsibility to ensure there is no duplicate data or data loss when 

Figure 6-8. Comparing batch processing and streaming processing in Spark
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sending data from a streaming application to an external storage system. This is one 

of the pain points that was raised by streaming application developers. Internally, the 

Structure Streaming engine already provides an exactly once guarantee, and now that 

same guarantee is extended to external storage systems, provided those systems support 

transactions.

Starting with Apache Spark 2.3, the Structured Streaming engine’s processing 

model has been expanded to support a new model called continuous processing. The 

previous processing model was the micro-batching model, which is the default one. 

Given the nature of the micro-batching processing model, it is suitable for use cases that 

can tolerate end-to-end latency in the range of 100 milliseconds. For other use cases 

that need end-to-end latency as low as 1 millisecond, they should use the continuous 

processing model; however, it has an experimental status as of Apache Spark 2.3, and it 

has a few restrictions in terms of what streaming computations are allowed.

 Core Concepts
This section covers a set of core concepts you need to understand before building a 

streaming application. The main parts of a streaming application consist of specifying 

one or more streaming data sources, providing the logic for manipulating the incoming 

data streams in the form of DataFrame transformations, defining the output mode and 

the trigger, and finally specifying a data sink to write the result to. Since both the output 

mode and the trigger have default values, they are optional if their default values meet 

your use case. Figure 6-9 outlines the steps mentioned earlier. The optional ones are 

marked with an asterisk.

Each of these concepts will be described in detail in the following sections.

Figure 6-9. The core pieces of a Structured Streaming application
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 Data Sources

Let’s start with data sources. With batching processing, the data source is a static dataset 

that resides on some storage system like a local file system, HDFS, or S3. The data 

sources in Structured Streaming are quite different. The data they produce is continuous 

and may never end, and the producing rate can vary over time. Structured Streaming 

provides the following out-of-the-box sources:

• Kafka source: require Apache Kafka with version 0.10 or higher. 

This is the most popular data source in a production environment. 

Working with this data source will require a fundamental of 

understanding of how Kafka works. Connecting to and reading data 

from a Kafka topic requires a specific set of settings that must be 

provided. Please refer to the Kafka Integration Guide on the Spark 

website for more details.

• File source: Files are located on either the local file system, HDFS, 

or S3. As new files are dropped into a directory, this data source 

will pick them up for processing. Commonly used file formats are 

supported, such as text, CSV, JSON, ORC, and Parquet. See the 

DataStreamReader interface for an up-to-date list of supported file 

formats. A good practice when working with this data source is to 

completely write the input files and then move them into the path of 

this data source.

• Socket source: This is for testing purposes only. It reads UTF-8 data 

from a socket listening on a certain host and port.

• Rate source: This is for testing and benchmark purposes only. This 

source can be configured to generate a number of events per second, 

where each event consists of a timestamp and a monotonically 

increased value. This is the easiest source to work with while learning 

Structured Streaming.

One important property a data source needs to provide for Structured Streaming 

to deliver an end-to-end, exactly once guarantee is a way to track a read position in the 

stream. For example, a Kafka data source provides a Kafka offset to track the read position 

of a partition of a topic. This property determines whether a particular data source is fault 

tolerant. Table 6-1 describes some of the options for each out-of-the box data source.
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Apache Spark 2.3 introduced the DataSource V2 APIs, which is an official supported 

set of interfaces for Spark developers to develop custom data sources that can easily 

integrate with Structured Streaming. With this well-defined set of APIs, the number of 

custom Structured Streaming sources will dramatically increase in the near future.

 Output Modes

Output modes are a way to tell Structure Streaming how the output data should be 

written to a sink. This concept is unique to streaming processing in Spark. There are 

three options.

• Append mode: This is the default mode if output mode is not 

specified. In this mode, only new rows that were appended to the 

result table will be sent to the specified output sink.

Table 6-1. Out-of-the-Box Data Sources

Name Fault Tolerant Configurations

File Yes path: path to the input directory

maxFilesPerTrigger: maximum number of new files to  

read per trigger

latestFirst: Whether to process the latest files (in terms of 

modification time)

Socket no the following are required:

host: host to connect to

port: port to connect to

rate Yes rowsPerSecond: number of rows to generate per second

rampUpTime: ramp-up time in seconds before reaching 

rowsPerSecond

numPartitions: number of partitions

kafka Yes kafka.bootstrap.servers: a comma-separated list of host:port 

of kafka brokers

subscribe: a comma-separated list of topics

please refer to the kafka integration guide on the Spark website for more 

details (https://spark.apache.org/docs/latest/ 

structured-streaming-kafka-integration.html).
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• Complete mode: The entire result table will be written to the output sink.

• Update mode: Only the rows that were updated in the result table will 

be written to the output sink. For the rows that were not changed, 

they will not be written out.

Output mode is an concept that will take some time getting used to because there are 

a few dimensions to it. Given the three options, it is only natural to wonder under what 

circumstances one would use one output mode versus the other ones. It will make more 

sense when you will go through a few examples.

 Trigger Types

Trigger is another important concept to understand. The Structured Streaming engine uses 

the trigger information to determine when to run the provided streaming computation 

logic in your streaming application. Table 6-2 describes the different trigger types.

Table 6-2. Trigger Types

Type Description

not specified

(default)

For this default type, Spark will use the micro-batch mode and process the next 

batch of data as soon as the previous batch of data has completed processing.

Fixed interval For this type, Spark will use the micro-batch mode and process the batch of data 

based on the user-provided interval. if for whatever reason the processing of the 

previous batch of data takes longer than the interval, then the next batch of data 

is processed immediately after the previous one is completed. in other words, 

Spark will not wait until the next interval boundary.

One-time this trigger type is meant to be used for one-time processing of the available 

batch of data, and Spark will immediately stop the streaming application once 

the processing is completed. this trigger type is useful when the data volume 

is extremely low, and therefore it is more cost effective to spin up a cluster and 

process the data only a few times a day.

Continuous this trigger type invokes the new continuous processing mode that is designed 

for a certain streaming applications that require very low latency. this is new and 

experimental processing mode in Spark 2.3.
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 Data Sinks

Data sinks are at the opposite end of the data sources. They are meant for storing the 

output of streaming applications. It is important to recognize which sinks can support 

which output mode and whether they are fault tolerant. A short description of each sink 

is provided here, and the various options for each sink are outlined in Table 6-3.

• Kafka sink:  require Apache Kafka with version 0.10 or higher. There 

is a specific set of settings to connect to a Kafka cluster. Please refer to 

the Kafka Integration Guide on the Spark website for more details.

• File sink: This is a destination on a file system, HDFS, or S3. 

Commonly used file formats are supported, such as text, CSV, JSON, 

ORC, and Parquet. See the DataStreamReader interface for an up-to-

date list of supported file formats.

• Foreach sink: This is meant for running arbitrary computations on the 

rows in the output.

• Console sink: This is for testing and debugging purposes only and 

when working with low-volume data. The output is printed to the 

console on every trigger.

• Memory sink: This is for testing and debugging purposes only when 

working with low-volume data. It uses the memory of the driver to 

store the output.
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One important property a data sink must support for Structured Streaming to deliver 

an end-to-end, exactly once guarantee is to be idempotent for handling reprocessing. In 

other words, it must be able to handle multiple writes (that occur at different times) with 

the same data such that the outcome is the same as if there was only a single write. The 

multiple writes is a result of reprocessing data during a failure scenario.

To help solidify an understanding of the core concepts mentioned earlier, the 

next section will provide examples of how the various pieces fit together when putting 

together a Structured Streaming application in Spark.

Table 6-3. Out-of-the-Box Data Sinks

Name Supported
Output Modes

Fault
Tolerant

Configurations

File append Yes path: this is the path to the input directory.

all the popular file formats are supported. See 

DataFrameWriter for more details.

Foreach append,

Update,

Complete

Depends this is a very flexible sink, and it is implementation 

specific.

See the following details.

Console append,

Update,

Complete

no numRows: this is the number of rows to print every 

trigger. the default is 20 rows.

truncate: this specifies whether to truncate if each 

row is too long. the default is true.

memory append,

Complete

no N/A

kafka append,

Update,

Complete

Yes kafka.bootstrap.servers: this is a comma-

separated list of host:port of kafka brokers.

topic: this is a kafka topic to write data to.

please refer to the kafka integration guide on the Spark 

website for more details (https://spark.apache.

org/docs/latest/structured-streaming-

kafka-integration.html).
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 Watermarking
Watermarking is a commonly used technique in streaming processing engines to deal 
with data that arrives at a much later time than other data that was created at about the 
same time. Late data presents challenges to streaming processing engines when the 
streaming computation logic requires it to maintain some kind of state. Examples of this 
scenario are when there are aggregations or joining going on. Streaming application 
developers can specify a threshold to let the Structured Streaming engine know how 
late the data is expected to be in terms of the event time. With this information, the 
Structured Streaming engine can decide whether a piece of late data will be processed 
or discarded. More important, Structured Streaming uses the specified threshold to 
determine when old state can be discarded. Without this information, Structured 
Streaming will need to maintain all the state indefinitely, and this will cause out-of-
memory issues for streaming applications. Any production Structured Streaming 
applications that perform some kind of aggregations or joining will need to specify 
a watermark. This is an important concept, and more details about this topic will be 

discussed and illustrated in later sections.

Note apache kafka has become one of the most popular open source 
technologies in the big data landscape. it plays a critical role in the architecture 
of a big data platform by acting as the glue between the various data producers 
and consumers. at a high level, kafka is a distributed and fault-tolerant pub-sub 
messaging system for ingesting real-time data streams. the unit of data with 
kafka is called a message. messages are organized into topics, which are split into 
partitions to enable the ability to consume the messages in parallel. the messages 
of each partition are stored in a file with the structure that is similar to a commit 
log. each partition data file contains an ordered, immutable sequence of messages. 
a sequential iD is assigned to each message and is commonly referred to as the 
offset. as new messages arrive to a partition, they are simply appended to the 
end of the partition file. this key design point is what enables kafka to handle 
a high ingestion rate. each partition can be replicated to multiple replicas. the 
append-only style of writing messages to a partition and the partition replication 
are the key contributors to how kafka provides redundancy and scalability. each 
topic has a configuration for a retention period based on either size or age, after 
which messages are marked for deletion. For more details about kafka, please visit 
https://kafka.apache.org/documentation/.
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 Structured Streaming Application
This section will go through a Spark Structured Streaming example application to see 

how the aforementioned concepts are mapped to code. The following example is about 

processing a small set of mobile action events from a file data source. Each event consists 

of three fields:

• id: Represents the unique ID of a phone. In the provided sample data 

set, the phone ID will be something like phone1, phone2, phone3, and 

so on.

• action: Represents an action taken by a user. Possible values of the 

action are open and close.

• ts: Represents the timestamp when the action was taken by user. This 

is the event time.

The mobile event data is split into three JSON files, and they are available in the 

chapter6/data/mobile directory. To simulate the data streaming behavior, the JSON 

files will be copied into the input folder in a certain order, and then the output is 

examined to validate your understanding.

Let’s explore the mobile event data by using DataFrames to read the data. See  

Listing 6-2.

Listing 6-2. Reading in Mobile Data and Printing Out Its Schema

val mobileDataDF = spark.read.json("<path>/chapter6/data/mobile")

mobileDataDF.printSchema

 |-- action: string (nullable = true)

 |-- id: string (nullable = true)

 |-- ts: string (nullable = true)

file1.json

{"id":"phone1","action":"open","ts":"2018-03-02T10:02:33"}

{"id":"phone2","action":"open","ts":"2018-03-02T10:03:35"}

{"id":"phone3","action":"open","ts":"2018-03-02T10:03:50"}

{"id":"phone1","action":"close","ts":"2018-03-02T10:04:35"}
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file2.json

{"id":"phone3","action":"close","ts":"2018-03-02T10:07:35"}

{"id":"phone4","action":"open","ts":"2018-03-02T10:07:50"}

file3.json

{"id":"phone2","action":"close","ts":"2018-03-02T10:04:50"}

{"id":"phone5","action":"open","ts":"2018-03-02T10:10:50"}

By default, Structured Streaming requires a schema when reading data from a file-

based data source. This makes sense because initially the directory might be empty, so 

therefore Structured Streaming wouldn’t be able to infer the schema. However, if you 

really want it to infer the schema, you can set the configuration spark.sql.streaming.

schemaInference to true. In this example, you will explicitly create a schema. Listing 6-3 

contains a snippet of code for creating the schema for the mobile event data.

Listing 6-3. Creating a Schema for Mobile Event Data

import org.apache.spark.sql.types._

import org.apache.spark.sql.functions._

val mobileDataSchema = new StructType().add("id", StringType, false)

                                       .add("action", StringType, false)

                                       .add("ts", TimestampType, false)

Let’s start with a simple use case for processing the mobile event data. The goal is 

to generate a count per action type using a fixed window with a ten-second window 

length. The three lines of code in Listing 6-4 will help achieve this goal. The first line of 

code demonstrates the usage of a file-based data source by using the DataStreamReader 

to read data from a directory. The expected data format is in JSON, and the schema 

is defined in Listing 6-3. The returned object is a DataFrame, which you are familiar 

with from Chapter 4. However, this DataFrame is a streaming DataFrame, so when the 

isStreaming function is invoked, the returned value should be true. The streaming 

computation logic in this simple application is expressed in the second line of code, 

which performs the group by transformation using the action column and a fixed 

window based on the ts column. A keen reader probably already recognizes this, 

but just to emphasize the point about event time, the fixed window in the group by 

transformation is based on the timestamp embedded inside the mobile event data. The 

third line of code is an important one because it defines the output mode and data sink, 
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and most importantly it tells the Structured Streaming engine to start incrementally 

running our streaming computation logic expressed in the second line. To go into more 

detail, the third line of code uses the DataFrameWriter instance of the actionCountDF 

DataFrame to specify the console as the data sink, meaning the output will be printed 

to a console for you to examine. It then defines the output mode as “complete” so you 

can see all the records in the result table. Finally, it invokes the start() function of the 

DataStreamWriter to start the execution, which means the file-based data source will 

start processing files that are dropped into the /<path>/chapter6/data/input directory. 

Another important thing to note is that the start function will return an instance 

of a StreamingQuery class, which represents a handle to a query that is executing 

continuously in the background as new data arrives. You can use the mobileConsoleSQ 

streaming query to examine the status and progress of the computation in the streaming 

application.

Before you type in the three lines of code in Listing 6-4, make sure the input folder is 

empty.

Listing 6-4. Generating a Count per Action Type in a Ten-Second Sliding Window

val mobileSSDF = spark.readStream.schema(mobileDataSchema).json("/<path>/

chapter6/data/input")

mobileSSDF.isStreaming

val actionCountDF = mobileSSDF.groupBy(window($"ts", "10 minutes"), 

$"action").count

val mobileConsoleSQ = actionCountDF.writeStream

                                   . format("console").option("truncate", 

"false")

                                   .outputMode("complete")

                                   .start()

To start seeing the output in the console like in Listing 6-5, copy file1.json from the 

chapter6/data/mobile directory to the chapter6/data/input directory. The following 

output should show up in the console. The output tells you there is only one window 

from 10:00 to 10:10, and within this window there is one close action and three open 
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actions, which should match the four lines of events in files1.json. Now repeat the 

same process with file file2.json, and the output should match Listing 6-6. The data 

file file2.json contains one event with an open action and another with a close action, 

and both fall into the same window as earlier. Therefore, the counts are updated to two 

close actions and four open actions, respectively, for the action type.

Listing 6-5. Output from Processing file1.json
------------------------------------------------------------

Batch: 0

------------------------------------------------------------

+-------------------------------------------+-------+------+

|                                     window| action| count|

+-------------------------------------------+-------+------+

| [2018-03-02 10:00:00, 2018-03-02 10:10:00]|  close|     1|

| [2018-03-02 10:00:00, 2018-03-02 10:10:00]|   open|     3|

+-------------------------------------------+-------+------+

Listing 6-6. Output from Processing file2.json

-----------------------------------------------------------

Batch: 1

-----------------------------------------------------------

+------------------------------------------+-------+------+

|                                    window| action| count|

+------------------------------------------+-------+------+

|[2018-03-02 10:00:00, 2018-03-02 10:10:00]|  close|     2|

|[2018-03-02 10:00:00, 2018-03-02 10:10:00]|   open|     4|

+------------------------------------------+-------+------+

At this point, let’s invoke a few functions of the query stream mobileConsoleSQ (an 

instance of the StreamingQuery class) to examine the status and progress. The status() 

function will tell you what’s going at the current status of the query stream, which can 

be either in wait mode or in the middle of processing the current batch of events. The 

lastProgress() function provides some metrics about the processing of the last batch 

of events including processing rates, latencies, and so on. Listing 6-7 contains the sample 

output from both of these functions.
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Listing 6-7. Output from Calling the status() and lastProgress() Functions

scala> mobileConsoleSQ.status

res14: org.apache.spark.sql.streaming.StreamingQueryStatus =

{

  "message" : "Waiting for data to arrive",

  "isDataAvailable" : false,

  "isTriggerActive" : false

}

scala> mobileConsoleSQ.lastProgress

res17: org.apache.spark.sql.streaming.StreamingQueryProgress =

{

  "id" : "2200bc3f-077c-4f6f-af54-8043f50f719c",

  "runId" : "0ed4894c-1c76-4072-8252-264fe98cb856",

  "name" : null,

  "timestamp" : "2018-03-18T18:18:12.877Z",

  "batchId" : 2,

  "numInputRows" : 0,

  "inputRowsPerSecond" : 0.0,

  "processedRowsPerSecond" : 0.0,

  "durationMs" : {

    "getOffset" : 1,

    "triggerExecution" : 1

  },

  "stateOperators" : [ {

    "numRowsTotal" : 2,

    "numRowsUpdated" : 0,

    "memoryUsedBytes" : 17927

  } ],

  "sources" : [ {

    "description" : "FileStreamSource[file:<path>/chapter6/data/input]",

    "startOffset" : {

      "logOffset" : 1

    },

Chapter 6  Spark Streaming



247

    "endOffset" : {

      "logOffset" : 1

    },

    "numInputRows" : 0,

    "inputRowsPerSecond" : 0.0,...

Let’s finish processing the last file of the mobile event data. It’s the same as file2.json.  

Copy file3.json to the input directory, and the output should look something like 

Listing 6-8. File file3.json contains one close action that belongs to the first window 

and an open action that falls into a new window from 10:10 to 10:20. In total, there 

are eight actions. Seven of them fall into the first window, and one action falls into the 

second window.

Listing 6-8. Output from Processing file3.json

-----------------------------------------------------------

Batch: 2

-----------------------------------------------------------

+------------------------------------------+-------+------+

|                                    window| action| count|

+------------------------------------------+-------+------+

|[2018-03-02 10:00:00, 2018-03-02 10:10:00]|  close|     3|

|[2018-03-02 10:00:00, 2018-03-02 10:10:00]|   open|     4|

|[2018-03-02 10:10:00, 2018-03-02 10:20:00]|   open|     1|

+------------------------------------------+-------+------+

For a production and long-running streaming application, it is necessary to call the 

StreamingQuery.awaitTermination() function, which is a blocking call to prevent the 

driver process from exiting, and to let the streaming query continuously run and process 

new data as it arrives into the data source.

While learning and playing around with Structured Streaming, sometimes you 

want to stop a streaming query to change either the output mode, the trigger, or other 

configurations. You can use the StreamingQuery.stop() function to stop the data source 

from receiving new data and stop the continuous execution of logic in the streaming 

query. See Listing 6-9 for examples of managing streaming queries.

Chapter 6  Spark Streaming



248

Listing 6-9. Managing a Streaming Query

// this is blocking call

mobileSQ.awaitTermination()

// stop a streaming query

mobileSQ.stop

// another way of stopping all streaming queries in a Spark application

for(qs <- spark.streams.active) {

    println(s"Stop streaming query: ${qs.name} - active: ${qs.isActive}")

    if (qs.isActive) {

      qs.stop  

    }

}

 Streaming DataFrame Operations
The previous example shows that once a data source is configured and defined, the 

DataStreamReader will return an instance of a DataFrame, which is the same DataFrame 

class you are familiar with from Chapter 4 and Chapter 5. This means you can use most 

of the familiar operations and Spark SQL functions to express your application streaming 

computation logic. However, it is important to note that not all operations in the 

DataFrame are supported for a streaming DataFrame. This is because some of them are 

not applicable in the context of streaming data processing. Examples of such operations 

include limit, distinct, and sort.

 Selection, Project, and Aggregation Operations

One of the selling points of Structured Streaming is a set of unified APIs for batch 

processing and stream processing in Spark. With a streaming DataFrame, it is feasible 

to apply any of the select and filter transformations to it, as well as any of the Spark 

SQL functions that operate on individual columns. In addition, basic aggregations and 

the advanced analytics functions covered in Chapter 5 are available to a streaming 

DataFrame as well. To complete the similarity comparison of the two DataFrame types 

(static and streaming), a streaming DataFrame can be registered as a temporary view 

and then apply SQL queries on it. Listing 6-10 provides an example of using filtering and 

applying Spark SQL functions on top of the mobileSSDF DataFrame in Listing 6-4.
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Listing 6-10. Applying Filtering and Spark SQL Functions on a Streaming 

DataFrame

import org.apache.spark.sql.functions._

val cleanMobileSSDF = mobileSSDF.filter($"action" === "open" || $"action" 

=== "close")

                                .select($"id", upper($"action"), $"ts")

// create a view to apply SQL queries on

cleanMobileSSDF.createOrReplaceTempView("clean_mobile")

spark.sql("select count(*) from clean_mobile")

It is important to note the following DataFrame transformations are not supported 

yet in a streaming DataFrame either because they are too complex to maintain state or 

because of the unbounded nature of streaming data.

• Multiple aggregations or a chain of aggregations on a streaming 

DataFrame.

• Limit and take N rows.

• Distinct transformation. However, there is a way to deduplicate data 

using a unique identifier.

• Sorting on a streaming DataFrame without any aggregation. 

However, sorting is supported after some form of aggregation.

Any attempt to use one of the unsupported operations will result in an 

AnalysisException exception and a message like “operation XYZ is not supported with 

streaming DataFrames/Datasets.”

 Join Operations

One of the coolest things you can do with a streaming DataFrame is to join it with either 

a static DataFrame or another streaming DataFrame. However, joining is a complex 

operation, and the tricky part is not all of the data for a streaming DataFrame is available 

at the time of joining. Therefore, the result of a join is generated incrementally at each 

trigger point, similar to how the result of an aggregation is generated.
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Starting with Spark 2.3, Structured Streaming supports joining two streaming 

DataFrames. Given the unbounded nature of a streaming DataFrame, Structured 

Streaming must maintain the past data of both streaming DataFrames to match with 

any future, yet-to-be-received data. To avoid the explosion of the streaming state that 

Structured Streaming must maintain, a watermark can be optionally provided for both 

streaming DataFrames, and a constraint on event time must be defined in the join 

condition. Let’s go through an IoT use case of joining two data sensor–related data 

streams of a data center. The first one contains the temperature reading of the various 

locations in a data center, and the second one contains the load information of each 

computer in the same data center. The join condition of these two streams is based on 

the location. Listing 6-11 contains code about providing watermarks and a constraint on 

the event time in the join condition.

Listing 6-11. Joining Two Streaming DataFrames

import org.apache.spark.sql.functions.expr

// the specific streaming data source information is not important in this 

example

val tempDataDF = spark.readStream. ...

val loadDataDF = spark.readStream. ...

val tempDataWatermarkDF = tempDataDF.withWaterMark("temp_taken_time",  

"1 hour")

val loadDataWatermarkDF = loadDataDF.withWaterMark("load_taken_time",  

"2 hours")

// join on the location id as well as the event time constraint

tempWithLoadDataDF = tempDataWatermarkDF.join(loadDataWatermarkDF,

   expr(""" temp_location_id = load_location_id AND

            load_taken_time >= temp_taken_time AND

            load_taken_time <= temp_taken_time + interval 1 hour

        """)

)

There are more restrictions on the outer joins when joining a static DataFrame and a 

streaming DataFrame and when joining two streaming DataFrames. Table 6-4 provides 

some details about this.
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 Working with Data Sources
The previous section described each of the built-in sources that Structured Streaming 

provides. This section will go into more detail and will provide sample code for working 

with them.

Both the Socket and Rate data sources are designed for testing and learning purposes 

only, and they shouldn’t be used in production.

 Working with the Socket Data Source

The Socket data source is fairly easy to work with, and It only requires information about 

about the host and port to connect. Before starting a streaming query for the Socket data 

source, it is important to start a socket server first using a network command-line utility 

like nc on Mac or netcat on Windows. In this example, the nc network utility is used. 

You need two terminals. The first one is for starting up a socket server with port number 

9999; the command is nc -lk 9999. The second terminal runs the Spark shell with the 

code in Listing 6-12.

Table 6-4. Some Details About Joining Streaming DataFrames

Left Side+Right Side Join Type Note

Static+Streaming inner Supported.

Static+Streaming Left outer not supported.

Static+Streaming right outer Supported.

Static+Streaming Full outer not supported.

Streaming+Streaming inner Supported.

Streaming+Streaming Left outer Conditionally supported. You must specify the watermark 

on the right side and the time constraint.

Streaming+Streaming right outer Conditionally supported. You must specify the watermark 

on the left and the time constraint.

Streaming+Streaming Full outer not supported.
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Listing 6-12. Reading Streaming Data from the Socket Data Source

val socketDF = spark.readStream.format("socket")

                               .option("host", "localhost")

                               .option("port", "9999").load()

val words = socketDF.as[String].flatMap(_.split(" "))

val wordCounts = words.groupBy("value").count()

val query = wordCounts.writeStream.format("console")

                                  .outputMode("complete")

                                  .start()

Now go back to the first window, type Spark is great, and hit the Enter key. Then 

type Spark is awesome and hit the Enter key. Hitting the Enter key tells the Netscat 

server to send whatever was typed to the socket listener. If everything went well, there 

should two output batches in the Spark shell console, as in Listing 6-13, and each one 

contains the count of each word. Since Structured Streaming maintains state across 

batches, it was able to update the count of the Spark and is words to 2.

Listing 6-13. Output of the Socket Data Source in the Spark Shell Console

-------------------------------------------

Batch: 0

-------------------------------------------

+------+------+

| value| count|

+------+------+

| great|     1|

|    is|     1|

| Spark|     1|

+------+------+
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-------------------------------------------

Batch: 1

-------------------------------------------

+-------+------+

|  value| count|

+-------+------+

|  great|     1|

|     is|     2|

|awesome|     1|

|  Spark|     2|

+-------+------+

When you are done with testing the Socket data source, you can stop the streaming 

query by calling on the stop function, as shown in Listing 6-14. As expected, after 

the streaming query is stopped, typing anything in the first terminal will not result in 

anything being displayed in the Spark shell.

Listing 6-14. Stopping a Streaming Query of the Socket Data Source

query.stop

 Working with the Rate Data Source

Similar to the Socket data source, the Rate data source was designed for testing and 

learning purposes only. It supports a few options, and one of them is the number of rows 

to generate per second. If that number is high, then another optional configuration can 

be provided for the ramp-up time to get to the number of rows per second. Each piece 

of data the Rate source produces contains only two columns: the timestamp and the 

auto-increment value. Listing 6-15 contains the code for printing out the data from the 

Rate data source and what the first batch looks like in the console.

Listing 6-15. Working with the Rate Data Source

// configure it to generate 10 rows per second

val rateSourceDF = spark.readStream.format("rate")

                                   .option("rowsPerSecond","10")

                                   .load()

Chapter 6  Spark Streaming



254

val rateQuery = rateSourceDF.writeStream

                            .outputMode("update")

                            .format("console")

                            .option("truncate", "false")

                            .start()

-------------------------------------------

Batch: 1

-------------------------------------------

+-----------------------+------+

|              timestamp| value|

+-----------------------+------+

|2018-03-19 10:30:21.952|     0|

|2018-03-19 10:30:22.052|     1|

|2018-03-19 10:30:22.152|     2|

|2018-03-19 10:30:22.252|     3|

|2018-03-19 10:30:22.352|     4|

|2018-03-19 10:30:22.452|     5|

|2018-03-19 10:30:22.552|     6|

|2018-03-19 10:30:22.652|     7|

|2018-03-19 10:30:22.752|     8|

|2018-03-19 10:30:22.852|     9|

+-----------------------+------+

One interesting thing to note is the number in the value column is guaranteed to be 

consecutive across all the partitions. Listing 6-16 illustrates what the output looks like 

with three partitions.

Listing 6-16. The Output of the Rate Data Source with the Partition ID

import org.apache.spark.sql.functions._

// with 3 partitions

val rateSourceDF2 = spark.readStream.format("rate")

                                    .option("rowsPerSecond","10")

                                    .option("numPartitions",3).load()
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// add partition id column to examine

val rateWithPartitionDF = rateSourceDF2.withColumn("partition_id",  

spark_partition_id())

val rateWithPartitionQuery = rateWithPartitionDF.writeStream

                                                .outputMode("update")

                                                .format("console")

                                                 .option("truncate", "false")

                                                .start()

// output of batch one

----------------------------------------------

Batch: 1

----------------------------------------------

+-----------------------+------+-------------+

|              timestamp| value| partition_id|

+-----------------------+------+-------------+

|2018-03-24 08:46:43.412|     0|            0|

|2018-03-24 08:46:43.512|     1|            0|

|2018-03-24 08:46:43.612|     2|            0|

|2018-03-24 08:46:43.712|     3|            1|

|2018-03-24 08:46:43.812|     4|            1|

|2018-03-24 08:46:43.912|     5|            1|

|2018-03-24 08:46:44.012|     6|            2|

|2018-03-24 08:46:44.112|     7|            2|

|2018-03-24 08:46:44.212|     8|            2|

|2018-03-24 08:46:44.312|     9|            2|

+-----------------------+------+-------------+

The previous output shows that the ten rows are spread across three partitions, and 

the values are consecutive as if they were generated for a single partition. If you are 

curious about the implementation of this data source, then check out https://github.

com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/

execution/streaming/RateSourceProvider.scala.
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 Working with the File Data Source

The File data source is the simplest to understand and work with. Let’s say there is a 

need to process new files that are periodically copied into a directory. This is the perfect 

data source for this use case. Out of the box, it supports all the commonly used file 

formats including text, CSV, JSON, ORC, and Parquet. For a complete list of supported 

file formats, please consult the DataStreamReader interface. Among the four options that 

the File data source supports, only the input directory to read files from is required.

As new files are copied into a specified directory, the File data source will pick up 

all of them for processing. It is possible to configure the File data source to selectively 

pick up only a fixed number of new files for processing. The option to use to specify the 

number of files is the maxFilesPerTrigger option. Listing 6-17 provides an example of 

reading JSON mobile data events from a directory and using the same schema defined 

in Listing 6-3. Another interesting optional option that the File data source supports 

is whether to process the latest files before the older files. The last timestamp of a file 

is used to determine which file is newer than another file. The default behavior is to 

process files from oldest to latest. This particular option is useful when there is a large 

backlog of files to process and you want to process the new files first.

Listing 6-17. Working with the File Data Source

val mobileSSDF = spark.readStream.schema(mobileDataSchema).json("<directory 

name>")

// if we want to specify maxFilesPerTrigger

val mobileSSDF =  spark.readStream.schema(mobileDataSchema).

                                         option("maxFilesPerTrigger", 

5).json("<directory name>")

// if we want to process new files first

val mobileSSDF =  spark.readStream.schema(mobileDataSchema).

                                         option("latestFirst", "true").

json("<directory name>")
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Table 6-5. Required Options for the Kafka Data Source

Option Value Description

kafka.bootstrap.

servers

host1:port1, 

host2:port2

this is a comma-separated list of kafka broker 

servers. Consult your kafka administrators for the 

host name and port number to use.

subscribe topic1, topic2 this is a comma-separated list of topic names for 

this data source to read data from.

subscribePattern topic.* this is a regex pattern to express which topics to 

read data from. this is a little bit more flexible than 

the subscribe option.

assign { topic1: 

[1,2], topic2: 

[3,4] }

With this option, you can specify the specific list 

of partitions of the topics to read data from. this 

information must be provided in JSOn format.

 Working with the Kafka Data Source

A Kafka data source is probably the most commonly used one in production streaming 

applications. To be effective at working with this data source, you need a certain amount 

of basic knowledge of working with Kafka. At a high level, this data source acts as a Kafka 

consumer; therefore, the information it needs is similar to the kind a Kafka consumer 

needs. There are two required pieces of information and a handful of optional ones.

The two required pieces of information are a list of Kafka servers to connect to and 

information about one or more topics to read the data from. To support the various ways 

of choosing which topics and partitions of topics to read data from, it supports three 

different ways of specifying this information. You just need to pick the one that best suits 

your use case. Table 6-5 contains details about the two required options.
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After these required options are specified, then you can optionally specify the 

options in Table 6-6, which contains only a few of the commonly used ones. For 

a complete list of optional options, please consult Structured Streaming and the 

Kafka Integration Guide at https://spark.apache.org/docs/latest/structured-

streaming-kafka-integration.html. The reason these options are optional is because 

they have default values.

The startingOffsets and endingOffsets options are a way for you to have fine-

grained control of processing data in Kafka from a specific point in a particular partition 

of a particular topic. This kind of flexibility is extremely useful in scenarios when 

reprocessing is needed because of either failure or some bugs were introduced in a 

new version of the software or when retraining a machine learning model. The ability 

to reprocess data in Kafka is one of the reasons that Kafka is popular in the world of 

big data processing. It may be obvious, but startingOffsets is used by the Kafka data 

source to figure out where to start reading the data from in Kafka, and therefore, once 

the processing is going, this option is no longer used. The endingOffsets option is used 

by the Kafka data source to figure out when to stop reading the data from Kafka. For 

example, if you want your streaming application to read the latest data from Kafka and 

continue with processing new incoming data, then the value of both startingOffsets 

and endingOffsets would be the latest.
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Table 6-6. Optional Options for the Kafka Data Source

Option Default 
Value

Value Description

starting 

Offsets

latest earliest, latest

JSOn string of starting offset for each topic, i.e.,

{ "topic1": { "0":45, "1": -1},

"topic2": { "0":-2}

}

earliest means the 

beginning of a topic.

latest means whatever the 

latest data is in a topic.

When using the JSOn string 

format, -2 represents the 

earliest offset in a specific 

partition, and -1 represents 

the latest offset in a specific 

partition.

ending 

Offsets

latest latest

JSOn string, i.e.,

{ "topic1": { "0":45, "1": -1},

"topic2": { "0":-2}

}

latest means the latest 

data in a topic.

When using the JSOn string 

format, -1 represents the 

latest offset in a specific 

partition. naturally -2 is not 

applicable for this option.

maxOffsets 

PerTrigger

none Long, i.e., 500 this option is a rate limit 

mechanism to control the 

number of records to process 

per trigger interval. if a value 

is specified, it represents 

the total number of records 

across all the partitions, not 

per partition.

Chapter 6  Spark Streaming



260

By default, the Kafka data source is not included in the Apache Spark binary 

available at https://spark.apache.org/downloads.html. If you are going to use the 

Kafka data source from the Spark shell, then it is important to start the Spark shell with 

an extra option to ask it to download and include the right JAR file. The deployment 

section of Structured Streaming and the Kafka integration documentation (https://

spark.apache.org/docs/latest/structured-streaming-kafka-integration.html) 

provides the information about the extra option. It looks something like Listing 6-18.

Listing 6-18. Start Spark Shell with the Kafka Data Source JAR File

./bin/spark-shell --packages org.apache.spark:spark-sql-

kafka-0-10_2.11:2.3.0

// if the above package is not provided, the following problem will be encountered

java.lang.ClassNotFoundException: Failed to find data source: kafka. Please 

find packages at http://spark.apache.org/third-party-projects.html

   at org.apache.spark.sql.execution.datasources.DataSource$.lookupDataSource 

(DataSource.scala:635)

   at org.apache.spark.sql.streaming.DataStreamReader.load(DataStreamReader.

scala:159)

Let’s start with a simple example of processing the data from the beginning of a 

Kafka topic called pageviews and continue processing new data as it arrives in Kafka. See 

Listing 6-19 for the code.

Listing 6-19. Kafka Data Source Example

import org.apache.spark.sql.functions._

val pvDF = spark.readStream.format("kafka")

                                               . option("kafka.bootstrap.

servers","localhost:9092")

                        .option("subscribe", "pageviews")

                        .option("startingOffsets", "earliest")

                        .load()
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pvDF.printSchema

 |-- key: binary (nullable = true)

 |-- value: binary (nullable = true)

 |-- topic: string (nullable = true)

 |-- partition: integer (nullable = true)

 |-- offset: long (nullable = true)

 |-- timestamp: timestamp (nullable = true)

 |-- timestampType: integer (nullable = true)

One thing that is unique about the Kafka data source is that the streaming 

DataFrame it returns has a fixed schema, which looks something like Listing 6-19. The 

value column contains the actual content of each message in Kafka, and the column 

type is binary. Kafka doesn’t really care about the content of each message, and therefore 

it treats it as a binary blob. The rest of columns in the schema contains the metadata of 

each message. If the content of the messages was serialized in some binary format at 

the time of sending to Kafka, then you would need a way to deserialize it using either 

Spark SQL functions or an UDF before those messages can be processed in Spark. In the 

following example, the content is a string, so you simply need to cast it to a String type. 

For demonstration purposes, Listing 6-20 performs the casting of the value column as 

well as selecting a few metadata-related columns to display.

Listing 6-20. Casting Message Content to String Type

val pvValueDF = pvDF.selectExpr("partition","offset","CAST(key AS STRING)", 

"CAST(value AS STRING)")

                    .as[(String, Long, String, String)]

The examples in Listing 6-21 contain a few variations of specifying the Kafka topic, 

partition, and offset to read messages from Kafka.

Listing 6-21. Various Examples of Specifying Kafka Topic, Partition, and Offset

// reading from multiple topics with default startingOffsets and endingOffsets

val kafkaDF = spark.readStream.format("kafka")

                                             .option("kafka.bootstrap.server

s","server1:9092,server2:9092")

                                  .option("subscribe", "topic1,topic2")

                                  .load()
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// reading from multiple topics using subscribePattern

val kafkaDF = spark.readStream.format("kafka")

                               .option("kafka.bootstrap.servers","server1:90

92,server2:9092")

                              .option("subscribePattern", "topic*").load()

// reading from a particular offset of a partition using JSON format

//  the triple quotes format in Scala is used to escape double quote in JSON 

string

Val kafkaDF = spark.readStream.format("kafka")

                               .option("kafka.bootstrap.

servers","localhost:9092")

                              .option("subscribe", "topic1,topic2")

                               .option("startingOffsets", """  

{"topic1": {"0":51} } """)

                              .load()

 Working with the Custom Data Source

Prior to Spark 2.3, the Data Source APIs have limitations and are not very extensible. 

Therefore, it is quite challenging for Spark developers to build custom data sources. 

Starting with Spark 2.3, the Data Source V2 APIs were introduced to address the issues 

in V1 as well as to provide a set of new APIs that are clean, extensible, and easy to work 

with. The Data Source V2 APIs are available in Scala only.

This section is meant to provide a quick overview of the interfaces and main APIs 

that are involved in building a custom data source using the Data Source V2 APIs.  

A few good references to examine are the implementations of the built-in data sources 

such as classes RateSourceProvider.scala, RateSourceProviderV2.scala, and 

KafkaSourceProvider.scala.

All custom data sources must implement a marker interface called DataSourceV2, 

and then it can select whether to implement interface ContinuousReadSupport 

or MicroBatchReadSupport or both. For example, KafkaSourceProvider.scala 

implements both interfaces because it allows users to choose which processing mode to 

use based on a use case. Each of the two interfaces acts has a factory method for creating 

an instance of ContinuousReader or MicroBatchReader, respectively. The bulk of the 

custom data source implementation will be in implementing the APIs defined in these 

two interfaces.
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I’ve implemented a fun and non-fault-tolerant data source that reads wiki edits from 

the Wikipedia IRC server. It is fairly easy to use Spark Structured Streaming to analyze the 

wiki edits of various Wikipedia sites. See README.md in the GitHub repository (https://

github.com/beginning-spark/book/tree/master/chapter6/custom-data-source) 

for more details. To use this custom data source in the Spark shell, the first step is to 

download the streaming_sources-assembly-0.0.1.jar JAR file from the previous 

GitHub repository. Listing 6-22 describes the remaining steps.

Listing 6-22. Analyzing Wiki Edits with a Custom Data Source

// start up spark-shell with streaming_sources-assembly-0.0.1.jar

bin/spark-shell --jars <path>/streaming_sources-assembly-0.0.1.jar

// once spark-shell is successfully started

// define the data source provider name

val provideClassName = "org.structured_streaming_sources.wikedit.

WikiEditSourceV2"

// use custom data and subscribe to English Wikipedia edit channel

val wikiEditDF = spark.readStream.format(provideClassName).

option("channel", "#en.wikipedia").load()

// examine the schema of wikiEditDF streaming DataFrame

wikiEditDF.printSchema

 |-- timestamp: timestamp (nullable = true)

 |-- channel: string (nullable = true)

 |-- title: string (nullable = true)

 |-- diffUrl: string (nullable = true)

 |-- user: string (nullable = true)

 |-- byteDiff: integer (nullable = true)

 |-- summary: string (nullable = true)
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// select only a few columns for analysis

val wikiEditSmallDF = wikiEditDF.select("timestamp", "user", "channel", "title")

// start streaming query and write out the wiki edits to console

val wikiEditQS = wikiEditSmallDF.writeStream.format("console").option 

("truncate", "false").start()

// wait for a few seconds for data to come in and the result might look like below

+-----------------------+------------+--------------+-------------------------+

|          timestamp|            user|       channel|                    title|

+-----------------------+------------+--------------+-------------------------+

| 2018-03-24 15:36:39.409| 6.62.103.211| #en.wikipedia|       Thomas J.R. Hughes|

| 2018-03-24 15:36:39.412| .92.206.108| #en.wikipedia|List of international schools|

+-----------------------+------------+--------------+-------------------------+

// to stop the query stream

wikiEditQS.stop

Notice the custom data source name is a fully qualified class name of the data source 

provider. It is not short like the built-in data sources because those already registered 

their short names in a file called org.apache.spark.sql.sources.DataSourceRegister.

 Working with Data Sinks
The last step in a streaming application usually involves writing out the computation 

result to some external system or storage system. Structure Streaming provides five built-

in sinks. Three of them are for production usage, and the remaining two are for testing 

purposes. The following sections will go into detail on each one and will provide sample 

code for working with them.

 Working with the File Data Sink

The File data sink is a pretty straightforward data sink to understand and to work with. 

The only required option you need to provide is the output directory. Since the File data 

sink is fault-tolerant, Structured Streaming will require a checkpoint location to write 

the progress information and other metadata to help with the recovery when there is a 

failure.
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The example in Listing 6-23 configures the Rate data source to generate ten rows per 

second, send the generated rows to two partitions and write the data out in JSON format 

to the specified directory.

Listing 6-23. Writing Data from the Rate Data Source to the File Sink

val rateSourceDF = spark.readStream.format("rate")

                                   .option("rowsPerSecond","10")

                                   .option("numPartitions","2")

                                   .load()

val rateSQ = rateSourceDF.writeStream.outputMode("append")

                                     .format("json")

                                     .option("path", "/tmp/output")

                                      .option("checkpointLocation", "/tmp/

ss/cp")

                                     .start()

// use the line below to stop the writing the data

rateSQ.stop

Since the number of partitions was configured as two, two files are written out to the 

output folder each time Structured Streaming writes out the data at each trigger point. 

So, if you examine the output folder, you will see files with names that start with either 

part-00000 or part-00001. The Rate data source was configured with ten rows per 

second, and there are two partitions; therefore, each output contains five rows, as shown 

in Listing 6-24.

Listing 6-24. The Content of Each Output File

{"timestamp":"2018-03-24T17:42:08.182-07:00","value":205}

{"timestamp":"2018-03-24T17:42:08.282-07:00","value":206}

{"timestamp":"2018-03-24T17:42:08.382-07:00","value":207}

{"timestamp":"2018-03-24T17:42:08.482-07:00","value":208}

{"timestamp":"2018-03-24T17:42:08.582-07:00","value":209}
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 Working with the Kafka Data Sink

In Structured Streaming, writing the data of a streaming DataFrame to a Kafka data sink 

is a little simpler than reading data from a Kafka data source. The Kafka data sink can be 

configured with the four options listed in Table 6-7. Three of the options are required. 

The important options to understand are the key and value, which are related to the 

structure of a Kafka message. As mentioned earlier, the unit of data in Kafka is a message, 

which essentially is a key-value pair. The role of the value is fairly obvious, which is to 

hold the actual content of a message, and it has no meaning to Kafka. As far as Kafka 

is concerned, the value is just a bunch of bytes. The key, however, is considered by 

Kafka as a piece of metadata, and it is saved along with the value in the Kafka message. 

When a message is sent to the Kafka and a key is provided, Kafka utilizes it as a routing 

mechanism to determine which partition a particular Kafka message should be sent to 

by hashing the key and performs a modulo on the number of partitions a topic has. This 

implies that all messages with the same key will be routed to the same partition. If a key 

is not provided in the message, then Kafka can’t guarantee which partition that message 

is sent to, and Kafka employs a round-robin algorithm to balance the messages between 

partitions.

Table 6-7. Options for the Kafka Data Sink

Option Value Description

kafka.bootstrap.

servers

host1:port1, 

host2:port2

this is a comma-separated list of kafka broker servers. 

Consult your kafka administrators for the host name and 

port number to use.

topic topic1 this is a single topic name.

key a string or 

binary

this key is used to determine which partition a kafka 

message should be sent to. all kafka messages with the 

same key will go to the same partition. this is an optional 

option.

value a string or 

binary

this is the content of a message. to kafka, it is simply 

just an array of bytes, and it has no meaning to kafka.
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There are two ways to provide a topic name. The first way is to provide the topic 

name in the configuration when setting up a Kafka data sink, and the second way is by 

defining a column in the streaming DataFrame called topic; the value of that column 

will be used as the topic name.

If the column called key exists in the streaming DataFrame, then the value of that 

column will be used as the message key. Since the key is an optional piece of metadata, it 

is not absolutely required to have this column in the streaming DataFrame. On the other 

hand, the value must be provided, and the Kafka data sink expects a column named 

value in the streaming DataFrame.

Listing 6-25 provides an example of setting a Rate data source and then writes the 

data to a Kafka topic called rates. If you are planning to use the Spark shell to try the 

following code, make sure to start the Spark shell with an appropriate argument as 

described earlier to include the org.apache.spark:spark-sql-kafka-0-10_2.11:2.3.0 

JAR file and its dependencies.

Note the simplest way to get started with kafka is to download the Confluent 
platform package and then follow the getting Started guide. more information is 
available at https://docs.confluent.io/current/getting-started.
html. Once the download is complete, uncompress the compressed tar file into 
a directory. to start up the servers (Zookeeper, kafka Broker, Schema registry), 
use the command line ./bin/confluent start. each of those server 
listens on a specific port. all the command-line tools are available in the bin 
directory, and almost all of them require the host and port for either Zookeeper 
or kafka Broker. Before running the code in Listing 6-25, make sure to create 
a topic called rates. here is the command to do that: bin/kafka-topics 
--create --zookeeper localhost:2181 --replication-factor 1 
--partitions 2 --topic rates.  To list out a list of active 
topics, use this command:  ./bin/kafka-topics --zookeeper 
localhost:2181  --list.
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Listing 6-25. Writing Data from the Rate Data Source to a File Sink

import org.apache.spark.sql.functions._

// setting up the rate data source with 10 rows per second and use two 

partitions

val ratesSinkDF = spark.readStream.format("rate")

                                  .option("rowsPerSecond","10")

                                  .option("numPartitions","2").load()

// transform the ratesSinkDF to create a column called "key" and "value" column

//  the value column contains a JSON string that contains two fields: 

timestamp and value

val ratesSinkForKafkaDF = ratesSinkDF.select($"value".cast("string") as "key",

                                             to_json(struct("timestamp", 

"value")) as "value")

// setup a streaming query to write data to Kafka using topic "rates"

val rateSinkSQ = ratesSinkForKafkaDF.writeStream

                                    .outputMode("append")

                                    .format("kafka")

                                     .option("kafka.bootstrap.servers", 

"localhost:9092")

                                    .option("topic","rates")

                                     .option("checkpointLocation",  

"/Users/hluu/tmp/ss/cp")

                                    .start()

// it doesn't take long to write a lot of messages to Kafka, so after a few 

second, feel free to stop the

// rateSinkSQL

rateSinkSQ.stop

To read data back from the rates topic in Kafka, use the sample code listed in Listing 6-21 

and substitute an appropriate value for options such as kafka.bootstrap.servers and the 

topic name. The data that comes back from the rates topic in Kafka will looking something 

like Listing 6-26.
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Listing 6-26. Sample of Data from Kafka

+---------+-------+-------+-------------------------------------------------------------+

|partition| offset|    key|                                                        value|

+---------+-------+-------+-------------------------------------------------------------+

|        1|   9350| 583249| {"timestamp":"2018-03-25T09:53:52.582-07:00","value":583249}|

|        1|   9351| 583250| {"timestamp":"2018-03-25T09:53:52.682-07:00","value":583250}|

|        1|   9352| 583251| {"timestamp":"2018-03-25T09:53:52.782-07:00","value":583251}|

|        1|   9353| 583256| {"timestamp":"2018-03-25T09:53:53.282-07:00","value":583256}|

|        1|   9354| 583261| {"timestamp":"2018-03-25T09:53:53.782-07:00","value":583261}|

|        1|   9355| 583266| {"timestamp":"2018-03-25T09:53:54.282-07:00","value":583266}|

|        1|   9356| 583267| {"timestamp":"2018-03-25T09:53:54.382-07:00","value":583267}|

|        1|   9357| 583274| {"timestamp":"2018-03-25T09:53:55.082-07:00","value":583274}|

|        1|   9358| 583275| {"timestamp":"2018-03-25T09:53:55.182-07:00","value":583275}|

|        1|   9359| 583276| {"timestamp":"2018-03-25T09:53:55.282-07:00","value":583276}|

+--------+-------+------+--------------------------------------------------------+

 Working with the Foreach Data Sink

Compared to the other built-in data sinks that Structure Streaming provides, the Foreach 

data sink is an interesting one because it provides complete flexibility in terms of how 

data should be written, when to write out the data, and where to write the data to. In 

fact, it was designed to be an extensible as well as pluggable data sink. This flexibility 

and extensibility comes with a responsibility because you are responsible for the logic of 

writing out the data when using this data sink. The contract this data sink places on you 

is the ForeachWriter abstract class (https://spark.apache.org/docs/latest/api/

scala/index.html#org.apache.spark.sql.ForeachWriter). Since this abstract class is 

in Scala, it means that at the moment this data sink is available only in Scala and Java. In 

a nutshell, you need to provide an implementation of the ForeachWriter, which consists 

of three methods: open, process, and close. They will get called whenever there is a list 

of rows generated as the output after a trigger. Working with this data sink requires some 
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intimate details about how Spark works as well the interactions between the two parties 

and the responsibilities of each side.

• An instance of the ForeachWriter abstract class implementation 

will be created on the driver side, and it will be sent to the executors 

in your Spark cluster for execution. This has two implications. First, 

the implementation of the ForeachWriter must be serializable; 

otherwise, an instance of it can’t be shipped across the network to the 

executors. Second, if there are any initializations during the creation 

of the implementation, they will happen on the driver side. So if you 

want to open a database connection or socket connect, that should 

not happen during the class initialization but rather somewhere else.

• The number of partitions in a streaming DataFrame determines 

how many instances of the ForeachWriter implementation 

will be created. This is similar to the behavior of the Dataset.

foreachPartition method.

• The three methods defined in the ForeachWriter abstract class will 

be invoked on the executors.

• The best place to perform initializations such as opening a database 

connection or socket connect is in the open method. However, the 

open method is called each time there is data to be written out; 

therefore, that logic must be intelligent and efficient.

• The open method signature has two input parameters: the partition 

ID and version. The return type is Boolean. The combination of these 

two parameters uniquely represent a set of rows that needs to be 

written out. The value of the version is a monotonically increasing ID 

that increases with every trigger. Based on the value of the partition 

ID and version parameters, the open method needs to decide 

whether it needs to write out the sequence of rows and return the 

appropriate Boolean value to the Structure Streaming engine.

• If the open method returns true, then the process method is called for 

each row of the output of a trigger.
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• Whenever the open method is called and regardless of the value it 

returns, the close method will also be called. If there was an error 

during the call to the process method, that error will be passed into 

the close method. The intention for calling the close method is to 

give you a chance to clean up any necessary state that was created 

during the open or process method invocation. The only time the 

close method is not called is when the JVM of the executor crashes 

or the open method throws a Throwable exception.

In short, this data sink provides you with the ultimate flexibility in writing out the 

data of a streaming DataFrame. The sample code in Listing 6-27 contains a simple 

implementation of the ForeachWriter abstract class by writing the data from the Rate 

data source out to the console.

Listing 6-27. Sample Code for Working with the Foreach Data Sink

// define an implementation of the ForeachWriter abstract class

import org.apache.spark.sql.{ForeachWriter,Row}

class ConsoleWriter(private var pId:Long = 0, private var ver:Long = 0) 

extends ForeachWriter[Row] {

    def open(partitionId: Long, version: Long): Boolean = {

       pId = partitionId

       ver = version

       println(s"open => ($partitionId, $version)")

       true

    }

    def process(row: Row) = {

      println(s"writing => $row")

    }

    def close(errorOrNull: Throwable): Unit = {

      println(s"close => ($pId, $ver)")

    }

}
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// setup the Rate data source

val ratesSourceDF = spark.readStream.format("rate")

                                    .option("rowsPerSecond","10")

                                    .option("numPartitions","2")

                                    .load()

// setup the Foreach data sink

val rateSQ = ratesSourceDF.writeStream.foreach(new ConsoleWriter).start()

// sample output from the console

open => (1, 1)

writing => [2018-03-25 13:03:41.867,5]

writing => [2018-03-25 13:03:41.367,0]

writing => [2018-03-25 13:03:41.967,6]

writing => [2018-03-25 13:03:41.467,1]

writing => [2018-03-25 13:03:42.067,7]

writing => [2018-03-25 13:03:41.567,2]

writing => [2018-03-25 13:03:42.167,8]

writing => [2018-03-25 13:03:41.667,3]

writing => [2018-03-25 13:03:42.267,9]

close => (1, 1)

// to close the rateSQ streaming query

rateSQ.stop

 Working with the Console Data Sink

This data sink is extremely easy to work with, and it does exactly what it sounds like.  

It is not a fault-tolerant data sink, and it is designed to be used for debugging purposes 

or while learning Structured Streaming. It has only two options: the number of rows to 

display and whether to truncate the output if too long. Each one of these options has a 

default value, as shown in Table 6-8. The underlying implementation of this data sink 

uses the same logic as in the DataFrame.show method to display the data in a streaming 

DataFrame.
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The example in Listing 6-28 shows the Console data sink in action and not using the 

default value for the previous options.

Listing 6-28. Sample Code for Working with the Console Data Sink

// setting up a data source

val ratesDF = spark.readStream.format("rate")

                              .option("rowsPerSecond","10")

                              .option("numPartitions","2")

                              .load()

Val ratesSQ = ratesDF.writeStream.outputMode("append")

                                 .format("console")

                                 .option("truncate",false)

                                 .option("numRows",50)

                                 .start()

 Working with the Memory Data Sink

Similar to the Console data sink, this data sink is easy to understand and work with.  

In fact, it is so easy because it has no options that you need to configure. It is not a 

fault-tolerant data sink, and it is designed to be used for debugging purposes or while 

learning Structured Streaming. The data it collects is sent to the driver and stored in 

the driver as an in-memory table. In other words, the amount of data you can send 

to the Memory data sink is bound by the amount of memory the driver JVM has. You 

may be wondering whether the data is in memory and how you query it and see it. 

While setting up this data sink, you can specify a query name as an argument to the 

DataStreamWriter.queryName function, and then you can issue SQL queries against the 

in-memory table. Unlike the Console data sink, once the data is sent to the in-memory 

table, you can further analyze or process the data using pretty much all the features 

Table 6-8. Options for the Console Data Sink

Option Default Value Description

numRows 20 the number of rows to print to console

truncate true Whether to truncate with the content of each column is longer than 

20 characters
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available in the Spark SQL component. If the amount of data is large and wouldn’t fit 

into memory, the next best option is to use the File data sink to write the data out in the 

Parquet format.

The sample code in Listing 6-29 writes the data from the Rate data source into an in-

memory table and you issue queries about it.

Listing 6-29. Sample Code for Working with the Memory Data Sink

val ratesDF  = spark.readStream.format("rate")

                               .option("rowsPerSecond","10")

                               .option("numPartitions","2")

                               .load()

// write data out to Memory data sink with in-memory table name as "rates"

val ratesSQ = ratesDF.writeStream.outputMode("append")

                                 .format("memory")

                                 .queryName("rates").start()

// we issue SQL queries against the "rates" in-memory table

spark.sql("select * from rates").show(10,false)

+------------------------+------+

|               timestamp| value|

+------------------------+------+

| 2018-03-25 14:02:59.461|     0|

| 2018-03-25 14:02:59.561|     1|

| 2018-03-25 14:02:59.661|     2|

| 2018-03-25 14:02:59.761|     3|

| 2018-03-25 14:02:59.861|     4|

| 2018-03-25 14:02:59.961|     5|

| 2018-03-25 14:03:00.061|     6|

| 2018-03-25 14:03:00.161|     7|

| 2018-03-25 14:03:00.261|     8|

| 2018-03-25 14:03:00.361|     9|

+------------------------+------+
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// count the number of rows in the "rates" in-memory table

spark.sql("select count(*) from rates").show

+---------+

| count(1)|

+---------+

|      100|

+---------+

// to stop the ratesSQ query stream

ratesSQ.stop

One thing to note is that the in-memory rates will still be around even after the 

streaming query ratesSQ has stopped. However, once a new streaming query is started 

with the same name, then the data from in-memory is truncated.

Before you leave this section, it is important to understand which outputs are 

supported by each type of data sink. Table 6-9 provides a quick summary table for 

reference. The details about output modes will be covered in the next section.

 Deep Dive on Output Modes
The earlier “Output Modes” section provided a basic description of each of the output 

modes. This section will provide more details about them as well as ways to understand 

which output mode is applicable for which streaming query type.

Broadly speaking, there are two types of streaming query. The first type is called the 

stateless type, and it performs only basic transformations on the incoming streaming 

data and then writes out the data to a data sink. The second type is called the stateful 

Table 6-9. Data Sinks and Their Support Output Modes

Sink Supported Output Modes Notes

File append Supports writing out new rows only and no updates

kafka append, Update, Complete

Foreach append, Update, Complete Depending on the ForeachWriter implementation

Console append, Update, Complete

memory append, Complete Doesn’t support in-place updates
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type, which needs to maintain some amount of state, whether that is done implicitly 

or explicitly. The stateful type usually performs some kind of aggregations or uses the 

Structured Streaming APIs like mapGroupsWithState or flatMapGroupsWithState to 

maintain some arbitrary state needed for a particular use case, for example, maintaining 

user session data.

Let’s start with the simple, stateless streaming query type. A typical use case for this 

kind of streaming query is the real-time streaming ETL where it continuously reads real-

time streaming data such as page view events that are continuously produced by online 

services to capture which pages are being viewed by which users. In this kind of use case, 

it usually performs the following:

• Filtering, transforming, and cleaning

• Real-world data is messy and dirty, and the structure may be not 

well suited for repeated analysis.

• Converting to a more efficient storage format

• Text file formats such as CVS and JSON are human readable but 

inefficient for repeated analysis, especially if the data volume is 

large such as hundreds of terabytes. More efficient binary formats 

like ORC, Parquet, or Avro are commonly used to reduce file size 

and improve analysis speed.

• Partitioning data by certain columns

• While writing the data out to a data sink, it is possible to partition 

the data based on the value of commonly used columns to speed 

up the repeated analysis by various teams in an organization.

As you can see, the previous tasks don’t require a streaming query to maintain 

any kind of state before writing the data out to a data sink. As new data comes in, it is 

cleaned, transformed, and possibly restructured and immediately written out. Therefore, 

the only applicable output mode for this stateless streaming type is Append. The 

Complete output mode is not applicable because that will require Structured Streaming 

to maintain all the previous data, which may be too large to maintain. The Update output 

mode is not applicable because only new data is being written out. However, when this 

output mode is used for a stateless streaming query, Structured Streaming recognizes 

this and treats it the same as the Append output mode. The cool thing is when an 
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inappropriate output mode is used for a streaming query, the Structured Streaming 

engine will let you know. Listing 6-30 shows what happens when an inappropriate 

output mode is used.

Listing 6-30. Using the Complete Output Mode with a Stateless Streaming Query

val ratesDF  = spark.readStream.format("rate")

                               .option("rowsPerSecond","10")

                               .option("numPartitions","2")

                               .load()

// simple transformation

val ratesOddEvenDF = ratesDF.withColumn("even_odd", $"value" % 2 === 0)

// write out to Console data sink using complete output mode

val ratesSQ = ratesOddEvenDF.writeStream.outputMode("complete")

                                        .format("console")

                                        .option("truncate",false)

                                        .option("numRows",50)

                                        .start()

// An exception from Structured Streaming during the analysis phase

org.apache.spark.sql.AnalysisException: Complete output mode not supported 

when there are no streaming aggregations on streaming DataFrames/Datasets;

Now let’s move on to the stateful streaming query type. When a stateful steaming 

query performs an aggregation via a groupBy transformation, the state of that aggregation 

is maintained implicitly by the Structured Streaming engine. As more data comes in, 

the result of the aggregation on new data is updated into the result table. At each trigger 

point, either the updated data or all the data in the result table is written out to a data 

sink, depending on the output mode. This implies that using the Append output mode is 

inappropriate because that violates the semantics of that output mode, which specifies that 

only new rows that were appended to the result table will be sent to the specified output 

sink. In other words, only the Complete and Update output modes are appropriate for 

the stateful query type with the aggregation state implicitly maintained by the Structured 

Streaming engine. The output of a streaming query using the Complete output mode 

is always equal or more than the output of the same streaming query using the Update 

output mode. Listing 6-31 contains the code to illustrate the difference in the output.
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Listing 6-31. The Output Differences Between the Update and Complete Modes

// import statements

import org.apache.spark.sql.types._

import org.apache.spark.sql.functions._

val mobileDataSchema = new StructType().add("id", StringType, false)

                                       .add("action", StringType, false)

                                       .add("ts", TimestampType, false)

val mobileDF = spark.readStream.schema(mobileDataSchema)

                                       .json("<path>/chapter6/data/input")

val actionCountDF = mobileDF.groupBy($"action").count

val completeModeSQ = actionCountDF.writeStream.format("console")

                                              .option("truncate", "false")

                                               .outputMode("complete").

start()

val updateModeSQ = actionCountDF.writeStream.format("console")

                                            .option("truncate", "false")

                                            .outputMode("complete").start()

// at this point copy file1.json, file2.json, file3.json and newaction.jso 

from

// mobile directory to the input directory

// the output of the streaming query with complete mode is below

-------------------------------------------                                     

Batch: 3

-------------------------------------------

+-------+------+

| action| count|

+-------+------+

|  close|     3|

|  swipe|     1|

|  crash|     1|

|   open|     5|

+-------+------+
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// the output of the streaming query with update mode is below

-------------------------------------------                                     

Batch: 3

-------------------------------------------

+-------+------+

| action| count|

+-------+------+

|  swipe|     1|

|  crash|     1|

+-------+------+

The previous output of the streaming query with the Complete output mode 

contains all the action types in the result table. The previous output of the streaming 

query with the Update output mode contains only the actions in file newaction.json 

that the result table hasn’t seen before.

Again, if an inappropriate output mode is used for the stateful query type, the 

Structured Streaming engine will let you know, as shown in Listing 6-32.

Listing 6-32. Using an Inappropriate Append Output Mode with a Stateful 

Streaming Query

// use an inappropriate output for stateful streaming query, see exception below

val actionCountSQ = actionCountDF.writeStream.format("console").

outputMode("append").start()

org.apache.spark.sql.AnalysisException: Append output mode not supported 

when there are streaming aggregations on streaming DataFrames/DataSets 

without watermark;

There is an exception to the previous logic. If a watermark is provided to the stateful 

streaming query with aggregation, then all the output modes are applicable. The reason 

the semantics of the Append output is not violated anymore is because the Structured 

Streaming engine will drop the old aggregation state data that is older than the specified 

watermark, which means new rows can be added to the result table once the watermark 

is crossed.
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Undoubtedly, the output mode is one of the most complicated concepts in 

Structured Streaming to understand because there are multiple dimensions that come 

together to determine which output modes are appropriate to use. The Structured 

Streaming programming guide provides a compatibility matrix, which can be found 

at https://spark.apache.org/docs/latest/structured-streaming-programming-

guide.html#output-modes.

 Deep Dive on Triggers
The trigger setting determines when the Structured Streaming engine will run the 

streaming computation logic expressed in a streaming query, which includes all the 

transformations as well as writing out the data to the data sink. Another way of thinking 

about it is that the trigger setting controls when the data will be written out to a data sink 

as well as which processing mode to use. Starting in Spark 2.3, a new processing mode 

called Continuous was introduced.

The “Trigger Types” section described the types that are supported in Structured 

Streaming. This section will go into more detail and provide sample code for specifying 

the different trigger types.

Up until now, all the stream query examples have used the default trigger type 

because a trigger type was not specified. This default trigger type chooses the micro-

batch mode as the processing mode, and the logic in the streaming query is executed not 

based on time but as soon as the previous batch of data has completed processing. This 

implies there is less predictability in terms of how often the data is written out.

If a little more predictability is desired, then the Fixed interval trigger can be 

specified to cause the logic in the streaming query to be executed at a certain interval 

based on the user-provided interval, for example, every 30 seconds. In terms of 

processing mode, this trigger type uses the micro-batch mode. The interval can be 

specified in a string format or as a Scala Duration or Java TimeUnit. Listing 6-33 contains 

examples for using the Fixed interval trigger.
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Listing 6-33. Examples of Using the Fixed Interval Trigger Type

import org.apache.spark.sql.streaming.Trigger

// setting up with 3 rows per second

val ratesDF  = spark.readStream.format("rate")

                               .option("rowsPerSecond","3")

                               .option("numPartitions","2")

                               .load()

// trigger the streaming query execution every 3 seconds and write out to 

console

val ratesSQ = ratesDF.writeStream.outputMode("append")

                                 .format("console")

                                 .option("numRows",50)

                                 .option("truncate",false)

                                 .trigger(Trigger.ProcessingTime("3 seconds"))

                                 .start()

// we should expect to see about 9 rows in every 3 seconds

+-----------------------+---------+

|              timestamp|    value|

+-----------------------+---------+

|2018-03-26 07:14:11.176|        0|

|2018-03-26 07:14:11.509|        1|

|2018-03-26 07:14:11.843|        2|

|2018-03-26 07:14:12.176|        3|

|2018-03-26 07:14:12.509|        4|

|2018-03-26 07:14:12.843|        5|

|2018-03-26 07:14:13.176|        6|

|2018-03-26 07:14:13.509|        7|

|2018-03-26 07:14:13.843|        8|

+-----------------------+---------+
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// specifying the interval using Scala Duration type

import scala.concurrent.duration._

val ratesSQ = ratesDF.writeStream.outputMode("append")

                                 .format("console")

                                 .option("numRows",50)

                                 .option("truncate",false)

                                 .trigger(Trigger.ProcessingTime(3.seconds))

                                 .start()

The Fixed interval trigger doesn’t always guarantee that the execution of a streaming 

query will happen at exactly each user-specified interval. There are two reasons for 

this. The first one is fairly obvious; if there is no data arriving for processing, then there 

is nothing to process, and therefore nothing is written out to the data sink. The second 

reason is when the processing time of the previous batch exceeds the interval, the next 

execution of a streaming query will start as soon as the processing completes. In other 

words, it will not wait for the next interval boundary.

The one-time trigger does what it sounds like. It executes the logic in a streaming 

query in micro-batch mode and writes out the data to a data sink one time, and then the 

processing stops. It may sound a bit silly for this trigger type to exist; however, it is useful 

in both development and production environments. While in the development phase, 

usually the streaming computation logic is developed in an iterative manner, and in each 

iteration you would like to test the logic. This trigger type simplifies the develop-test 

iteration a bit. For a production environment, this trigger type is suitable for use cases 

where the volume of incoming streaming data is low, and therefore it is only necessary 

to run the data processing logic a few times a day. Instead of launching a Spark cluster 

and leaving it running all the time, the frequency of launching Spark and executing the 

streaming processing logic one time is based on the desired processing frequency of that 

particular use case. It is quite simple to specify this one-time trigger type, and Listing 6-34 

shows how to do that.
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Listing 6-34. Example of Using a One-Time Trigger Type

import org.apache.spark.sql.streaming.Trigger

val mobileSQ =  mobileDF.writeStream.outputMode("append")

                                    .format("console")

                                    .trigger(Trigger.Once())

                                    .start()

The last trigger type is called a Continuous trigger type. This new, exciting, and 

experimental processing mode was introduced in Spark 2.3 to address the use cases 

that need end-to-end millisecond latency. In this new processing mode, Structured 

Streaming launches long-running tasks to continuously read, process, and write data to 

a data sink. This implies the incoming data will be processed and written out to data sink 

as soon as it arrives in the data source, and the end-to-end latency is a few milliseconds. 

In addition, an asynchronous checkpoint mechanism, which is used for recording the 

progress of the streaming query, was introduced to not interrupt the long-running tasks 

from providing consistent millisecond-level latencies. A good use case to leverage this 

Continuous trigger type is credit card fraudulent transaction detection. At a high level, 

the Structure Streaming engine figures out which processing mode to use based on the 

trigger type, which is depicted in Figure 6-10.

As of Spark 2.3, only the projection and selection operations are allowed in the 

Continuous processing mode, such as select, where, map, flatmap, and filter. In this 

processing mode, all Spark SQL functions are supported except aggregation functions.

Figure 6-10. Structured Streaming supports two different processing modes
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To use the Continuous processing mode for a streaming query, all you need to do is 

specify a Continuous trigger with a desired checkpoint interval like in Listing 6-35.

Listing 6-35. Examples of Specifying a Continuous Trigger Type

import org.apache.spark.sql.streaming.Trigger

// setting a Rate data source with two partitions

val ratesDF  = spark.readStream.format("rate")

                               .option("numPartitions","2").load()

// write out the data to console and using continuous trigger with 2 second 

interval for writing out progress

val rateSQ = ratesDF.writeStream.format("console")

                                .trigger(Trigger.Continuous("2 second"))

                                .start()

// sample output from console

+--------------------+------+

|           timestamp| value|

+--------------------+------+

|2018-03-26 21:43:...|     0|

|2018-03-26 21:43:...|     2|

|2018-03-26 21:43:...|     4|

|2018-03-26 21:43:...|     6|

|2018-03-26 21:43:...|     1|

|2018-03-26 21:43:...|     3|

|2018-03-26 21:43:...|     5|

|2018-03-26 21:43:...|     7|

+--------------------+------+

The ratesDF streaming DataFrame was set up to have two partitions; therefore, 

Structured Streaming launched two running tasks in the Continuous processing mode, 

and that is why the output shows all the even numbers appearing together and all the 

odd numbers appearing together.
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 Summary
Structured Streaming is the second-generation streaming processing engine of Apache 

Spark. It provides an easy way to build and reason about fault-tolerant and scalable 

streaming applications. This chapter covered a lot of ground, including core concepts in 

the streaming processing domain and the core parts of Structured Streaming.

• Streaming processing is an exciting domain that can help solve many 

new and interesting use cases in the era of big data.

• Building production streaming data applications is much more 

challenging than building batch data processing applications 

because of the nature of the unbounded data and the unpredictability 

of the data arrival rate and out-of-order data.

• To be effective at building streaming data applications, you must be 

comfortable with the three core concepts in the streaming processing 

domain. They are data delivery semantics, notion of time, and 

windowing.

• Stream processing engines have drastically and dramatically matured 

in the last few years, and now there are many options to pick from. 

The popular ones are Apache Flink, Apache Samza, Apache Kafka, 

and Apache Spark.

• Spark DStream is the first-generation streaming processing engine 

of Apache Spark, and it was built on top of the RDD programming 

model.

• The Structured Streaming processing engine was designed for 

developers to build end-to-end streaming applications that can react 

to data in real-time using a simple programming model built on top 

of the optimized and solid foundation of the Spark SQL engine.

• The unique idea in Structured Streaming is to treat streaming data as 

an unbounded input table and, as a new set of data arrives, treat that 

as a new set of new rows being appended to the input table.
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• The core components in a streaming query are the data source, 

streaming operations, output mode, trigger, and data sink.

• Structured Streaming provides a set of built-in data sources as well as 

data sinks. The built-in data sources are File, Kafka, Socket, and Rate. 

The built-in data sinks are File, Kafka, Console, and Memory.

• The output mode determines how the data is output to a data sink, 

and there are three options: Append, Update, and Complete.

• A trigger is a mechanism for the Structure Streaming engine to 

determine when to run the streaming computation. There are several 

options to choose from: micro-batch, fixed interval micro-batch, 

one-time micro-batch, and continuous. The last one is for use cases 

that demand millisecond latency, and it is in an experimental state as 

of Spark 2.3.
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CHAPTER 7

Spark Streaming 
(Advanced)
The previous chapter introduced the core concepts of streaming processing, the features 

that the Spark Structured Streaming processing engine provides, and the basic steps of 

putting together a streaming application. Real-world streaming applications usually 

need to extract insights or patterns from the incoming real-time data at scale and feed 

that information into downstream applications to make business decisions or to save 

that information in some storage system for further analysis or visualization purposes. 

Another aspect of real-world streaming applications is that they are continuously 

running to process real-time data as it comes in. Therefore, they must be resilient 

against failures. The first half of this chapter covers event-time processing and stateful 

processing features in Structured Streaming and how they can help with extracting 

insights or patterns from incoming real-time data. The second half of this chapter 

explains the support Structured Streaming provides to help streaming applications to 

be fault tolerant against failures and to monitor the status and progress of streaming 

applications.

 Event Time
The ability to process incoming real-time data based on the data creation time is a must- 

have feature for any serious streaming processing engine. This is important because to 

truly understand and accurately extract insights or patterns from streaming data, you 

need to be able to process them based on when that data or those events happened, 

not when they were processed. Oftentimes, the event-time processing is in the context 

of some sort of aggregation, which includes the event time and zero or more pieces of 

additional information about the event.



288

Let’s take the example of the mobile action events described in Chapter 6. Instead 

of applying the aggregations over the action type, you can apply the aggregations over 

a time window, which could be a fixed window or sliding window type (described in 

Chapter 6). In addition, you can easily add the action type to the grouping key to further 

group the mobile action events by time bucket and action type.

The following example will process the mobile data event; Listing 7-1 shows its 

schema. The ts column represents the time when an event was created, in other words, 

when a user opens or closes an application. The mobile event data is located in the 

<path>/chapter6/data/mobile directory, which contains file1.json, file2.json, 

file3.json, and newaction.json. Listing 7-2 displays the rows in each of the files.

Listing 7-1. Mobile Data Event Schema

mobileDataDF.printSchema

 |-- action: string (nullable = true)

 |-- id: string (nullable = true)

 |-- ts: timestamp (nullable = true)

Listing 7-2. Mobile Event Data in file1.json, file2.json, file3.json, newaction.json

// file1.json

{"id":"phone1","action":"open","ts":"2018-03-02T10:02:33"}

{"id":"phone2","action":"open","ts":"2018-03-02T10:03:35"}

{"id":"phone3","action":"open","ts":"2018-03-02T10:03:50"}

{"id":"phone1","action":"close","ts":"2018-03-02T10:04:35"}

// file2.json

{"id":"phone3","action":"close","ts":"2018-03-02T10:07:35"}

{"id":"phone4","action":"open","ts":"2018-03-02T10:07:50"}

// file3.json

{"id":"phone2","action":"close","ts":"2018-03-02T10:04:50"}

{"id":"phone5","action":"open","ts":"2018-03-02T10:10:50"}

// newaction.json

{"id":"phone2","action":"crash","ts":"2018-03-02T11:09:13"}

{"id":"phone5","action":"swipe","ts":"2018-03-02T11:17:29"}
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 Fixed Window Aggregation Over an Event Time
A fixed window (aka a tumbling window) operation essentially discretizes a stream of 

incoming data into nonoverlapping buckets based on a fixed window length. For each 

piece of incoming data, it will be placed into one of the buckets based on its event time. 

Performing aggregations is just a matter of going through each bucket and applying the 

aggregation logic, whether that is doing a count or sum. Figure 7-1 illustrates the fixed 

window aggregation logic.

Figure 7-1. Fixed window operation

An example of fixed window aggregation is to perform a counting aggregation of 

the number of mobile events per each fixed window of ten minutes long. The window 

length is usually determined by the needs of a particular use case as well as the data 

volume. The result of this aggregation gives you high-level insights into the rate of the 

mobile event that was generated per window. If you are interested in mobile usage 

throughout the day and by the hour, then maybe the window length of 60 minutes is 

more appropriate. Listing 7-3 contains the code for performing the counting aggregation 

and the aggregation result. As expected, there are only a total ten mobile data events in 

all four files listed, and the total count in the output matches that number.

Listing 7-3. Processing Mobile Event Data with a Ten-Minute Window

import org.apache.spark.sql.types._

import org.apache.spark.sql.functions._

val mobileDataSchema = new StructType() .add("id", StringType, false)

                                        .add("action", StringType, false)

                                        .add("ts", TimestampType, false)
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val mobileSSDF = spark.readStream.schema(mobileDataSchema)

                                 .json("<path>/chapter6/data/input")

val windowCountDF = mobileSSDF.groupBy(window($"ts", "10 minutes")).count

val mobileConsoleSQ = windowCountDF.writeStream.format("console")

                                               .option("truncate", "false")

                                               .outputMode("complete")

                                               .start()

// stop the streaming query

mobileConsoleSQ.stop

// output

+-------------------------------------------+------+

|                                     window| count|

+-------------------------------------------+------+

| [2018-03-02 10:00:00, 2018-03-02 10:10:00]|     7|

| [2018-03-02 10:10:00, 2018-03-02 10:20:00]|     1|

| [2018-03-02 11:00:00, 2018-03-02 11:10:00]|     1|

| [2018-03-02 11:10:00, 2018-03-02 11:20:00]|     1|

+-------------------------------------------+------+

windowCountDF.printSchema

 |-- window: struct (nullable = false)

 |    |-- start: timestamp (nullable = true)

 |    |-- end: timestamp (nullable = true)

 |-- count: long (nullable = false)

When performing an aggregation with a window, the output window is actually a 

struct type, which contains the start and end times.

In addition to specifying a window in the groupBy transformation, you can specify 

additional columns from the event itself. The following example will perform the 

aggregation with a window and the action. This gives you additional insights into the 

count of each by window and action type. It requires only a small change to the previous 

example to accomplish this. Listing 7-4 contains only the lines that needed changes.
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Listing 7-4. Processing the Mobile Event Data with a Ten-Minute Window and 

Action Type

val windowActionCountDF= mobileSSDF.groupBy(window($"ts", "10 minutes"), 

$"action").count

val windowActionCountSQ = windowActionCountDF.writeStream.format("console")

                                             .option("truncate", "false")

                                             .outputMode("complete")

                                             .start()

// result

+-------------------------------------------+-------+------+

|                                     window| action| count|

+-------------------------------------------+-------+------+

| [2018-03-02 10:00:00, 2018-03-02 10:10:00]| close |     3|

| [2018-03-02 11:00:00, 2018-03-02 11:10:00]| crash |     1|

| [2018-03-02 11:10:00, 2018-03-02 11:20:00]| swipe |     1|

| [2018-03-02 10:00:00, 2018-03-02 10:10:00]| open  |     4|

| [2018-03-02 10:10:00, 2018-03-02 10:20:00]| open  |     1|

+-------------------------------------------+-------+------+

// stop the query stream

windowActionCountSQ.stop()

Each line in the previous result table contains insight about the count of each action 

in each ten-minute window. If there was a lot of crash actions around a certain window, 

that insight can help figure out whether there was a release around that time frame.

 Sliding Window Aggregation Over an Event Time
In addition to the fixed window type, there is another windowing type called sliding 

window. Defining a sliding window requires two pieces of information, the window 

length and a sliding interval, which is usually smaller than the window length. Given 

the aggregation computation is sliding over the incoming stream of data, the result is 

usually smoother than the result of the fixed window type. Therefore, this windowing 

type is often used to compute moving averages. An important thing to note about a 

sliding window is that a piece of data can fall into more than one window because of the 

overlapping, as illustrated in Figure 7-2.
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To illustrate the sliding window aggregation over the incoming data, you will use a 

small synthetic data about the temperature of computer racks in a data center. Imagine 

each computer rack emits its temperature at a certain interval, and you want to generate 

a report of the average temperature among all computer racks as well as per rack over 

a window length of ten minutes and a sliding interval of five minutes. This dataset is 

located in the <path>/chapter7/data/iot directory, which contains file1.json and 

file2.json. Listing 7-5 shows the temperature data.

Listing 7-5. Temperature Data of Two Racks

// file1.json

{"rack":"rack1","temperature":99.5,"ts":"2017-06-02T08:01:01"}

{"rack":"rack1","temperature":100.5,"ts":"2017-06-02T08:06:02"}

{"rack":"rack1","temperature":101.0,"ts":"2017-06-02T08:11:03"}

{"rack":"rack1","temperature":102.0,"ts":"2017-06-02T08:16:04"}

// file2.json

{"rack":"rack2","temperature":99.5,"ts":"2017-06-02T08:01:02"}

{"rack":"rack2","temperature":105.5,"ts":"2017-06-02T08:06:04"}

{"rack":"rack2","temperature":104.0,"ts":"2017-06-02T08:11:06"}

{"rack":"rack2","temperature":108.0,"ts":"2017-06-02T08:16:08"}

The code in Listing 7-6 first reads the temperature data and then performs a groupBy 

transformation on a sliding window over the ts column. For each sliding window, the 

Figure 7-2. Fixed window operation
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avg() function is applied on the temperature column. To make it easy to inspect the 

output, it will write the data out to a memory data sink with a query name of iot. Then 

you can issue SQL queries against this temporary table.

Listing 7-6. Average Temperature of All the Computer Racks over a Sliding Window

import org.apache.spark.sql.types._

import org.apache.spark.sql.functions._

// define schema

val iotDataSchema = new StructType().add("rack", StringType, false)

                                    .add("temperature", DoubleType, false) 

                                    .add("ts", TimestampType, false)

val iotSSDF = spark.readStream.schema(iotDataSchema).json("<path>/chapter7/

data/iot")

// group by a sliding window and perform average on the temperature column

val iotAvgDF = iotSSDF.groupBy(window($"ts", "10 minutes", "5 minutes"))

                                     .agg(avg("temperature") as "avg_temp")

// write the data out to memory sink with query name as iot

val iotMemorySQ = iotAvgDF.writeStream.format("memory")

                                      .queryName("iot")

                                      .outputMode("complete")

                                      .start()

// display the data in the order of start time

spark.sql("select * from iot").orderBy($"window.start").show(false)

// output

+-------------------------------------------+---------+

|                                     window| avg_temp|

+-------------------------------------------+---------+

| [2017-06-02 07:55:00, 2017-06-02 08:05:00]|  99.5   |

| [2017-06-02 08:00:00, 2017-06-02 08:10:00]| 101.25  |

| [2017-06-02 08:05:00, 2017-06-02 08:15:00]| 102.75  |

| [2017-06-02 08:10:00, 2017-06-02 08:20:00]| 103.75  |

| [2017-06-02 08:15:00, 2017-06-02 08:25:00]| 105.0   |

+-------------------------------------------+---------+
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// stop the streaming query

iotMemorySQ.stop

The previous output shows there are five windows in the synthetic data set. Notice 

the start time of each window is five minutes apart, which is because of the length of the 

sliding interval specified earlier in the groupBy transformation. The temperature column 

indicates the average temperature is increasing, which is alarming. At this point, it is 

unclear whether the temperature of all the computer racks are increasing or only certain 

ones. To help with identifying which computer racks, Listing 7-7 will add the rack 

column to the groupBy transformation, and it will show only the lines that are different 

than Listing 7-6.

Listing 7-7. Average Temperature of Each Rack Over a Sliding Window

// group by a sliding window and rack column

val iotAvgByRackDF = iotSSDF.groupBy(window($"ts", "10 minutes", "5 

minutes"), $"rack")

                            .agg(avg("temperature") as "avg_temp")

// write out to memory data sink with iot_rack query name

val iotByRackConsoleSQ = iotAvgByRackDF.writeStream

                                       .format("memory")

                                       .queryName("iot_rack")

                                       .outputMode("complete")

                                       .start()

spark.sql("select * from iot_rack").orderBy($"rack", $"window.start").

show(false)

+-------------------------------------------+------+---------+

|                                     window| rack | avg_temp|

+-------------------------------------------+------+---------+

| [2017-06-02 07:55:00, 2017-06-02 08:05:00]| rack1|  99.5   |

| [2017-06-02 08:00:00, 2017-06-02 08:10:00]| rack1| 100.0   |

| [2017-06-02 08:05:00, 2017-06-02 08:15:00]| rack1| 100.75  |

| [2017-06-02 08:10:00, 2017-06-02 08:20:00]| rack1| 101.5   |

| [2017-06-02 08:15:00, 2017-06-02 08:25:00]| rack1| 102.0   |
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| [2017-06-02 07:55:00, 2017-06-02 08:05:00]| rack2|  99.5   |

| [2017-06-02 08:00:00, 2017-06-02 08:10:00]| rack2| 102.5   |

| [2017-06-02 08:05:00, 2017-06-02 08:15:00]| rack2| 104.75  |

| [2017-06-02 08:10:00, 2017-06-02 08:20:00]| rack2| 106.0   |

| [2017-06-02 08:15:00, 2017-06-02 08:25:00]| rack2| 108.0   |

+-------------------------------------------+------+---------+

// stop query stream 

iotByRackConsoleSQ.stop()

The output table clearly shows the average temperature of rack 1 is below 103, and it 

is rack 2 that you should be concerned about.

 Aggregation State
The previous examples of performing aggregations of over a fixed window or a sliding 

window with an event time and additional information show how easy it is to perform 

commonly used and complex streaming processing operations in Spark Structured 

Streaming. While it seems easy from the outside, internally both the Structured 

Streaming engine and the Spark SQL engine work cooperatively together to maintain the 

intermediate aggregation result in a fault-tolerant manner while executing the streaming 

aggregation. In fact, anytime an aggregation is performed on a streaming query, the 

intermediate aggregation state must be maintained. This state is maintained in a key- value 

pairs structure, similar to a hash map, where the key is the group name and the value is 

the intermediate aggregation value. In the previous example of aggregation by a sliding 

window and rack ID, the key would be the combined value of the start and end times of 

the window, and the rack name and the value would be the average temperature.

The intermediate state is stored in an in-memory, versioned, key-value “state store” on 

the Spark executors, and it is written out to a write-ahead log, which should be configured 

to reside in a stable storage system like HDFS. At every trigger point, the state is read and 

updated in the in-memory state store and then written out to the  write- ahead log. In the 

case of a failure and when a Spark Structured Streaming application is restarted, the state 

is restored from the write-ahead log and resumes from that point. This fault-tolerant state 

management obviously incurs some resource and processing overhead in the Structured 

Streaming engine. The amount of overhead is proportional to the amount of state it needs 

to maintain Therefore, it is important keep the amount of state in an acceptable size; in 

other words, the size of the state should not grow indefinitely.
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Given the nature of sliding windows, the number of windows will grow indefinitely. 

This implies that performing sliding window aggregation will require the intermediate 

state to grow indefinitely unless there is a way to drop the old state that is no longer 

updated. This is accomplished using a technique called watermarking.

 Watermarking: Limit State and Handle Late Data
Watermarking is a commonly used technique in streaming processing engines to deal 

with late data as well as to limit the amount of state needed to maintain it. Streaming 

data in the real world often arrives out of order as well as arrives late because of network 

congestion, network disruption, or the data generator like the mobile device is not 

online. As a developer of real-time streaming applications, it is important to know what 

you want to do with the data that arrives later than a certain threshold. In other words, 

what is an acceptable amount of time you expect most of the data will arrive by in 

relative to the others? Most likely the answer to the previous question is it depends on 

the use case. Late data will be dropped on the floor and will not be processed.

From the perspective of Structured Streaming, a watermark is a moving threshold 

in the event time that trails behind the maximum event time seen so far. As new data 

arrives with a newer event time, the maximum event time is updated, which will cause 

the watermark to move as well. Figure 7-3 illustrates an example where the watermark 

is defined as ten minutes. The watermark line is represented by the solid line, and it 

is trailing behind the maximum event time line, which is represented by the dotted 

line. Each rectangular box represents a piece of data, and its event time is immediately 

below the box. The piece of data with event-time 10:07 arrives a bit late, around 10:12; 

however, that still falls within the threshold between 10:03 and 10:13. Therefore, it will 

be processed as usual. The piece of data with event-time 10:15 falls in the same category. 

However, the piece of data with event-time 10:04 arrives really late, around 10:22, which 

falls below the watermark line, and therefore it will be ignored and not processed.
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One of the biggest benefits of specifying the watermark is to enable the Structured 

Streaming engine to safely remove the aggregation state of the windows that are older 

than the watermark. Production streaming applications that perform any kind of 

aggregation should specify a watermark to avoid out-of-memory issues. Without a doubt, 

watermarking is an essential tool to deal with the messy part of real-time streaming data.

Structured Streaming makes it easy to specify a watermark as part of the streaming 

DataFrame. You just need to provide two pieces of data to the Watermark API, the 

event time column and the threshold, which can be in seconds, minutes, or hours. 

To demonstrate the watermark in action, you can work through a simple example 

of processing two JSON files in the <path>/chapter7/data/mobile directory, and a 

watermark is specified as ten minutes. Listing 7-8 shows the data in those two files. The 

data is set up in such a way that each row in the file1.json file falls into its own ten- 

minute window. The first row in the file2.json file falls into the 10:20:00 to 10:30:00 

window, and even though it arrives late, its timestamp still falls within an acceptable 

threshold, and therefore it will be processed. The last row of file2.json is a simulation 

of late data where its timestamp is in the 10:10:00 to 10:20:00 window, and since that falls 

outside the watermark threshold, it will be ignored and not processed.

Figure 7-3. Handling late data with a watermark
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Listing 7-8. Mobile Event Data in Two JSON Files

// file1.json

{"id":"phone1","action":"open","ts":"2018-03-02T10:15:33"}

{"id":"phone2","action":"open","ts":"2018-03-02T10:22:35"}

{"id":"phone3","action":"open","ts":"2018-03-02T10:33:50"}

// file2.json

{"id":"phone4","action":"open","ts":"2018-03-02T10:29:35"}

{"id":"phone5","action":"open","ts":"2018-03-02T10:11:35"}

To simulate the processing, first create a directory called input under the directory 

<path>/chapter7/data. Then run the code in Listing 7-9. The next step is to copy the 

file1.json file to the input directory and examine the output. The final step is to copy 

the file2.json file to the input directory and examine the output.

Listing 7-9. Code for Processing Mobile Data Events with Late Arrival

import org.apache.spark.sql.types._

import org.apache.spark.sql.functions._

val mobileDataSchema = new StructType().add("id", StringType, false)

                                       .add("action", StringType, false)

                                       .add("ts", TimestampType, false)

val mobileSSDF = spark.readStream.schema(mobileDataSchema).json("<path>/

book/chapter7/data/input")

//setup a streaming DataFrame with a watermark and group by ts and action column.

val windowCountDF = mobileSSDF.withWatermark("ts", "10 minutes")

                              .groupBy(window($"ts", "10 minutes"), $"action")

                              .count

val mobileMemorySQ = windowCountDF.writeStream

                                  .format("console")

                                  .option("truncate", "false")

                                  .outputMode("update")

                                  .start()
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// the output from processing filel1.json

// as expected each row falls into its own window

+-------------------------------------------+-------+------+

|                                     window| action| count|

+-------------------------------------------+-------+------+

| [2018-03-02 10:20:00, 2018-03-02 10:30:00]| open  |   1  |

| [2018-03-02 10:30:00, 2018-03-02 10:40:00]| open  |   1  |

| [2018-03-02 10:10:00, 2018-03-02 10:20:00]| open  |   1  |

+-------------------------------------------+-------+------+

// the output from processing file2.json

// notice the count for window 10:20 to 10:30 is now updated to 2 

// and there was no change to the window 10:10:00 and 10:20:00

+-------------------------------------------+-------+------+

|                                     window| action| count|

+-------------------------------------------+-------+------+

| [2018-03-02 10:20:00, 2018-03-02 10:30:00]| open  |   2  |

+-------------------------------------------+-------+------+

As stated earlier, since the timestamp of the last line in the file2.json file falls 

outside the ten-minute watermark threshold, it was not processed at all. If the call to the 

Watermark API is removed, then the output would look something like Listing 7-10. The 

count to the window 10:10 and 10:20 is updated to 2.

Listing 7-10. Output of Removing the Call to the Watermark API

+-------------------------------------------+-------+------+

|                                     window| action| count|

+-------------------------------------------+-------+------+

| [2018-03-02 10:20:00, 2018-03-02 10:30:00]| open  |  2   |

| [2018-03-02 10:10:00, 2018-03-02 10:20:00]| open  |  2   |

+-------------------------------------------+-------+------+

A watermark is a useful feature, so it is important to understand the conditions under 

which the aggregation state is properly cleaned up.
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• The output mode can’t be the complete mode and must 

be in either update or append mode. The reason is that the 

semantics of the complete mode dictate all aggregate data 

must be maintained, and to not violate those semantics, the 

watermark can’t drop any intermediate state.

• The aggregation via the groupBy transformation must be 

directly on the event-time column or a window on the event-

time column.

• The event-time column specified in the Watermark API and the 

groupBy transformation must be the same one.

• When setting up a streaming DataFrame, the Watermark API 

must be called before the groupBy transformation is called; 

otherwise, it will be ignored.

 Arbitrary Stateful Processing
As mentioned, the intermediate state of aggregations by key or event window is 

automatically maintained by Structured Streaming. However, not all event-time 

processing can be satisfied by simply aggregating on one or more columns and with or 

without windowing. For example, you want to send out an alert or email or a pager when 

three consecutive temperature readings with a value greater than 100 degrees are seen 

in the IoT temperature dataset. Another example is about maintaining user sessions, 

where the length of each session is not determined by a fixed amount of time but rather 

by a user’s activities and lack thereof. To solve these two examples and similar use cases, 

you need the ability to apply arbitrary processing logic on each group of data, to control 

the window length for each group of data, and to maintain arbitrary state across trigger 

points. This is where Structured Streaming arbitrary state processing comes in.

 Arbitrary Stateful Processing with Structured Streaming
Structured Streaming provides a callback mechanism for streaming applications to 

perform arbitrary stateful processing, and it will take care of ensuring the intermediate 

state is maintained and stored in a fault-tolerant manner. This style of processing 

essentially boils down to the ability to perform one of the following tasks, which are 

illustrated in Figure 7-4:
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• Map over groups of data, apply arbitrary processing on each group of 

data, and then output only a single row per group.

• Map over groups of data, apply arbitrary processing on each group of 

data, and then output any number of rows per group, including none.

For each of these tasks, Structured Streaming provides a specific API to handle it. 

For the first one, the API is called mapGroupsWithState, and for the second one, the API 

is called flatMapGroupsWithState. These APIs are available starting with Spark 2.2 and 

only in Scala and Java.

When working with any kind of callback mechanism, it is important to have a clear 

understanding of the contract between the framework and callback function regarding 

when and how often it gets called as well as the details of the input arguments. In this 

particular case, the sequence goes something like this:

• To perform arbitrary stateful processing on a streaming DataFrame, 

you must first specify the grouping by calling the groupByKey 

transformation and provide a column to group by; it then returns an 

instance of the KeyValueGroupedDataset class.

• From an instance of the KeyValueGroupedDataset class, you can 

call either the mapGroupsWithState or flatMapGroupsWithState 

function. Each one of two APIs requires a different set of input 

parameters.

Figure 7-4. Visual description of the two arbitrary stateful processing tasks
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• When calling the mapGroupsWithState function, you need to provide 

the timeout type and a user-defined callback function. The timeout 

part will be explained in a moment.

• When calling the flatMapGroupsWithState function, you need 

to provide an output mode, the timeout type, and a user-defined 

callback function. Both the output mode and timeout parts will be 

explained in a moment.

The following is the contract between Structured Streaming and the 

user-defined callback function mentioned earlier:

• The user-defined callback function will be invoked repeatedly for 

each group in each trigger. For each invocation, it is meant for each 

group that has data in the trigger. If a particular group doesn’t have 

any data in a trigger, then there will be no invocation for that group. 

Therefore, you shouldn’t assume this function is invoked in every 

trigger for every group.

• Each time the user-defined callback function is called, the following 

information will be passed in:

• The value of the group key.

• All the data of a group. There is no guarantee they are in any 

particular order.

• A previous state of a group, which was returned by a previous 

invocation of the same group. A group state is managed by a 

state holder class called GroupState. When there is a need to 

update the state of a group, you must call the update function 

of this class with the new state. The information in the state for 

each group is defined by a user-defined class. When calling the 

update function, the provided user-defined state can’t be null.

As you learned from the previous chapter, whenever there is a need to maintain 

an intermediate state, then only certain output modes are allowed. As of Spark 2.3, 

only the update output mode is supported when calling the mapGroupsWithState 

API; however, both append and update modes are supported when calling the 

flatMapGroupsWithState API.
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 Handling State Timeouts
In the case of event-time aggregations with a watermark, the timeout of the intermediate 

state is internally managed by Structured Streaming, and there isn’t any way to influence 

it. On the other hand, Structured Streaming arbitrary stateful processing provides the 

flexibility of controlling the intermediate state timeout. Since you have the ability to 

maintain an arbitrary state, it makes sense to have control over the intermediate state 

timeout for this specific use case.

Structured Streaming stateful processing provides three different timeout types. 

The first one is based on the processing time, and the other one is based on the event 

time. The timeout type is configured at the global level, meaning it is for all the groups 

within a particular streaming DataFrame. The timeout amount can be configured for 

each individual group and can be changed at will. If the intermediate state is configured 

with a timeout, it is important to check whether it has timed out or not before processing 

the given list of values in the callback function. In some use cases, a timeout is not 

needed, and the third timeout type is designed for this scenario. The timeout type 

is defined inside class GroupStateTimeout, and you specify the type when calling 

either the mapGroupsWithState or flatMapGroupsWithState function. The timeout 

duration is specified using either the GroupState.setTimeoutDuration or GroupState.

setTimeoutTimeStamp function for processing timeouts and event timeouts, respectively.

Keen readers may be wondering what happens when an intermediate state of a 

specific group has timed out. The contract Structured Streaming provides regarding this 

situation is that it will call the user-defined callback function with an empty list of values 

as well as set the flag GroupState.hasTimedOut to true.

Of the three different timeout types, the event-time timeout is the most complicated 

one and will be covered first. An event-time timeout implies that it is based on the 

time in the event, and therefore setting a watermark in the streaming DataFrame via 

DataFrame.withWatermark is required for this timeout type. To control the timeout per 

group, you need to provide a timestamp value to the GroupState.setTimeoutTimestamp 

function during the processing of a particular group. The intermediate state of a group 

is timed out when the watermark advances beyond the provided timestamp. In the user 

sessionization use case, as a user interacts with the website, the user session is extended 

by simply updating the timeout timestamp based on the user’s latest interaction time 

plus some threshold. This is to ensure that as long as a user interacts with the website, 

the user session remains active, and the intermediate date will not be timed out.
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The processing timeout type works in a similar fashion as the event-time timeout 

type; however, the difference is that it is based on the wall clock of the server, which is 

constantly advancing forward. To control the timeout per group, you provide a time 

duration to the GroupState.setTimeoutDuration function during the processing of a 

particular group. The time duration can be something like 1 minute, 1 hour, or 2 days. 

The intermediate state of a group is timed out when the clock has advanced past the 

provided duration. Since this timeout type depends on the system clock, it is important 

to consider the case when the time zone changes or when there is clock skew.

This may be obvious to keen readers, but it is important to recognize that if there 

is no data in the stream for a while, there won’t be any triggers, and therefore the  user- 

defined callback function will not be called. In addition, the watermark will not advance, 

and the timeout function call will not happen.

At this point, you should have a good understanding of how arbitrary state 

processing in Structured Streaming works and which APIs are involved. The following 

section will work through a couple of examples to demonstrate how to implement 

arbitrary state processing.

 Arbitrary State Processing in Action
This section will demonstrate the arbitrary state processing in Structured Streaming by 

working through two use cases.

• The first one is about extracting patterns from the data center 

computer rack temperature data and maintaining a status of 

each rack in the intermediate state. Whenever three consecutive 

temperatures with 100 degrees or above are encountered, the rack 

status will be upgraded to the warning level. This example will use 

the mapGroupsWithState API.

• The second example is about user sessionization, which will keep 

track of the user state based on interactions with a website. This 

example will use the flatMapGroupsWithState API.

Regardless of which API will be used to perform arbitrary state processing for your 

use cases, a common set of steps is needed, which includes the following:

• Define a few classes to represent the input data, the intermediate 

state, and the output.
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• Define two functions. The first one is the callback function for 

Structured Streaming to call. The second function contains arbitrary 

state processing logic on the data of each group as well as the logic to 

maintain state.

• Decide on a timeout type and an appropriate value for it.

 Extracting Patterns with mapGroupsWithState

The goal of this use case is to identify a particular pattern in the data center computer 

rack temperature data. The pattern of interest is three consecutive temperature readings 

with 100 degrees or above from the same rack, and the time difference between two 

consecutive high temperature readings must be within 60 seconds. When such a pattern 

is detected, the status of that particular rack is upgraded to warning status. If the next 

incoming temperature reading falls below the 100-degree threshold, then the rack status 

is downgraded to normal.

The data for this example is located in the directory <path>/chapter7/data/

iot_pattern in three files; their content is shown in Listing 7-11. The content of file1.

json shows the temperature of rack1 is alternating between just below and above 100 

degrees. File file2.json shows the temperature of rack2 is heating up. In file file3.

json, rack3 is heating up as well, but the temperature readings are more than one 

minute apart.

Listing 7-11. Temperature Data in file1.json, file2.json, and file3.json

// file1.json

{"rack":"rack1","temperature":99.5,"ts":"2017-06-02T08:01:01"}

{"rack":"rack1","temperature":100.5,"ts":"2017-06-02T08:02:02"}

{"rack":"rack1","temperature":98.3,"ts":"2017-06-02T08:02:29"}

{"rack":"rack1","temperature":102.0,"ts":"2017-06-02T08:02:44"}

// file2.json

{"rack":"rack1","temperature":97.5,"ts":"2017-06-02T08:02:59"}

{"rack":"rack2","temperature":99.5,"ts":"2017-06-02T08:03:02"}

{"rack":"rack2","temperature":105.5,"ts":"2017-06-02T08:03:44"}

{"rack":"rack2","temperature":104.0,"ts":"2017-06-02T08:04:06"}

{"rack":"rack2","temperature":108.0,"ts":"2017-06-02T08:04:49"}
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// file3.json

{"rack":"rack2","temperature":108.0,"ts":"2017-06-02T08:06:40"}

{"rack":"rack3","temperature":100.5,"ts":"2017-06-02T08:06:20"}

{"rack":"rack3","temperature":103.7,"ts":"2017-06-02T08:07:35"}

{"rack":"rack3","temperature":105.3,"ts":"2017-06-02T08:08:53"}

Next you are going to prepare a few classes and two functions to apply pattern 

detection logic to the previous data. For this use case, the rack temperature input 

data is represented by class RackInfo, and both the intermediate state and output are 

represented by the same class called RackState. Listing 7-12 shows the code.

Listing 7-12. Scala Case Classes for the Input and Intermediate State

case class RackInfo(rack:String, temperature:Double, ts:java.sql.Timestamp) 

// notice the constructor arguments are defined to be modifiable so we can 

update them

// the lastTS variable is used to compare the time between previous and 

current temperature reading

case class RackState(var rackId:String, var highTempCount:Int, 

                     var status:String, var lastTS:java.sql.Timestamp)

Next you define two functions. The first one is called updateRackState, which 

contains the core logic of the pattern detection of three consecutive high temperature 

readings that happen within 60 seconds of each other. The second function is called 

updateAcrossAllRackStatus, which is the callback function that will be passed into the 

mapGroupsWithState API. This function makes sure the rack temperature readings are 

processed according to the order of their event time. See Listing 7-13 for the code.

Listing 7-13. The Functions for Performing Pattern Detection

import org.apache.spark.sql.streaming.GroupState

// contains the main logic to detect the temperature pattern described above

def updateRackState(rackState:RackState, rackInfo:RackInfo) : RackState = {

   // setup the conditions to decide whether to update the rack state

   val lastTS = Option(rackState.lastTS).getOrElse(rackInfo.ts)

   val withinTimeThreshold = (rackInfo.ts.getTime - lastTS.getTime) <= 60000
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    val meetCondition = if (rackState.highTempCount < 1) true else 

withinTimeThreshold

   val greaterThanEqualTo100 = rackInfo.temperature >= 100.0

  (greaterThanEqualTo100, meetCondition) match {

     case (true, true) => {

        rackState.highTempCount = rackState.highTempCount + 1

         rackState.status = if (rackState.highTempCount >= 3) "Warning" else 

"Normal"        

     }

     case _ => {

       rackState.highTempCount = 0

       rackState.status = "Normal"

     }

   }

   rackState.lastTS = rackInfo.ts

   rackState

}

// call-back funcion to provide mapGroupsWithState API

def updateAcrossAllRackStatus(rackId:String, inputs:Iterator[RackInfo],

                     oldState: GroupState[RackState]) : RackState = {

   //  initialize rackState with previous state if exists, otherwise create 

a new state

    var rackState = if (oldState.exists) oldState.get else RackState 

(rackId, 5, "", null)

   // sort the inputs by time stamp in ascending order

   inputs.toList.sortBy(_.ts.getTime).foreach( input => {

     rackState = updateRackState(rackState, input)

     //  very important to update the rackState in the state holder class 

GroupState

     oldState.update(rackState)

   })

   rackState

}

Chapter 7  Spark Streaming (advanCed)



308

The setup step is now complete, so now you will wire the callback function into 

mapGroupsWithState in the Structured Streaming application in Listing 7-14. The steps to 

simulate the streaming data are similar to one of the previous examples, as shown here:

• Create a directory called input under the directory  

<path>/chapter7/data. Remove all files in this directory  

if it already exists.

• Run the code in Listing 7-14.

• Copy file1.json to the input directory and then observe the output. 

Repeat this same step with file2.json and file3.json.

Listing 7-14. Using Arbitrary State Processing to Detect Patterns in a Streaming 

Application

import org.apache.spark.sql.streaming.{GroupStateTimeout, OutputMode}

import org.apache.spark.sql.types._

import org.apache.spark.sql.functions._

// schema for the IoT data

val iotDataSchema = new StructType().add("rack", StringType, false)

                                    .add("temperature", DoubleType, false)

                                    .add("ts", TimestampType, false)

val iotSSDF = spark.readStream.schema(iotDataSchema).json("<path>/chapter7/

data/input")

val iotPatternDF = iotSSDF.as[RackInfo]

                          .groupByKey(_.rack)

                          .mapGroupsWithState[RackState,RackState]

                           (GroupStateTimeout.NoTimeout)

(updateAcrossAllRackStatus)

// setup the output and start the streaming query

val iotPatternSQ = iotPatternDF.writeStream

                               .format("console")

                               .outputMode("update")

                               .start()
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// after file3.json is copied over to "input" directory, run the line below 

stop the streaming query

iotPatternSQ.stop

// the output after processing file1.json

+-------+--------------+-------+--------------------+

| rackId| highTempCount| status|              lastTS|

+-------+--------------+-------+--------------------+

|  rack1|             1| Normal| 2017-06-02 08:02:44|

+-------+--------------+-------+--------------------+

// the output after processing file2.json

+-------+--------------+--------+--------------------+

| rackId| highTempCount|  status|              lastTS|

+-------+--------------+--------+--------------------+

|  rack1|             0|  Normal| 2017-06-02 08:02:59|

|  rack2|             3| Warning| 2017-06-02 08:04:49|

+-------+--------------+--------+--------------------+

// the output after processing file3.json

+-------+--------------+-------+--------------------+

| rackId| highTempCount| status|              lastTS|

+-------+--------------+-------+--------------------+

|  rack3|             1| Normal| 2017-06-02 08:08:53|

|  rack2|             0| Normal| 2017-06-02 08:06:40|

+-------+--------------+-------+--------------------+

rack1 has a few temperature readings over 100 degrees; however, they are not 

consecutive, and therefore the output status is at the normal level. In file file2.json, 

rack2 has three consecutive temperature readings over 100 degrees, and the time gap 

between each one and the one before is less than 60 seconds; therefore, the status of 

rack2 is at the warning level. rack3 has three consecutive temperature readings over 100 

degrees; however, the time gap between each one and the one before is more than 60 

seconds. Therefore, its status is at the normal level.
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 User Sessionization with flatMapGroupsWithState

This use case performs user sessionization using the flatMapGroupsWithState API, 

which supports the ability to output more than one row per group. In this example, 

the sessionization processing logic is based on the user activities. A session is created 

when the login action is taken, and a session is ended when the logout action is taken. 

A session will be automatically ended when there are no user activities for a duration 

of 30 minutes. You will leverage the timeout feature described earlier to perform this 

detection. In terms of the output, whenever a session starts or ends, that information will 

be sent to the output. The output information consists of user ID, session start and end 

times, and the number of visited pages.

The data for this use case is located in the directory <path>/chapter7/data/

sessionization, which consists of three files. Their content is shown in Listing 7-15. 

File file1.json contains the activities of user1, and it includes a login action, but there 

is no logout action. File file2.json contains all the activities of user2 including both 

login and logout actions. File file3.json contains only the login action for user3. 

The timestamp of the user activities in three files is set up in such a way that the session 

of user1 will be timed out when file3.json is processed. This is because by then the 

amount of time user1 has been idled is more than 30 minutes.

Listing 7-15. User Activity Data

// file1.json

{"user":"user1","action":"login","page":"page1", "ts":"2017-09- 06T08:08:53"}

{"user":"user1","action":"click","page":"page2", "ts":"2017-09- 06T08:10:11"}

{"user":"user1","action":"send","page":"page3", "ts":"2017-09-06T08:11:10"}

// file2.json

{"user":"user2","action":"login", "page":"page1", "ts":"2017-09- 06T08:44:12"}

{"user":"user2","action":"view", "page":"page7", "ts":"2017-09- 06T08:45:33"}

{"user":"user2","action":"view", "page":"page8", "ts":"2017-09- 06T08:55:58"}

{"user":"user2","action":"view", "page":"page6", "ts":"2017-09- 06T09:10:58"}

{"user":"user2","action":"logout","page":"page9", "ts":"2017-09- 06T09:16:19"}

// file3.json

{"user":"user3","action":"login", "page":"page4", "ts":"2017-09- 06T09:17:11"}
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Next you are going to prepare a few classes and two functions to apply the user 

sessionization logic to the previous data. For this use case, the user activity input data 

is represented by class UserActivity. The intermediate state of the user session data is 

represented by the class UserSessionState, and the user session output is represented 

by the class UserSessionInfo. Listing 7-16 shows the code for all these three classes.

Listing 7-16. Scala Case Classes for Input, Intermediate State, and Output

case class UserActivity(user:String, action:String, page:String, ts:java.

sql.Timestamp) 

//  the lastTS field is for storing the largest user activity timestamp and 

this information is used

// when setting the timeout value for each user session

case class UserSessionState(var user:String, var status:String, var 

startTS:java.sql.Timestamp, 

                             var endTS:java.sql.Timestamp, var lastTS:java.

sql.Timestamp, 

                            var numPage:Int)

// the end time stamp is filled when the session has ended.

case class UserSessionInfo(userId:String, start:java.sql.Timestamp, 

end:java.sql.Timestamp,  numPage:Int)

Next you define two functions. The first one is called updateUserActivity, which 

is responsible for updating the user session state based on a single-user activity. It 

appropriately updates either the session start or the end time based on the action 

the user has taken. In addition, it updates the latest activity timestamp. The second 

function is called updateAcrossAllUserActivities, and it is the callback function 

that will be passed into the flatMapGroupsWithState function. This function has two 

main responsibilities. The first one is to handle the timeout of the intermediate session 

state, and it updates the user session end time when such a condition arises. The other 

responsibility is to determine when and what to send to the output. The desired output 

is one row when a user session is started and another one when a user session is ended. 

See Listing 7-17 for the logic of these two functions.
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Listing 7-17. The Functions for Performing User Sessionization

import org.apache.spark.sql.streaming.GroupState

import scala.collection.mutable.ListBuffer

def updateUserActivity(userSessionState:UserSessionState, 

userActivity:UserActivity) : UserSessionState = {

    userActivity.action match {

      case "login" => {

        userSessionState.startTS = userActivity.ts

        userSessionState.status = "Online"

      }

      case "logout" => {

        userSessionState.endTS = userActivity.ts

        userSessionState.status = "Offline"

      }

      case _ => {

        userSessionState.numPage += 1

        userSessionState.status = "Active"

      }

    }

    userSessionState.lastTS = userActivity.ts

    userSessionState

}

def updateAcrossAllUserActivities(user:String, 

inputs:Iterator[UserActivity],

                      oldState: GroupState[UserSessionState]) : 

Iterator[UserSessionInfo] = {  

    var userSessionState = if (oldState.exists) oldState.get else 

UserSessionState(user, "", 

    new java.sql.Timestamp(System.currentTimeMillis), null, null, 0)

   var output = ListBuffer[UserSessionInfo]()
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   inputs.toList.sortBy(_.ts.getTime).foreach( userActivity => {

     userSessionState = updateUserActivity(userSessionState, userActivity)

     oldState.update(userSessionState)

     if (userActivity.action == "login") {

       output += UserSessionInfo(user, userSessionState.startTS,

                                 userSessionState.endTS, 0)

     }

   })

   val sessionTimedOut = oldState.hasTimedOut

   val sessionEnded = !Option(userSessionState.endTS).isEmpty

   val shouldOutput = sessionTimedOut || sessionEnded

   shouldOutput match {

    case true => {

        if (sessionTimedOut) {

             userSessionState.endTS = new java.sql.Timestamp(oldState.

getCurrentWatermarkMs)

        } 

        oldState.remove()  

        output += UserSessionInfo(user, userSessionState.startTS,

                                  userSessionState.endTS, userSessionState.

numPage)

    }

    case _ => {

      // extend sesion

      oldState.update(userSessionState)      

       oldState.setTimeoutTimestamp(userSessionState.lastTS.getTime, 

"30 minutes")

    }

   }

   output.iterator 

}
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The setup step is now complete, so you will wire the callback function into the 

flatMapGroupsWithState function in the Structured Streaming application in Listing 7-18. 

In this example, it will leverage the timeout feature, and therefore setting up a watermark 

and event-time timeout type is required. The steps to simulate the streaming data are 

similar to one of the previous examples, as shown here:

 1. Create a directory called input under the directory <path>/chapter7/ 

data. Remove all the files in this directory if it already exists.

 2. Run the code in Listing 7-18.

 3. Copy file1.json to the input directory and then observe the 

output. Repeat this same step with file2.json and file3.json.

Listing 7-18. Using Arbitrary State Processing to Perform User Sessionization in 

a Streaming Application

import org.apache.spark.sql.streaming.{GroupStateTimeout, OutputMode}

import org.apache.spark.sql.types._

import org.apache.spark.sql.functions._

val userActivitySchema = new StructType().add("user", StringType, false)

                                         .add("action", StringType, false)

                                         .add("page", StringType, false)

                                         .add("ts", TimestampType, false)

val userActivityDF = spark.readStream.schema(userActivitySchema).

json("<path>/chapter7/data/input")

// convert to DataSet of type UserActivity

val userActivityDS = userActivityDF.withWatermark("ts", "30 minutes").

as[UserActivity]

// specify the event-time timeout type and wire in the call-back function

val userSessionDS = userActivityDS.groupByKey(_.user)

                                              . flatMapGroupsWithState[User 

SessionState,UserSessionInfo]

                                                (OutputMode.Append,Group 

StateTimeout.EventTimeTimeout)

                                                (updateAcrossAllUser 

Activities)
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// setup the output and start the streaming query

val userSessionSQ = userSessionDS.writeStream

                                 .format("console")

                                 .option("truncate",false)

                                 .outputMode("append")

                                 .start()

// only run this line of code below after done copyng over file3.json

userSessionSQ.stop

// the output after processing file1.json

+-------+--------------------+-----+--------+

| userId|               start| end | numPage|

+-------+--------------------+-----+--------+

| user1 | 2017-09-06 08:08:53| null|    0   |

+-------+--------------------+-----+--------+

// the output after processing file2.json

+-------+--------------------+--------------------+--------+

| userId|               start|                 end| numPage|

+-------+--------------------+--------------------+--------+

| user2 | 2017-09-06 08:44:12|                null|       0|

| user2 | 2017-09-06 08:44:12| 2017-09-06 09:16:19|       3|

+-------+--------------------+--------------------+--------+

// the output after processing file3.json

+-------+--------------------+--------------------+--------+

| userId|               start|                 end| numPage|

+-------+--------------------+--------------------+--------+

| user1 | 2017-09-06 08:08:53| 2017-09-06 08:46:19|       2|

| user3 | 2017-09-06 09:17:11|                null|       0|

+-------+--------------------+--------------------+--------+
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After processing the user activities in file1.json, you see there is one row in the 

output. This is expected because whenever function updateAcrossAllUserActivities 

sees a login action in the user activities, it will add an instance of the UserSessionInfo 

class to the output ListBuffer. There are two rows in the output after processing file2.

json. One is for the login action, and the other one is for the logout action. Now file3.

json contains only one user activity for user3 with the action login, but the output 

contains two rows. The row for user1 is the result of detecting that the user1 session has 

timed out, which means the watermark has passed the timeout value of that particular 

session because of the lack of activity from user1.

As demonstrated in the previous two use cases, the arbitrary stateful processing 

feature in Structured Streaming provides flexible and powerful ways to apply  user- defined 

processing logic on each group with total control of what to send to the output and when.

 Handling Duplicate Data
Deduplicating data is a common need in the world of data processing, and it is not 

too difficult to do that in batch processing. In stream processing, though, it is more 

challenging because of the unbounded nature of streaming data. Data duplication in 

real-time streaming data happens when data producers send the same piece of data 

multiple times, and this may happen because they operate in an unreliable network 

connection and they want to err on the side of making sure a particular piece of data is 

sent and processed.

Luckily, Structured Streaming makes it easy for streaming applications to perform 

data duplication, and therefore these applications can guarantee exactly once processing 

by dropping duplicate data as it arrives. The data duplication feature that Structured 

Streaming provides can work in conjunction with a watermark or without it. One key 

thing to note, though, when performing data duplication without specifying a watermark 

is that the state that Structured Streaming needs to maintain will grow infinitely over the 

lifetime of your streaming application, and this may lead to out-of-memory issues. With 

watermarking, late data older than the watermark will be automatically dropped to avoid 

any possibility of duplicates.

The API to tell Structured Streaming to perform data deduplication is simple, and it 

has only one input, which is a list of column names to use to uniquely identify each row. 

The value of these columns will be used to perform duplicate detection, and Structured 

Streaming will store them as intermediate state. The sample data that will be used to 
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demonstrate the data deduplication feature has the same schema as the mobile event 

data. The count aggregation will be based on the grouping of the id column. Both the 

id and ts columns are used as the user-defined keys for the deduplication purpose. 

The data for this example is located in <path>/chapter7/data/deduplication, which 

contains two files: file1.json and file2.json. The content of these files is displayed in 

Listing 7-19.

Listing 7-19. Sample Data for the Data deduplication Example

// file1.json - each line is unique in term of id and ts columns

{"id":"phone1","action":"open","ts":"2018-03-02T10:15:33"}

{"id":"phone2","action":"open","ts":"2018-03-02T10:22:35"}

{"id":"phone3","action":"open","ts":"2018-03-02T10:23:50"}

//  file2.json - the first two lines are duplicate of the first two lines in 

file1.json above

// the third line is unique

//  the fourth line is unique, but it arrives late, therefore it will not be 

processed

{"id":"phone1","action":"open","ts":"2018-03-02T10:15:33"}

{"id":"phone2","action":"open","ts":"2018-03-02T10:22:35"}

{"id":"phone4","action":"open","ts":"2018-03-02T10:29:35"}

{"id":"phone5","action":"open","ts":"2018-03-02T10:01:35"}

To simulate the data deduplication, first create a directory called input under the 

directory <path>/chapter7/data. Then run the code in Listing 7-20. The next step is to 

copy the file1.json file to the input directory and examine the output. The final step is 

to copy the file2.json file to the input directory to examine the output.

Listing 7-20. Deduplicating Data Using the dropDuplicates API

import org.apache.spark.sql.types._

import org.apache.spark.sql.functions._

val mobileDataSchema = new StructType().add("id", StringType, false)

                                       .add("action", StringType, false)
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                                       .add("ts", TimestampType, false)

// mobileDataSchema is defined in previous example

val mobileDupSSDF = spark.readStream.schema(mobileDataSchema)

                                    . json("<path>/chapter7/data/

deduplication")

val windowCountDupDF = mobileDupSSDF.withWatermark("ts", "10 minutes")

                                    .dropDuplicates("id", "ts")

                                    .groupBy("id").count

val mobileMemoryDupSQ = windowCountDupDF.writeStream

                                        .format("console")

                                        .option("truncate", "false")

                                        .outputMode("update")

                                        .start()

// output after copying file1.json to input directory

+-------+------+

|     id| count|

+-------+------+

| phone3|     1|

| phone1|     1|

| phone2|     1|

+-------+------+

// output after coping file2.json to input directory

+-------+------+

|     id| count|

+-------+------+

| phone4|     1|

+-------+------+

As expected, after file2.json is copied to the input directory, only one line is 

displayed in the console. The reason is the first two lines are duplicates of the first two 

lines in file1.json, and therefore they were filtered out. The last line has a timestamp 

of 10:10, which is considered late data since that timestamp is older than the ten-minute 

watermark threshold. Therefore, the last line was not processed and dropped.

Chapter 7  Spark Streaming (advanCed)



319

 Fault Tolerance
One of the most important considerations when developing important streaming 

applications and deploying them to production is failure recovery. According to 

Murphy’s law, anything that can go wrong will go wrong. Machines will fail, and software 

will have bugs. Luckily, Structured Streaming provides a way to restart or recover your 

streaming application when there is a failure, and it will continue where it left off. To 

take advantage of this recovery mechanism, you need to configure your streaming 

applications to use checkpointing and write-ahead logs by specifying a checkpoint 

location when setting up streaming queries. Ideally the checkpoint location should be 

a path on a reliable and fault-tolerant file system like HDFS or S3. Structured Streaming 

will periodically save all the progress information such as the offset details of the data 

being processed and the intermediate state values to the checkpoint location. Adding 

a checkpoint location to a streaming query is straightforward. You just need to add an 

option to your streaming query with checkpointLocation as the name and the path as 

the value. See Listing 7-21 for an example.

Listing 7-21. Adding the checkpointLocation Option to a Streaming Query

val userSessionSQ = userSessionDS.writeStream.format("console")

                                             .option("truncate",false)

                                             . option("checkpointLocation", 

"/reliable/location")

                                             .outputMode("append")

                                             .start()

If you take a peek into the specified checkpoint location, you should see the 

following subdirectories: commits, metadata, offsets, sources, and stats. The 

information in these directories is specific to a particular streaming query; hence, each 

one must use a different checkpoint location.

Just like most software applications, streaming applications will evolve over time 

because of the need to improve the processing logic or performance or to fix bugs. It is 

important to keep in mind how this might affect the information saved in the checkpoint 

location and to know what changes are considered safe to make. Broadly speaking, there 

are two categories of changes. One is the change to streaming application code, and the 

other is the change to the Spark runtime.
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 Streaming Application Code Change
The information in the checkpoint location is designed to be somewhat resilient 

to the changes of streaming applications. There are a few kind of changes that will 

be considered incompatible changes. The first one is about changing the way the 

aggregation is done by either changing the key column, adding more key columns, 

or removing one of the existing key columns. The second one is changing the class 

structure that was used for storing the intermediate state, for example, when a field is 

removed or the type of a field is changed from string to integer. When incompatible 

changes are detected during a restart, Structured Streaming will let you know via an 

exception. In this case, you must either use a new checkpoint location or remove the 

content in the previous checkpoint location.

 Spark Runtime Change
The checkpoint format is designed to be forward compatible such that streaming 

applications should be able to restart from an old checkpoint across patch versions or 

minor version updates of Spark (i.e., upgrading from Spark 2.2.0 to 2.2.1 or from Spark 

2.2.x to 2.3.x). The only exception to the rule is when there are critical bug fixes. It is 

good to know that when incompatible changes are introduced by Spark, it will be clearly 

documented in the release notes.

If it is not possible to start a streaming application with an existing checkpoint 

location because of incompatibility issues, then you will need to use a new checkpoint 

location, and perhaps you will also need to seed your applications with some 

information about the offset to read data from.

 Streaming Query Metrics and Monitoring
Similar to other long-running applications such as online services, it is important to 

have some insights into your streaming applications regarding the progress it is making, 

the incoming data rate, or the amount of memory being consumed by the intermediate 

state. Structured Streaming provides a few APIs to extract the information about recent 

execution progress and an asynchronous way of monitoring all streaming queries in a 

streaming application.
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 Streaming Query Metrics
The most basic useful information about a streaming query at any moment in time is 

its current status. You can retrieve and display this information in a human-readable 

format by calling the StreamingQuery.status function. The returned object is of type 

StreamingQueryStatus, and it can easily convert the status information into JSON 

format. Listing 7-22 shows an example of what the status information looks like.

Listing 7-22. Query Status Information in JSON Format

// use a streaming query from the example above

userSessionSQ.status

// output

res11: org.apache.spark.sql.streaming.StreamingQueryStatus =

{

  "message" : "Waiting for data to arrive",

  "isDataAvailable" : false,

  "isTriggerActive" : false

}

Clearly the previous status provides basic information about what’s going on in a 

streaming query at the moment the status function is called. To get additional details 

from recent progress such as the incoming data rate, the processing rate, the watermark, 

the offsets of the data source, and some information about the intermediate state, you 

can call the StreamingQuery.recentProgress function. This function returns an array of 

instances of the StreamingQueryProgress class, which can convert the details into JSON 

format. By default, each streaming query is configured to retain 100 progress updates, 

and this number can be changed by updating the Spark configuration called spark.

sql.streaming.numRecentProgressUpdates. To see the most recent streaming query 

progress, you can call the function StreamingQuery.lastProgress. Listing 7-23 shows a 

sample of a streaming query progress.
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Listing 7-23. Streaming Query Progress Details

{

  "id" : "9ba6691d-7612-4906-b64d-9153544d81e9",

  "runId" : "c6d79bee-a691-4d2f-9be2-c93f3a88eb0c",

  "name" : null,

  "timestamp" : "2018-04-23T17:20:12.023Z",

  "batchId" : 0,

  "numInputRows" : 3,

  "inputRowsPerSecond" : 250.0,

  "processedRowsPerSecond" : 1.728110599078341,

  "durationMs" : {

    "addBatch" : 1548,

    "getBatch" : 8,

    "getOffset" : 36,

    "queryPlanning" : 110,

    "triggerExecution" : 1736,

    "walCommit" : 26

  },

  "eventTime" : {

    "avg" : "2017-09-06T15:10:04.666Z",

    "max" : "2017-09-06T15:11:10.000Z",

    "min" : "2017-09-06T15:08:53.000Z",

    "watermark" : "1970-01-01T00:00:00.000Z"

  },

  "stateOperators" : [ {

    "numRowsTotal" : 1,

    "numRowsUpdated" : 1,

    "memoryUsedBytes" : 16127

  } ],

  "sources" : [ {

    "description" : "FileStreamSource[file:<path>/chapter7/data/input]",

    "startOffset" : null,

    "endOffset" : {

      "logOffset" : 0

    },
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    "numInputRows" : 3,

    "inputRowsPerSecond" : 250.0,

    "processedRowsPerSecond" : 1.728110599078341

  } ],

  "sink" : {

     "description" : "org.apache.spark.sql.execution.streaming.

ConsoleSinkProvider@37dc4031"

  }

}

Looking at the details in the sample streaming progress shown previously, there are 

a few important key metrics to pay attention to. The input rate represents the amount of 

incoming data flowing into a streaming application from an input source. The process 

rate tells you how fast a streaming application can process the incoming data. In an 

ideal state, the processing rate should be higher than the input rate, and if that is not 

the case, then you need to consider scaling up the number of nodes in a Spark cluster. 

If a streaming application is maintaining state either implicitly through the groupBy 

transformation or explicitly through the arbitrary state processing APIs, then it is 

important to pay attention to the metrics in the stateOperators section.

The Spark UI provides a rich set of metrics at the job, stage, and task levels. Each 

trigger in a streaming application is mapped to a job in Spark UI, where the query plan 

and task durations can be easily inspected.

Note the streaming query status and progress details are available through 
an instance of a streaming query. While your streaming application is running in 
production, you don’t have the luxury of having access to those streaming queries. 
What if you would like to see that information from a remote host? One option is 
to embed a small http server inside your streaming application and expose a few 
simple UrLs to retrieve that information.
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 Monitoring Streaming Queries
Structured Streaming provides a callback mechanism to asynchronously receive events 

and the progress of the streaming queries in a streaming application. This is done via 

the StreamingQueryListener interface, which tells when a streaming query is started, 

when it has made some progress, and when it is terminated. An implementation of 

this interface can control what to do with the provided information. One obvious 

implementation would be to send this information to a Kafka topic or some other 

publish-subscribe system for offline analysis or for another streaming application to 

process. Listing 7-24 contains a simple implementation of the StreamingQueryListener 

interface; it prints out the information to the console.

Listing 7-24. A Simple Implementation of the StreamingQueryListener Interface

import org.apache.spark.sql.streaming.StreamingQueryListener

import org.apache.spark.sql.streaming.StreamingQueryListener.

{QueryStartedEvent, QueryProgressEvent, QueryTerminatedEvent}

class ConsoleStreamingQueryListener extends StreamingQueryListener {

    override def onQueryStarted(event: QueryStartedEvent): Unit = {

      println(s"streaming query started:  ${event.id} - ${event.name} - 

${event.runId}")

    }

    override def onQueryProgress(event: QueryProgressEvent): Unit = {

      println(s"streaming query progess: ${event.progress}")

    }

    override def onQueryTerminated(event: QueryTerminatedEvent): Unit = {

      println(s"streaming query terminated: ${event.id} - ${event.runId}")

    }

}

Once you have an implementation of StreamingQueryListener, the next step is to 

register it with StreamQueryManager, which can handle multiple listeners. See Listing 7- 25 

for how to register and unregister a listener.
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Listing 7-25. Registering and Unregistering an Instance of 

StreamingQueryListener with StreamQueryManager

Val listener = new ConsoleStreamingQueryListener

// to register 

spark.streams.addListener(listener)

// to unregister

spark.streams.removeListener(listener)

One thing to remember is each listener receives the streaming query events from 

all the streaming queries in a streaming application. If there is a need to apply specific 

event processing logic to a certain streaming query, then it can leverage the streaming 

query name.

 Summary
The Spark Structured Streaming engine provides many advanced features and the 

flexibility to build complex and sophisticated streaming applications.

• Any serious streaming processing engine must support the ability 

to process incoming data by the event time. Structured Streaming 

not only supports the ability to do this but also supports window 

aggregation based on fixed and sliding windows. In addition, it will 

automatically maintain the intermediate state in a fault-tolerant 

manner.

• Maintaining the intermediate state introduces the risk of running out 

of memory as streaming applications process more and more data.  

A watermark was introduced to make it easier to reason about late 

data as well as to remove no longer needed intermediate state.

• Arbitrary stateful processing enables a user-defined way of 

processing the values of each group and maintaining its intermediate 

state. Structured Streaming provides an easy way of doing this via a 

callback API, and there is a flexibility in generating one or more rows 

per group to the output.
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• Structured Streaming provides an end-to-end, exactly-once 

guarantee. This is achieved by using the checkpointing and write- 

ahead log mechanisms. Both of them can be turned on easily by 

providing a checkpoint location that resides on a fault-tolerant file 

system. Streaming applications can be easily restarted and pick up 

from where they left off before the failure by reading the information 

saved in the checkpoint location.

• Production streaming applications require the ability to get insights 

into the status and metrics of streaming queries. Structured 

Streaming provides a short summary of the streaming query status 

as well as the detailed metrics about incoming data rate, processing 

rate, and some details about the intermediate state memory 

consumption. To monitor the lifecycle of all streaming queries and 

their detailed progresses, you can register one or more instances of 

the StreamingQueryListener interface.
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CHAPTER 8

Machine Learning 
with Spark
There has been a lot of excitement around artificial intelligence (AI), machine learning 

(ML), and deep learning (DL) in recent years. AI experts and researchers have predicted 

AI will radically transform the way humans live, work, and do business in the future. For 

businesses around the world, AI is considered to be one of the next steps in their journey 

of digital transformation, and some are more far along than others in incorporating AI 

into their business strategies. Businesses expect AI to help solve their business problems 

efficiently and quickly as well as to create business value and improve their competitive 

advantages. Internet giants such as Google, Amazon, Microsoft, Apple, and Facebook are 

leading the pack in investing in, adopting, and incorporating AI into their product portfolios. 

In 2017, more than $15 billion of venture capital (VC) money went into investing in AI-

related startup companies around the world, and this trend is expected to continue in 2018.

AI is a broad area of computer science that tries to make machines seem like they 

have intelligence. It is an audacious goal to help advance humankind. One of the 

subfields within AI is machine learning, which focuses on teaching computers to learn 

without being explicitly programmed. The learning process involves analyzing a large 

number of datasets using algorithms and building a model to explain the world. These 

algorithms can be categorized into different groups based on the task they are designed 

for. One of the things these algorithms have in common is they learn through an iterative 

process of refining their internal parameters to achieve an optimal outcome.

Deep learning (DL) is one of the machine learning methods that is inspired by the 

way the human brain works, and it has proven to be really good at learning complex 

patterns from data by representing them as a nested hierarchy of concepts. With the 

combination of the availability of large and curated datasets and the advancement in 

graphical processing units (GPUs), DL has proven to be effective at solving problems in 

areas such as object recognition, image recognition, speech recognition, and machine 
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translation. In fact, it has proven itself at one of the image classification challenges called 

ImageNet, where a computer system trained using a DL method was able to beat a human 

at classifying images. The implication of this achievement and similar ones is that now 

computer systems can see, recognize objects, and hear at the same level as their creators. 

Figure 8-1 illustrates the relationship between AI, ML, and DL as well their timelines.

One of the motivations behind the creation of Spark was to help applications run 

iterative algorithms efficiently at scale. Over the last few versions of Spark, the MLlib 

library has steadily increased its offerings to make ML scalable and easy to use by 

providing a set of commonly used ML algorithms and a set of tools to facilitate the 

process of building and evaluating ML models.

To appreciate the features that the MLlib library provides, it is necessary to have a 

fundamental understanding of the process of building ML applications. This chapter 

starts by providing that information and proceeds to introducing the features and 

APIs that are available in the MLlib library so that you can apply them to building your 

intelligent applications using machine learning.

Figure 8-1. Relationship between AI, ML, and DL and their timelines
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 Machine Learning Overview
The goal of this section to provide a brief overview about machine learning and the 

typical process used to develop ML applications. It is not meant to be exhaustive; feel 

free to skip it if you are already familiar with ML.

ML is a vast and fascinating field of study, which combines parts of other fields of 

studies such as mathematics, statistics, and computer science. It is a method of teaching 

computers to learn patterns and derive insights from historical data, often for the 

purpose of making decisions or predictions. Unlike traditional, hard-coded software, 

ML gives you only probabilistic outputs based on the imperfect data you provide. The 

more data you can provide to ML algorithms, the more accurate the output will be. ML 

can solve much more interesting and difficult problems than traditional software can, 

and these problems are not specific to any industry or business domain. Examples of 

these relevant areas are image recognition, speech recognition, language translation, 

fraud detection, product recommendations, robotics, autonomous driving cars, 

speeding up the drug discovery process, medical diagnosis, customer churn prediction, 

recommendations, and many more.

Given that the goal of AI is to make machines seem like they have intelligence, one 

of the best ways to measure that is by comparing machine intelligence against human 

intelligence. There are a few well-known and publicized demonstrations of such 

comparisons in recent decades. The first one was a computer system called Deep Blue 

that defeated the world chess champion in 1997 under strict tournament regulations. 

This example demonstrates that computer machines can think faster and better than a 

human in a game that has a vast but limited set of possible moves. The second one was 

a computer system called Watson that competed on the Jeopardy game show against 

two legendary champions in 2011 and won the first price of $1 million. The example 

demonstrates computer machines can understand human language in a specific 

question-and-answer structure and then tap into their vast knowledge base to come up 

with probabilistic answers. The third one is about a computer program called AlphaGo 

that defeated a world champion in the game of Go in a historic match in 2016. This 

example demonstrates a great leap in the advancement of the AI field because Go is 

considered to be a complex board game that requires intuition and creative and strategic 

thinking, and it is not feasible to perform an exhaustive move search because of the 

number of possible moves it has is greater than the number of atoms in the universe.
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 Machine Learning Terminologies
Before going deeper into ML, it is important to learn a few basic terms in the ML 

language. This will be helpful in future sections when this terminology is mentioned. To 

ideally make it easier to understand these terms, the explanations are provided in the 

context of the canonical ML example called the spam email classification example.

• Observation

• This term comes from the statistics field. An observation is an 

instance of the entity that is used for learning. For example, 

emails are considered observations.

• Label

• A value used to label an observation. For example, “spam” or  

“not spam” are two possible values used to label emails.

• Features

• These are important attributes about observations that most 

likely have the strongest influence in the output of the prediction. 

Examples are the email sender IP address, the number words, the 

number of capital words, and so on.

• Training data

• This is a portion of the observations used to train a chosen ML 

algorithm to produce a model. A general practice in the industry 

is to split the collected data into three portions: training data, 

validation data, and test data. The test data portion is roughly 

about 70 percent or 80 percent of the original data set.

• Validation data

• This is a portion of the observations used to evaluate the 

performance of the ML model during the model tuning process.

• Test data

• This is a portion of the observations used to evaluate the 

performance of the ML model after the tuning process is 

finalized.
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• ML algorithm

• This is a collection of steps that run in an iterative manner to 

extract insights or patterns from given test data. The main goal 

of an ML algorithm is to learn a mapping from inputs to outputs. 

There is already a well-known set of ML algorithms to choose 

from. The challenge is in selecting the right algorithm to use to 

solve a particular ML problem. For the email spam detection 

problem, one might pick the naive Bayes algorithm.

• Model

• After an ML algorithm learns from the given input data, it 

produces a model, which is used to perform predictions or 

make decisions on the new data. A model is represented by a 

mathematical formula. The goal is to produce a generalized model 

and perform well against any new data it has not seen before.

The relationship between ML algorithm, data, and model is best illustrated in Figure 8-2.

One important point to remember when applying machine learning is to never 

train an ML algorithm with test data because that will defeat the purpose of producing 

a generalized ML model. Another important point to note is that ML is a vast field, and 

as you dig deeper into this field, undoubtedly you will discover many more terms and 

concepts. Ideally this basic set of terminologies will help you get started on this journey 

of learning ML.

 Machine Learning Types
As mentioned earlier, ML is about teaching machines to learn patterns from previous 

data for the purpose of making decisions or predictions. These tasks are widely 

applicable to many different types of problem, and each problem type requires a 

different way of learning. Broadly speaking, there are three types of learning, as shown in 

Figure 8-3.

Figure 8-2. Relationship between ML algorithm, data, and model
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 Supervised Learning

Among the different learning types, this one is widely used and more popular because it 

can help solve a large class of problems in the area of classification and regression.

Classification is about classifying the observations into one of the discrete or 

categorical classes of labels. Examples of classification problems include predicting 

whether an email is a spam email; whether a product review is positive or negative; 

whether an image contains a dog, cat, dolphin, or bird; whether the topic of a news 

article is about sports, medicine, politics, or religion; whether a particular handwritten 

digit is a 1 or 2; and whether the revenue for Q4 will meet expectations. When the result 

of the classification has only two discrete values, that is called binary classification, and 

when it has more than two discrete values, that is called multiclass classification.

Regression is about predicting real values from observations. Unlike classification, 

the predicted value is not discrete, but rather it is continuous. Examples of regression 

problems include predicting the house price based on their location and size, predicting 

the stock price of a company, predicting the income of a person based the background 

and education of a set of people, and so on.

One key distinguishing factor between this type of learning from the others is 

each observation in the training data must contain a label, whether that is discrete or 

continuous. In other words, the correct answers are provided to the algorithm so it can 

learn by iterating and incrementally improving its predictions on the training data, and it 

will stop once an acceptable error margin is achieved.

A simple mental model to use to distinguish classification from regression is that 

classification is about separating the data into various buckets and regression is about 

fitting the best line to the data. See Figure 8-4 for the visual representation of this mental 

model.

Figure 8-3. Different machine learning types
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There is a large collection of algorithms that are designed to solve the classification 

and regression machine learning problems. This chapter will focus on only the ones that 

are supported in the Spark MLlib component, as listed in Table 8-1.

Figure 8-4. Mental model of classification and regression

Table 8-1. Supervised Learning Algorithms in MLlib

Tasks Algorithms

Classification Logistic regression

Decision tree

random forest

gradient-boosted tree

Linear support vector machine

naive Bayes

regression Linear regression

generalized linear regression

Decision tree regression

random forest regression

gradient-boosted regression
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 Unsupervised Learning

The name of this learning method implies there is no supervision; in other words, the 

data used to train the ML algorithm wouldn’t contain the labels, and it is up to the 

learning algorithm to come up with its own findings. This learning type is designed to 

solve a different class of problem, that is, to discover the hidden structure or patterns 

inside the data, and it is up to us, the humans, to interpret the meaning behind those 

insights. As it turns out, a certain type of hidden structure called clustering, which is 

an exploratory analysis technique in data analytics, is a good method for structuring 

information to derive meaningful relationships or find similarities of the observations 

within the clusters. Figure 8-5 depicts examples of clusters.

Surprisingly, there are many practical problems that can be solved by this type of 

learning method. Let’s say there is a large collection documents, and there is no prior 

knowledge of which topic a particular document belongs to; you can use unsupervised 

learning to discover the clusters of related documents, and from there you can 

assign a topic to each of the clusters. Another interesting and common problem that 

the unsupervised learning method can help solve is in the area of credit card fraud 

detection, which is a type of anomaly detection. After the grouping of user credit card 

transactions into clusters, it is not too difficult to spot the outliers, which might represent 

the abnormal credit card transactions after it was stolen by a thief.

Table 8-2 lists the supported algorithms for the unsupervised learning method.

Figure 8-5. Visualization of clustering
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 Reinforcement Learning

Unlike the first two types of learning, this one doesn’t learn from data. Instead, it learns 

from interacting with an environment through a series of actions, and the feedback loop 

provides the information it uses to make adjustments with the goal of maximizing some 

reward. In other words, it learns from its own experience.

Until recently, this type of learning hasn’t gotten as much attention as the first two 

because it has not yet had significant practical success beyond computer games. In 2016, 

Google DeepMind was able to successfully apply this learning type to play an Atari game 

and then went on to incorporate it into its AlphaGo program, which defeated a world 

champion in the game of Go.

At this point, Spark MLlib doesn’t include any reinforcement learning algorithms. 

The following sections will focus on the first two types of learnings.

Note the term supervised metaphorically refers to a teacher (human) who 
“supervises” the learner, which is the ML algorithm, by specifically providing the 
answers (labels) along with a set of examples (training data).

 Machine Learning Process
To be effective at applying machine learning to the development of intelligent 

applications, you should consider studying and adopting a set of best practices that most 

ML practitioners follow. It has been said that applying machine learning effectively is a 

craft, half-science and half-art. Fortunately, there is a well-known and structured process 

that consists of a series of steps to help with providing reasonable repeatability and 

consistency, which is depicted in Figure 8-6.

Table 8-2. Unsupervised Learning Algorithms in MLlib

Tasks Algorithms

Clustering k-means

Latent Dirichlet allocation

Bisecting k-means

gaussian
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It may be obvious, but the first step in this process is to clearly understand the 

business objective or challenge that you think ML can help you with. It is beneficial to 

evaluate alternative solutions to ML to understand the cost and trade-offs. Sometimes it 

is faster to go with a simple rule-based solution to start with. If a strong confidence has 

established that ML is a better choice in terms of delivering valuable business insights 

efficiently, quickly, and broadly across many scenarios without humans in the loop, 

then proceed to the next step. After the problem is clearly understood, the next part is to 

establish a set of success metrics that all stakeholders can agree on.

The next step is to identify and collect the necessary types of and an appropriate 

amount of data to support the problem at hand. The quality and quantity of the collected 

data will have a direct impact on the performance of the trained ML model. One 

important point to keep in mind is to make sure the collected data is as much as possible 

representative of the problem you are trying to solve. The phrase “garbage in, garbage out” 

is still very much applicable in characterizing a key limitation in ML.

Feature engineering is one of the most important and time-consuming steps in 

this process. This step is mainly about data cleaning and using domain knowledge 

to identify key attributes or features about observations that will be useful to the ML 

Figure 8-6. Machine learning application development process
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algorithms to learn the direct relationship between the training data and provided labels. 

The data cleaning task is usually done using the exploratory data analysis framework 

to gain a better understand of the data in terms of data distribution, correlations, 

outliers, and so on. Feature engineering is a fairly expensive step because of the need of 

involving humans in the loop and using their domain knowledge of the problem that is 

being solved. DL has shown to be a superior learning method over ML because it can 

automatically extract features with human intervention.

The next step after feature engineering is selecting an appropriate ML model or 

algorithm and training it. Given that there are many available algorithms to solve similar 

ML tasks, the question is, what is the best model or models to use? Like most things, 

deciding on the best one requires a combination of having a good understanding of the 

problem at hand, having good working knowledge of the various characteristics of each 

algorithm, and having the experience to apply them to similar problems in the past. In 

other words, it is half-science and half-art when it comes to selecting the best algorithm. 

It may require some experimentation to arrive at the best algorithm. Once an algorithm 

is selected, then let it learn from the data produced in the feature engineering step. The 

expected output is a model, and you then proceed to perform model evaluation to see 

how well it performs. The goal of all the previous steps is to produce a model that is 

generalized, meaning that it performs well on data it has never seen before.

Another important step in the ML development process is the model evaluation 

task. It is both necessary and challenging. The goal of this step is to not only answer the 

question of how well a model performs but also to know when to stop tuning the model 

because its performance has reached the established success metrics in the first step. The 

evaluation process can be done offline and online. The former case refers to evaluating 

the model using the training data, and the latter case refers to evaluating the model 

using live or new data. There is a set of commonly used metrics to understand the model 

performance, for example, precision, recalls, F1 score, AUC, and so on. The art part of 

this step is to understand which metrics are applicable for certain ML tasks. The result of 

the model performance determines whether to proceed to the production deployment 

step or to go back to the step of collecting more data or a different type of data.

This information is meant to provide an overview of the ML development process 

and not meant to be comprehensive. It can easily take a whole chapter to adequately 

cover the inner details of each step and the best practices.
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 Spark Machine Learning Library
The remaining sections of this chapter will cover the main features inside the Spark 

MLlib component and provide examples of applying ML algorithms in Spark to each of 

the following ML tasks: classification, regression, clustering, and recommendations.

Note in the python world, scikit-learn is one of the most popular open source 
machine learning libraries. it is built on top of the numpy, Scipy, and matplotlib 
libraries, and it provides a set of supervised and unsupervised learning algorithms. 
it is designed to be simple and efficient tool; therefore, it is a perfect tool to learn 
and practice machine learning on a single machine. the moment the size of the 
data exceeds the storage capacity of a single machine, that’s when it is time to 
switch to Spark MLlib.

There are many ML libraries to choose from. In the era of big data, there are two 

reasons to pick Spark MLlib over the other options. The first one is the ease of use. 

Spark SQL provides a user-friendly way of performing data exploratory analysis, and the 

MLlib library provides a means to build, manage, and persist complex ML pipelines. 

The second reason is performing ML at scale. The combination of the Spark unified data 

analytic engine and the MLlib library can support training machine learning models 

with billions of observations and thousands of features.

 Machine Learning Pipelines
As you can see from the previous section, the ML process is essentially a pipeline that consists 

of a series of steps that run in a sequential manner and that usually need to be repeated 

several times to arrive at an optimal model. Aligning with the goal of making practical 

machine learning easy, Spark MLlib provides a set of abstractions to help simplify the steps 

of data cleaning, featuring engineering, model training, model tuning, and evaluation as well 

as organizing them into a pipeline to make it easy to understand, maintain, and repeat. The 

pipeline concept is actually inspired from the scikit-learn library mentioned earlier.

There are four main abstractions to form an end-to-end ML pipeline: transformers, 

estimators, evaluators, and pipelines. They provide a set of standard interfaces to make 

it easy to understand someone else’s pipeline. Figure 8-7 depicts the similarity between 

the core steps in the ML process and the main abstractions MLlib provides.
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The one thing in common across these abstractions is that their inputs and output 

are mostly DataFrames, which means it is necessary to convert the input data into a 

DataFrame to work with these abstractions.

Note Like other components within the Spark unified data analytics engine, 
MLlib is switching to DataFrame-based apis to provide more user-friendly apis 
and to take advantage of the optimizations the Spark SQL engine provides. the 
new apis are available in the package org.apache.spark.ml. the first MLlib 
version was developed on rDD-based apis, and it is still supported, but it is in 
maintenance mode only. the old apis are available in the package org.apache.
spark.mllib. Once the feature parity is reached, then the rDD-based apis will 
be deprecated.

 Transformers

Transformers are designed to transform data in the DataFrame by manipulating one 

or more columns during the feature engineering step and the model evaluation step. 

The transforming process is in the context of building features that will be consumed by 

the ML algorithm to learn. This process usually involves adding or removing columns 

(features), converting the column values from text to numerical value, or normalizing 

the values of a particular column.

There is a strict requirement about working with ML algorithms in MLlib; they 

require all features to be in the Double data type, including the label.

Figure 8-7. Similarity between ML main steps and MLlib pipeline main concepts
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From a technical perspective, a transformer has a function called transform that 

performs transformations on the input column, and the result is stored in the output 

column. The input column and output column names can be specified during the 

construction of a transformer. If they are not specified, the default column names 

("inputCol", "outputCol") are used. Figure 8-8 depicts what a transformer looks like; 

the shaded column in DF1 represents the input column, and the darker shaded column in 

DF2 represents the output column.

There are many types of data transformations for each data type; therefore, it is not 

surprising there are roughly about 30 transformers available in MLlib. Table 8-3 shows 

the various transformers for each type of data transformation.

Figure 8-8. Transformer input and output

Table 8-3. Transformers for Different Transformation Types

Type Transformers

general SQLTransformer

VectorAssembler

numeric data Bucketizer

QuantileDiscretizer

StandardScaler

MixMaxScaler

MaxAbsScaler

Normalizer

text data IndexToString

OneHotEncoder

Tokenizer, RegexTokenizer

StopWordsRemover

NGram

HashingTF
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The following section will cover a few commonly used transformers.

The Binarizer transformer simply transforms the values of an input column 

into two groups. The first group contains the values that are less than or equal to the 

specified threshold, and the value in the output column will be zero. The value in the 

output column will 1 for the other values. The input column must be of type double or 

VectorUDT. Listing 8-1 transforms the temperature column values into two buckets.

Listing 8-1. Using the Binarizer Transformer to Convert the Temperature into 

Two Buckets

import org.apache.spark.ml.feature.Binarizer

val arrival_data = spark.createDataFrame(Seq(("SFO", "B737", 18, 95.1, "late"),

                                        ("SEA", "A319", 5, 65.7, "ontime"),

                                        ("LAX", "B747", 15, 31.5, "late"),

                                        ("ATL", "A319", 14, 40.5, "late") ))

                                         .toDF("origin", "model", "hour", 

"temperature", "arrival")

val binarizer = new Binarizer().setInputCol("temperature")

                               .setOutputCol("freezing")

                               .setThreshold(35.6)

binarizer.transform(arrival_data).show

// show the current values of the parameters in binarizer transformer

binarizer.explainParams

inputCol: input column name (current: temperature)

outputCol: output column name (default: binarizer_60430bb4e97f__output, 

current: freezing)

threshold: threshold used to binarize continuous features (default: 0.0, 

current: 35.6)

// show the transformation result

binarizer.transform(arrival_data).select("temperature", "freezing").show

+------------+---------+

| temperature| freezing|

+------------+---------+

|        95.1|      1.0|
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|        65.7|      1.0|

|        31.5|      0.0|

|        40.5|      1.0|

+------------+---------+

The Bucketizer transformer is a general version of the Binarizer where it can 

transform the column values into buckets of your choice. The way to control the number 

of buckets as well as the range of values for each bucket is by specifying a list of bucket 

borders in the form of an array of double values. This transformer is useful in the 

scenario where the values of a column are continuous values, and you want to transform 

them into an easier-to-understand representation. For example, you have a column that 

contains the income amount of each person who lives in a particular state, and you want 

to bucket their incomes into the following buckets: high income, middle income, low 

income, and so on.

The value bucket border array must be of type double, and they must abide by the 

following requirements:

• The smallest bucket border value must be less than the minimum 

value in the input column in the DataFrame.

• The largest bucket border value must be greater than the maximum 

value in the input column in the DataFrame.

• There must be at least three bucket borders in the input array, which 

creates two buckets.

In the case of a person’s income, it is fairly easy to know the smallest income amount 

is 0; then the smallest bucket border value can just be something less than 0. If it is not 

possible to predict the minimum column value, then specify negative infinity. Similarly, 

if it is not possible to predict the maximum column value, then specify positive infinity. 

See Listing 8-2 for an example of using this transformer to bucket the temperature 

column into three buckets, which means the bucket border array must contain at least 

four values. The output is sorted by the temperature column to make it easier to see.

Listing 8-2. Using the Bucketizer Transformer to Convert the Temperature into 

Three Buckets

import org.apache.spark.ml.feature.Bucketizer

val bucketBorders = Array(-1.0, 32.0, 70.0, 150.0)
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val bucketer = new Bucketizer().setSplits(bucketBorders)

                               .setInputCol("temperature")

                               .setOutputCol("intensity")

val output = bucketer.transform(arrival_data)

output.select("temperature", "intensity")

          .orderBy("temperature")

          .show

+------------+----------+

| temperature| intensity|

+------------+----------+

|        31.5|       0.0|

|        40.5|       1.0|

|        65.7|       1.0|

|        95.1|       2.0|

+------------+----------+

The OneHotEncoder transformer is commonly used when working with numeric 

categorical values. If the categorical values are of string type, then first apply the 

StringIndexer estimator to convert them to a numerical type. The OneHotEncoder 

transformer essentially maps a numeric categorical value into a binary vector to 

purposely remove the implicit ranking of the numeric categorical values. For example, 

the following data represents student majors, and each major is assigned an ordinal 

value, which seems to suggest a certain major is higher than the others. To remove such 

unintended bias during the ML training step, this transformer is used to convert the 

ordinal value into an vector. See Listing 8-3 for an example of using this transformer.

Listing 8-3. Using the OneHotEncoder Transformer to Convert the Ordinal 

Value of the Categorical Values

import org.apache.spark.ml.feature.OneHotEncoder

val student_major_data = spark.createDataFrame(Seq(("John", "Math", 3),

                                              ("Mary", "Engineering", 2),

                                              ("Jeff", "Philosophy", 7),

                                              ("Jane", "Math", 3),

                                              ("Lyna", "Nursing", 4) ))
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                                               .toDF("user", "major", 

"majorIdx")

val oneHotEncoder = new OneHotEncoder().setInputCol("majorIdx")

                                       .setOutputCol("majorVect")

oneHotEncoder.transform(student_major_data).show()

+----+------------+---------+---------------+

|user|       major| majorIdx|      majorVect|

+----+------------+---------+---------------+

|John|        Math|        3|  (7,[3],[1.0])|

|Mary| Engineering|        2|  (7,[2],[1.0])|

|Jeff|  Philosophy|        7|      (7,[],[])|

|Jane|        Math|        3|  (7,[3],[1.0])|

|Lyna|     Nursing|        4| ( 7,[4],[1.0])|

+----+------------+---------+---------------+

Another common need when working with string categorical values is to convert 

them into ordinal values, which can be done using the StringIndexer estimator. This 

estimator will be described in the “Estimators” section.

There are many interesting machine learning use cases where the input is in free- 

form text. It requires a few transformations to convert free-form text into a numerical 

representation that ML algorithms can consume. Among them are tokenization and 

counting word frequency.

Most likely you can guess what the Tokenizer transformer does. It performs the 

tokenization on a string of words that are separated by spaces and returns an array of 

words. If there is a need to perform tokenization with a different delimiter, then you can 

use RegexTokenizer. See Listing 8-4 for an example of using the Tokenizer transformer.

Listing 8-4. Using the Tokenizer Transformer to Perform Tokenization

import org.apache.spark.ml.feature.Tokenizer

import org.apache.spark.sql.functions._

val text_data = spark.createDataFrame(Seq(

                                      (1, "Spark is a unified data analytics 

engine"),

                                     (2, "It is fun to work with Spark"),

Chapter 8  MaChine Learning with Spark



345

                                      (3, "There is a lot of exciting 

sessions at upcoming Spark summit"),

                                      (4, "mllib transformer estimator 

evaluator and pipelines")  )

                         ).toDF("id", "line")

val tokenizer = new Tokenizer().setInputCol("line").setOutputCol("words")

val tokenized = tokenizer.transform(text_data)

tokenized.select("words").withColumn("tokens", size(col("words"))).

show(false)

+-------------------------------------------------------------------------+

|    words                                                        | tokens|

+-------------------------------------------------------------------------+

|[spark, is, a, unified, data, analytics, engine]                 |      7|

|[spark, is cool, and, it, is, fun, to, work, with,               |     11|

|[ there, is, a, lot, of, exciting, sessions, at,  

upcoming, spark, summit]                                        |     11|

|[mllib, transformer, estimator, evaluator, and, pipelines]       |      6|

+-------------------------------------------------------------------------+

Stop words are the commonly used words in a language. In the context of natural 

language processing or machine learning, stop words tend to add unnecessary 

noises rather than provide any meaningful contributions. Therefore, it is common 

that the stop word removal step is done immediately after the tokenization step. The 

StopWordsRemover transformer is designed to help with this step. As of Spark 2.3, 

the stop words for the following languages are included in the Spark distribution for 

you to use: Danish, Dutch, English, Finnish, French, German, Hungarian, Italian, 

Norwegian, Portuguese, Russian, Spanish, Swedish, and Turkish. It is designed to be 

flexible such that it can use a set of user-provided stop words by reading them from 

a provided directory path. To use the stop words of a particular language, first call 

StopWordsRemover.loadDefaultStopWords(<language in lower case>) to load 

them and then provide them to an instance of StopWordsRemover. Additionally, you 

can request this transformer to perform stop word filtering with case insensitivity if 

necessary. See Listing 8-5 for an example of using the StopWordsRemover transformer to 

remove English stop words.
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Listing 8-5. Using the StopWordsRemover Transformer to Remove English Stop 

Words from the Words in the Tokenization Example

import org.apache.spark.ml.feature.StopWordsRemover

val enStopWords = StopWordsRemover.loadDefaultStopWords("english")

val remover = new StopWordsRemover().setStopWords(enStopWords)

                                    .setInputCol("words")

                                    .setOutputCol("filtered")

// use the tokenized from Listing 8-5 example

val cleanedTokens = remover.transform(tokenized)

cleanedTokens.select("words","filtered").show(false)

 

The HashingTF transformer is used to transform the words into a numeric 

representation by computing the frequency of each word in each line. Each word is 

mapped into an index by applying a hash function called MurmurHash3. This approach is 

efficient, but it suffers from a potential hash collision, meaning multiple words may map 

into the same index. One way to minimize the collision is by specifying a large number 

of buckets that is a power of 2 to help with evenly distributing the words. The example 

in Listing 8-6 will feed the filtered column from the example in Listing 8-6 into the 

HashingTF transformer.

Listing 8-6. Using the HashingTF Transformer to Transform Words into a 

Numerical Representation via Hashing and Counting

import org.apache.spark.ml.feature.HashingTF

val tf = new HashingTF().setInputCol("filtered")

                        .setOutputCol("TFOut")

                        .setNumFeatures(4096)

val tfResult = tf.transform(cleanedTokens)

tfResult.select("filtered", "TFOut").show(false)
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The last transformer this section covers is VectorAssembler, which simply combines 

a set of columns into a vector column. In machine learning terminology, that is the 

equivalent of combining individual features into single-vector features for the ML 

algorithm to learn. The type of the individual input column must be one of the following 

types: numeric, boolean, or vector. The output vector column contains the values of all 

the columns in the specified order. This transformer is used practically in every single 

ML pipeline, and its output will be passed into an estimator. See Listing 8-7 for an 

example of using the VectorAssembler transformer.

Listing 8-7. Using the VectorAssembler Transformer to Combine Features into a 

Vector Feature

import org.apache.spark.ml.feature.VectorAssembler

val arrival_features  = spark.createDataFrame(Seq(

                                               (18, 95.1, true),

                                                (5, 65.7, true), (15, 31.5, 

false),

                                               (14, 40.5, false) ))

                                             .toDF("hour", "temperature", 

"on_time")

val assembler = new VectorAssembler().setInputCols(Array("hour", 

"temperature", "on_time"))

                                     .setOutputCol("features")

val output = assembler.transform(arrival_features)

output.show

+-----+------------+--------+----------------+

| hour| temperature| on_time|        features|

+-----+------------+--------+----------------+

|   18|        95.1|    true| [18.0,95.1,1.0]|

|    5|        65.7|    true|  [5.0,65.7,1.0]|
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|   15|        31.5|   false| [15.0,31.5,0.0]|

|   14|        40.5|   false| [14.0,40.5,0.0]|

+-----+------------+--------+----------------+

Knowing how the transformers work and the available transformers in MLlib plays 

an important role in the feature engineering step of the ML development process. 

Generally, the output of a VectorAssembler transformer will be consumed by an 

estimator, which will be covered in the next section.

 Estimators

The next concept is the estimators, which are an abstraction for either an ML learning 

algorithm that trains on data or any other algorithm that operates on data. It is rather 

confusing that an estimator can be one of two kinds of algorithm. An example of the first 

type is the ML algorithm called LinearRegression, which is used for a regression task 

such as predicting house prices. An example of the second algorithm is StringIndexer, 

which encodes categorical values of a column into indices, such that the index value for 

each categorical value is based on the frequency it appears in the entire input column 

of a DataFrame. At a high level, this kind of estimator transforms the values of a column 

into another column; however, it requires two passes over the entire DataFrame to 

produce the expected output.

From a technical perspective, an estimator has a function called fit that applies an 

algorithm on the input column, and the result is encapsulated in an object type called 

Model, which is a Transformer type. The input column and output column names can be 

specified during the construction of an estimator. Figure 8-9 depicts what an estimator 

looks like and its input and output.

To give a sense of the two types of estimator, Table 8-4 provides a subset of the 

available estimators in MLlib.

Figure 8-9. Estimator and its input and output
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The following section provides a few examples of commonly used estimators when 

working with text and numeric data.

RFormula is an interesting and general-purpose estimator where the transformation 

logic is expressed declaratively. It can handle both numeric and categorial values, and 

the output it produces is a vector of features. MLlib borrows the idea of this estimator 

from the R language, and currently it supports only a subset of the operators available in 

R. The basic and supported operators are listed in Table 8-5. It will take a little bit of time 

to understand the transformation language to take full advantage of the flexibility and 

power of the RFormula estimator.

Table 8-4. Sample of Available Estimators in MLlib

Type Estimators

Machine learning algorithms Logisticregression

DecisiontreeClassifier

randomForestClassifier

Linearregression

randomForestregressor

kMeans

LDa

BisectingkMeans

Data transformation algorithms iDF

rFormula

Stringindexer

Onehotencoderestimator

StandardScaler

MixMaxScaler

MaxabsScaler

word2Vec
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The following example specifies the label is the arrival column and uses all the 

remaining columns as features. In addition, it creates a new feature using the interaction 

between the hour and temperature columns. Since these two columns are of numeric 

type, their values will be multiplied. Listing 8-8 contains the code for the example 

described earlier.

Listing 8-8. Using the RFomula Transformer to Create a Feature Vector

import org.apache.spark.ml.feature.RFormula

val arrival_data = spark.createDataFrame(Seq(("SFO", "B737", 18, 95.1, "late"),

                                        ("SEA", "A319", 5, 65.7, "ontime"),

                                        ("LAX", "B747", 15, 31.5, "late"),

                                        ("ATL", "A319", 14, 40.5, "late") ))

                                         .toDF("origin", "model", "hour", 

"temperature", "arrival")

val formula = new RFormula().setFormula("arrival ~ . + hour:temperature")

                            .setFeaturesCol("features")

                            .setLabelCol("label")

// call fit function first, which returns a model (type of transformer), 

then call transform

val output = formula.fit(arrival_data).transform(arrival_data)

output.select("*").show(false)

Table 8-5. Supported Operators in the RFormula Transformer

Operator Description

~ Delimiter between the target and the terms.

+ Concatenate terms.

- remove a term.

: interaction between other terms to create new feature. Multiplication will be used for 

numeric value and binarized for categorical values.

. all columns except the target.
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One of the commonly used estimators for working with text is the IDF estimator. 

Its name is an acronym for inverse document frequency. This estimator is often used 

right after the text is tokenized and term frequency is computed. The idea behind this 

estimator is to compute the importance or weight of each word by counting the number 

of documents it appears in. The intuition behind this idea is that a word with high 

occurrence and wide prevalence would be less important, for example, the word the. 

Inversely, a word with high occurrence and appearing in only a few documents would 

indicate a higher importance, for example, the world classification. In the context of a 

DataFrame, a document refers to a row. A keen reader would figure out that it requires 

going through every single row in order to compute the importance of each word, and 

therefore IDF is an estimator, not a transformer. The example in Listing 8-9 will chain 

the Tokenizer and HashingTF transformers together with the IDF estimator. The fit 

function of an estimator is an eager evaluation function that will trigger job.

Listing 8-9. Using the IDF Estimator to Compute the Weight of Each Word

import org.apache.spark.ml.feature.Tokenizer

import org.apache.spark.ml.feature.HashingTF

import org.apache.spark.ml.feature.IDF

val text_data = spark.createDataFrame(Seq(

                                      (1, "Spark is a unified data analytics 

engine"),

                                      (2, "Spark is cool and it is fun to 

work with Spark"),

                                      (3, "There is a lot of exciting 

sessions at upcoming Spark summit"),

                                      (4, "mllib transformer estimator 

evaluator and pipelines")  )

                                 ).toDF("id", "line")
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val tokenizer = new Tokenizer().setInputCol("line")

                               .setOutputCol("words")

// the output column of the Tokenizer transformer is the input to HashingTF

val tf = new HashingTF().setInputCol("words")

                        .setOutputCol("wordFreqVect")

                        .setNumFeatures(4096)

val tfResult = tf.transform(tokenizer.transform(text_data))

// the output of the HashingTF transformer is the input to IDF estimator

val idf = new IDF().setInputCol("wordFreqVect")

                   .setOutputCol("features")

// since IDF is an estimator, call the fit function

val idfModel = idf.fit(tfResult)

// the returned object is a Model, which is of type Transformer

val weightedWords = idfModel.transform(tfResult)

weightedWords.select("label", "features").show(false)

weightedWords.printSchema

 |-- id: integer (nullable = false)

 |-- line: string (nullable = true)

 |-- words: array (nullable = true)

 |    |-- element: string (containsNull = true)

 |-- wordFreqVect: vector (nullable = true)

 |-- features: vector (nullable = true)

// the feature column contains a vector for the weight of each word, since 

it is long, the output is not included //below

weightedWords.select("wordFreqVect", "features").show(false)

A good estimator to know when working with text data that contains categorical values 

is the StringIndexer estimator. It encodes a categorical value into an index based on its 

frequencies such that the most frequent categorical value gets an index value of 0 and so 

on. For this estimator to come up with an index value for a categorical value, it first has to 

count the frequency of each one of those and finally assign an index value; in other words, 

it must see all the values of the input column in the DataFrame. If the input column is 
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numeric, this estimator will cast it string type before computing its frequency. Listing 8-10 

provides an example of using the StringIndexer estimator to encode the movie genre.

Listing 8-10. Using the StringIndex Estimator to Encode the Movie Genre

import org.apache.spark.ml.feature.StringIndexer

val movie_data = spark.createDataFrame(Seq(

                                              (1, "Comedy"),

                                              (2, "Action"),

                                              (3, "Comedy"),

                                              (4, "Horror"),

                                              (5, "Action"),

                                              (6, "Comedy")  )

                                     ).toDF("id", "genre")

val movieIndexer = new StringIndexer().setInputCol("genre")

                                      .setOutputCol("genreIdx")

// first fit the data

val movieIndexModel = movieIndexer.fit(movie_data)

// use returned transformer to transform the data

val indexedMovie = movieIndexModel.transform(movie_data)

indexedMovie.orderBy("genreIdx").show()

+---+-------+---------+

| id|  genre| genreIdx|

+---+-------+---------+

|  3| Comedy|      0.0|

|  6| Comedy|      0.0|

|  1| Comedy|      0.0|

|  5| Action|      1.0|

|  2| Action|      1.0|

|  4| Horror|      2.0|

+---+-------+---------+

As shown earlier, this estimator assigns the index based on the descending 

order of the frequency. This default behavior can be easily changed to ascending 

order of the frequency; in fact, it supports two other ordering types: descending 
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alphabet and ascending alphabet. To change the default ordering type, simply call the 

setStringOrderType("<ordering type>") function with one of the following values: 

frequencyDesc, frequencyAsc, alphabetDesc, alphabetAsc.

Another useful estimator for working with categorical values is OneHotEncoderEstimator, 

which encodes the index of a categorical value as a binary vector. The OneHotEncoder 

transformer has been deprecated starting with Spark 2.3.0 because of its stateless nature, 

which makes it not usable on new testing data where the number of categories may differ 

from the training data. This estimator is often used in conjunction with the StringIndexer 

estimator where the output of StringIndexer becomes the input of this estimator. Listing 8-11 

demonstrates using StringIndexer and OneHotEncoderEstimator together.

Listing 8-11. OneHotEncoderEstimator Consumes the Output of the 

StringIndexer Estimator 

import org.apache.spark.ml.feature.OneHotEncoderEstimator

// the input column genreIdx is the output column of StringIndex in  

listing 8-9

val oneHotEncoderEst = new OneHotEncoderEstimator().setInputCols 

(Array("genreIdx"))

                                   .setOutputCols(Array("genreIdxVector"))

// fit the indexedMovie data produced in listing 8-10

val oneHotEncoderModel = oneHotEncoderEst.fit(indexedMovie)

val oneHotEncoderVect = oneHotEncoderModel.transform(indexedMovie)

oneHotEncoderVect .orderBy("genre").show()

+---+-------+---------+---------------+

| id| genre | genreIdx| genreIdxVector|

+---+-------+---------+---------------+

|  5| Action|      1.0|  (2,[1],[1.0])|

|  2| Action|      1.0|  (2,[1],[1.0])|

|  3| Comedy|      2.0|      (2,[],[])|

|  6| Comedy|      2.0|      (2,[],[])|

|  1| Comedy|      2.0|      (2,[],[])|

|  4| Horror|      0.0|  (2,[0],[1.0])|

+---+--------+--------+---------------+
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Another interesting estimator to know when working in free text is the Word2Vec 

estimator, which stands for words to vector. This estimator utilizes a well-known 

technique, called word embeddings, that converts word tokens into numeric vector 

representations such that semantically similar words are mapped to nearby points. The 

intuition behind this technique is that similar words tend to occur together and have 

similar context. In other words, two different words that have similar neighboring words 

are probably quite similar in meaning or are related. This technique has proven to be 

quite effective in a number of natural language processing applications such as word 

analogies, word similarities, entity recognition, and machine translation.

The Word2Vec estimator has a few important configurations, and appropriate values 

need to be provided to control the output that is based on the input. Table 8-6 describes 

the configurations.

The example in Listing 8-12 demonstrates how to use the Word2Vec estimator and 

shows how to find similar words.

Listing 8-12. Using the Word2Vec Estimator to Compute Word Embeddings and 

Find Similar Words

import org.apache.spark.ml.feature.Word2Vec

val documentDF = spark.createDataFrame(Seq(

                                    "Unified data analytics engine Spark".

split(" "),

                                    "People use Hive for data analytics".

split(" "),

Table 8-6. Word2Vec Configurations

Name Default Value Description

vectorSize 100 this is the size of the output vector.

windowSize 5 this is the number of words to be used as the context.

minCount 5 this is the minimum number of times a token must appear 

to be included in the output.

maxSentenceLength 1000 this specifies interaction between other terms to create a 

new feature. Multiplication will be used for numeric values, 

and binarized will be used for categorical values.
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                                   "MapReduce is not fading away".split(" ")

                                ).map(Tuple1.apply)).toDF("word")

val word2Vec = new Word2Vec().setInputCol("word")

                              .setOutputCol("feature") .setVectorSize(3) 

.setMinCount(0)

val model = word2Vec.fit(documentDF)

val result = model.transform(documentDF)

result.show(false)

 

// find similar words to Spark, the result shows both Hive and MapReduce 

are similar.

model.findSynonyms("Spark", 3).show

+----------+-------------------+

|      word|         similarity|

+----------+-------------------+

|    engine| 0.9133241772651672|

| MapReduce| 0.7623026967048645|

|      Hive| 0.7179173827171326|

+----------+-------------------+

// find similar words to Hive, the result shows Spark is similar

model.findSynonyms("Hive", 3).show

+-------+--------------------+

|   word|          similarity|

+-------+--------------------+

|  Spark|  0.7179174423217773|

| fading|  0.5859972238540649|

| engine| 0.43200281262397766|

+-------+--------------------+
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The next estimators are about normalizing and standardizing numeric data. The 

reason for using these estimators is to ensure that learning algorithms that use distance 

as a measure don’t place more weight on a feature with large values than another feature 

with smaller values.

Normalizing numeric data is the process of mapping its original range into a range 

from zero to one. This is especially helpful when observations have more than one 

attribute with different ranges. For example, say you have an employee’s salary and 

their height. The value for salary is in the thousands, and the value for height is a single 

digit. This is what the MinMaxScaler estimator is designed for. This estimator linearly 

rescales each feature (column) individually to a common range of values of min and max 

using the column summary statistics. If the min value is 0.0 and max value is 3.0, then 

all the values will fall in that range. Listing 8- 13 provides an example of working with 

MinMaxScaler using the employee_data dataset that has salary and height information. 

The magnitude between the values of these two features is pretty big, but after running 

through the MinMaxScaler, that is not the case anymore.

Listing 8-13. Using MinMaxScaler to Rescale Features

import org.apache.spark.ml.feature.MinMaxScaler

import org.apache.spark.ml.linalg.Vectors

val employee_data = spark.createDataFrame(Seq(

                                    (1, Vectors.dense(125400, 5.3)),

                                    (2, Vectors.dense(179100, 6.9)),

                                    (3, Vectors.dense(154770, 5.2)),

                                    (4, Vectors.dense(199650, 4.11))))

                                  .toDF("empId", "features")

val minMaxScaler = new MinMaxScaler().setMin(0.0)

                                     .setMax(5.0)

                                     .setInputCol("features")

                                     .setOutputCol("scaledFeatures")

val scalerModel = minMaxScaler.fit(employee_data)

val scaledData = scalerModel.transform(employee_data)

println(s"Features scaled to range: [${minMaxScaler.getMin}, 

${minMaxScaler.getMax}]")
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Features scaled to range: [0.0, 5.0]

scaledData.select("features", "scaledFeatures").show(false)

+----------------+----------------------------------------+

|        features|                          scaledFeatures|

+----------------+----------------------------------------+

|  [125400.0,5.3]|                [0.0,2.1326164874551963]|

|  [179100.0,6.9]|                 [3.616161616161616,5.0]|

|  [154770.0,5.2]| [1.9777777777777779,1.9534050179211468]|

| [199650.0,4.11]|                               [5.0,0.0]|

+----------------+----------------------------------------+

Besides the numeric data normalizing, another operation that is often used for 

working with numeric data is called standardization. This operation is especially 

applicable when the numeric data has a distribution that is closed to a bell-shaped curve. 

The standardization operation can help shift the data to a normalized form where data 

will be in a range of -1 and 1, with a mean of 0. The reason for doing this is to help certain 

ML algorithms work better when the data has a good distribution around the mean of 0.  

The StandardScaler estimator is designed for the standardization operation. The 

example in Listing 8-14 uses the same input data set as in Listing 8-13. The output shows 

the values of the features are now centered around 0, with one unit of standard deviation.

Listing 8-14. Use StandardScaler to Standardize the Features Around the Mean 

of Zero

import org.apache.spark.ml.feature.StandardScaler

import org.apache.spark.ml.linalg.Vectors

val employee_data = spark.createDataFrame(Seq(

                                         (1, Vectors.dense(125400, 5.3)),

                                         (2, Vectors.dense(179100, 6.9)),

                                         (3, Vectors.dense(154770, 5.2)),

                                         (4, Vectors.dense(199650, 4.11))))

                                    .toDF("empId", "features")

// set the unit standard deviation to true and center around the mean

val standardScaler = new StandardScaler().setWithStd(true)

                                         .setWithMean(true)
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                                         .setInputCol("features")

                                         .setOutputCol("scaledFeatures")

val standardMode = standardScaler.fit(employee_data)

val standardData = standardMode.transform(employee_data)

standardData.show(false)

+------+----------------+-------------------------------------------+

| empId|        features|                             scaledFeatures|

+------+----------------+-------------------------------------------+

|     1|  [125400.0,5.3]| [-1.2290717420781212,-0.06743742573177587]|

|     2|  [179100.0,6.9]|    [0.4490658767775897,1.3248191055048935]|

|     3|  [154770.0,5.2]| [-0.3112523404805006,-0.15445345893406737]|

|     4| [199650.0,4.11]|     [1.091258205781032,-1.102928220839048]|

+------+----------------+-------------------------------------------+

There are many more estimators available in MLlib to perform numerous data 

transformations and mappings, and they all follow a standard abstraction that fits the 

input data and produces an instance of a model. The previous examples are meant to 

illustrate how to work with these estimators. Examples of the second kind of estimators, 

which are about ML algorithms, will be covered in the following sections.

 Pipeline

In machine learning, it is common to run a sequence of steps to clean and transform 

data, then train one or more ML algorithms to learn from the data, and finally tune the 

model to achieve the best possible performance. The pipeline abstraction in MLlib is 

designed to make this workflow easier to develop and maintain. From the technical 

perspective, MLlib has a class called Pipeline, which is designed to manage a series of 

stages, and each one is represented by PipelineStage. A PipelineStage can be either a 

transformer or an estimator. The abstraction Pipeline is a type of estimator.

The first step in setting up a pipeline is to create a series of stages and then create an 

instance class Pipeline and configure it with an array of stages. The Pipeline will run 

those stages in the specified order. If a stage is a transformer, the transform() function 

is called. If a stage is an estimator, the fit() function is called to produce a transformer, 

and its tranform() function is called. Let’s walk through a small workflow of processing 

text using the transformer and estimators covered in the previous sections. The small 
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pipeline depicted in Figure 8-10 consists of two transformers and one estimator. When 

the Pipeline.fit() function is called, the input DataFrame that contains raw text 

will be passed into the Tokenizer transformer, and its output will be passed into the 

HashingTF transformer, which converts the words into features. The Pipeline recognizes 

that LogisticRegression is an estimator, so it will invoke the fit function with the 

computed features to produce a LogisticRegressionModel.

The code for the Pipeline depicted in Figure 8-10 is in Listing 8-15. Remember a 

Pipeline abstraction is an estimator. So once an instance of Pipeline is created and 

configured, the fit() function must be called with the training data as the input to 

trigger the execution of the stages, and it will be an instance of PipelineModel, which is 

a type of transformer. At this point, you can call the transform() function with the test 

data to perform predictions.

MLlib provides a feature called ML persistence that makes it easy to persist a pipeline 

or a model to disk and load it later for use. The cool thing is the persistence feature is 

designed to save the information in a language-neutral format such that a pipeline or 

model that is persisted in Scala can be read back in Java or Python, and vice versa.

Real-life production pipelines consist of many stages. When the number of stages 

gets large, it is difficult to understand the flow as well as challenging to maintain. MLlib 

pipeline abstraction can really help with these areas. Another key point to note is that 

both the Pipeline and PipelineModel objects are designed to help ensure both the 

training and test data flow through identical feature processing steps.

Listing 8-15. Using a Pipeline to Create a Small Workflow

import org.apache.spark.ml.{Pipeline, PipelineModel}

import org.apache.spark.ml.classification.LogisticRegression

import org.apache.spark.ml.feature.{HashingTF, Tokenizer}

Figure 8-10. Example of a small pipeline
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val text_data = spark.createDataFrame(Seq(

                                   (1, "Spark is a unified data analytics 

engine", 0.0),

                                   (2, "Spark is cool and it is fun to work 

with Spark", 0.0),

                                   (3, "There is a lot of exciting sessions 

at upcoming Spark summit", 0.0),

                                   (4, "signup to win a million dollars", 

0.0)  )

                                ).toDF("id", "line", "label")

val tokenizer = new Tokenizer().setInputCol("line").setOutputCol("words")

val hashingTF = new HashingTF().setInputCol(tokenizer.getOutputCol)

                               .setOutputCol("features")

                               .setNumFeatures(4096)

val logisticReg = new LogisticRegression().setMaxIter(5)

                                          .setRegParam(0.01)

val pipeline = new Pipeline().setStages(Array(tokenizer, hashingTF, 

logisticReg))

val logisticRegModel = pipeline.fit(text_data)

// persist model and pipeline

logisticRegModel.write.overwrite().save("/tmp/logistic-regression-model")

pipeline.write.overwrite().save("/tmp/logistic-regression-pipeline")

// load model and pipeline

val prevModel = PipelineModel.load("/tmp/spark-logistic-regression-model")

val prevPipeline = Pipeline.load("/tmp/logistic-regression-pipeline")

 Model Tuning

The goal of the model tuning step is to train a model with the right set of parameters 

to achieve the best performance to meet the object defined in the first step of the ML 

development process. This step is usually tedious, repetitive, and time-consuming 

because it may involve trying different ML algorithms or a few sets of parameters. 

The purpose of this section is to describe a few tools MLlib provides to help with the 
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laborious part of the model tuning step. It is not the intention of this section to show how 

to perform model tuning.

Before going into the details of the two tools that MLlib provides, let’s first have a 

clear understanding of the following terminologies, where one of them is an input to the 

model tuning process.

• Model hyperparameters are

• Configurations that are used to govern the machine learning 

algorithm training process

• Configurations that are external to the model and can’t be 

learned from the training data

• Configurations that are provided by the machine learning 

practitioners before the training process starts

• Configurations that are tuned for a given machine learning task 

through an iterative manner

• Model parameters are

• Properties that are not provided by the machine learning 

practitioners

• Properties of the training data that are learned during the training 

process

• Properties that will be optimized during the training process

• Properties of the model that are used to perform predictions

Examples of model hyperparameters include the number of clusters in the K-means 

clustering algorithm or the amount of regularization to apply in the logistic regression 

algorithm or the learning rate.

Examples of the model parameters include the coefficients in a linear regression 

model or the branch locations in the decision tree model.

The two commonly used classes in MLlib to help with model tuning are 

CrossValidator and TrainValidationSplit, and both them are of type Estimator. 

These classes are also known as validators. They both require the following inputs for 

them to work properly:
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• The first input is about specifying what needs to be tuned, which can 

be either an ML algorithm or an instance of Pipeline. In other words, 

it must be of type Estimator.

• The second input is a set parameters to be used to tune the provided 

estimator. These parameters are also known as a parameter 

grid to search to find the best model. A convenient utility called 

ParagramGridBuilder is available to help with building the 

parameter grid.

• The last input is an evaluator to evaluate the performance of a 

model based on the held-out test data. For each different machine 

learning task, MLlib provides a specific evaluator, which can 

produce one or more evaluation metrics for you to understand the 

model performance. Commonly used machine learning metrics are 

supported, such as root mean square error, precision, recall, and 

accuracy.

At a high level, the aforementioned validators will perform the following steps with 

the given inputs:

 1. The input data that contains the features is split into training and 

test based on the specified ratio.

 2. For each training and test pair, the following steps are applied to 

each pair.

• For each combination in the “parameter grid,” the given estimator 

is fitted with the training data and the parameter combination. 

The output model is then evaluated by the specified evaluator 

against the test data. The performance metric is recorded and 

compared.

 3. The model producing the best performance is returned along with 

the set of parameters that was used.

The previous steps are illustrated in Figure 8-11, which makes it easier to visualize 

what’s going on inside the validator.
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The first validator I am going to discuss is TrainValidationSplit, which splits 

the given input data into a training and validation dataset pair based on the specified 

ratio and then trains and evaluates the dataset pair against each of the parameter 

combinations. For example, if the given parameter set has six combinations, then the 

given estimator is trained and evaluated six times, each time with a different parameter 

combination. Listing 8-16 provides an example of using TrainValidationSplit to tune 

a linear regression estimator with a parameter grid of six parameter combinations. Since 

the focus of this example is about TrainValidationSplit, there is an assumption that 

the feature engineering has already been done to the input data and it has a column 

called features.

Listing 8-16. Example of TrainValidationSplit

import org.apache.spark.ml.{Pipeline, PipelineModel}

import org.apache.spark.ml.classification.LogisticRegression

import org.apache.spark.ml.feature.{HashingTF, Tokenizer}

import org.apache.spark.ml.tuning.{ParamGridBuilder, TrainValidationSplit}

import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator

val text_data = spark.createDataFrame(Seq(

                                   (1, "Spark is a unified data analytics 

engine", 0.0),

                                   (2, "Spark is cool and it is fun to work 

with Spark", 0.0),

                                   (3, "There is a lot of exciting sessions 

at upcoming Spark summit", 0.0),

Figure 8-11. Inside a validator
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                                   (4, "signup to win a million dollars", 

0.0)  )

                                ).toDF("id", "line", "label")

val tokenizer = new Tokenizer().setInputCol("line").setOutputCol("words")

val hashingTF = new HashingTF().setInputCol(tokenizer.getOutputCol)

                               .setOutputCol("features")

val logisticReg = new LogisticRegression().setMaxIter(5)

val pipeline = new Pipeline().setStages(Array(tokenizer, hashingTF, 

logisticReg))

// the first parameter has 3 values and second parameter has 2 values,

// therefore the total parameter combinations is 6

val paramGrid = new ParamGridBuilder().addGrid(hashingTF.numFeatures, 

Array(10, 100, 250))

                                       .addGrid(logisticReg.regParam, 

Array(0.1, 0.05))

                                      .build()

// setting up the validator with required inputs - estimator, evaluator, 

parameter grid and train ratio

val trainValidationSplit = new TrainValidationSplit().

setEstimator(pipeline)

                                           .setEvaluator(new 

BinaryClassificationEvaluator)

                                          .setEstimatorParamMaps(paramGrid)

                                          .setTrainRatio(0.8)

// train the linear regression estimator

val model = trainValidationSplit.fit(training)

The next validator I will discuss is the CrossValidator, which is an implementation 

of a widely used technique in the machine learning practitioner community to help 

with the model tuning step. This technique maximizes the amount of data for training 

and validation by randomly dividing the observations into k groups, or folds, of 

approximately the same size. The first fold is used for validation purposes, and the 

remaining folds are used for training purposes. This process is repeated k times, and 
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each time the estimator is trained and evaluated against randomly divided training and 

validation folds. Figure 8-12 illustrates this process. The k value is chosen such that each 

training and validation group is statistically representative of the available observation, 

and each fold has roughly the same amount of sample data.

One must be mindful about the expensiveness of using this validator with a 

sizeable number of parameter combinations. This is because each experiment 

described in Figure 8-12 is performed against each the parameter combinations. 

For example, if k is 4 and the number of parameter combination is 6, then the total 

number of times the estimator will be trained and evaluated is 24. Listing 8-17 replaces 

TrainValidationSplit in 8-16 with an instance of CrossValidator that is configured 

with a k value of 2. In practice, the value for k is usually is 10 or higher. The example in 

Listing 8-17 ends up training and evaluating the estimator 12 times.

Listing 8-17. Example of CrossValidator

import org.apache.spark.ml.tuning.CrossValidator

val crossValidator = new CrossValidator().setEstimator(pipeline)

                                         . setEvaluator(new 

BinaryClassificationEvaluator)

                                         .setEstimatorParamMaps(paramGrid)

                                         .setNumFolds(2)

val model = crossValidator.fit(text_data)

Figure 8-12. K-fold example with k=4
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 Machine Learning Tasks in Action
This section tries to bring all the concepts and tools that MLlib provides together and 

apply them by working through the following machine learning tasks: classification, 

regression, and recommendation. By working through the machine learning 

development process with real datasets, ideally it will become more obvious as to how all 

the pieces fit, and it is always good to see the working code.

This section is not meant to comprehensively cover the hyperparameters of each 

machine learning algorithm, and the model tuning step is left as an exercise for you.

 Classification
Classification is one of the most widely studied and used machine learning tasks because 

of its ability to help solve many real-life classification-related problems. For example, is 

this a fraudulent credit card transaction? Is this email a spam email? Is this an image of a 

cat or dog or bird?

There are three types of classification.

• Binary classification: This is where the label to predict has only two 

possible classes (for example, fraud or not fraud, conference paper is 

accepted or not, tumor is benign or malignant).

• Multiclass classification: This is where the label to predict has more 

than two possible classes (for example, whether an image is a dog, 

cat, or bird).

• Multilabel classification: This is where each observation can belong 

to more than one class. Movie genres are a good example of this.  

A movie can be classified as both action and comedy. MLlib doesn’t 

natively support this type of classification.

MLlib provides a few machine learning algorithms for the classification tasks. They 

are listed here:

• Logistic regression

• Decision tree

• Random forest

• Gradient-boosted tree
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• Linear support vector machine

• One versus rest

• Naïve Bayes

 Model Hyperparameters

The logistic regression algorithm will be used in the following example, and the 

following is a subset of its model hyperparameters. Every single model hyperparameter 

has a default value.

• family: The possible values are auto, binomial, and multinomial. 

The default value is auto, which means the algorithm will 

automatically select the family to be either binomial or multinomial 

based on the values in the label column. binomial is for binary 

classification. multinomial is for the multiclass classification.

• regParam: This is the regularization parameter that is used to control 

the overfitting. The default value is 0.0.

 Example

The following example tries to predict which Titanic passengers survived the tragedy. 

This is a binary classification machine learning problem, and as a starting point the 

logistic regression algorithm is the chosen algorithm. This example is based on a 

competition on kaggle.com, and the information and the data are available at https://

www.kaggle.com/c/titanic. The data is provided in CSV format, and there are two files: 

train.csv and test.csv. The train.csv file contains the label column.

The provided data contains many interesting features; however, the code in  

Listing 8-18 will use only age, gender, and ticket_class as features.

Listing 8-18. Using the Logistic Regression Algorithm to Predict the Survival of 

Titanic Passengers

import org.apache.spark.ml.Pipeline

import org.apache.spark.ml.feature.StringIndexer

import org.apache.spark.ml.feature.VectorAssembler

import org.apache.spark.ml.classification.LogisticRegression

import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator
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val titanic_data = spark.read.format("csv").option("header", "true")

                                           .option("inferSchema","true")

                                           .load("/<folder>/train.csv")

// explore the schema

titanic_data.printSchema

 |-- PassengerId: integer (nullable = true)

 |-- Survived: integer (nullable = true)

 |-- Pclass: integer (nullable = true)

 |-- Name: string (nullable = true)

 |-- Sex: string (nullable = true)

 |-- Age: double (nullable = true)

 |-- SibSp: integer (nullable = true)

 |-- Parch: integer (nullable = true)

 |-- Ticket: string (nullable = true)

 |-- Fare: double (nullable = true)

 |-- Cabin: string (nullable = true)

 |-- Embarked: string (nullable = true)

// to start out with, we will use only three features

// filter out rows where age is null

val titanic_data1 = titanic_data.select('Survived.as("label"), 'Pclass.

as("ticket_class"),

                                'Sex.as("gender"), 'Age.as("age"))

                                .filter('age.isNotNull)

// split the data into training and test with 80% and 20% split

val Array(training, test) = titanic_data1.randomSplit(Array(0.8, 0.2))

println(s"training count: ${training.count}, test count: ${test.count}")

// estimator:  to convert gender string to numbers

val genderIndxr = new StringIndexer().setInputCol("gender").

setOutputCol("genderIdx")

// transfomer: assemble the features into a vector

val assembler = new VectorAssembler().setInputCols(Array("ticket_class", 

"genderIdx", "age"))

                                     .setOutputCol("features")
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// estimator: the algorithm

val logisticRegression = new LogisticRegression().setFamily("binomial")

// set up the pipeline with three stages

val pipeline = new Pipeline().setStages(Array(genderIndxr, assembler, 

logisticRegression))

// train the algorithm with the training data

val model = pipeline.fit(traininng)

// perform the predictions

val predictions = model.transform(test)

// perform the evaluation of the model performance, the default metric is 

the area under the ROC

val evaluator = new BinaryClassificationEvaluator()

evaluator.evaluate(predictions)

res10: Double = 0.8746657754010692

evaluator.getMetricName

res11: String = areaUnderROC

The metric produced by BinaryClassificationEvaluator has a value of 0.87, 

which is decent performance for just using three features. The previous example doesn’t 

explore the various hyperparameters and training parameters.

 Regression
Another popular machine task is called regression, which is designed to predict a real 

number or continuous value. For example, you want to predict the sales revenue for next 

quarter, the income amount of a population, and the amount of rain in a certain region 

of the world.

MLlib provides a few machine learning algorithms for the regression tasks. They are 

listed here:

• Linear regression

• Generalized linear regression

• Decision trees
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• Random forest

• Gradient-boosted trees

• Isotonic regression

 Model Hyperparameters

The LinearRegression algorithm will be used in the following example, and its subset of 

model hyperparameters is shown here:

• regParam: This is the regularization parameter that is used to control 

the overfitting. The default value is 0.0.

• fitIntercept: This parameter is used to determine whether to fit the 

intercept. The default value is true.

 Example

The following example will try to predict the house price based on a set of information 

about the house. The details and the data are available on kaggle.com at https://www.

kaggle.com/c/house-prices-advanced-regression-techniques/data. The data is 

provided in CSV format, and there are two files, train.csv and test.csv. The label 

column in the train.csv file is called SalePrice.

The provided data contains many interesting features; however, the code in  

Listing 8-19 will use only a subset of them.

Listing 8-19. Using the Linear Regression Algorithm to Predict Home Prices

import org.apache.spark.sql.functions._

import org.apache.spark.ml.Pipeline

import org.apache.spark.ml.feature.StringIndexer

import org.apache.spark.ml.feature.VectorAssembler

import org.apache.spark.ml.regression.LinearRegression

import org.apache.spark.ml.feature.RFormula

import org.apache.spark.ml.evaluation.RegressionEvaluator

import org.apache.spark.mllib.evaluation.RegressionMetrics

val house_data = spark.read.format("csv").option("header", "true")

                                         .option("inferSchema","true")

                                         .load("<path>/train.csv")
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// select columns to use as features

val cols = Seq[String]("SalePrice", "LotArea",  "RoofStyle",

                       "Heating", "1stFlrSF", "2ndFlrSF", "BedroomAbvGr",

                        "KitchenAbvGr", "GarageCars", "TotRmsAbvGrd", 

"YearBuilt")

val colNames = cols.map(n => col(n))

// select only needed columns

val skinny_house_data = house_data.select(colNames:_*)

// create a new column called "TotalSF" by adding the value of "1stFlrSF" 

and "2ndFlrSF" columns

// cast the "SalePrice" column to double

val skinny_house_data1 = skinny_house_data.withColumn("TotalSF", col("1stFlrSF") +

                                                           col("2ndFlrSF"))

                                                           .drop("1stFlrSF", 

"2ndFlrSF")

                     .withColumn("SalePrice", $"SalePrice".cast("double"))

// examine the statistics of the label column called "SalePrice"

skinny_house_data1.describe("SalePrice").show

+--------+-------------------+

| summary|          SalePrice|

+--------+-------------------+

|   count|               1460|

|    mean| 180921.19589041095|

|  stddev|  79442.50288288663|

|     min|            34900.0|

|     max|           755000.0|

+--------+-------------------+

// create estimators and transformers to setup a pipeline

// set the invalid categorical value handling policy to skip to avoid error

// at evaluation time

val roofStyleIndxr = new StringIndexer().setInputCol("RoofStyle")

                                        .setOutputCol("RoofStyleIdx")

                                        .setHandleInvalid("skip")
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val heatingIndxr = new StringIndexer().setInputCol("Heating")

                                      .setOutputCol("HeatingIdx")

                                      .setHandleInvalid("skip")

val linearRegression = new LinearRegression().setLabelCol("SalePrice")

// assembler to assemble the features into a feature vector

val assembler = new VectorAssembler().setInputCols(

                                      Array("LotArea", "RoofStyleIdx", 

"HeatingIdx",

                                            "LotArea", "BedroomAbvGr", 

"KitchenAbvGr", "GarageCars",

                                            "TotRmsAbvGrd", "YearBuilt", 

"TotalSF"))

                                     .setOutputCol("features")

// setup the pipeline

val pipeline = new Pipeline().setStages(Array(roofStyleIndxr, heatingIndxr, 

assembler, linearRegression))

// split the data into training and test pair

val Array(training, test) = skinny_house_data1.randomSplit(Array(0.8, 0.2))

// train the pipeline

val model = pipeline.fit(training)

// perform prediction

val predictions = model.transform(test)

val evaluator = new RegressionEvaluator().setLabelCol("SalePrice")

                                         .setPredictionCol("prediction")

                                         .setMetricName("rmse")

val rmse = evaluator.evaluate(predictions)

rmse: Double = 37579.253919082395

RMSE stands for the root-mean-square error. In this case, the RMSE value is around 

$37,000, which indicates there is a lot of room for improvement.
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 Recommendation
The recommender system is one of the most intuitive and well-known machine learning 

applications. Maybe that is the case because almost everyone has seen examples of 

recommender systems in action on popular web sites such as Amazon and Netflix. In 

fact, almost every single popular website on the Internet has one or more examples of 

recommender systems. Popular examples of recommender systems are songs you may 

like on Spotify, people you want to follow on Twitter, courses may you like on Coursera 

or Udacity, and so on. The cool thing is recommender systems bring benefits to both 

users and the company behind that website. Users will be delighted to find or discover 

items that they like without expending too much effort. Companies will be happy 

because of the increased user engagement and loyalty as well as their bottom line. If a 

recommender system is designed and performs well, it is a win-win situation.

The common approaches to building recommender systems include content-based 

filtering, collaborative filtering, and a hybrid of the two. The first approach requires 

collecting information about the items being recommended and the profile of each 

user. The second approach requires collecting only user activities or behavior via 

explicit or implicit means. Examples of explicit behavior include rating a movie or an 

item on Amazon. Examples of implicit behavior including viewing the movie trailer or 

description. The intuition behind the second approach is the “wisdom of the crowd” 

concept where the people who agreed in the past will tend to agree in the future.

This section will focus on the collaborative filter approach, and one of the popular 

algorithms for this approach is called ALS, which stands for alternate-least-square. The only 

input this algorithm needs is the user-item rating matrix, which is used to discover user 

preferences and item properties through a process called matrix factorization. Once these 

two pieces of information are found, then they are used to predict the user’s preference on 

items not seen before. MLlib provides an implementation of the ALS algorithm.

 Model Hyperparameters

The ALS algorithm implementation in MLlib has a few important hyperparameters that 

you need to be aware of. The following section contains just a subset. Please consult 

the documentation at https://spark.apache.org/docs/latest/ml-collaborative- 

filtering.html.
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• rank: This parameter specifies the number of latent factors or 

properties about users and items that will be learned during the 

training process. An optimal value for rank is usually determined by 

experimentation as well as an intuition about the number of properties 

needed to accurately describe an item. The default value is 10.

• regParam: This is the amount of regularization to deal with 

overfitting. An optimal value for this parameter is usually determined 

by experimentation. The default is 0.1.

• implicitPrefs: ALS algorithms support both explicit and implicit user 

activities or behavior. This parameter is used to tell which one the 

input data represents. The default is false, meaning the activities or 

behavior are explicit.

 Example

The example you are going to work through is to build a movie recommender system 

using the movie ratings data set from grouplens.com at https://grouplens.org/

datasets/movielens/. The specific dataset that will be used is the latest MovieLens 100k 

dataset at http://files.grouplens.org/datasets/movielens/ml-latest-small.zip. 

This dataset contains roughly about 100,000 ratings by 700 users across 9,000 movies. 

There are four files included in the zip file: links.csv, movies.csv, ratings.csv, and 

tags.csv. Each row in file ratings.csv represents one rating of one movie by one user, 

and it has this format: userId, movieId, rating, timestamp. The rating is on a scale from 

0 to 5 with half-star increments.

The code in Listing 8-20 trains the ALS algorithm with one set of parameters and 

then evaluates the model performance based on the RMSE metric. In addition, it will call 

a few interesting provided APIs in the ALSModel class to get recommendations for movies 

and users.

Listing 8-20. Building a Recommender System Using the ALS Algorithm 

Implementation in MLlib

import org.apache.spark.mllib.evaluation.RankingMetrics

import org.apache.spark.ml.evaluation.RegressionEvaluator

import org.apache.spark.ml.recommendation.ALS

import org.apache.spark.ml.tuning.{ParamGridBuilder, CrossValidator}
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import org.apache.spark.sql.functions._

// we don't need the timestamp column, so drop it immediately

val ratingsDF = spark.read.option("header", "true")

                          .option("inferSchema", "true")

                          .csv("<path>/ratings.csv").drop("timestamp")

// quick check on the number of ratings

ratingsDF.count

res14: Long = 100004

// quick check who are the active movie raters

val ratingsByUserDF = ratingsDF.groupBy("userId").count()

ratingsByUserDF.orderBy($"count".desc).show(10)

+-------+------+

| userId| count|

+-------+------+

|    547|  2391|

|    564|  1868|

|    624|  1735|

|     15|  1700|

|     73|  1610|

|    452|  1340|

|    468|  1291|

|    380|  1063|

|    311|  1019|

|     30|  1011|

+-------+------+

println("# of rated movies: " +ratingsDF.select("movieId").distinct().count)

# of rated movies: 9066

println("# of users: " + ratingsByUserDF.count)

# of users: 671

// analyze the movies largest number of ratings

val ratingsByMovieDF = ratingsDF.groupBy("movieId").count()
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ratingsByMovieDF.orderBy($"count".desc).show(10)

+--------+------+

| movieId| count|

+--------+------+

|     356|   341|

|     296|   324|

|     318|   311|

|     593|   304|

|     260|   291|

|     480|   274|

|    2571|   259|

|       1|   247|

|     527|   244|

|     589|   237|

+--------+------+

// prepare data for training and testing

val Array(trainingData, testData) = ratingsByUserDF.randomSplit(Array(0.8, 0.2))

// setting up an instance of ALS

val als = new ALS().setRank(12)

                   .setMaxIter(10)

                   .setRegParam(0.03)

                   .setUserCol("userId")

                   .setItemCol("movieId")

                   .setRatingCol("rating")

// train the model

val model = als.fit(trainingData)

// perform predictions

val predictions = model.transform(testData).na.drop

// setup an evaluator to calcuate the RMSE metric

val evaluator = new RegressionEvaluator().setMetricName("rmse")

                                         .setLabelCol("rating")

                                         .setPredictionCol("prediction")
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val rmse = evaluator.evaluate(predictions)

println(s"Root-mean-square error = $rmse")

Root-mean-square error = 1.06027809686058

The ALSModel class provides two sets of useful functions to perform 

recommendations. The first set is for recommending the top n items to all users or a 

specific set of users. The second set is for recommending the top n users to all items or a 

specific set of items. Listing 8-21 provides an example of calling these functions.

Listing 8-21. Using ALSModel to Perform Recommendations

// recommend the top 5 movies for all users

model.recommendForAllUsers(5).show(false)

// active raters

val activeMovieRaters = Seq((547), (564), (624), (15), (73)).toDF("userId")

model.recommendForUserSubset(activeMovieRaters, 5).show(false)

+------+------------------------------------------------------------------+

|userId|    recommendations                                               |

+------+------------------------------------------------------------------+

|    15|  [[363, 5.4706035], [422, 5.4109325], [1192, 5.3407555],  

[1030, 5.329553], [2467, 5.214414]]                              |

|   547|  [[1298, 5.752393], [1235, 5.4936843], [994, 5.426885],  

[926, 5.28749], [3910, 5.2009006]]                               |

|   564|  [[121231, 6.199452], [2454, 5.4714866], [3569, 5.4276495],  

[1096, 5.4212027], [1292, 5.4203687]]                            |

|   624|  [[1960, 5.4001703], [1411, 5.2505665], [3083, 5.1079946],  

[3030, 5.0170803], [132333, 5.0165534]]                          |

|    73|  [[2068, 5.0426316], [5244, 5.004793], [923, 4.992707],  

[85342, 4.979018], [1411, 4.9703207]]                            |

+------+------------------------------------------------------------------+

// recommend top 3 users for each movie

val recMovies = model.recommendForAllItems(3)

// read in movies data set so you can see the movie title

val moviesDF = spark.read.option("header", "true")
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                         .option("inferSchema", "true")

                         .csv("<path>/movies.csv")

val recMoviesWithInfoDF = recMovies.join(moviesDF, "movieId")

recMoviesWithInfoDF.select("movieId", "title", "recommendations").show(5, 

false)

+-------+---------------------------------+-------------------------------+

|movieId|                            title|                recommendations|

+-------+---------------------------------+-------------------------------+

|   1580| Men in Black (a.k.a. MIB) (1997)|   [[46, 5.6861496], [113, 

5.6780157], [145, 5.3410296]]|

|   5300|              3:10 to Yuma (1957)|   [[545, 5.475599], [354, 

5.2230153], [257, 5.0623646]]|

|   6620|         American Splendor (2003)|   [[156, 5.9004226], [83, 

5.699677], [112, 5.6194253]] |

|   7340|      Just One of the Guys (1985)|   [[621, 4.5778027], [451, 

3.9995837], [565, 3.6733315]]|

|  32460| Knockin' on Heaven's Door (1997)|   [[565, 5.5728054], [298, 

5.00507], [476, 4.805148]]   |

+-------+---------------------------------+-------------------------------+

// top rated movies

val topRatedMovies = Seq((356), (296), (318), (593)).toDF("movieId")

// recommend top 3 users per movie in topRatedMovies

val recUsers =  model.recommendForItemSubset(topRatedMovies, 3)

recUsers.join(moviesDF, "movieId").select("movieId", "title", 

"recommendations").show(false)

+-------+---------------------------------+-------------------------------+

|movieId|                            title|                recommendations|

+-------+---------------------------------+-------------------------------+

|    296|              Pulp Fiction (1994)|  [[4, 5.8505774], [473, 

5.81865], [631, 5.588397]]    |

|    593| Silence of the Lambs, The (1991)|  [[153, 5.839533], [586, 

5.8279104], [473, 5.5933723]] |

|    318| Shawshank Redemption, The (1994)|  [[112, 5.8578305], [656, 

5.8488774], [473, 5.795221]]  |

Chapter 8  MaChine Learning with Spark



380

|    356|              Forrest Gump (1994)|  [[464, 5.6555476], [58, 

5.6497917], [656, 5.625555]]|

+-------+---------------------------------+-------------------------------+

In Listing 8-20, an instance of the ALS algorithm was trained with one set of 

parameters, and the RSME you got is about 1.06. Let’s try retraining that instance of the 

ALS algorithm with a set of parameter combinations using CrossValidator to see whether 

you can lower the RSME value. The code in Listing 8-22 sets up grid search with a total of 4 

parameter combinations for the two model hyperparameters (als.regParam and als.rank) 

and a CrossValidator with three folds. This means the ALS algorithm will be trained and 

evaluated 12 times, and therefore it will take a minute or two to finish on a laptop.

Listing 8-22. Using CrossValidator to Tune the ALS Model

val paramGrid = new ParamGridBuilder().addGrid(als.regParam,  

Array(0.05, 0.15))

                                      .addGrid(als.rank, Array(12,20))

                                      .build

val crossValidator = new CrossValidator().setEstimator(als)

                                         .setEvaluator(evaluator)

                                         .setEstimatorParamMaps(paramGrid)

                                         .setNumFolds(3)

// print out the 4 hyperparameter combinations

crossValidator.getEstimatorParamMaps.foreach(println)

{

       als_d2ec698bdd1a-rank: 12,

       als_d2ec698bdd1a-regParam: 0.05

}

{

       als_d2ec698bdd1a-rank: 20,

       als_d2ec698bdd1a-regParam: 0.05

}

{

       als_d2ec698bdd1a-rank: 12,

       als_d2ec698bdd1a-regParam: 0.15

}
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{

       als_d2ec698bdd1a-rank: 20,

       als_d2ec698bdd1a-regParam: 0.15

}

// this will take a while to run through more than 10 experiments

val cvModel = crossValidator.fit(trainingData) 

// perform the predictions and drop the

val predictions2 = cvModel.transform(testData).na.drop

val evaluator2 = new RegressionEvaluator().setMetricName("rmse")

                                          .setLabelCol("rating")

                                          .setPredictionCol("prediction")

val rmse2 = evaluator2.evaluate(predictions2)

rmse2: Double = 0.9881840432547675

You have successfully lowered the RMSE by leveraging CrossValidator to help with 

tuning the model. It may take a while to train the best model, but MLlib makes it easy to 

experiment with a set of parameter combinations.

 Deep Learning Pipeline
This chapter would be incomplete if there is no reference to the deep learning topic, 

which is one of the hottest topics in the artificial intelligence and machine learning 

landscapes. There are already lots of resources available in the form of books, blogs, 

courses, and research papers to explain every aspect of deep learning. In terms of 

technology, there are a lot of innovations from the open source community, universities, 

and large companies such as Google, Facebook, Microsoft, and others that are coming 

up with deep learning frameworks. Here is the current list of deep learning frameworks:

• TensorFlow is an open source framework created by Google.

• MXNet is a deep learning framework developed by a group of 

universities and companies.

• Caffe is a deep learning framework developed by UC Berkeley.

• CNTK is an open source deep learning framework developed by 

Microsoft.
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• Theano is an open deep learning framework developed by the 

University of Montreal.

• PyTorch is an open source deep learning framework developed by 

Facebook.

• BigDL is an open source deep learning framework developed by 

Intel.

From the Apache Spark’s side, Databricks is driving the effort of developing a project 

called Deep Learning Pipelines, which is not another deep learning framework, but 

rather it is designed to work on top of the existing popular deep learning frameworks 

listed earlier. In the spirit of Spark and MLlib, the Deep Learning Pipelines project 

provides high-level and easy-to-use APIs for building scalable deep learning applications 

in Python with Apache Spark. This project is currently being developed outside of the 

Apache Spark open source project, and eventually it will be incorporated into the main 

trunk. At the time of this writing, the Deep Learning Pipelines project provides the 

following features:

• Common deep learning use cases implemented in just a few lines of 

code

• Working with images in Spark

• Applying pretrained deep learning models for scalable predictions

• The ability to do transfer learning, which adapts a model trained for a 

similar task to the current ask

• Distributed hyperparameter tuning

• Easily exposing deep learning models so others can use them as a 

function in SQL- to make predictions

You can find more details about the exciting Deep Learning Pipelines project at 

https://github.com/databricks/spark-deep-learning.
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 Summary
The adoption of artificial intelligence and machine learning is steadily increasing, and 

there will be many exciting breakthroughs in the coming years. Building on top of the 

strong foundation of Spark, the MLlib component is designed to help with building 

intelligent applications in an easy and scalable manner.

• Artificial intelligence is a broad field, and its goal is to make machines 

seem like they have intelligence. Machine learning is one of the 

subfields; it focuses on teaching machines to learn by training them 

with data.

• The process of building machine learning applications is an iterative 

one and involves a few steps that are usually followed in a certain 

sequence.

• The Spark MLlib component consists of tools for feature engineering, 

constructing, evaluating, and tuning machine learning pipelines 

as well as a set of well-known machine learning algorithms such as 

classification, regression, clustering, and collaborative filtering.

• The core concepts the MLlib component introduces to help with 

building and maintaining complex pipelines are transformers, 

estimators, and pipeline. A pipeline is the orchestrator that ensures 

both training and test data flow through identical feature processing 

steps.

• Model tuning is a critical step in the machine learning application 

development process. It is tedious and time-consuming 

because it involves training and evaluating one or models over 

a set of parameter combinations. Combined with the pipeline 

abstraction, MLlib provides two tools to help: CrossValidator and 

TrainValidationSplit.
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